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Abstract

In this study, we estimate life history parameters and abundance for a protected jaguar pop-

ulation using camera-trap data from a 14-year monitoring program (2002–2015) in Belize,

Central America. We investigated the dynamics of this jaguar population using 3,075 detec-

tion events of 105 individual adult jaguars. Using robust design open population models, we

estimated apparent survival and temporary emigration and investigated individual heteroge-

neity in detection rates across years. Survival probability was high and constant among the

years for both sexes (φ = 0.78), and the maximum (conservative) age recorded was 14

years. Temporary emigration rate for the population was random, but constant through time

at 0.20 per year. Detection probability varied between sexes, and among years and individu-

als. Heterogeneity in detection took the form of a dichotomy for males: those with consis-

tently high detection rates, and those with low, sporadic detection rates, suggesting a

relatively stable population of ‘residents’ consistently present and a fluctuating layer of ‘tran-

sients’. Female detection was always low and sporadic. On average, twice as many males

than females were detected per survey, and individual detection rates were significantly

higher for males. We attribute sex-based differences in detection to biases resulting from

social variation in trail-walking behaviour. The number of individual females detected

increased when the survey period was extended from 3 months to a full year. Due to the low

detection rates of females and the variable ‘transient’ male subpopulation, annual abun-

dance estimates based on 3-month surveys had low precision. To estimate survival and

monitor population changes in elusive, wide-ranging, low-density species, we recommend

repeated surveys over multiple years; and suggest that continuous monitoring over multiple

years yields even further insight into population dynamics of elusive predator populations.
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Introduction

Managing mammals of conservation concern requires accurate and precise estimates of popu-

lation size through time and across space. Population estimation of elusive, wide-ranging spe-

cies, living at low density, for example large forest-dwelling carnivores, is particularly difficult

due to their low probability of detection. Camera traps have become a popular tool for provid-

ing capture-recapture records for estimating population size (abundance or density) of many

such carnivore species, particularly those with individually unique coat patterns [1, 2, 3].

Generic monitoring protocols have been developed and implemented for a range of different

species (e.g. tigers, Panthera tigris, [4]; leopards, Panthera pardus, [5]; jaguars, Panthera onca,

[6, 7]). Many researchers have used camera traps for one-off ‘closed’ population estimates

from single surveys, providing a ‘snap shot’ of the population status (for examples see [3]).

Others have now been using camera traps at the same sites over multiple years for estimating

life history parameters and assessing population dynamics (e.g. tigers, [8]; snow leopards,

Panthera uncia, [9]; jaguars, [10]). In this study, we estimate life history parameters and abun-

dance for a protected jaguar population using camera-trap data from a 14-year monitoring

program (2002–2015) in Belize, Central America.

Long-term studies following individuals of a population through time are rare [11] yet nec-

essary for detecting and responding to population change in species of conservation concern

or management interest. For example, monitoring the effectiveness of a protected area, ensur-

ing hunting is sustainable, and/or managing human-carnivore conflict, are all relevant to the

management of large felids. In the case of jaguars, monitoring populations through time is rel-

evant due to their range contraction and near-threatened status [12, 13], the illegal trade in

their body parts, and their important ecological and economic roles as an umbrella species, a

charismatic species of value to the eco-tourism industry, and as a species that is persecuted in

retaliation for livestock depredation [14, 15, 16, 17, 18].

Life history parameters (e.g. survival/mortality, recruitment, longevity, sex ratio) obtained

from long-term monitoring of predators are used widely for assessing population viability and

predicting population change under alternative scenarios (e.g. habitat fragmentation, [19, 20];

disease, [21], climate change, [22]; and poaching/harvesting/ trophy hunting, [23, 24, 25].

These parameters are relatively well-known for a number of large felids (e.g. tigers [8, 26, 27];

leopards [28, 29, 30]; lions, Panthera leo [31]; pumas, Puma concolor [32, 33]; snow leopards

[9]; Cheetah, Acinonyx jubatus [34]), but are poorly known for jaguars. The most recent viabil-

ity analyses conducted for jaguar populations used life history data inferred or derived primar-

ily from captive jaguars and other wild felid species [20, 35, 36, 37]. Life history parameters of

jaguars have been estimated only from a very low density population in the northern-most

part of their range, the semi-arid desert scrub environment of Sonora [10]. Although this rep-

resents an interesting case study, it is not representative of the majority of the global jaguar

population, which inhabits moist tropical forest [37]. As such, there is a need for reliable esti-

mates of life history parameters from jaguar populations across their range.

