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Abstract: The “developmental origins of health and disease” (DOHaD) hypothesis refers to the
influence of early developmental exposures and fetal growth on the risk of chronic diseases in
later periods. During fetal and early postnatal life, cell differentiation and tissue formation are
influenced by several factors. The interaction between genes and environment in prenatal and early
postnatal periods appears to be critical for the onset of multiple diseases in adulthood. Important
factors influencing this interaction include genetic predisposition, regulation of gene expression,
and changes in microbiota. Premature birth and intrauterine growth restriction (IUGR) are other
important factors considered by the DOHaD hypothesis. Preterm birth is associated with impaired
or arrested structural or functional development of key organs/systems, making preterm infants
vulnerable to cardiovascular, respiratory, and chronic renal diseases during adulthood. Growth
restriction, defined as impaired fetal growth compared to expected biological potential in utero,
is an additional negative factor increasing the risk of subsequent diseases. Environmental factors
implicated in the developmental programming of diseases include exposure to pollution, stress,
drugs, toxic agents, nutrition, and exercise. The DOHaD may explain numerous conditions, including
cardiovascular, metabolic, respiratory, neuropsychiatric, and renal diseases. Potential antenatal and
postnatal preventive measures, interventions, and future directions are discussed.
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1. Introduction

The concept that early life events predict adult health and disease was initially pro-
posed in 1986, when Barker et al. showed that adults who had low birth weight (<2.5 kg)
were at higher risk of cardiovascular disease [1]. Since then, the concept of developmental
programming has been extended to other organs and systems. The “developmental origins
of health and disease” (DOHaD) hypothesis refers to the influence of early developmental
exposures and fetal growth on the risk of chronic diseases in later periods. Cell differen-
tiation and tissue formation occur in fetal and early postnatal life under the influence of
several factors. It is increasingly recognized that perinatal period is of paramount impor-
tance for the development and the prevention of subsequent diseases. Neonatologists and
pediatricians have an important “window of opportunity” to prevent and cure several
diseases and, importantly, promote adult health.

In this narrative review, we will propose examples of diseases and discuss potential
preventive measures with potential long-term impacts.

2. Developmental Programming of Diseases and Relative Mechanisms

Critical perinatal factors influencing organogenesis and predisposition to disease
include genetic factors, interaction between genes and environment, duration of gestation,
and maternal–fetal interactions.
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The interaction between genes and the environment in prenatal and early postnatal pe-
riods appears to be critical for the onset of diseases in adulthood and has the potential to be
modified by interventions. Important factors influencing this interaction include regulation
of gene expression and changes in microbiota (individual microorganisms) and microbiome
(their collective genomes) [2]. Across perinatal periods, multiple epigenetic mechanisms
regulate gene expression without exerting modifications in the DNA sequence: examples
are DNA methylation, histone modifications, chromatin remodeling, and transmission of
small non-coding RNA. Maternal and paternal contributions to inheritance by means of
epigenetic changes in response to nutritional factors and exposure to environmental agents
(i.e., drugs, radiations) have recently been reported [3].

Premature birth and intrauterine growth restriction ( IUGR) are other important factors
considered by the the DOHaD hypothesis. Preterm birth is associated with impaired or
arrested structural or functional development of key organs/systems, making preterm
infants vulnerable to several diseases at adulthood [4].

Another implication of preterm birth is the lack of hormonal supply with steroid
hormones (estradiol and progesterone), which is typically observed among term infants.
Both hormones increase up to 100-fold during pregnancy in the mother and the fetus. After
preterm birth, these hormones drop dramatically in the mother and the newborn within
hours. This is a physiological event at term, but the very preterm infant is disrupted from
this huge hormonal supply at a much earlier developmental stage. Preliminary clinical
data showed that the replacement of estradiol and progesterone in very preterm infants
may improve lung development and neurological outcome [5,6].

Growth restriction, defined as impaired fetal growth compared to expected biolog-
ical potential in utero, is an additional negative factor increasing the risk of subsequent
diseases [7]. Fetal growth is determined by a complex interplay between genetic factors,
nutrient and oxygen availability from the placenta, environmental factors, and endocrine
modulation of these interactions [7].

