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Introduction

Atherosclerosis is a slow and progressive disease of the arteri-
al wall that underlies the majority of cardiovascular events.1 
Even though atherosclerosis may remain clinically silent for de-
cades, it can be non-invasively assessed from early to late stages 
of the disease process using different imaging techniques (Fig-
ure 1). B-mode ultrasound is one of those imaging techniques 
which is frequently used to assess atherosclerosis in a safe, inex-
pensive, reliable, and reproducible manner. B-mode ultrasound 
measurements of the carotid intima-media thickness (CIMT) 

have been first described in 1986 by Pignoli et al. in an in vitro 
study of common carotid arteries.2 The investigators showed 
that the distance between the lumen and intima interface of the 
common carotid artery from pathologic examination did not 
differ from distance between the echogenic lines seen on the B-
mode ultrasound measurement from the same sample, suggest-
ing that B-mode ultrasound could be used to measure CIMT in 
vivo. At present, CIMT is an accepted measure of atherosclero-
sis that has frequently been used in observational studies to study 
the causes and consequences of atherosclerosis.3-5 In addition, 
numerous randomized controlled trials have used rate of change 

Correspondence: Sanne A.E. Peters
Julius Center for Health Sciences and 
Primary Care, Stratenum 6.131,
University Medical Center Utrecht,
Heidelberglaan 100, 3584 CX, Utrecht, 
The Netherlands
Phone: +31-88 755 9380 
Fax: +31 88 755 5485
E-mail: s.a.e.peters@umcutrecht.nl 

Received: September 19, 2012
Revised: January 9, 2013
Accepted: January 9, 2013

The authors have no financial conflicts of 
interest.

Background  Carotid intima-media thickness (CIMT) measurements have been widely used 
as primary endpoint in studies into the effects of new interventions as alternative for car
diovascular morbidity and mortality. There are no accepted standards on the use of CIMT 
measurements in intervention studies and choices in the design and analysis of a CIMT 
study are generally based on experience and expert opinion. In the present review, we pro-
vide an overview of the current evidence on several aspects in the design and analysis of a 
CIMT study on the early effects of new interventions. 
Summary of Issues  A balanced evaluation of the carotid segments, carotid walls, and im-
age view to be used as CIMT study endpoint; the reading method (manual or semi-auto-
mated and continuously or in batch) to be employed, the required sample size, and the fre-
quency of ultrasound examinations is provided. We also discuss the preferred methods to 
analyse longitudinal CIMT data and address the possible impact of, and methods to deal 
with missing and biologically implausible CIMT values.  
Conclusions  Linear mixed effects models are the preferred way to analyse CIMT data and 
do appropriately handle missing and biologically implausible CIMT values. Furthermore, we 
recommend to use extensive CIMT designs that measure CIMT at regular points during the 
multiple carotid sites as such approach is likely to increase the success rates of CIMT inter-
vention studies designed to evaluate the effects of new interventions on atherosclerotic 
burden.
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in CIMT as alternative endpoint for cardiovascular disease events 
to evaluate the effects of new interventions.6-13 The main advan-
tage of using CIMT as an outcome variable in studies is the con
siderable increase in efficacy in sample size and duration of fol-
low-up when compared to studies using morbidity and mortali-
ty as primary outcome. Nevertheless, while CIMT measure-
ments are increasingly being used, there are still no accepted 
standards on the use of CIMT measurements in various resear
ch areas. Hence, choices in the design and analysis of a CIMT 
study are generally based on experience and expert opinion 
rather than on solid evidence. Some methodological issues have 
begun to be addressed and the results from these studies do 
provide evidence for the most optimal approach to design and 
statistically analyse a CIMT study into the early effects of a new 
intervention on atherosclerosis before the start of a large mor-
bidity and mortality study.14-16 In the present review, we provide 
an overview of the current evidence on the design and analysis 
of a CIMT study on the early effects of new interventions. 