Single ‘snap-shot’ surveys to assess jaguar population status (abundance or density) are

common in the literature, often conducted as baseline assessments without the financial and/

or logistic capacity to repeat surveys over time or across the wider landscape. The estimates are

often biased or imprecise due to methodological inadequacies associated with the size of cam-

era grids, camera placement and low detection probabilities (see [3, 38, 39, 40]); however they

are frequently presented as a one-time static but true representation of the number of jaguars

in an area, with no method of validation (cf. [9], who validated snow leopard abundance esti-

mates from camera trap data with data from known radio-collared individuals in the study

area). It is therefore of value to consider how robust single survey population estimates are for
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jaguars, especially for survey designs that are logistically and financially realistic. For low den-

sity, wide-ranging and relatively long-lived species with complex social dynamics such as jag-

uars, we may expect a high variation among abundance estimates from repeated surveys if

they are constrained in space or time, as animals become temporarily unavailable for detection

when they move off the trapping grid. Interpreting one-off abundance estimates and detecting

true population change at the local level (i.e. within the area of a standard camera grid) from a

time series of abundance estimates, requires an understanding of the local population structure

and the ability to distinguish between sexes and between residents and transients. Only by

monitoring individuals over multiple years, and understanding the population structure, is it

possible to retrospectively interpret an abundance estimate for any given year. For example, in

Chitwan, Nepal, the tiger population monitored over 7 years was found to have high variance

among years in abundance estimates, which the authors attributed to a stable layer of breeding

residents and a fluctuating layer of non-breeders [41]. In contrast, in South Gobi, Mongolia,

the snow leopard population monitored for 4 years was found to have low variance among

years in abundance estimates, but high turnover of individuals and associated shifts in sex

ratio [9]. It is therefore useful to assess robustness of abundance estimates by explaining the

variance among years in terms of local population structure.

In this study, we investigated the demography and dynamics of a jaguar population in the

Cockscomb Basin Wildlife Sanctuary in Belize, over a 14-year period. The basin is a well-pro-

tected tropical forest system, impacted minimally by anthropogenic activities, and recognised

for supporting a relatively high density of individuals compared to other areas within the jag-

uar range [3, 42, 43, 44]. Water is plentiful year-round due to a dense network of waterways

throughout the site, and field data suggest that populations of the main prey species have

remained stable or increased since the area was first protected in 1986 [45, 46]. Cockscomb

Basin is at the eastern outer edge of, and contiguous with, the Maya Mountain Massif, approxi-

mately 5,900 km2 of national protected forest. As such, we expected high survival and a stable

population of long-lived residents, which would provide an ideal opportunity to estimate life

history parameters and to assess the validity of single ‘snap-shot’ abundance estimates. We

investigated the variation between closed population abundance estimates derived from a stan-

dardised camera-trap survey repeated every year and assessed the population stability by quan-

tifying the underlying structure in terms of sex ratio, residency status and longevity. Following

[8, 10], we used a robust design, open population model to estimate apparent survival, recruit-

ment and temporary emigration rate of the population. This is the first long-term jaguar study

with sufficiently large samples to quantify population dynamics and demographic change.

Methods

This study was carried out using non-invasive methods of monitoring mammals. We obtained

permission from the Belize Audubon Society and the Belize Forest Department to carry out

this research.

The study was conducted in Cockscomb Basin Wildlife Sanctuary (here-on, CBWS or sanc-

tuary), 490 km2 of moist broad-leaved tropical forest. The area was selectively logged until

1981, and protected in 1986, and is now a mosaic of regenerating secondary forest in several

stages of succession. Many of the old logging roads in the eastern part of CBWS are maintained

as tourist trails or patrol routes (Fig 1), providing easy, and presumably, preferred travel routes

for jaguars to move through the dense secondary vegetation [46, 47]. Relative to other tropical

moist broad-leaved sites, the Cockscomb Basin supports a high density of jaguars [43].

Nineteen locations, with two cameras per station, were used annually to survey during the

February-June dry season from 2002 to 2008, and from 2011 to 2015, covering an area of ~100
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km2 (Fig 1). Neighbouring stations were separated by 1.07 to 3.05 km (mean = 2.02 km); while

the furthest distance between stations at the extremities was 21.6 km. Survey duration ranged

from 59 to 98 days, except for the 2013 survey which was conducted for a full 365 days to

explore seasonal variation in detection probability. The camera distribution continued the

original deployment of [42, 43] as optimal locations with high capture probability. The con-

figuration followed the original protocol of [6] and was maintained for consistency and com-

parability. Some stations were kept in use pre- and/or post-survey period for continued

monitoring of presence of individual jaguars in specific areas. Additionally, seven short-term

small-scale surveys of 32–47 days, each within 30–70 km2, were conducted with high densities

of cameras (3–5 cameras per 10 km2) within the main survey grid in 2003, 2004, and 2005 [43,

48, 49]. Data from these ‘nested surveys’ contributed to the estimation of jaguar ages, and to

evidence of the presence of individuals within the study area outside of the main survey peri-

ods. From 2003–2008, we used traditional film camera traps (CamTrakker, Cuddeback and

DeerCam) with an enforced 3-minute delay between exposures to prevent excessive photos of

herding species such as peccaries (Tayassu sp.). From 2011 onwards, we used digital camera

traps (Pantheracam) with a minimum delay of 8 seconds between successive photo triggers.