True IUGR, compared to constitutional smallness, is a pathological condition in which
the placenta fails to deliver an adequate supply of oxygen and nutrients to the developing
fetus [8]. Differential expression of growth factors, proteins, and mRNA in placentas
of women who delivered growth-restricted fetuses have been reported, suggesting the
activation of compensatory mechanisms aimed at maximizing fetal growth [9].

Infants with IUGR, compared appropriately grown gestational age infants, have a
significantly higher risk of mortality and neonatal complications with long-term conse-
quences [10–12]. The etiology of these complications is due to fetal chronic hypoxia and
nutrient deprivation due to placental dysfunction, with impaired fetal hemodynamic adap-
tations and subsequently altered organ structure and function [13]. For the prevention
of IUGR, there is evidence that aspirin modestly reduces small-for-gestational-age (SGA)
pregnancy in women at high risk and that a dose of ≥100 mg should be recommended
and start at or before 16 weeks of gestation [14]. However, the optimal strategy to identify
women who may benefit from prophylactic aspirin still has to be determined.

Changes in microbial population and their interactions with genes and the environ-
ment in different organs (i.e., intestine, lungs) have been linked to the development of
several diseases, including metabolic syndrome, cardiovascular diseases, and respiratory
and psychiatric disorders [2,15].

Suboptimal nutrition and extrauterine growth restriction also increase the risk of
complications of prematurity [16]. However, excessive catch-up growth may have negative
effects on lifespan [17]. Epigenetic alterations, altered insulin sensitivity, and antioxidant
capacity resulting in tissue remodeling and telomere shortening seem to play a significant
role in these complications [18,19].

Environmental factors implicated in the developmental programming of diseases
include exposure to pollution, stress, drugs, toxic agents, exercise, and nutrients [20–22].
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3. Cardiovascular, Renal and Metabolic Disease

Preterm birth and IUGR can result in structural changes of the cardiovascular system,
such as the development of short sarcomeres in cardiomyocytes and vascular remodeling
(muscularization), resulting in increased arterial stiffness. IUGR and preterm birth are
independent risk factors for the development of subsequent cardiovascular disease and
hypertension [23–25]. The cause of hypertension is likely multifactorial (i.e., reduced
nephron number, increased arterial stiffness) and affected by both prenatal and postnatal
events. Protein malnutrition, pharmacologic exposures, and hypoxia are important causes
of a reduction in glomeruli, and reduced nephron number due to altered programming has
been considered an important factor associated with elevated blood pressure [4,26].

According to a recent study, young adults born preterm have evidence of greater
diffuse myocardial fibrosis in the left ventriculum that relates to the degree of prematurity,
resulting in impaired diastolic function [27]. Greater diffuse myocardial fibrosis may
underlie part of the increased cardiovascular risk in this population, including heart failure,
ischemic heart disease, and early cardiovascular-related mortality.

Infants born afterIUGR have increased vascular stiffness and increased intima-media
thickness, resulting in decreased vascular compliance and impaired endothelial-dependent
vasodilation. These vascular alterations may increase myocardial workload and contribute
to the development of hypertension in adulthood [28–30].

Bassareo et al. suggested that central aortic elasticity in former extremely preterm
infants is impaired when compared with that of term-born controls, particularly in the
context of intrauterine growth restriction [31]. Animal models of intrauterine growth
restriction demonstrated an altered elastin to collagen ratio (with less elastin and increased
collagen engagement, which is 100–1000 times stiffer than elastin), which in turn led to
increased arterial stiffness [32]. Elastin slowly accumulates during late gestation and early
neonatal period, and slowly involves during aging, with resulting progressive collagen in-
crease [33]. Furthermore, previous reports highlighted that subjects who were born preterm
may develop an early peripheral arterial dysfunction—that is, the first manifestation of
atherosclerosis, preceding structural changes in the vascular wall [34]. Johansson et al.
showed an increase of blood pressure in adults born preterm, adjusted for birth weight
and current body mass index [35]. Hypertension has both an early onset, with up to 70%
of preterm infants having elevated systolic blood pressure in infancy, and a prolonged
duration, with hypertension remaining a significant concern into adulthood, particularly in
the presence of adult obesity [36,37].

