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Abstract: Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation
that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have
different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which
could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated
PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation
RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39
patients, we performed differential expression analysis to define an IA-associated signature of
54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these
genes could delineate patients with IAs from controls, as the majority of them still had the same
direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis
and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes,
intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed
that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and
TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that
4/54 genes were associated with rupture risk. These findings highlight the potential to develop
predictive biomarkers from PBMCs to identify patients harboring IAs.

Keywords: cerebral aneurysm; monocytes; T lymphocytes; transcriptome profiling; biomarkers

1. Introduction

Intracranial aneurysms (IAs) are pathological outpouchings within cerebral vascula-
ture that are present in about 3–6% of the general population [1,2]. The rupture of an IA,
which is the predominant cause of non-traumatic subarachnoid hemorrhage (SAH), is asso-
ciated with high mortality and morbidity rates [3,4]. Since most IAs are asymptomatic until
rupture, unruptured aneurysms are typically detected incidentally by cerebral imaging
performed for other reasons. While early IA detection can allow for closer monitoring and
preventative treatments, imaging for general IA screening is unsuitable due to high costs
and potential risks [5]. Recently, RNA profiling of circulating immune cells has emerged as
a potential means to identify robust diagnostic markers of vascular diseases, such as IA,
aortic aneurysms, and stroke [6–11].
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Clinical reports and animal model studies have shown that IA pathology is dominated
by inflammation [1,12–14]. The initial inflammatory responses during aneurysm genesis
are thought to be perpetuated by the endothelium and pro-inflammatory vascular smooth
muscle cells [15,16]. During IA natural history, chemokines and cytokines released into the
blood by the diseased tissue may begin to recruit circulating immune cells to the lesion [17].
Reports have shown increased neutrophil-to-lymphocyte ratios in patients with larger,
more progressed IAs, and with ruptured aneurysms, suggesting a role for peripheral
activation of immune cells and systemic innate inflammatory responses during IA [18,19].
Indeed, circulating monocytes, neutrophils, and other lymphocytes in the blood are known
to infiltrate the nascent IA wall and contribute to maladaptive remodeling via upregulation
and release of matrix metalloproteinases (MMPs) [20,21]. Traditionally, macrophages have
been recognized as the main contributor to inflammation in IA [22,23]. Studies of both
ruptured and unruptured IA tissue have reported increased presence of T cells, B cells, and
macrophages within the vascular walls of IAs, and even more so in ruptured ones [24,25].
Furthermore, animal models have demonstrated that both the depletion of macrophages
and the inhibition of monocyte chemoattractants are associated with a reduced aneurysm
formation [26,27].

In this study, we hypothesized that peripheral blood mononuclear cells (PBMCs),
which are predominantly composed of monocytes, T cells, and B cells, have different
transcriptional profiles in patients with IAs as compared to IA-free patients. Our rationale
was that ongoing inflammatory responses at the IA tissue level could lead to peripheral
cellular activation and chemoattraction of PBMCs, which has also been observed for
circulating neutrophils in IA. Sabatino et al. demonstrated the initial feasibility of this
concept in 2013 [28]. Using a cohort of 15 ruptured IAs, 15 unruptured IAs, and 15 controls,
they performed gene chip microarrays on PBMC RNA and found over expression of pro-
apoptotic genes and under expression of extracellular matrix-related genes were associated
with IA [28]. Yet, while they provided important preliminary evidence of potential PMBC
expression signatures of IA, the previous efforts investigated small datasets, did not include
validation studies, and used microarray technology that is less sensitive and comprehensive
than modern RNA sequencing techniques.

To overcome these challenges and test our hypothesis, we performed transcriptome
profiling on PBMCs in patients with and without IAs (confirmed on angiography). We
used next-generation RNA sequencing to identify an IA-associated expression signature in
PBMC transcriptomes. We further assessed if the IA-associated signature could distinguish
patients with and without IA in a small, independent cohort of patients. Gene ontology
analysis and physiological pathway modeling were used to determine the biological func-
tion of differentially expressed transcripts. Results from this study could motivate future
efforts towards developing blood-based biomarkers and shed light on the pathophysiology
of aneurysms.

2. Materials and Methods
2.1. Patient Enrollment and Cohort Creation

This study was approved by the University at Buffalo’s Human Research Institutional
Review Board (study numbers 030474433 approved 8/20/2013-5/19/2022 and 00005225,
approved 3/16/2021-3/15/2022). Written informed consent was obtained from all subjects
prior to sample collection and the study was carried out in accordance with the approved
protocol. Patients at Gates Vascular Institute (Buffalo, NY, USA) receiving cerebral digital
subtraction angiography (DSA) with and without IA diagnosis were enrolled in this study.
Indications for DSA included confirmation of IAs detected on noninvasive imaging or
follow-up imaging of previously detected IAs for the IA group, or to identify presence or
absence of vascular disease (i.e., malformations, carotid stenosis) for the control group.
Patients who consented to participate in this study were over 18 years old, English-speaking,
and had not previously been treated for IA. Patients who were pregnant, had a fever
(>100 ◦F), recently had invasive surgery, were receiving chemotherapy treatments, had
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autoimmune disease, or were on immunomodulating drugs were excluded. Information
about patient’s history and comorbidities was collected from medical records.