Fig 1. The 19 permanent camera station locations within the Cockscomb Basin Wildlife Sanctuary (CBWS). Map of CBWS showing the camera

locations, the trail system, and an inset of the National map of Belize, indicating the location of CBWS.

https://doi.org/10.1371/journal.pone.0179505.g001
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Every photograph was stamped with the time and date. We identified individual jaguars based

on their unique spot patterns, and assigned sex based on the presence or absence of testicles,

following [50].

Open population model

We used the robust design model in program MARK [51, 52] to estimate probabilities of

detection, survival, temporary emigration, and population abundance as a derived parameter.

We used the 12 dry season surveys (2002 to 2008, and 2011 to 2015), as the primary occasions,

accounting for the missing years in the model design; and week-long periods as the secondary

occasions for the closed population estimates within the robust design (S1 File). As the 2013

survey ran for a full year, we only used a subsample of 100 days from the dry season period.

We generated 20 a priori models, allowing the parameters to be constant or variable from one

survey year to the next, or to differ by sex. We started with a general model with full time and

sex dependency in all parameters. We included models in which temporary emigration in the

primary periods (γ0 = probability of remaining outside the sample and γ00 = probability of tem-

porary emigration) was dependent on temporary emigration status in the previous period

(Markovian movement) and models in which it was not (random movement); and included a

no emigration model where γ0 = 1 and γ 00 = 0 [51]. For the detection parameters (capture

probability, p, and recapture probability, c), we set p = c in all models for comparison with

other studies; and allowed it to vary with the type of camera trap (film or digital), time, and

sex. We included the camera/ time model following [8, 10], the only other long-term camera-

trap study on jaguars, which found that detection parameters differed between sessions that

used film versus digital camera traps. We used Akaike’s Information Criteria (AIC) to select

the best-fitting models for apparent survival, and temporary emigration, and population abun-

dance (for details on the analysis, see [8]). Following [8], we defined apparent survival as

remaining alive within the study area (not dying or permanently emigrating). We calculated

the finite rate of change in abundance between each of the primary sampling periods (λ) as
N̂ tþ1

�

N̂ t
, where N̂ is the abundance estimate at time t. We then calculated geometric mean

annual rate of change, following [8] and the associated variance following [53]. We calculated

the annual number of new recruits into the local population as Ntþ1 � N̂ tφ̂t , where φ̂t is appar-

ent survival at time t, following [8].

Detection frequency

To further investigate variation in the detection of individuals, we recorded detection/non-

detection and detection rates per survey for each individual jaguar. We tested for a difference

between: (1) the number of male and female individuals detected each year and (2) mean

detection rate of males and females each survey year, using Wilcoxon paired tests. To ensure

independence, we only included consecutive detections that were� 24 hours apart, per indi-

vidual We further used the 2013 full-year survey to assess variation in detection probability for

males and females throughout a year. We sub-sampled the year into four quarters of 3 months

each (equivalent length to a regular survey period) and assessed the number of individuals

detected and frequency of detection in each quarter.

Detection of individual jaguars may differ among years, with individuals being detected in

some survey years and not others. We investigated whether the detection/non-detection of

individuals across years differs between males and females, by regressing the total lifespan (y)

in the study area (last year of detection minus first year of detection) against the number of

years an individual was actually detected in the study area (x). If the slope m, within the
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equation of y = m x, approximates 1, individuals were consistently detected every year. If slope

m> 1, individuals would tend to skip years within their total lifetime detection record. We

compared the regression slopes of males and females to determine whether there was a differ-

ence between the sexes in the consistency of capture over the years.

We separated individuals into ‘residents’ and ‘transients’; a local resident was classified as

having been detected within the survey grid for at least three consecutive years, while local

transients were the remaining group, being detected� 2 years in a row, with either few years

of detection in total or irregular detections throughout the study period. Our definition of resi-

dents was based on the assumption that individuals who were detected for at least three conse-

cutive years had the core of their ranges within the survey grid. Thus the terms resident and

transient apply to the study area only. As such, a transient could be a true resident outside of

the survey grid; while residents hold tenure within the survey grid, and potentially beyond its

boundaries. We used the period 2003 to 2007 as the longest running period of consecutive sur-

vey years, using data from 2002 and 2008 to be certain of local residency status for the period

2003–2007. As sample sizes were not sufficient for females, we limited the analysis to males.

We tested our definitions of residency by comparing the number of years of detection and

minimum age (number of years between first and last detection) between the two groups,

using a permutation test with Monte Carlo function [54]. Compared to local transients, we

expected local residents to have a greater proportion of detection years for their age, a longer

tenure within the study area, and more detections.