The postnatal environment plays an important role in reducing or enhancing the
likelihood of disease expression: proposed postnatal factors include nutrient availability
and stress [38]. In their longitudinal study, Barker et al. reported that children who
developed hypertension later in life were characterized by slow fetal growth, followed by
rapid compensatory growth in childhood [39]. Neonatal growth acceleration increases the
risk of obesity-related hypertension [40], whereas continued growth failure increases the
risk of hypertension beyond the effect of IUGR alone [41,42].

In a meta-analysis by Horta et al., breastfeeding, regardless of IUGR status, decreased
the likelihood of developing major cardiovascular risk factors, including type 2 diabetes
and obesity; however, no association was observed with blood pressure [43]. Lindberg et al.
hypothesized that the association between low birth weight and increased risk of hyperten-
sion in adulthood may be modifiable with micronutrient interventions in infancy such as
iron supplements, highlighting the need for ongoing nutritional assessment [44]. However,
the role of perinatal micronutrient and iron deficiencies in relation to blood pressure level
in adulthood is still under investigation.

Prematurity is also a major risk factor also for obesity, and the risk increases with
decreasing gestational age [45]. Among others, the postnatal period is characterized by the
fastest growth. It represents a critical window of tissue and organ development wherein
several regulatory mechanisms continue to develop after birth. Variations in this process
may have long-lasting effects on health. The association between weight gain in infancy
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and obesity in childhood, adolescence, and adulthood has been widely recognized [46].
Abdominal adipose tissue, an endocrine organ, secretes adipocytokines and vasoactive
substances that can influence the risk of developing metabolic traits [47].

In addition to family history and unhealthy lifestyle factors, early life exposures have
been identified as potential risk factors for the development of diabetes later in life. Preterm
and early term birth were associated with up to 1.5-fold increased risk of type 1 and type 2
diabetes from childhood into early to mid-adulthood in a large population-based cohort [48].
These findings may have multiple underlying mechanisms that involve pancreatic beta cell
function and insulin resistance. Preterm birth interrupts the development of pancreatic
beta cells, which are formed predominantly in the third trimester of pregnancy, and might
permanently reduce their number or function [49]. Preterm birth also alters immune
function including T cell response, which may potentially mediate its association with
type 1 diabetes, consistent with its autoimmune etiology [50]. Other contributing factors
may include exposure to antenatal corticosteroids and rapid catch-up growth in infancy,
leading to visceral adiposity and insulin resistance [51].

Most studies show a 30–40% reduction in insulin sensitivity in children and young
adults born very preterm (<32 weeks’ gestation) in comparison with those born at term [52].
Another study showed that adults born even moderately preterm (32–36 weeks’ gestation)
have an isolated reduction in insulin sensitivity but normal β-cell function [53].

Stroke is one of the most common causes of disability among adults worldwide.
Previous studies have indicated that low birth weight is associated with an increased risk
of adult stroke in men and that birth weight is inversely associated with the risk of stroke
in women [54,55]. The risk of both ischemic and hemorrhagic stroke is associated with
preterm birth [56]. Some studies have demonstrated increasing trends in the incidence of
low birth weight and ischemic stroke among young adults also in middle- and low-income
countries [57], making the identification of new risk factors and preventive measures a
research priority.

In humans 60% of the nephrons develop during the third trimester of gestation, mostly
between 28 and 34 weeks of gestation. The final endowment of nephrons is both dependent
on gestational age at birth and intrauterine environment. The principal factor, among
others, which determines nephron number is birth weight [58]. An event occurring during
the early stage of nephrogenesis can have dramatic effects on the final nephron number.
However, the number of nephrons can be ‘reprogrammed’ through various interventions
(including nutritional interventions) applied during pregnancies at risk [59].