Study endpoint

CIMT is a common term for many different types of arterial 
measurements and there is a lot of heterogeneity across studies 
regarding the measurements that are included in the study end-
point. Figure 2 provides a schematic representation of the CIMT 
measurements that could be included in the most extensive 

protocols. Differences between protocols involve (1) the arteri-
al segments (e.g. the common carotid artery, the carotid bifur-
cation, and/or the internal carotid artery); (2) the carotid walls 
(far wall or both the near and far wall); and (3) the angle view 
(or view) to be used (one optimal angle, the thickest angle, or 
multiple angles).

Carotid segments
Some studies restricted their measurements to the common 

carotid artery alone, whereas ultrasound protocols including 
measurements from the carotid bifurcation and the internal ca-
rotid artery are used in the more extensive studies. Main argu-
ments to restrict ultrasound protocols to measurements of the 

Figure 1. Imaging of atherosclerosis in sequential stages of the disease process.
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Figure 2. Graphical representation of circumferential assessment of the artery 
sites. The values from 60 to 180 represent the standardized angles of interro-
gation. BIFUR, carotid bifurcation; CCA, common carotid artery; ECA, external 
carotid artery; ICA, internal carotid artery.
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common carotid artery only are that common CIMT data col-
lection is very reproducible and nearly always complete whereas 
the carotid bifurcation and the internal carotid artery are thought 
to be a source of missing data and less reproducible. Indeed, re-
producibility of the CIMT measurements in earlier cohort stu
dies was < 0.75 for the carotid bifurcation and the internal ca-
rotid artery whereas it was 0.85 or higher for the common ca-
rotid artery.17 In addition, completeness rates for the carotid bi-
furcation and internal carotid artery were 83% and 56% of the 
individuals in the Rotterdam Study, respectively, whereas mea-
surements of the common carotid artery could be obtained in 
97% of the individuals.18 However, CIMT measurements have 
advanced importantly and recent studies indicate that data com
pleteness and reproducibility are also high for the carotid bifur-
cation and the internal carotid artery.15,19,20 Therefore, expected 
difficulties in visualizing the carotid bifurcation and the internal 
carotid artery should not be the main argument to restrict the 
ultrasound protocol to the common carotid artery alone. In-
stead, as the aim of the use of CIMT in intervention studies is 
to determine the effect of an intervention on atherosclerosis 
and cardiovascular risk, one should choose the (combination 
of) arterial segment(s) that best reflects atherosclerosis and/or 
cardiovascular risk. Indeed, there are examples of therapies that 
proved to be effective in morbidity and mortality studies that 
failed to show an intervention effect on the CIMT of the com-
mon carotid artery whereas a beneficial effect was found on the 
CIMT endpoint that included the carotid bifurcation and the 
internal carotid artery.15 Recent studies that were set out to de-
termine the best ultrasound protocol in terms of carotid seg-
ments to be included and showed mixed results.14,21,22 Measur-
ing the near and far wall of the common carotid artery at multi-
ple angles alone was superior to also measuring the carotid bi-
furcation and internal carotid artery in healthy individuals and 
in familial hypercholesterolemia patients, whereas the three seg-
ment approach was superior to the common carotid artery ap-
proach alone in individuals with mixed dyslipidemia and as-
ymptomatic subclinical atherosclerosis. Thus, although mea-
surement of the common carotid artery alone may be sufficient 
in some situations, intervention effects may be missed and im-
portant new therapies may not be further developed and evalu-
ated in other situations. Importantly, as data collection on all ar-
terial segments also allows for evaluation of the common carot-
id artery alone, but not the other way around, extensive proto-
cols may prevail. 

Carotid walls
It is generally recognized that the far wall CIMT accurately 

reflects the true thickness of the carotid wall whereas the near 

wall is only an approximation of the true thickness.2,23,24 There is 
no published evidence that shows that the combined near and 
far wall common CIMT is superior to the far wall common CI
MT alone in the relation with prevalent or incident disease.25 
Yet, near wall CIMT measurements are nearly always complete 
and are as feasible and as reproducible as far wall CIMT mea-
surements.19,20 Also, the combination of near and far wall CIMT 
measurements has shown to be superior to far wall CIMT mea-
surements alone in a number of intervention studies.14,21,22 This 
superiority could be explained by the reduction in random 
measurement error and the subsequent improvement in preci-
sion after combining of the near and far wall measurements. 
Hence, measurement of near wall CIMT may yield valuable in-
formation and does increase statistical power and should not be 
discarded.