Age structure

For each year, we calculated the minimum age of the individuals detected, using their year of

first and last detection. We assumed that adults were at least 2 years old on first solo detection,

as young jaguars usually associate with their mother for approximately the first 24 months of

life [55].

All statistical analyses were performed in R [56].

Results

One hundred and five adult jaguars were detected from 2002 to 2015 in 3,075 detection events;

57 males, 31 females and 17 individuals of unknown sex (2720; 332; and 23 detections, re-

spectively). Per year, significantly fewer females were detected than males (paired Wilcoxon

Test: V = 45, p< 0.01, n = 10 survey years; Median males = 18 individuals [15–19], Median

females = 5 individuals [4–6]). Four cubs were detected for the entire study period and these

were of advanced age (> 6 months).

Open population models

The best-fitting model indicated that survival and temporary emigration were constant across

years and equal between the sexes, while the detection probability varied between the sexes and

with camera type (Table 1). Even though the top six models showed variation in terms of con-

stancy or variability across time or sex, the estimated parameter values were very similar for all

six models. We therefore present the model averaged parameter values as a good overview of

estimated parameter values (Table 2). Both sexes had a high survival probability of ~0.78 from

one year to the next, i.e., the probability that an individual would permanently leave the popula-

tion (die or permanently emigrate) from one year to the next was ~0.22. Additionally, the prob-

ability of temporarily leaving the study area and returning later was ~0.20 (Table 2). Detection

probability for males was 2.1 to 9.4 times greater than for females (Table 2). Detection proba-

bility was constant through time for males and females for the period 2002–2008 when film
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Table 1. Model selection for capture-recapture camera-trap data for jaguars, using robust design population models, CBWS 2002–2015 (years

2009–2010 missing).

Model AICc Δ AICc AICc

Weights

Model Likelihood

φ (.), γ0 = γ0 0(.), p = c (sex*camera(./time)) 3351.69 0.00 0.70 1.00

φ (sex), γ0 = γ0 0(.), p = c (sex*camera(./time)) 3353.77 2.08 0.25 0.35

φ (time), γ0 = γ0 0(.), p = c (sex*camera(./time)) 3358.19 6.50 0.03 0.04

φ (sex(time/.)), γ0 = γ0 0(.), p = c (sex*camera(./time)) 3359.04 7.35 0.02 0.03

φ (sex(./time)), γ0 = γ0 0 (.), p = c (sex*camera(./time)) 3364.13 12.44 < 0.01 0.00

φ (sex*time),γ0 = γ0 0(.), p = c (sex*camera(./time)) 3369.86 18.17 < 0.01 0.00

φ (sex*time),γ0 = γ0 0(.), p = c (sex*camera) 3381.88 30.19 0 0.00

Seven best-fitting models ranked in order of best fit, using Akaike’s Information Criteria (AIC).

φ apparent survival

γ0 = γ0 0: temporal immigration and emigration are random i.e. do not depend on the location during the previous year

p = c capture and recapture probabilities are equal

(.) null model, no time or sex dependence

(sex) sex dependence i.e. varies between sexes

(camera): camera dependence i.e. varies between camera type (film or digital)

(camera(./time)): p and c are constant in years with film cameras (2002–2008) and variable among years with digital cameras (2011–2015)

(time) time dependence (varies between years)

(sex(time/.)) male time dependence i.e. variation between years for males

(sex(./time)) female time dependence i.e. variation between years for females

https://doi.org/10.1371/journal.pone.0179505.t001

Table 2. Jaguar survival, detection, immigration and emigration probabilities for the jaguar capture-recapture camera-trap data from CBWS,

2002–2015 (years 2009–2010 missing).