Chronic kidney disease (CKD) is defined as the reduction of reduced glomerular
filtration rate (GFR) up to end-stage renal disease (ESRD), proteinuria, or both. Prevalence
of ESRD is increasing worldwide. Reduced nephron endowment has been proposed as
playing a determinant role in the pathogenesis of CKD [26]. Reduced nephron number
is responsible for an adaptive glomerular hyperfiltration, resulting in renal hypertrophy
and glomerular capillary enlargement. The consecutive glomerular hypertension may
lead over time to renal injury, proteinuria, impaired GFR, and systemic hypertension [60].
Concomitant salt retention, increased peripheral vascular resistance and cardiac changes
may lead to glomerular sclerosis, impaired GFR, and systemic hypertension. Eventually,
inflammation, upregulation of the renin angiotensin system, and the production of nitric
oxide and reactive species worsen renal injury [61]. Low birth weight and intrauterine
growth restriction are both associated with a decreased nephron number, the latter con-
dition reducing it by an average of 30–35%, whereas the effects of preterm birth are still
unknown [62]. In preterm infants, nephrogenesis is expected to continue in a potentially
unfavorable environment.

While rapid postnatal growth and/or overfeeding enhances the “vulnerability state”
acquired in utero and accelerates the development of adult diseases (“mismatch hypoth-
esis”), slow postnatal growth and breastfeeding in particular (possibly through reduced
protein and sodium intakes) tend to prevent such diseases [63]. Nephron endowment may
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result from a complex process which integrates the interaction of the fetal environment (or
postnatal environment in preterm infants) and the genetic background.

4. Respiratory Disease

Conditions such as prematurity and its complications, fetal growth restriction, and
inflammation have been associated with long-term pulmonary morbidity, including asthma,
in up to 75% of infants born below 30 weeks of gestation [64,65]. Premature delivery
results in loss of the normal structural complexity of the lung and greater susceptibility
to subsequent injury from infection or environmental factors such as smoking. Genetic
susceptibility factors also play a role in reduced immunologic regulation needed for normal
lung development and function [66]. Proposed mechanisms by which preterm birth may
affect subsequent risk of asthma include genetic, perinatal, and environmental factors.

Early-life inflammatory insults, as in neonatal respiratory distress and bronchopul-
monary dysplasia (BPD), may hamper the development of properly organized pulmonary
interstitium, with consequences for acinar structure and function, peribronchial airway sup-
port, and elastic recoil pressures [67]. Early onset chronic obstructive pulmonary disease
(COPD) has been observed in subsets of extremely preterm-born adults, as lung function
will commence its normal age-related decline from subnormal levels, possibly at steeper
trajectories [68]. It has been hypothesized that young adults born preterm, having failed to
reach optimal peak lung function, will decline during adulthood with a steeper trajectory
than those born at term, and that external factors including pollution, infection, and smok-
ing could have a further detrimental effect on this decline [69]. Structural changes of the
lungs following IUGR and inflammation (impaired alveolar and vascular development,
muscularization of lung vessels, endothelial dysfunction) have been related to develop-
ment of BPD and pulmonary hypertension [70]. BPD has been associated with significant
pulmonary morbidity beyond the neonatal period, including the use of bronchodilators
up to two years of age, frequent diagnosis of asthma later in childhood, and persistence
of abnormal baseline spirometry at 11 years of age compared with full-term controls [71].
Patients with BPD are also more likely to be hospitalized after discharge from the neonatal
intensive care unit and use outpatient services more frequently than premature patients
without BPD [72,73]. However, according to other studies, premature infants without
BPD are also at risk of developing pulmonary morbidity beyond the neonatal period as
compared with term infants. An equal incidence of wheezing-related illnesses among
patients born prematurely regardless of the presence of BPD was reported [64]. In a study
of 25-year-old adults born extremely preterm in the early 1980s, exercise capacity was 10%
lower than in a control group born at term (but still within a range considered normal) and
was positively associated with self-reported physical activity and unrelated to neonatal
factors and current airway obstruction [74].