Image view 
CIMT ultrasound protocols also differ in the view (e.g. the 

angle) that is used to measure CIMT. Some studies measure 
CIMT only once at each measurement site and choose between 
an image in which the intima and media interfaces are most clear 
(i.e. single optimal B-mode image),26 or search for the point 
with the thickest CIMT (e.g. the highest burden of atheroscle-
rosis).4 Others choose for multiple optimal B-mode images,27 
or measured CIMT from multiple images that were taken from 
various standardized angles of interrogation which allows for 
measurement at exactly the same location over time.9 When 
one is interested in the rate of change in CIMT and the effects 
of an intervention, a few studies have been published that as-
sessed which approach is most favourable. These studies showed 
that extensive ultrasound protocols including near and far wall 
measurements from 2 or more angles provide a better balance 
between high reproducibility, large progression rates, and large 
and precise intervention effects when compared to single angle 
protocols from the far wall alone.14,21,22 This may especially be 
beneficial in settings where sample sizes and effect sizes are small. 
In addition, from a biological viewpoint it also seems important 
to measure CIMT at more than one site, as atherosclerosis is 
asymmetrically distributed across the carotid artery, selectively 
selecting one angle is likely to ignore the asymmetric nature of 
the disease.28

Reading method

Ultrasound images in CIMT studies are typically acquired at 
the study site, stored digitally, and send to a reading laboratory 
for offline reading. These reading could be performed using dif-
ferent edge detection methods (semi-automatic or manual) and 
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a choice should be made between a batch or reading approach. 

Semi-automatic or manual readings
In the early days, all CIMT images were read by readers who 

manually draw the lines of the lumen and media interfaces on 
the ultrasound image. However, techniques have advanced and 
images can now be read using either semi-automated edge de-
tection programs or manual edge detection of the ultrasound 
interfaces. Semi-automated edge detection is more often applied 
in settings where only the common carotid artery is examined 
whereas manual edge detection is usually applied in settings 
where the carotid bifurcation and the internal carotid artery are 
additionally measured.10-12,29-32 In both approaches a manual se-
lection of the site on the ultrasound image regarding the loca-
tion of measurements and the area of the arterial segment (i.e. 
the region of interest) that should be measured is made. The 
main difference between semi-automated edge detection and 
manual edge detection, however, is the actual manual drawing 
of the lines on the interfaces with manual edge detection. With 
semi-automatic edge detection the reader still may adjust or 
modify the automatically drawn lines when the reader judges 
that the lines were incorrectly placed.

A major advantage of semi-automated edge detection pro-
grams, besides being less resource intensive and time-consum-
ing, may be the reduction in variability in CIMT readings as a 
result of reduction in the variability between readers and elimi-
nation of change in reading behaviour over time (reader drift). 
However, a semi-automated edge detection program may be 
considered a single reader whose behaviour does not change 
over time. Thus, the potential gain in time and reduction of rea
der variability with semi-automatic reading depends on how of-
ten the automatic outlining of the lumen interfaces is manually 
modified because of wrong tracing. The more changes, the more 
the semi-automated program looks like a regular individual read
ing with all its consequences. Importantly, two recent studies in 
generally healthy individuals indicated that manual and semi-
automated edge detection of lumen and wall interfaces for mea-
surement of far wall common CIMT both resulted in high re-
producibility, and largely showed similar relations to cardiovas-
cular risk factors, rates of change, and treatment effects.33,34 Hence, 
choices between semi-automated and manual reading software 
for CIMT studies likely should be based on logistical and cost 
considerations rather than differences in expected data quality 
in populations with a low burden of atherosclerotic disease. How
ever, one may speculate that manual edge detection will perform 
better than semi-automated edge detection in populations in 
more advanced stages of atherosclerosis and more irregularities 
on the ultrasound interfaces.