Year Survival a Detection probability Abundance Temporary

Emigration

Male Female Male Female Male Female Male/Female

2002 0.79 ± 0.05 0.79 ± 0.06 0.36 ± 0.02 0.07 ± 0.02 11.31 ± 0.57 NE 0.21 ± 0.04

2003 0.79 ± 0.05 0.79 ± 0.06 0.36 ± 0.02 0.07 ± 0.02 9.16 ± 0.41 4.34 ± 2.44

2004 0.78 ± 0.05 0.78 ± 0.05 0.36 ± 0.02 0.07 ± 0.02 14.16 ± 0.41 12.09 ± 4.30

2005 0.79 ± 0.04 0.79 ± 0.05 0.36 ± 0.02 0.07 ± 0.02 15.11 ± 0.33 3.77 ± 1.98

2006 0.79 ± 0.04 0.78 ± 0.05 0.36 ± 0.02 0.07 ± 0.02 16.29 ± 0.55 2.17 ± 1.66

2007 0.77 ± 0.06 0.78 ± 0.06 0.36 ± 0.02 0.07 ± 0.02 19.22 ± 0.47 12.09 ± 4.30

2008 0.79 ± 0.04 0.79 ± 0.04 0.36 ± 0.02 0.07 ± 0.02 11.20 ± 0.45 6.51 ± 3.09

2011 0.78 ± 0.05 0.78 ± 0.05 0.47 ± 0.03 0.05 ± 0.03 18.01 ± 0.07 8.65 ± 4.96

2012 0.77 ± 0.06 0.78 ± 0.06 0.27 ± 0.03 0.06 ± 0.03 17.14 ± 0.39 7.91 ± 2.96

2013 0.78 ± 0.05 0.78 ± 0.04 0.40 ± 0.03 0.12 ± 0.04 14.01 ± 0.09 4.70 ± 1.10

2014 0.78 ± 0.05 0.78 ± 0.05 0.33 ± 0.04 0.16 ± 0.04 12.06 ± 0.26 7.81 ± 1.10

2015 NE NE 0.37 ± 0.04 0.16 ± 0.04 15.15 ± 0.40 9.60 ± 1.72

Estimates presented correspond to the model average ± standard error across the top six models for all parameters obtained, using the robust design

models.

NE: not estimable. No data available for 2016 so survival cannot be estimated for 2015–2016.
a Survival measure is apparent survival from the year of the row to the next. We consider apparent survival rather than true survival due to the absence of

dead recoveries

https://doi.org/10.1371/journal.pone.0179505.t002

Long term monitoring of jaguars in the Cockscomb Basin Wildlife Sanctuary, Belize

PLOS ONE | https://doi.org/10.1371/journal.pone.0179505 June 28, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0179505.t001
https://doi.org/10.1371/journal.pone.0179505.t002
https://doi.org/10.1371/journal.pone.0179505


cameras were in use, but varied among years for the period when digital cameras were used

2011–2015. Comparing the detection probabilities estimated during the film and digital periods,

male detection in the digital period ranged from 0.75 to 1.3x the detection during the film period,

and for females detection in the digital period ranged from 0.71 to 2.3x that of film period.

Female abundance estimates were relatively imprecise compared to those for males due to

the lower numbers detected and lower detection (capture and recapture) probability of females

(Fig 2 and Table 2). Although the mean abundance estimates for females were lower than for

males, the 95% confidence intervals generally overlapped within years between the sexes,

except for four years when the female estimates were lower than for males (2002, 2005, 2006

and 2013, Fig 2). Estimates of male abundance varied among the years, without showing any

clear trend (Fig 2). Our estimates of male and female abundances differed by 10 individuals

among the years (male abundance 9–19, female abundance 2–12), with more precise and

higher estimates for males presumably due to their higher detectability (Fig 2).

Based on the derived abundance estimates, the annual population change (λ) varied from

positive to negative among the years, and between the sexes (Table 3). Over the 14-year period

the mean annual rate of abundance change of males was 0.98 (var = 0.07), while for females it

was 1.06 (var = 0.76). Overall, the mean annual population change was positive (1.04, var =

0.17). The number of new recruits into the population varied from year to year and between

the sexes. On average, three new recruits of each sex entered the population each year (male

mean = 3.3, range 0 to 7 individuals; female mean = 2.8, range 0 to 10 individuals; n = 10).

Overall, the average number of new jaguar recruits was 6.1/year (var = 36.0).

Detection frequency

The mean detection rates of individuals per survey year were significantly lower for females

(paired Wilcoxon Test: V = 45, p< 0.01, n = 10 years; Median males = 14 detections/individ-

ual/ survey year [11–15], Median females = 3 detections/individual/survey year [3–4]). During

the 365-day survey (2013), we detected 12 females (76 detections) and 17 males (514 detec-

tions), revealing a less-skewed sex ratio than the 3-month surveys. Sub-sampling the 12-month

Fig 2. Yearly abundance estimates for male and female jaguars in the CBWS study area. Average

abundance with confidence intervals per survey year (2002–2015), using robust design models in program

MARK. Data were missing for the years 2009 and 2010

https://doi.org/10.1371/journal.pone.0179505.g002
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survey period into 3-month intervals revealed that only 42%, 33%, 58% and 50% of the 12

females were detected in the 1st, 2nd, 3rd and 4th quarter, respectively, compared to 76%, 82%,

88% and 82% of the 17 males.

We found a significant linear relationship between male detection frequency and the time

interval between first and last detection (F = 71.5, df = 34, p< 0.01, adjusted R2 = 0.67, y = 1.2

x—0.2), indicating that an average male tended to be detected in consecutive years. We also

detected a significant linear relationship for females (F = 16.9, df = 16, p< 0.01, adjusted

R2 = 0.48, y = 1.9 x—1.2), however the slope of ~2 indicates that an average female would be

detected every other year. Close inspection of the raw data showed that annual detections for

females were sporadic, while the majority of males were detected for at least three consecutive

years, and assigned ‘local resident’ status (Fig 3). The number of local male residents remained

relatively stable across years (12–15 individuals), while the number of local male transients

fluctuated from 2 to 7 individuals per year (Fig 4).