Between December 2013 and September 2018, we collected whole blood samples from
patients receiving cerebral DSA (103 with IA, 129 without IA) [6–8,29]. Before sequencing,
samples were further screened by demographics and comorbidities. To control for potential
confounding variables, samples were removed if they had more than 3 comorbidities
(including smoking, hypertension, heart disease, diabetes mellitus, osteoarthritis, stroke
history, and asthma) or any other cerebral vascular disease. Prior to data analysis, samples
were divided into a discovery and validation cohort using a 75%:25% split, such that the
expression of identified differentially expressed genes could be independently verified.

2.2. PBMC Isolation and RNA Preparation

Whole blood was drawn into 10-mL citrated CPT tubes (Becton Dickinson, Franklin
Lakes, NJ, USA) from the femoral access sheath. Cell separation procedures occurred within
1 h from when the specimens were drawn. PBMCs were separated from granulocytes and
red blood cells (RBCs) by density gradient centrifugation. The PBMCs were washed with
RBC lysis buffer, pelleted and then disrupted with TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) and stored at −80 ◦C until further processing. RNA was extracted using the
TRIzol kit, according to the manufacturer’s instructions. Trace amounts of DNA were
removed by DNase I (Life Technologies, Carlsbad, CA, USA) treatment. RNA was purified
using the RNeasy MinElute Cleanup Kit (Qiagen, Venlo, Limburg, Netherlands) and
suspended in RNase-free water. The purity and concentration of RNA in each sample
were measured by absorbance at 260 nm on a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA), and 400 ng of RNA was sent to the University at Buffalo’s
Next-Generation Sequencing and Expression Analysis Core facility for further quality
control. Precise RNA concentration was measured at the core facility via the Quant-iT
RiboGreen Assay (Invitrogen, Carlsbad, CA, USA) with a TBS-380 Fluorometer (Promega,
Madison, WI, USA). The quality of the RNA samples was measured with an Agilent
2100 BioAnalyzer RNA 6000 Pico Chip (Agilent, Las Vegas, NV, USA). RNA samples of
acceptable purity (260/280 ratio of ≥1.9) and integrity (RQN ≥ 8.0) were considered for
RNA sequencing.

2.3. RNA Sequencing

RNA libraries were prepared using the Illumina TruSeq stranded total RNA gold kit
(Illumina, San Diego, CA, USA). All samples underwent 100-cycle, dual-read sequencing
in the Illumina NovaSeq6000 System (Illumina, San Diego, CA, USA) on a single flow
cell and were demultiplexed with Bcl2Fastq. Per-cycle basecall files generated by the
NovaSeq6000 were converted to pre-read FASTQ files using bclfastq version 2.20.0.422
using default parameters. The quality of the sequencing was reviewed using FastQC
version 0.11.5. Potential contamination was detected using FastQ Screen version 0.11.1. No
adapter sequences were detected, so no trimming was performed. Genomic alignments
were performed using HISAT2 version 2.1.0 using default parameters. NCBI reference
GRCh38 was used for the reference genome and gene annotation set. Sequence alignments
were compressed and sorted into binary alignment map files using samtools version 1.3.
Mapped reads for genomic features were counted using Subread featureCounts version
1.6.2 using the parameters -s 2 –g gene_id–t exon–Q 60; the annotation file specified with
—a was the NCBI GRCh38 reference from Illumina iGenomes [30–32].

2.4. Differential Expression Analysis

For differential expression analysis raw counts were normalized as transcripts per
million (TPM). Protein coding genes with expression in >50% of all samples were consid-
ered for differential expression analysis using an F-test. Those with a John Storey False
Discovery Rate (FDR) corrected p-value (q-value) < 0.05 and with an absolute fold change
≥ 1.3 were considered differentially expressed. To visualize how differentially expressed
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genes (DEGs) could separate control and IA samples, we performed hierarchical clustering
(complete linkage, Euclidean distance) on scaled log-transformed data and visualized
the results in a heatmap. We also performed k-means clustering using 1-pearson correla-
tion metric, k = 2, and 1000 iterations (https://software.broadinstitute.org/morpheus/,
accessed 22 April 2021).

Cell composition analysis was performed using the open-access CIBERSORT ap-
plication (version 1.06, https://cibersort.stanford.edu/, accessed on 22 April 2021) [33].
Analysis was performed on TPM-normalized gene expression values and considered
22 leukocyte cell-type signatures. CIBERSORT used a linear support vector regression to
estimate cell proportions. Protein coding transcripts with expression in >50% of all samples
were used in this analysis (n = 9239). A Student’s t-test was used to evaluate if there were
any significant differences in predicted cell populations between the IA and control groups
(q-value < 0.05 was considered significant).

2.5. Bioinformatics

Based on our differential expression analysis, we studied ontological enrichment
in our significantly differentially expressed genes using the g:GOSt tool (https://biit.cs.
ut.ee/gprofiler/gost, accessed on 22 April 2021) in g:Profiler program [34,35], using all
knowns transcripts as background. This enabled us to identify enriched biological process,
molecular function, and cellular component GO terms in genes with increased or decreased
expression. Reported ontologies with 5 or more focus molecules, along with their FDR-
adjusted p-values, were summarized and visualized as networks in the REVIGO (REduce
and VIsualize Gene Ontology, http://revigo.irb.hr/, accessed on 22 April 2021) tool [36]
using a semantic similarity cutoff of C = 0.70 (only ontologies with at least one other
network connection were retained for visualization).