Batch or random readings
CIMT images from a single study participant could be read 

either in batch by a single reader at one point in time or by mul-
tiple readers to whom the CIMT images of a particular ultra-
sound examination are randomly allocated. Batch reading has a 
logistical drawback that reading cannot start before a particular 
participant has had the last ultrasound examination and finished 
the study whereas random reading can be performed continu-
ously during the study. The main disadvantages of continuous 
random allocation of ultrasound images, however, is that read-
ing behaviour may change over time and that CIMT measured 
by different readers are additional source of variability.35 The 
batch reading approach, instead, is thought to reduce measure-
ment error in the CIMT measurements as all images of the same 
participant are read by the same reader and between-reader vari-
ability and reader drift (e.g. a change in reading behaviour over 
time) thus could be substantially reduced. Although both ap-
proaches have been used in intervention studies, the most opti-
mal reading approach has never been evaluated (and is not like-
ly to be evaluated) as studies never have used both methods si-
multaneously. However, an evaluation of the ELSA study of 
baseline and longitudinal quality control measurements showed 
a time trend towards lower CIMT values.36 Of note, although 
readers drift results in smaller CIMT values over time, the effect 
of reader drift on the difference in rate of change (i.e. the out-
come of interest) may be small and ignorable if the reader drift 
is not differential and occurs in all treatment groups to a similar 
extent.

Sample size 

Sample size calculations for CIMT studies are, as for any study, 
heavily dependent on the expected magnitude of the rate of 
change in CIMT, its precision, and the assumed effectiveness of 
the intervention. The published literature is generally used to 
obtain these figures. However, determining the most appropri-
ate expected rate of change can be a hard exercise as study pop-
ulations and interventions vary considerably across studies, 
with major differences in the reported rates of change in CIMT 
across studies as a result.37-39 Even within groups using a similar 
study population and intervention, there are major differences 
in the rates of change in mean common CIMT and mean maxi-
mum CIMT.15 The rate of change in CIMT is generally larger 
when mean maximum CIMT is used as primary endpoint as 
this approach is more affected by carotid plaques than mean 
common CIMT is. A previous analysis indicated that the rate of 
change in mean common CIMT was 0.0147 mm/y, whereas 
the pooled rate of change in mean maximum CIMT was 0.0176 
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mm/y.40 Also, rates of CIMT change are generally larger in indi-
viduals with a history of coronary heart disease than in those 
without. These differences in rates of CIMT change across pa-
tient groups represent the differences in natural course of ath-
erosclerosis across carotid segments and between patient groups. 
These differences are biologically determined and cannot be 
used as a means to change the required sample size through op-
timizing the study design. In contrast, differences in the dura-
tion of follow-up and the number and timing of ultrasound mea
surements from for example one to two years could importantly 
affect the precision of the estimated rates of change and does 
subsequently also affect the sample size requirements.41,42 Study 
designs with more repeated measurements or a longer duration 
of follow-up substantially increase the precision and this will 
decrease the required sample size to detect a given treatment ef-
fect with the same level of statistical power. These findings are 
independent of the expected rate of change in CIMT and the 
effects of an intervention and thus could be used to optimize 
the study design relative to costs or other study objectives.

Number of examinations

Considerable variability in the number of ultrasound exami-
nations and the timing between CIMT examinations can be 
observed from the published literature. The most basic schemes 
include single baseline and end-of study examinations alone 
whereas the most extensive schemes involve duplicate baseline 
examinations, measurements at regular intervals during the 
study, and duplicate end-of-study examinations.43 The main 
reason to decrease the number of ultrasound examinations is to 
reduce the costs and logistics of a study. As CIMT changes lin-
early over time, the rate of change in CIMT is basically deter-
mined by the first and last CIMT measurement.42 Thus, the ac-
tual effect size is unlikely to be affected by a difference in the 
number and position of ultrasound examinations within a study. 
The number of ultrasound examinations, however, has a major 
effect on the precision of the estimated rate of change, the more 
examinations the greater the precision. Such increase in preci-
sion (and thus in statistical power) may become of critical im-
portance in settings where statistical significance is harder to 
obtain, that is, in situations where intervention effects or sample 
sizes are smaller. Besides important improvements in precision, 
regular ultrasound examinations have a number of additional 
benefits. First, regular scans also keep the skills of sonographers 
up-to-date which is likely to improve the quality of the CIMT 
measurements.44,45 Second, when participants drop out, provid-
ing at least one post-baseline value, data from these participants 
can be used in the intention-to-treat analysis. Since dropout 

