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Abstract: Dry-cured ham is a high-quality product owing to its organoleptic characteristics. Sensory
analysis is an essential part of assessing its quality. However, sensory assessment is a laborious
process which implies the availability of a trained tasting panel. The aim of this study was the
prediction of dry-ham sensory characteristics by means of an instrumental technique. To do so,
an artificial neural network (ANN) model for the prediction of sensory parameters of dry-cured
hams based on NIR spectral information was developed and optimized. The NIR spectra were
obtained with a fiber-optic probe applied directly to the ham sample. In order to achieve this objective,
the neural network was designed using 28 sensory parameters analyzed by a trained panel for sensory
profile analysis as output data. A total of 91 samples of dry-cured ham matured for 24 months were
analyzed. The hams corresponded to two different breeds (Iberian and Iberian x Duroc) and two
different feeding systems (feeding outdoors with acorns or feeding with concentrates). The training
algorithm and ANN architecture (the number of neurons in the hidden layer) used for the training
were optimized. The parameters of ANN architecture analyzed have been shown to have an effect
on the prediction capacity of the network. The Levenberg–Marquardt training algorithm has been
shown to be the most suitable for the application of an ANN to sensory parameters

Keywords: cured ham quality; artificial neural network (ANN); near-infrared spectroscopy (NIR);
sensory analysis

1. Introduction

Spanish Iberian dry-cured ham is defined by Spanish regulations in Royal Decree 4/2014 (BOE, 2014)
as a product produced from the rear limbs of adult pigs with leg and bone subject to the corresponding
process of salting and curing-maturation. This product is designated according to its type of genetic
purity as “100% Iberian ham” in the case of products from animals with 100% genetic purity of the
Iberian breed, and “Iberian ham” in the case of products from animals with at least 50% of their genetic
makeup corresponding to the Iberian breed of pig as a result of crossing Iberian mothers with Duroc
fathers. As far as the food of the pigs is concerned, hams may be denominated: “acorn-fed” for products
from animals slaughtered immediately after feeding exclusively on acorns, grass, and other natural
resources of the dehesa pastureland (this feeding system is known as “montanera”), or “fodder-fed” in
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the case of animals fed on fodder consisting essentially of cereals and leguminous plants, which is
handled in intensive exploitation systems.

The organoleptic and nutritional characteristics of Spanish Iberian ham make it a high-quality
product which is considered a delicatessen food. There is extensive literature describing the sensory
properties of dry-cured ham [1–4] and more recently even the emotions evoked during the consumption
of dry-cured ham have been identified [5]. In order to carry out the sensory analysis of a cured ham,
the presence of a trained panel is necessary owing to the number and complexity of the parameters that
must be assessed. If the panel is to be suitable, it is necessary to select and train the assessors [4] and to
validate the panel regularly to ensure that its members produce trustworthy results [6–8]. The validation
of a panel requires the holding of controlled sampling sessions which allow the calculation of various
indexes of repeatability, precision, and deviation by the assessors [4]. In the food industry, the sensory
information of a product is essential, but it is very difficult and time-consuming to implement a suitably
trained and validated sampling panel [9,10]. A system allowing the measuring of the sensory quality
of a food in an objective manner, without the need for a sampling panel, would reduce the variability
associated with human perception and the time needed for carrying out this kind of analysis [11].

It would be of great interest to be able to replace sensory evaluation with faster and simpler
instrumental analysis. In this way, near-infrared spectroscopy (NIRS) is an objective and non-destructive
method that has been used to predict the quality parameters of different foodstuffs and it had been
evaluated for being implemented in dry-cured ham manufacture [12]. This method can be very useful
for testing bulk material with little or no sample preparation. The chemical profile obtained by NIR
can be successfully linked to specific sensory attributes for expanded snacks [13], for the evaluation
and classification of cooked ham [14], for the prediction of lamb meat tenderness assessed by sensory
analysis [15], and for the prediction of some quality defects of dry-cured ham samples [16].