Additional analyses were performed in Ingenuity Pathway Analysis (IPA, Qiagen QIA-
GEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis,
accessed on 22 April 2021) [37]. Here, IPA was used to generate networks of potential
interactions. For IPA, each gene identifier was mapped to its corresponding gene object
in the Ingenuity Knowledge Base and overlaid onto a molecular network derived from
information accumulated in the Knowledge Base. Gene networks were algorithmically
generated based on their “connectivity” derived from known interactions between the
products of these genes. Networks with p-scores > 20 were considered significant. We also
assessed predicted upstream regulators in IPA. Biomolecules (RNA, protein, DNA) with a
Benjamini–Hochberg FDR-corrected p-value < 0.05 were considered regardless of z-score.

2.6. The Differentially Expressed Genes in the Validation Cohort

To determine if differentially expressed genes could also separate patients with IAs from
controls in an independent cohort, we evaluated their expression in the validation cohort that
consisted of 25% of all samples. For comparison, we calculated their fold-change in this new
cohort. Principal component analysis using the prcomp package in R was used to determine if
the genes could delineate IA from controls in both cohorts. To further explore their diagnostic
potential, we performed supervised machine learning on the TPM data using the MATLAB
Statistics and Machine Learning Toolbox (MathWorks, Natick, MA, USA). In the discovery
dataset, we trained a Subspace Discriminant Ensemble model with four-fold cross-validation
to avoid overfitting. This model was then tested in the validation dataset. In training and
testing, we calculated the model’s accuracy, sensitivity, and specificity.

2.7. IA Risk Correlation

As aberrant RNA expression in circulating PBMCs may be aggravated in cases of
larger or more developed IAs, we explored the relationship between expression of DEGs
and IA risk. We assessed risk in two ways: (A) By measuring IA size (the most common
clinical metric for assessing IA risk) and (B) By calculating 5-year rupture risk % accord-
ing to the International Study of Unruptured Intracranial Aneurysms (ISUIA) study [38].

https://software.broadinstitute.org/morpheus/
https://cibersort.stanford.edu/
https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
http://revigo.irb.hr/
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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To identify genes correlated with each risk classification, we implemented Pearson cor-
relation analysis. The degree of correlation was assessed using the Pearson correlation
coefficient (PCC) and p-values from the Wald test (α = 0.05). A “very strong” correlation
was defined by 1.0 ≥ |PCC| ≥ 0.80, 0.79 ≥ |PCC| ≥ 0.60 defined “strong” correlation,
0.59 ≥ |PCC| ≥ 0.40 defined “moderate” correlation, 0.39 ≥ |PCC| ≥ 0.20 defined “weak”
correlation, and |PCC| < 0.19 defined a “very weak” or no correlation [39].

3. Results
3.1. Study Population

We studied the gene expression profiles from a total of 52 peripheral blood samples
(24 IA, 28 controls) that met our inclusion and quality criteria. As shown in Table 1, our
cohort matching scheme resulted in a discovery cohort population in which there were no
statistically significant differences in age, sex, smoking, and comorbidities between the two
groups in the discovery cohort of 39 patients. Characteristics of the IAs in the discovery
group are demonstrated in Supplementary Material Table S1. In this group, aneurysm size
(largest diameter measured on DSA) ranged from 2 to 18 mm, with a mean size of 6.2 mm.
Furthermore, one individual had multiple IAs, and three people had a reported family
history of aneurysm.

Table 1. Patient characteristics of the discovery cohort *.

Patients with IA (n = 18) Patients without IA (n = 21) p-Value

Age (years) (mean + SE) 56.5 ± 2.86 56.5 ± 3.31 0.996
[Q2 (Q1/Q3)] 55.5 (50/62.75) 50 (47/68)

Sex
Female 66.67% 71.43% 1

Current Smoker
Yes 27.78% 4.76% 0.0775

Comorbidities
Osteoarthritis 0.00% 14.29% 0.235

Diabetes mellitus 0.00% 19.05% 0.11
Heart disease 16.67% 19.05% 1

Hyperlipidemia 22.22% 38.10% 0.322
Hypertension 33.33% 38.10% 1
Stroke history 0.00% 4.76% 1

* Clinical characteristics of the randomly selected discovery cohort. These clinical factors were retrieved from patients’ medical records.
With the exception of age, these data points were quantified as binary data points. Significant differences between each group were
evaluated with a Student’s t-test for continuous data (age) and a Fisher’s exact test for categorical data (α = 0.05). There was no statistically
significant difference in age, sex, smoking, or comorbidities between the IA and control groups. (Abbreviations: IA = intracranial aneurysm,
n = number, Q = quartile, SE = standard error).