Residents had a significantly longer tenure within the study area than did transients (per-

mutation test, mean time between 1st and last detections, resident = 5.5 ± 2.9 years, tran-

sient = 2.7 ± 3.5 years, p< 0.05) and were detected in significantly more years than transients

(permutation test, resident = 5.7 ± 2.1 years, transient = 2.2 ± 1.2 years, p< 0.01). Residents

were more active on trails than transients (detections per location per survey-year 2003–2007,

for residents: median ± IQR = 1.7 ± 0.7, n = 17; transients: median ± IQR 1.0 ± 0.8, n = 10;

two-tailed Mann Whitney test, W = 125.5, p< 0.05).

Age structure

Our records indicated a conservative maximum age of at least 14 years for males and 13 years

for females. Almost half of the known males were consistently detected in the study area, with

48% detected in� 3 consecutive years (Figs 3 and 4). Males first detected in 2002 or 2003

Table 3. Annual change and recruitment of jaguars in the CBWS study area.

Year Population change (λ) New recruits

Male Females Total Male Female Total

2002 0.81 - 1.19 0.2 0.0 0.2

2003 1.55 2.79 1.94 6.9 8.7 15.6

2004 1.07 0.31 0.72 4.1 0.0 4.1

2005 1.08 0.58 0.98 4.4 0.0 4.4

2006 1.18 5.57 1.70 6.4 10.4 16.7

2007 0.58 0.54 0.57 0.0 0.0 0.0

2008 - - - - - -

2009 - - - - - -

2010 - - - - - -

2011 0.95 0.91 0.94 3.1 1.2 4.3

2012 0.82 0.59 0.75 0.8 0.0 0.8

2013 0.86 1.66 1.06 1.1 4.1 5.3

2014 1.26 1.23 1.25 5.7 3.5 9.3

Meana 0.98 1.06 1.04 3.3 2.8 6.1

Var 0.07 0.76 0.17 6.8 15.1 36.0

Annual change in abundance and new recruits into the study area, 2002–2014; no females were detected in 2002, and no data were collected in 2009 or

2010.
a Geometric mean for λ

https://doi.org/10.1371/journal.pone.0179505.t003
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Fig 3. Presence per year for all adult male and female jaguars detected in the study area between 2002

and 2015 (no data for 2009 and 2010). Individuals are ordered by number of years of detection. Black bars

Long term monitoring of jaguars in the Cockscomb Basin Wildlife Sanctuary, Belize

PLOS ONE | https://doi.org/10.1371/journal.pone.0179505 June 28, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0179505


comprised 52 to 67% of the males detected each year from 2004 to 2008 (Fig 5). In 2011, at

least half of the males in the sample were> 10 years old. In 2013, 21% of the males present

were first detected in 2002 or 2003, and by 2015 this was reduced to 7%, representing a single

surviving individual (Fig 5). This was comparable to our model estimate of adult survival (φ)

of 0.78, which equates to 7% of young (2-year old) adults reaching 13 years of age (0.7811 =

0.07). The overall pattern is one of low recruitment of new males into the survey grid per year,

and a high retention of males in the area, as reflected in the open population model. Because

the detection frequency of females was low and individuals were not detected every year (Fig

3), it was not possible to describe age structure for this sex.

Discussion

Through long-term monitoring of jaguars at a single site, we assessed jaguar survival and doc-

umented aspects of jaguar life history that are otherwise difficult to observe. We combined

indicate individuals detected for�3 consecutive years (‘residents’ of the survey area), dark grey bars

represent individuals detected for� 3 consecutive years (‘transients’ of the survey area).

https://doi.org/10.1371/journal.pone.0179505.g003

Fig 4. Number of male jaguars detected each survey (2003–2007), separated into ‘residents’ and ‘transients’. Residents were defined as

detected� 3 consecutive years (black). We separated transients into two parts, 2 consecutive years of detection (dark grey), 1 year of detection (light grey).

https://doi.org/10.1371/journal.pone.0179505.g004
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data from ‘snap-shot’ surveys (3 months each) repeated over 14 years, with a single year-round

survey (12 months) to estimate population parameters, better understand jaguar life history,

and to assess the validity of single ‘snap-shot’ abundance estimates. To our knowledge, this is

the longest-monitored jaguar population to date in Central America, closely followed by the

nearby population of the Mountain Pine Ridge, Belize with equal number of continuous years

[57]. Because the study area experiences minimal human impact, populations of the main prey

species have remained stable and/or increased since the area came under protection [45],

therefore we expected high jaguar survival. Apart from some of the known� 12 year olds,

nearly all detected jaguar individuals displayed good body condition (no evidence of protrud-

ing hips or spine), suggesting that the population is not limited by prey availability. Apparent

survival of jaguars in the study area was high (φ = 0.78), similar to estimates for other large

felid species in protected areas (leopards in Kruger National Park, South Africa 0.82 [28]; tigers

in Nagarahole, India 0.77; [8]; male Siberian tigers in Sikhote-Alin Biosphere Zapovednik,