rates vary from 10% to 30% depending on the type of interven-
tion, this might yield a considerable advantage. Third, duplicate 
baseline and end-of-study examinations allow for reproducibili-
ty studies and will preserve quality control of the data. Finally, 
intermediate time points allow for assessment of the time course 
of therapeutic effects which could occur early after initiation of 
therapy or may not be seen until after prolonged exposure to an 
effective drug.46 These advantages should be carefully consid-
ered and weighted against its costs and other study objectives as 
part of the design of a CIMT study.

Data analyses

Once the CIMT data has been collected and the images have 
been read, the next step will be to actually perform the statisti-
cal analyses. When analysing CIMT data in intervention stud-
ies, one typically describes patterns over time (a rate of change) 
and characterizes any differences in the rates of change among 
groups. This can be done by analysing each component of the 
multivariable data individually or by aggregating all CIMT data 
in such way that simpler statistical methods such as analysis of 
variance can be used. Where the first approach introduces con-
cerns about making multiple comparisons, the second approach 
is not very flexible and typically leads to a loss of information 
about the natural variability across CIMT measurements. Both 
approaches should therefore not be recommended. Instead, 
one should use multivariable approaches which allow for great 
flexibility in choosing how one models longitudinal data and 
which can deal with measurements from different carotid sites 
in one model.47 In these linear mixed effects models, the data 
should be kept hierarchically as study participant, arterial seg-
ments within the participant, and measurements over time with-
in participants. With this data format, a linear mixed effects mo
del can be employed which generally includes random effects 
for the study participant, the CIMT measurement site, and time 
since randomisation. Fixed effects should be included for at least 
carotid segment, treatment group, time, and the treatment group 
by time interaction, the beta coefficient of this interaction term 
representing the effect of study treatment over time.10-12,32,48 Al-
though these linear mixed effects models may be considered 
more difficult than for example analysis of variances, choices for 
the statistical model should be balanced between the desire for 
simplicity in models and the desire to portray data appropriate-
ly. As most statistical packages currently include options to use 
linear mixed effects models, its implementation has become 
feasible for a broad audience.47,49 
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Missing values
Missing data is a frequently reported problem in CIMT stud-

ies and especially the measurements from the carotid bifurca-
tion and internal carotid segments are, as noted above, thought 
to result in considerable amounts of missing values.16,17,50 How-
ever, this perception is based on results from early CIMT stud-
ies that did not have the rigorous quality control and high quali-
ty equipment that is currently available. Indeed, recent studies 
employing extensive ultrasound protocols have shown marked 
improvements in data availability with completeness rates for 
all carotid sites of more than 84% in high-risk populations and 
more than 94% for healthy individuals.19,20 Nevertheless, althou
gh acquisition of CIMT data becomes more and more com-
plete, missing data cannot be completely excluded. The most 
common type of missing data in CIMT studies is data that are 
missing at random, that is, the probability of a measurement be-
ing missing is related to other observed variables, such as age, 
sex, cardiovascular risk factors, or treatment allocation.51,52 In-
deed, two recent studies indicated that people with a relatively 
high body mass index had a higher likelihood of missing CIMT 
data than those with a relatively lower body mass index.19,20 If 
handled inappropriately, these missing CIMT measurements 
may, even in small amounts, lead to bias in the point estimates 
and always do affect precision. Multiple imputation of missing 
values has generally been recommended as approach to deal 
with missing values as correct use of multiple imputation typi-
cally results in unbiased effect estimates and correct standard 
errors.53,54 With multiple imputation, one estimates and imputes 
the value of the missing CIMT measurement based on the avail-
able data resulting in multiple datasets without missing data 
that are subsequently analysed.55 Although multiple imputation 
is beneficial in many situations, we recently showed in a study 
using data of the METEOR trial that applying multiple imputa-
tion to impute missing CIMT measurements did have no added 
value in situations where linear mixed effects models are used.56 
Indeed, in situations where only outcome data (i.e. CIMT mea-
surements) are missing and where the model used to impute 
the missing values does not provide additional variables that 
may be used to explain why variables were missing, multiple 
imputation does not provide any additional benefit over linear 
mixed effects models.42,56,57 However, if there are also missing 
values in covariables or when the imputation model also includes 
information on variables that are predictive for missing values 
that are not included in the linear mixed effects model, multiple 
imputation still may be a valuable option. Also, multiple impu-
tation is likely to offer benefits in situations where statistical mo
dels like analysis of variance are used that are generally less ap-
propriate to model CIMT data. 