We performed RNA sequencing to identify differentially expressed genes in PBMCs.
The RNA quality and sequencing quality metrics for all samples are reported in Supple-
mental Tables S2 and S3. The 52 sequenced samples had an average 260/280 of 2.09 and an
average RNA quality number of 9.40. On average, there were 32.2 million reads assigned
per sample, and a 96.3% aligned rate. To determine if differentially expressed transcripts
were related to presence of IA, rather than differences in cell populations, we estimated the
proportions of different cell populations in each sample using CIBERSORT. This analysis
showed no statistically significant difference in proportions of cell types between all control
and IA samples in the discovery cohort (all q > 0.05). On average, monocytes represent the
majority (29%) followed by CD4+ T cells (28%), NK cells (18%), CD8+ T cells (12%), B cells
(4%), Tregs (3%), neutrophils (3%—likely a contaminant from processing), mast cells (1%),
and macrophages (1%) (see Supplemental Figure S1).

3.2. Differentially Expressed Genes in PBMCs from Patients with IA

The volcano plot in Figure 1 shows PBMC expression differences between the IA
patients and control subjects of the discovery cohort in terms of average fold-change in
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expression and significance level. We identified 54 genes from 9239 protein coding tran-
scripts with testable expression (expression in >50% of all samples) that were significantly
differentially expressed (q < 0.05 and an absolute fold-change ≥ 1.3) between the two
groups of the discovery cohort, reported in Table 2. Fourteen genes had lower expression
in IA, and 40 genes had higher expression in IA. These genes and how they were able
to cluster the two cohorts are shown in the heatmap in Figure 1. Furthermore, K-means
clustering using this signature was able to correctly assign 85% (33/39) of the samples to
their respective group in the discovery cohort.

Table 2. Differentially expressed genes identified in the discovery cohort *.

Gene Ensembl ID Log2(F-C) q-Value

ANKRD24 ENSG00000089847.12 1.02440061 1.7433 × 10−13

HLA-DQB2 ENSG00000232629.8 0.96482544 0.04366232
OR2AK2 ENSG00000187080.7 0.74946987 0.02309426

PHOSPHO1 ENSG00000173868.11 0.70543487 0.03393937
ANKRD22 ENSG00000152766.5 0.69650906 0.00201465

SLC7A8 ENSG00000092068.18 0.65335667 0.03981758
COCH ENSG00000100473.15 0.64742593 0.0453735

SORCS3 ENSG00000156395.12 0.63403617 0.01399435
CCR8 ENSG00000179934.6 0.5985602 0.01680311
EGR2 ENSG00000122877.13 0.5965057 0.01284844
G0S2 ENSG00000123689.5 0.57278717 0.00814323

ZNF135 ENSG00000176293.19 0.5427691 0.00793924
OMG ENSG00000126861.4 0.52775651 0.02057129

CNTNAP1 ENSG00000108797.11 0.51886293 0.04669498
PTGS2 ENSG00000073756.11 0.50884249 0.01626401

ADAMTS17 ENSG00000140470.13 0.50648661 1.664 × 10−6

FAM83D ENSG00000101447.13 0.50468148 0.04240973
SYNPO ENSG00000171992.12 0.49739469 0.04915655
SMN1 ENSG00000172062.16 0.48613932 1.9529 × 10−5

MKRN3 ENSG00000179455.7 0.47839381 0.02970793
TRPV4 ENSG00000111199.10 0.47241322 0.00038868
KCNG1 ENSG00000026559.13 0.45359347 0.02898435
SDC3 ENSG00000162512.15 0.43993667 0.00201465

MEOX1 ENSG00000005102.12 0.43878267 0.04189198
FAM71F2 ENSG00000205085.8 0.43702203 0.03651116

TIMD4 ENSG00000145850.8 0.43318811 0.02661721
TRIM7 ENSG00000146054.17 0.43251954 0.01502045
ODF3B ENSG00000177989.13 0.42500275 0.02928318
SHISA8 ENSG00000234965.2 0.42403186 0.02784039
HSPA2 ENSG00000126803.9 0.41906929 0.04206239
C7orf61 ENSG00000185955.4 0.41889115 0.03017211
CXorf67 ENSG00000187690.3 0.41696671 0.02238062
ANO5 ENSG00000171714.10 0.40898144 0.02784039
FMN1 ENSG00000248905.8 0.40803563 0.02269361

RP11-231C14.4 ENSG00000169203.16 0.40751277 0.04859605
RAVER2 ENSG00000162437.14 0.39236484 1.1939 × 10−8

ANKRD34B ENSG00000189127.7 0.39138387 0.02561036
SCARF2 ENSG00000244486.7 0.3850027 0.02164902

CACNA1I ENSG00000100346.17 0.38424407 0.02057129
SSTR3 ENSG00000278195.1 0.38405987 0.00524454

SAMD14 ENSG00000167100.14 −0.4203139 0.02550125
TRNP1 ENSG00000253368.3 −0.4552427 0.04311265
CDCP1 ENSG00000163814.7 −0.4854855 0.00524454
FOLR3 ENSG00000110203.8 −0.4935978 0.01029719



Diagnostics 2021, 11, 1092 7 of 20

Table 2. Cont.