Russia 0.75 [26]; snow leopards in Tost Mountains, Mongolia 0.83 [9]). These survival esti-

mates exceed that of the low density jaguar population in Sonora, northern Mexico (survival =

0.50 to 0.55, [10]), which is more similar to survival estimates for large felid populations ex-

periencing with human-induced mortality and negative growth (e.g. male pumas North Pacific

United States 0.55, [33]), male leopards, Phinda, South Africa (0.45, [29]). The CBWS jaguar

population acquired on average six new recruits each year, ranging from 0 to 17; this is

Fig 5. Number of adult male jaguars detected each year, separated into cohorts according to year of first detection. Yearly cohorts of jaguars

represented with different colour bars (see legend in figure). Note that there were no new male recruits in the year 2008 and individuals first captured in 2011

(white cohort, labelled 2009/2011) may have entered the study area as early as 2009 or 2010, but remained undetected as surveys were not conducted in

these years.

https://doi.org/10.1371/journal.pone.0179505.g005
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equivalent to a mean annual increase of approximately 4%, which is comparable to the 3%

increase detected for tigers in Nagarahole, India [8]. Our conservative estimate of the maxi-

mum lifespan of male jaguars in the wild (at least 14 years) is the first published to date, and is

similar to estimates for males of other large wild felids of the Panthera genus in well protected

areas (e.g. lions (P. leo), rarely >12 years; tigers,12 years; leopards (P. pardus), 14 years; [58].

At least 35% of the known male residents reached� 10 years. We conclude that true survival

of individuals remaining in CBWS is higher than the apparent survival of 0.78, which includes

dispersers that never returned.

The male-biased sex ratio consistently observed during each primary sampling period does

not reflect the demographic structure of the population, but rather is likely an artefact of the

lower detectability of females than males when using trail-based cameras. This is confirmed by

the fact that we detected more females, and thus a more even sex ratio, when we monitored the

population continuously for a year, compared to 3-month survey periods; however the detec-

tion probability of female individuals remained low with few detection events per female [59].

The lower detectability of females versus males can explained in terms of behavioural differ-

ences that influence trail use. We observed an extremely low detection rate of adult females

with cubs (only 4 out of 332 detections over 14 years, equivalent to 1.2% of female detections),

and relatively sporadic detection of lone females from year to year on the trail system. This

suggests that when females are denning and/or have vulnerable dependents, they likely avoid

areas with high male traffic, potentially returning intermittently to advertise their presence on

the trail system when young have dispersed and they are ready to mate (see also [60]). Such

behaviour may be expected in this study area due to the extensive male-male range overlap

[46, 48], which may provoke infanticide, as is common in other large cats (e.g. [32, 61, 62, 63,

64]).

Our models suggest that temporary emigration from the camera grid was random, and

occurred with an estimated probability of 0.20 from year to year for both sexes. Thus, during

each primary sampling period, 20% of the sampled jaguars were unavailable for detection via

camera traps [8]. For females, we assume that they remained within the survey area but tempo-

rarily avoided the trail system (and our cameras), according to their reproductive status [47,

58]. For males, temporary emigration may be an consequence of an insufficient camera grid

size relative to home range size such that some sampled individuals moved beyond the grid

boundaries, becoming temporarily unavailable for detection (edge effects). We expect that this

is more likely for males than females, as male jaguars in this region have larger ranges than

females, with upper estimates exceeding our study area size [35, 65].

Male abundance estimates varied two-fold among the years, while those of females varied

up to six-fold. We obtained more precise estimates for males than females due to the greater

detectability of males. High temporal variation in detections at point locations, and thus esti-

mates of local abundance, should be expected for wide-ranging, low density species such as

jaguars that have complex socio-spatial dynamics. Local detections (and thus estimates of local

abundance) may increase or decrease, for example, when a female contracts her range for den-

ning, multiple males converge on a female in oestrus, individuals migrate following prey, or

young adults disperse.

For the females in our study, the high variation in abundance estimates among survey years

may be explained in terms of the sampled females becoming temporarily unavailable for detec-

tion on the trail system when they are denning or with dependents, and available for detection

when in heat. This cycle may span up to 18–24 months, until dependents disperse. Thus the

cycle of detectability on the trail system will exceed the three month primary sampling period,

resulting in sporadic detection of individuals and high variation in estimates of local abun-

dance between the years.
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Although our estimates of male abundance fluctuated among survey years, we identified a

stable population of residents and a fluctuating population of transients, as has been observed

in tigers and pumas [41, 55]. Our definition of local residents refers to individuals that were

detected on the trail system for three consecutive years or more. Although these individuals

may have ranged beyond the grid boundaries, we identified them as ‘local’ residents because

the cores of their ranges likely lay within the survey grid. This definition is supported by our

finding that this subset of individuals had longer total tenure in the survey grid than other

males; and, in any given year, they were more frequently detected walking the trail system.