Difficulties in this research area, characterized by a long time span between birth and
the occurrence of complications, include the rapid evolution of obstetric and neonatal care
(i.e., improved survival, implementation of preventive strategies such as prenatal steroids
and caffeine, maternal metabolic control, newborn practices among others) that can have
an important influence on long-term outcomes.

5. Neuropsychiatric Conditions

Increased risk of impaired neurodevelopment and psychological dysfunctions in the
first four decades of life were reported in preterm infants, in small for gestational age (SGA)
infants compared to appropriate for gestational age (AGA) infants and in pregnancies
complicated by maternal diabetes [75–77]. Underlying mechanisms could be reduced
brain volume, organizational differences, oxidative stress, and hypoxia of the fetus. In a
Swedish cohort study, individuals who were born preterm were more likely to be prescribed
psychotropic medications during young adulthood than individuals who were born full
term [78]. Moreover, chronic diseases (i.e., Alzheimer’s disease, schizophrenia) may be
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associated with epigenetic factors, nutritional deficiency, and exposure to toxic agents
occurring during gestation [79].

6. Potential Preventive Measures, Interventions and Future Directions

Several preventive measures can be identified and considered to promote long-term
health. Examples of useful antenatal measures are: improved identification of subjects with
increased risk of complications (i.e., earlier/more frequent ecographic growth assessment),
dietary modifications during pregnancy to ensure normalization of body weight, zinc
and iron levels, glycemia and blood pressure control, lifestyle measures (i.e., avoidance of
alcohol and tobacco, maximization of maternal education), reduced stress and exposure
to pollution), and management of chronic diseases. Some of these measures are currently
being evaluated in the context of clinical studies [80–88].

The prevention of preterm birth and enhanced maturation (optimal antenatal steroid
administration) is of paramount importance. Global policies to enhance health, particu-
larly in low-income countries have been advocated [89]. Specific dietary interventions,
including the supplementation of folic acid, zinc, long-chain polyunsaturated fatty acids,
and vitamin D, which are possibly associated with favorable epigenetic changes, are under
assessment [15].

Finally, the administration of drugs during high-risk pregnancies (i.e., when IUGR is
demonstrated) is another potential measure: sildenafil has been investigated but increased
fetal death in a clinical trial has led to discontinuation of the study [90]; vascular endothelial
growth factor is currently under investigation to promote angiogenesis [91], insulin-like
growth factor 1 (IGF-1), antioxidants and melatonin have been tested in preclinical stud-
ies [92–94]. The identification of the optimal timing of delivery in pathologic conditions
(such as IUGR) is another important aspect, and studies are underway in this regard [95].

Postnatal interventions in the early phases of life include promotion of breastfeeding,
optimization of nutrition and growth (potentially with administration of hormones/growth
factors such as IGF-1 analogues, cautious use and therapeutic drug monitoring of toxic
drugs (i.e., nephrotoxic antibiotics, systemic steroids with potential heart and brain toxicity),
adequate follow-up of patients at high risk, appropriate resource allocation [89]. The change
of maternal and offspring microbiota by dietary modifications (i.e., dietary supplemen-
tation with docosahexaenoic acid and arachidonic acid to improve neurodevelopmental
outcomes) [83], pre-probiotics, and possibly other factors is a potential intervention needing
further studies.

Novel drugs under investigation include lactoferrin and stem cell administration [96,97].
Knowledge translation, the process of putting knowledge into action, is of paramount

importance to ensure the use of research findings in decision-making [98]. In fact, the
prevention of preterm birth, IUGR, and their long-term complications, as here discussed,
is highly relevant for individual and public health. One approach could be to analyze
and compare strengths and characteristics of different health systems to inform clinical
decision-making, research, and healthcare policy, as recently performed by Japanese and
Canadian researchers regarding the prevention and management of preterm birth [99].

In conclusion, developmental programming is emerging as a new concept for the
explanation of several diseases in children and adults. The characterization of underlying
mechanisms and the identification of preventive measures and treatment are of great impor-
tance in order to promote health and prevent the development of several chronic diseases.
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