Gene Ensembl ID Log2(F-C) q-Value

ANKRD24 ENSG00000089847.12 1.02440061 1.7433 × 10−13

PHGDH ENSG00000092621.11 −0.5333702 0.02265579
PDZK1IP1 ENSG00000162366.7 −0.5388676 0.04025004

BOK ENSG00000176720.4 −0.5554993 0.01106655
RETN ENSG00000104918.7 −0.5886811 0.01718698
DEFA4 ENSG00000164821.4 −0.6427006 0.03699697

KIR3DL2 ENSG00000240403.5 −0.6593919 0.04000571
TNNT1 ENSG00000105048.16 −0.771146 0.00964492
L1TD1 ENSG00000240563.1 −0.834892 0.03447339
PRTN3 ENSG00000196415.9 −0.9982895 0.02189969
UTS2 ENSG00000049247.13 −1.2567442 1.4788 × 10−7

* Significantly differentially expressed transcripts with q-value < 0.05 and an absolute fold-change ≥ 1.3. 40 genes
had higher expression in IA, and 14 genes had lower expression in IA. (Abbreviations: F-C = fold-change).

3.3. Bioinformatics Analyses

To understand the biological implication of differential PBMC RNA expression, we
performed several bioinformatics analyses. We performed detailed gene ontology term
enrichment analysis using g:Profiler, then reduced and visualized GO terms using REVIGO.
Networks of significant GO terms for the significant up- and down-regulated genes are
shown in Figure 2. From this analysis, upregulated genes showed enrichment of terms
related to adhesion processes, ion transport and structural processes, transmembrane and
junction components, and signaling receptor activity. On the other hand, downregulated
genes were enriched for terms related to response to stimulus processes, vesicle compo-
nents, and binding activity function (a full list of ontologies is reported in Supplemental
Table S4). Overall, these functions are pertinent to monocyte activation and recruitment via
intravascular perturbations, as they reflect processes related to response to stimuli, cellular
adhesion, structural reorganization, and cell-to-cell signaling.

All 54 significantly differentially expressed genes were also analyzed using IPA. As
demonstrated in Figure 3, IPA revealed three significant networks (p-score > 20) relating to
the significant genes. The first network (Figure 3A) had a p-score of 36 and was associated
with “behavior”, “cell death and survival”, and “connective tissue disorders”, with nodes
consisting of inflammatory signaling molecules, such as the transcription factor NF-kB,
cytokines, and immunoglobulins (IgG). Network 2 (Figure 3B) had a p-score of 20. It
was associated with “amino acid metabolism”, “cell cycle”, and “cellular development”
processes, and had nodes at extracellular matrix components such as ADAMTS genes, and
collagens, as well as the growth factors TGFB and EGFR. Lastly, Network 3 (Figure 3C)
also had a p-score of 20, and was enriched for “cardiovascular system development and
function”, “cellular assembly and organization”, and “cellular development” ontologies.
This network was related to genes that extend the lifecycle of cells, with nodes at TP53, SRF,
and SMARCA4. Figure 3D shows that potential upstream regulators of gene expression
identified in IPA included activation by TNF and CREB1 (q < 0.05, albeit their z-scores
were not greater than 2.0). See Supplemental Tables S5 and S6 for additional data on the
networks and upstream regulators, respectively.
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Figure 1. Differential gene expression analysis. The volcano plot at the top demonstrates differ-
ential RNA expression between the two groups. Red circles indicate an IA-associated signature
of significantly differentially expressed transcripts (q < 0.05) with an absolute fold-change ≥ 1.3.
The heatmap below also shows differential expression of the 54 genes with increasing fold-change
(descending). Hierarchical clustering using these 54 genes was able to separate the control (blue) and
IA (orange) samples well; K-means clustering showed 85% (33/39) of the samples were clustered
their respective group (green with control, purple with IA). (Abbreviations: F-C = fold-change,
Max. = maximum, Min. = minimum).
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Figure 2. Networks derived from significantly enriched ontologies. The figure shows relationships of biological process
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whose width indicates the degree of similarity (ontologies without links are not visualized here). (A) Enriched ontologies in
significant genes with higher expression in IA. (B) Enriched ontologies in significant genes with lower expression in IA.
(Abbreviations: REVIGO = REduce and VIsualize Gene Ontology).
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Figure 3. Ingenuity Pathway Analysis results. Networks and upstream regulators were derived from IPA using differen-
tially expressed genes in PBMCs from IA patients and controls. Genes with increased expression levels in patients with IAs
are red, and genes with lower expression levels in patients with IAs are green, while fold-change is represented by color
intensity. Non-differentially expressed transcripts with known interactions are not colored. Direct and indirect relationships
are shown by solid and dashed lines, respectively. (A) The first network (p-score = 36) shows nodes of interactions to
differentially expressed genes at NF-kB, PTGS2 (also differentially expressed), cytokines, and immunoglobulins. (B) The
second network (p-score = 20) shows nodes of regulation at TGFB, MYC, and PHGDH, as well as other interactions with
ADAMTS family members and collagens. (C) The third network (p-score = 20) shows nodes of regulation at TP53, SRF,
and SMARCA4. (D) Predicted upstream regulators are shown in orange (activation) or blue (inhibition). This network of
significant upstream regulators shows evidence that TNF and CREB1 may have a role in regulating predominantly genes
with increased expression.