However, as NIRS data requires complex statistical treatment, chemometrics has become an
established technique for handling this type of data. Among chemometric methods, artificial neural
networks (ANNs) are a well-known mathematical tool which is widely used together with the NIR
technique in the case of many problems in meat production and technology such as the quality
control of raw material, meat processing, shelf-life evaluation, detecting off-flavors, or authenticity
assessment [17]. Artificial intelligence methods were mainly investigated for the assessment of meat
sensory qualities such as the tenderness, color, or marbling score/level [18]. In relation to dry-cured
ham, ANNs have been used for the classification of hams according to the maturation time [19],
the identification of feeding and the ripening time of ham [20], and for the assessment of the curing of
hams [21]. To our knowledge, there is no data in the literature on the prediction of sensory attributes
in dry-cured ham based on NIR information by ANNs.

Taking into account the economic importance of dry-cured ham, the prediction of its sensory
characteristics by means of a rapid instrumental technique is an interesting challenge. The aim of this
study was to examine the feasibility of using artificial neural networks for predicting ham sensory
parameters. Several algorithms, the number of neurons in the hidden layer, and the initial configuration
have been tested in order to ascertain the best ANN architecture for predicting the sensory parameters.

2. Materials and Methods

2.1. Samples

A total of 91 samples of cured ham were analyzed. All the samples were of the fat-marbled part
known as “la maza” which is the largest and tastiest part of the ham. The samples were obtained by
cutting with a knife along a line passing through the thickest part of dry-cured hams as described by
González-Casado et al. [4]. The production and maturation of the samples was carried out in Guijuelo
in the province of Salamanca in the traditional manner over 24 months. The ham samples were selected
to represent the greatest possible variability within products denominated Spanish Iberian dry-cured
ham. Hams were therefore analyzed from pigs with “100% Iberian” genetics together with hams
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denominated “Iberian” from animals with at least 50% of their genetic makeup corresponding to the
Iberian breed of pig, obtained from crossing Iberian mothers with Duroc fathers The samples analyzed
included hams from the montanera, from animals fattened extensively with acorns and pasture for
90 days prior to slaughter, and fodder-fed ham from animals fed on commercial feed and pasture in an
extensive system. In keeping with these parameters the distribution of the samples analyzed was as
follows: 13 samples from 100% Iberian animals fed in montanera (IM), 53 samples of Iberian animals
fed in montanera (CM), and 25 samples of fodder-fed Iberian animals (CC).

Once they have been cut the samples are vacuum-packed until they come to be analyzed.
The packages were opened 1 h before being tested by the panel.

2.2. Sensory Evaluation

Ten assessors (aged from 20 to 50) participated in the study. All of them had previous experience
in quantitative descriptive analysis (QDA) of dry-cured hams and were staff at the University of
Salamanca. The training was carried out by using products of reference so as to stimulate the generation
of terminology during 5 sessions. The assessors did not discuss data, terminology, or samples after
each taste session; feedback was provided by the facilitator based on the statistical analysis of the taste
session data [22]. The attributes selected for visual appearance, flavor, and texture description of the
sample are shown in Table 1. A structured scoring scale was used in which 0 indicated the absence and 9
the high intensity of the attribute. The accuracy of the panel was assessed by studying its reproducibility
and repeatability as a whole according to the methodology described by Pérez-Elortondo et al. [23].
To do this, the same ham is analyzed twice in the same session and again in a later session.

Four samples per session were analyzed and a total of 25 sessions were held. Samples were coded
with three-digit random numbers and individually presented to the assessor. The average score of the
ten assessors for each sample was recorded and used in the statistical analysis. In order to analyze
the data, a two-way ANOVA and a post-hoc test (Tukey) were carried out to check for significant
differences between samples. In order to investigate the relationship between the two attributes,
the Pearson correlation coefficients have been calculated.
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Table 1. Sensory parameters selected by the assessors and the definition of sensory parameters.