Biologically implausible values
Standardization of the ultrasound protocols, training of so-

nographers and readers, and improved ultrasound equipment 
have substantially increased the reproducibility of the CIMT 
measurements over the years.14,21,22,50,58-63 However, biologically 
implausible CIMT values cannot be ruled out and may, if pres-
ent, seriously affect the effect estimates and precision if handled 
incorrectly. Biologically implausible CIMT values may arise 
from natural variation between and within individuals or from 
routine measurement error.64 Natural variation may involve 
morphological changes such as accelerated increases in CIMT 
or vessel wall haemorrhages. Measurement error in CIMT mea-
surements may include failure of equipment, deviations from 
the ultrasound protocol by the sonographer, poor visualization, 
or errors in the measurement of CIMT ultrasound images by 
the reader. The principal problem with biologically implausible 
CIMT values is that there are no established cut-off values or 
mathematical function to define a biologically implausible val-
ue, nor are there appropriate methods to deal with these values. 
Of course, CIMT values of for example 10 mm are likely to 
raise immediate concern, whereas the plausibility of a CIMT of 
2.5 mm is arguable. Thus, deciding on whether or not a value is 
implausible is rather subjective. In general, there are two op-
tions to deal with biologically implausible values. The first is to 
leave the data as they are and to accept that implausible values 
are a part of the outcome of the study, or the second is to delete 
these values from the dataset.65 We recently evaluated the ef-
fects of deleting implausible values on the estimated rates of 
change.66 We showed that deletion of biologically implausible 
CIMT values marginally decreased the variability of the esti-
mated rate of change in CIMT without having a large impact on 
the estimated rate of change. Thus, as defining biologically im-
plausible CIMT values is rather subjective and may be unjustifi-
able for ethical or scientific reasons, removal of data should be 
discouraged as long as there is no immediate concern about the 
plausibility of the data. 

Discussion

In this review, we have provided an up-to-date review of sev-
eral topics that play an important role in the design and analyses 
of a CIMT study. The evidence that we showed and consider-
ations that we addressed may serve as a guidance for future in-
tervention studies using CIMT as primary endpoint. 

As cardiovascular disease is the leading cause of morbidity 
and mortality worldwide, the development of targeted new pre-
ventive therapies is one of the steps to control the cardiovascu-
lar epidemic. Although studies using cardiovascular morbidity 
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and mortality as primary endpoint are needed for definite effi-
cacy assessment, these studies are very costly and involve thou-
sands of participants who should be followed for many years. 
To improve the efficiency of the evaluation of new therapies, al-
ternative endpoints have been sought that provide results with-
in a shorter timeframe, with fewer participants and at lower 
costs before a large-scale study with cardiovascular morbidity 
and mortality as endpoint is launched.67 CIMT, as a measure of 
atherosclerosis, is a suitable alternative endpoint for cardiovas-
cular disease events as atherosclerosis is the disease on the path-
way between exposure to risk factors and the cause of the ma-
jority of cardiovascular events.68,69 However, as it is not the change 
in CIMT itself that leads to prevention of cardiovascular events, 
the primary prerequisite of the use of CIMT in trials is that CI
MT should be measured in a way that best reflects a change in 
atherosclerosis and cardiovascular risk. 