3.4. Replication of Fold-Change in the Validation Cohort

To determine whether expression of the IA-associated signature could separate pa-
tients with IAs from controls in an independent cohort, we performed a small replication
study in the validation cohort of n = 13 patients (see Supplemental Tables S7 and S8 for
this cohort’s demographic/comorbidity data and aneurysm characteristics, respectively).
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Patients with IAs (n = 6) had aneurysms ranging in size from 3 to 10 mm (average size =
6.4 mm) and included one individual with multiple aneurysms. TPM levels from RNA
sequencing data for the 54 genes of interest were used to visualize how these transcripts
could distinguish the IA group from the control group. PCA using these genes in both the
discovery and validation cohort are shown in Figure 4A. This analysis demonstrated that
in both cohorts, the 54 genes could well separate the IAs from controls in the principal
component space. This may be because over half of the 54 genes (30 genes, 56%) displayed
the same direction fold-change in expression in the validation cohort (see Supplemental
Figure S2). Additionally, our supervised machine learning analysis also demonstrated that
the 54 genes could help delineate IA from control samples. The Ensemble classifier, trained
in the discovery dataset (accuracy = 74.4%, sensitivity = 78.6%, and specificity = 72.0%),
was able to identify IA cases in the validation cohort with moderate accuracy = 69.2%, a
sensitivity = 66.7%, and a specificity = 71.4% (Figure 4B).
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Figure 4. Replication study in a validation cohort of 13 patients (6 with IAs). (A) The two plots show principal component
analysis performed using the 54 IA-associated genes in both the discovery (left) and validation (right) cohorts. The gene set
is able to distinguish the IA samples (orange circles) from the controls (blue triangles) in a similar fashion. (B) Supervised
machine learning was performed to determine how well the 54 genes delineated the IA from control samples in both
datasets. The bar graph on the left shows that training an Ensemble classifier in the discovery cohort yielded a mean
cross-validation accuracy, sensitivity, and specificity ≥72%. In testing the validation dataset, our data shows that the model
still had moderate performance, with an accuracy = 69.2%, a sensitivity = 66.7%, and a specificity = 71.4%.

3.5. Correlation of Gene Expression with IA Risk

We used Pearson correlation analysis to explore the relationship between the expres-
sion of the 54 significant genes and IA risk, as measured by aneurysm size and 5-year
rupture risk % (from ISUIA). As shown in Supplemental Table S9, three genes had signif-
icant correlation to size (all had a |PCC| > 0.40), and five had significant correlation to
5-year rupture risk (again, all had a |PCC| > 0.40). Figure 5 shows the correlation plots for
size and ISUIA of four genes (MKRN3—Figure 5A, PHGDH—Figure 5B, TIMD4—Figure 5C



Diagnostics 2021, 11, 1092 12 of 20

and TRIM7—Figure 5D) that had an absolute PCC > 0.25 for both risk assessments. Based
on this analysis, these genes may be good candidates as biomarkers for IA rupture risk in
addition to IA presence.
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Figure 5. Genes significantly correlated with the IA risk metrics, IA size and ISUIA-defined 5-
year rupture risk %. Four genes had an absolute PCC > 0.25 in both correlation analyses, with at least
one correlation being significant (p < 0.05). (A) MKRN3 expression was most significantly, positively
correlated with IA size (PCC = 0.56, “moderate”). (B) PHGDH expression was most significantly,
negatively correlated with 5-year risk (PCC = −0.46, “moderate”). (C) TIMD4 expression was also
most significantly, negatively correlated with 5-year risk (PCC = −0.49, “moderate”). (D) TRIM7
expression was most significantly, positively correlated with 5-year risk (PCC = 0.40, “moderate”).
(Exp. = expression, ISUIA = International Study of Unruptured Intracranial Aneurysms, PCC =
Pearson correlation coefficient, TPM = transcripts per million).
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4. Discussion

It is widely known that the natural history of IA is accompanied by progressive
inflammatory responses in the vascular wall [1,12–14]. Animal models have shown that
during aneurysm genesis, a combination of risk factors and hemodynamic stresses cause
inflammatory responses in the endothelium and pro-inflammatory phenotypic changes in
vascular smooth muscle cells [40–42]. These initial changes lead to the production of matrix
metalloproteinases (MMPs) that degrade the extracellular matrix and lead to bulging of the
artery [20,43]. The resultant aneurysm out-pouching is likely accompanied by local increase
in chemokines and cytokines (IL-1β, IL-17, TNF-α) in blood of the aneurysm lumen [17].
These signals, in addition to a progressively leaky and sticky endothelial surface, likely
attract circulating leukocytes that infiltrate the aneurysm tissue to further produce MMPs,
degrading the IA wall and advancing its growth. This is evidenced by multiple histological
analyses that have found leukocytes (mainly macrophages and T cells) in the walls of
IAs [24,44], and gene expression studies that have reported increased matrix degradation,
inflammatory processes, and cytokine/chemoattractant signaling [7–9,45–48].

The role of mononuclear cells has been widely studied in IA [49]. PBMCs arise from
hematopoietic stem cells in the bone marrow via hematopoiesis, and are composed of
myeloid cells (primarily monocytes), lymphoid cells (primarily T cells, B cells and NK
cells), and dendritic cells. They encompass key components of both the innate and adaptive
immune systems, which defend the body against infection and aid in the repair of diseased
tissue. Of all the PBMCs, infiltrating monocytes (mainly M1 macrophages) have been the
most widely studied in IA [23,50,51]. They have been shown to play significant roles in
the degradation of the internal elastic lamina via NF-kB-mediated expression of MMP-2
and MMP-9 [52]. Macrophage expression of NF-kB also leads to upregulation of MCP-1,
VCAM1, and IL-1B, which further contribute to the complex environment of inflammatory
signaling and immune cell extravasation [49]. While less studied, both T and B lymphocytes
are also present in IAs and can play a role in IA pathophysiology. In particular, studies have
shown that, as with macrophages, T lymphocytes express pro-inflammatory cytokines,
such as TNF-α, IFN-γ, and IL-6, that contribute to aneurysmal inflammation [24,53].