The transients could represent various demographic/social groups: young dispersing adults,

nomads, subordinate individuals that avoid the trail system, or individuals whose home ranges

are mainly outside of the survey area and occasionally overlap with the edge of the camera

grid.

Our results support the hypothesis of a thriving stable jaguar population in the CBWS, with

high survival and long tenure for residents, at least for males. However the variance among

abundance estimates would suggest a fluctuating population. We interpret this as local demo-

graphic change or idiosyncrasies of each survey period and not representative of the wider

population processes within the region. Although the number of individuals detected during

our primary sampling periods can be considered high for jaguar studies (11–24 individuals)

[3, 40], we have shown that if the sampling periods are treated as single, one-off, snap shot sur-

veys they are not sufficient to include a representative sample of the total demographic varia-

tion of a population for a meaningful abundance estimate. Increasingly, one-off population

estimates are being used to extrapolate to the landscape, biome, national, regional and global

levels (e.g. [37, 66, 67, 68, 69]). In the absence of repeated population estimates from the same

sites, or an understanding of the population structure at the sites, such extrapolations should

interpreted cautiously. Large-scale camera surveys that cover a sufficient area, and at sufficient

camera density, to detect a representative sample of demographic variation in the target popu-

lation within a single snap-shot survey are generally rare to non-existent. For jaguars, we do

not know how large such an area should be, but this could potentially be enormous and finan-

cially and logistically impossible to survey. In a review of 72 studies that estimated jaguar den-

sity from camera-trap data, [40] reported that only nine of the studies deployed camera traps

across an area equivalent in size to at least one average male home range. Simulation studies in

[40] showed that camera grids should cover a minimum of a single average home range size,

which we roughly accomplish within our survey [35, 46, 65]. However the simulated data in

[40] are based on SECR generated home ranges, concerning independently placed activity cen-

tres surrounded by average sized elliptically shaped home ranges. Although informative, this

does not reflect anything close to the potential heterogeneous ranging behaviour of jaguars

across space and time in a population. If cameras cannot be deployed across a wide enough

area to detect a representative demographic sample of the target population, we recommend

repeating surveys over multiple years, and combining robust design population models with

quantification of tenure. As we have demonstrated, in this way it is possible to account for the

local fluctuations associated with social processes (e.g., denning, courtship, avoidance of antag-

onistic interactions, and the exploration or take-over of new ranges) when assessing the popu-

lation size and stability.

By sampling for 12 months continuously, we detected individuals with otherwise low or

zero detection probabilities on trails during 3-month snap-shot survey periods. Therefore, we

recommend extending the length of the ‘standard’ survey period (3 months) in areas where

detection rates are very low in order to better understand the population structure within the

study area. This will equally allow subsampling of the yearlong capture history into multiple

short term segments for closed population capture-recapture analyses. Multiple estimates per
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year allow quantification of short term fluctuation in abundance/density estimates and study

of ideal time period for satisfaction of the closure assumption.

As with [10], our study demonstrated that detection probability varied with the functional-

ity of the camera trap. This is not unexpected: compared to modern digital models, the old-

fashioned film camera traps are known for having slower sensors and higher failure rates com-

pared to our Panthera cameras from the latter part. With the reduced cost and increased

energy efficiency of more modern camera traps, long-term deployment will become more cost

effective, requiring fewer battery and maintenance checks. Ideally, camera stations will be

deployed permanently, allowing researchers to subsample camera data up to whatever level a

question demands. This may range from following individuals through time to estimating

population-level parameters and tracking population dynamics.

To estimate survival and monitor population change, repeated surveys over multiple years

are necessary; or better still, continuous monitoring over multiple years. Where jaguars live in

a protected population, adults of at least 10 years old are common, and a lifespan of 14 years is

our current conservative estimate of longevity. Therefore we recommend monitoring pro-

grams of at least 5–10 years, to track the dynamics of half, or ideally, an entire cohort. Beyond

population dynamics, long-term monitoring accrues additional insights into life history pro-

viding a more comprehensive picture of a jaguar population; and allows us to validate, or at

least understand, the underlying dynamics that contribute to abundance estimates based on

single ‘snap shot’ surveys.

The individual recognition of jaguars from their spot pattern allows us to follow individuals

through time without the need for invasive capture and marking. Five of the seven large felid

species have such individually unique pelt patterns, and a diversity of medium and small-sized

carnivores are also camouflaged with spots, rosettes, or stripes, or other unique markings,

allowing for camera-based monitoring of otherwise elusive species. We advocate the use of

camera traps for long-monitoring of such populations, and encourage granting bodies to rec-

ognise the multiple benefits of funding long-term monitoring programs [11].
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jaguar en el siglo XXI: la perspectiva continental. Fondo de Cultura Económica, Universidad Nacional
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