There is no consensus on whether one CIMT protocol is bet-
ter than another. Some argue that far wall measurements of the 
common carotid artery alone are the preferred method to study 
the burden of atherosclerosis using B-mode ultrasound as these 
measurements have a high reproducibility, are relatively easy 
and fast to obtain, and have an equally strong relation with the 
effects of drug therapies as the more extensive protocols have.16,70 
Nevertheless, there is considerable evidence that the more ex-
tensive ultrasound protocols that also include measurements of 
the near wall and of the carotid bifurcation and the internal ca-
rotid artery are the more precise and comprehensive ultrasound 
protocols.14,15,19-22,43,71 Indeed, atherosclerosis develops more 
rapidly in the carotid bifurcation and the internal carotid artery 
and the rates of CIMT change are typically larger in these carot-
id segments than in the common carotid artery.20 Importantly, 
the results from CIMT studies that used an extensive ultrasound 
protocol were more often in agreement with the findings of the 
intervention study with cardiovascular morbidity and mortality 
as primary endpoint than CIMT studies using the common ca-
rotid artery alone, suggesting that extensive ultrasound proto-
cols are required to increase the likelihood of success of a study.15 

There is no concordance on whether a CIMT measurement 
should include measurement of the thickness of focal carotid 
plaques if they are present at the site of the measurement.72,73 
Focal carotid plaques are almost always located in the carotid 
bifurcation and the internal carotid artery and rarely in the com
mon carotid artery. Carotid plaques are a more advanced stage 
of atherosclerosis and CIMT measurements including or ex-
cluding carotid plaques thus reflect different stages of the ath-
erosclerosis process, i.e. protocols including measurement of 
carotid plaques having a greater focus on atherosclerotic burden 
than protocols that only measure CIMT in areas free of plaques. 

Nevertheless, a recent consensus statement recommended that 
CIMT measurements should be taken at sites free of carotid 
plaque lesions.70 The majority of the currently available evidence 
on CIMT, however, comes from studies in which, when pres-
ent, regular thickening and plaques were included in the CIMT 
measurement.10-12,48,74 In addition, as CIMT is used as a marker 
of cardiovascular risk, it seems counterintuitive not to make 
CIMT measurements in areas in which lesions are present as 
such approach may be considered as a better representation of 
the burden of atherosclerosis and cardiovascular risk.75-78 This 
perception is supported by the finding that studies measuring 
the maximum CIMT at multiple sites are more often in agree-
ment with the findings of the study on clinical events than stud-
ies using the mean CIMT value of the common CIMT.15

CIMT is a measure of the thickness of the arterial wall that 
does not tell much about its composition. However, recent stu
dies indicate that the most vulnerable atherosclerotic lesions are 
not necessarily the largest or thickest lesions, but are the lesions 
that are rich in lipids pools, have a necrotic core, a thin fibrous 
cap, and a high macrophage content.79,80 As such, techniques 
that also provide information on the content or composition of 
the vascular wall may be an important extension to the tradi-
tional CIMT measurement. Imaging modalities including ca-
rotid magnetic resonance imaging, computed tomography, or 
coronary intravascular ultrasound have been proposed to serve 
this purpose.67 However, these imaging modalities are rather ex-
pensive and are not easily applicable to large groups of individu-
als. Recent advancements in ultrasound techniques, however, 
including echolucency measurements and vascular elastogra-
phy are currently being developed and evaluated and are poten-
tially capable in identifying vulnerable lesions in a safe, relatively 
inexpensive, simple, reliable, and reproducible manner.81-84 

In conclusion, we recognize that the most optimal approach 
to design and analyse a CIMT study is very much determined 
by the research question at hand and the population under study 
and the present review provides a comprehensive and balanced 
overview of several aspects that are important to consider dur-
ing the design and analyses of a CIMT study. Linear mixed ef-
fects models are the most appropriate way to analyse CIMT 
data and handle missing and biologically implausible CIMT 
values appropriately. Furthermore, we recommend to use ex-
tensive CIMT study designs that measure CIMT at regular points 
during the study at multiple carotid sites as such approach is 
likely to increase the success rates of CIMT intervention studies 
designed to evaluate the effects of new interventions on athero-
sclerotic burden. 
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