Considering the critical role of circulating PBMCs in IA inflammation and that they are
actively recruited to the aneurysm wall from the blood, we hypothesized that expression
patterns in PBMCs may be altered in patients harboring IAs compared to their IA-free
counterparts. Transcriptome profiling by next-generation RNA sequencing identified
a signature of 54 differentially expressed genes with an absolute fold change of ≥1.3
(40 increased, 14 decreased). The majority of these genes maintained the same expression
pattern in an independent validation cohort of patients and could delineate patients with
IA from controls based on our PCA and machine learning analysis (Ensemble classifier). To
our knowledge, only one other study has investigated circulating gene expression patterns
of IA in PBMCs. Sabatino et al. collected PBMCs from a cohort of 15 unruptured IAs,
15 ruptured IAs, and 15 control patients and performed gene-expression oligo-microarrays
on isolated PBMC RNA [28]. In all, they identified 53 differentially expressed mRNAs
between the unruptured IA and control groups (16 increased, 37 decreased) [28]. These
upregulated genes were largely related to apoptosis and intracellular signaling, while the
decreased genes were dominated by heat shock protein genes and genes related to the
cytoskeleton and signal transduction [28]. While this study showed feasibility that IA
was associated with differential expression of PBMCs, the results are difficult to interpret
because: (A) they only analyzed a small dataset (implementing simple t-test to select
differentially expressed genes), (B) they did not control their cohorts based on potentially
confounding comorbidities/demographics, (C) they did not incorporate any validation
into their analysis pipeline, and (D) they used microarray technology that is less sensitive
and comprehensive than modern RNA sequencing techniques.

We designed the current study to avoid previous pitfalls and ensure greater accuracy
of results. To do this, we confirmed diagnoses on DSA imaging, cohort-controlled our
datasets, and implemented a small replication study. These measures helped to increase the
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likelihood that the discovered signature is truly associated with the presence of unruptured
IA. Additionally, we used next-generation RNA sequencing. Unlike microarrays used
in past studies, RNA sequencing offers a larger dynamic range, facilitating detection of
expression differences in low-abundance transcripts, and avoids predetermined probes,
allowing for examination of novel RNAs (i.e., splice variants and gene isoforms) [54,55].
Based on this experimental setup, we were able to discover an IA-associated signature
of 54 genes. Similar to Sabatino et al., we found differential expression of heat shock
proteins (HSPA2), as well as differential expression of many genes involved in intracellular
signaling, such as g-protein coupled receptors (i.e., OR1AK2, OMG, SSTR3), and plasma
membrane ion channels (i.e., TRPV4, KCNG1). Other IA-associated genes we identified
have also been found to be differentially expressed in various blood components of IA
patients. ANKRD22, which was increased in our study, was also increased in whole blood
expression profiles as reported by Zhao et al. [56]. Expression differences in CCR8, G0S2,
SDC3 (all increased) and UTS2 (decreased) were also seen in previous work from our group,
in which we investigated expression signatures in circulating neutrophils as well as whole
blood from patients with IA [6,7,9].

In this study, we detected many other significant genes, which broadly indicated
peripheral activation of PBMCs during IA. Our bioinformatics analyses show that PBMCs
from IA patients reflect a complex reaction to intravascular perturbations that is associated
with increased cell activation, cell signaling, adhesion, and regulation of extracellular
matrix. The activation of circulating immune cells, likely monocytes and T cells, is most
reflected in enriched “response to stimulus” and “cell adhesion” ontologies. These are
related to increased expression of HLA-DQB2 (a major histocompatibility complex) and
CCR8. CCR8 is related to inflammatory signaling, as it is in the beta chemokine receptor
family and has increased expression in M1 pro-inflammatory macrophages (compared
to M2 macrophages), which have also been shown to be more prevalent in IAs and may
contribute more to pathologic remodeling during IA [50,51]. Activation of PBMCs was
also evident by the upregulation of the cell cycle gene, G0S2 [57]. As demonstrated in
our network analysis, this may occur through indirect interaction with NF-kB, a major
node in Network 1, and a key player in inflammatory signaling of monocytes during IA.
Furthermore, increased expression of TIMD4 in IA PBMCs also indicates the activation of
peripheral blood monocytes and T cells, as it has been a marker of recruited macrophages
and macrophage polarization and is involved in T cell proliferation [58–60].

In addition to activation, gene ontology term enrichment analysis revealed increased
structural development (evidenced by enrichment of the “anatomical structure morpho-
genesis” term). In our network analysis, this was conferred through several ADAMTS
nodes and their connections to collagens and TGFB (a key inflammatory regulator in IA).
Indeed ADAMTS17, a member of the ADAMTS family that is involved in proteoglycan
cleavage along with MMPs [61,62], was increased in PBMCs from IA patients in our data.
Another prominent enzymatic gene that was upregulated in our data is PTGS2 or COX2.
COX2 is an inducible enzyme responsible for prostaglandin production, and as such, plays
an essential role in inflammatory pathways [63,64]. Its expression has been associated
with IA progression, as it is increased in ruptured IAs, larger IAs, and IAs with unstable
walls [65,66]. One explanation for this relationship is that it has been observed to be in-
creased in intraluminal thrombi, which line the IA wall and further trap circulating immune
cells to create a hyper-degradative, cytotoxic environment [67–69]. We suspect that for
PBMCs in IA, the regulation of COX2, and other important genes (i.e., G0S2, TIMD4 and
CCR8), is coordinated through TNF (in addition to NF-kB), as evidenced by our upstream
analysis in IPA. TNFα is a critical part of the immune system and has been demonstrated
to be a key mediator of inflammatory cell infiltrates in IA disease [25,70]. We suspect that
TNF signaling may also be involved in priming of circulating PMBCs, namely monocytes,
during IA.

Given the potential role of NF-kB and TNF (two key inflammatory mediators in IA
tissue [71]) in regulating the observed expression differences in our study, we suspect an
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interaction between the PBMCs and the aneurysmal tissue (via contact or factors released
into the blood). Therefore, we also sought to determine if any of the IA-associated genes
were related to IA size and risk. Indeed, in past studies, we have demonstrated that differ-
ential expression in circulating neutrophils was exaggerated in patients with larger IAs.
Here, correlation analysis showed significant positive relationships between MKRN3 and
TRIM7, and IA size and 5-year rupture risk (ISUIA). While the role of MKRN3 is relatively
unknown, TRIM7 has been shown to promote TLR4-mediated signaling activation, which
via NF-kB, leads to the production of proinflammatory cytokines and type I interferon [72].
This could indicate that greater inflammatory signaling occurs in peripheral immune cells
of patients with larger or more unstable IAs. Conversely, we found significant negative
relationships between PHGDH and TIMD4, and IA size and rupture risk. PHGDH encodes
an enzyme that is involved in L-serine synthesis, and has been shown to have decreased
expression in aneurysm tissue [73]. The negative relationship with IAs of greater size may
support these findings in the IA tissue. Moreover, given the role of TIMD4, the correlation
analysis may also indicate decreased T cell proliferation in patients with larger IAs. This
may be akin to findings by Korostynski et al., who found a decrease in CD4+ lymphocytes
in the blood of patients with ruptured IAs [74]. Larger, longitudinal studies will be needed
to validate these findings and identify other circulating expression correlates of IA risk
and instability.

In summary, transcriptome profiling of PBMCs in patients with IA revealed a signature
of 54 significantly differentially expressed genes. These genes are likely to be related to
biological processes known to be enriched in IAs, such as NF-kB signaling and TNF
activity. Because of this relationship to the disease, we posit that this signature, upon
future rigorous validation, may be a potential biomarker for IA presence. Previous work
in this field has identified circulating protein markers, such as VEGF [75] or MCP-1 [70],
as potential IA biomarkers. Yet, the ubiquity in the expression of such proteins across
multiple other vascular diseases [76,77] limits their diagnostic potential. On the other hand,
clinical studies have also shown that in IA, particularly after rupture, there is a change in
cell populations (which was not observed in our data); neutrophil-to-lymphocyte ratios
increase [18], while lymphocyte-to-monocyte ratios decrease [74], suggesting increases in
neutrophils and monocytes. However, these ratios may be best suited for IA prognosis, as
the ratio of immune cells is often altered in many other disease states [78,79]. More recent
studies by our group [6–9,80] and others [28,56,81,82] have shown significant differences
in panels of genes from circulating inflammatory cells, such as neutrophils, in patients with
IA, which could be more specific to the disease. Indeed, our preliminary machine learning
analysis highlights this exciting potential for our PBMC RNA signature, although rigorous
validations are critically required.

Limitations

This preliminary study has several limitations. First, our study had a relatively small
sample size. However, demonstrating separation of IAs from controls in an independent
cohort gives confidence in the identified signature. Future studies in larger cohorts will in-
crease the statistical power in identifying differentially expressed genes. Second, the study
subjects were recruited from patients receiving cerebral imaging (which was necessary
to confirm the presence or absence of IA) at a single center. This may have introduced a
potential selection bias. Future studies in broader, randomized populations from multiple
centers are needed. Third, despite careful patient selection to ensure matched cohorts, there
were some differences (albeit not significant differences) in the rates of patients’ charac-
teristics, such as smoking and osteoarthritis, which could affect the data. Future efforts in
larger datasets should be made to normalize results based on patient demographics and
comorbidities. Lastly, there is a possibility that the expression signature could be influenced
by other conditions not accounted for. Additional studies should investigate the specificity
of the differential expression profiles to IA.
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5. Conclusions

In this preliminary study, we performed transcriptome profiling on PBMCs from
patients with and without IAs and identified a signature of 54 differentially expressed
genes with an absolute fold-change of ≥1.3 and q-value < 0.05. These genes also separated
patients with IAs from controls in a small validation cohort. Bioinformatics analyses
demonstrated enrichment of structural regulation processes, intracellular signaling function
and regulation of ion transport. IPA analysis showed that these processes were likely
coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Our
machine learning analysis highlights the exciting potential to develop circulating RNA
expression-based diagnostics for IA in future, larger studies.
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