Parameter Description Score Criteria

Visual 0 9
Veined Amount of intramuscular fat Absence of intramuscular fat Large amount of intramuscular fat

Fat color Color shade of the intramuscular fat Yellow White
Color homogeneity Presence or absence of the various shades Inhomogeneous Homogeneous

Color intensity Color intensity of the item Pink Red
Exudate Shine from the separation of fat on the surface Absence of exudate High intensity of exudate

White dots Presence of white dots owing to the precipitation of tyrosine Absence of white dots Large number of white dots
Flavor
Odor Intensity of odor before eating Low intensity of odor High intensity of odor

Cured aroma Odor of cured meat Low intensity of cured aroma High intensity of cured aroma
Pig aroma Odor of abattoir or recently slaughtered pig Absence of pig aroma High intensity of pig aroma

Rancidity aroma Intensity of rancid odor Low intensity of rancid odor High intensity of rancid odor
Atypical aroma Presence of strange odors uncharacteristic of ham Absence of atypical aroma High intensity of atypical aroma
Flavor intensity Sensation of flavors once the product has been placed in the mouth Low intensity of flavor High intensity of flavor

Fat flavor intensity Flavor intensity of the fat fraction Low intensity of fat flavor High intensity of fat flavor
Cured flavor Intensity of cured flavor Low intensity of cured flavor High intensity of cured flavor

Saltiness Intensity of salty taste Low intensity of saltiness High intensity of saltiness
Sweetness Intensity of sweet taste Low intensity of sweetness High intensity of sweetness
Sourness Intensity of acid taste Low intensity of sourness High intensity of sourness
Rancidity Intensity of rancid flavor Low intensity of rancid flavor High intensity of rancid flavor
Aftertaste Persistence of the taste after having eaten the product Low intensity of aftertaste High intensity of aftertaste

Atypical flavor Presence of strange odors uncharacteristic of ham Absence of atypical flavor High intensity of atypical flavor
Texture

Hardness Firmness perception during chewing Low intensity of firmness High intensity of firmness
Juiciness Impression of juiciness during chewing Low intensity of juiciness High intensity of rancid odor
Fatness Appearance of a fatty sensation when chewing the product Low intensity of fatness High intensity of fatness

Fibrousness Perception of fibers during chewing Low number of fibers High number of fibers
Chewiness No. of bites necessary before the item is swallowed Few bites Many bites

Gumminess Tendency to form a ball when the product is chewed Low intensity of gumminess High intensity of gumminess
Heterogeneity Presence or absence of different textures in the item on chewing it Homogeneity Lack of homogeneity

Chewing Residue If remains of the product stay in the mouth once we have swallowed it Little or no residue Large amount of residue
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2.3. NIR-Chemometric Methods

The near-infrared spectra of the samples were obtained using a Foss NIRSystem 500 (Hillerod,
Denmark). This equipment was coupled with a fiber-optic probe (1.5 m 210/210, Ref. No. R6539-A)
and a 5 cm × 5 cm window quartz. The window was applied to the surface of ham directly without
any preparation. The Foss NIRSystem 500 is equipped with four reflectance detectors (PBs elements)
that, in order to minimize the specular reflectance, are placed at a 45◦ angle to the sample surface.
The reference of the probe is a ceramic plate. The spectra of the sample were recorded in the
1100–2000 nm range at intervals of 2 nm, which means that a total of 451 pieces of reflectance data
were obtained for each sample. The spectra above 2000 nm were not recorded as the OH groups that
may be present in the optical fiber produce a significant attenuation of the signal. For each recording,
32 scans were performed for both the reference and sample. Indeed, all the samples were analyzed in
triplicate to minimize sampling errors. The spectra of each sample were averaged and the logarithm of
the reciprocal of the reflectance values was calculated to transform it into absorbance (A = log 1/R).

2.4. Artificial Neural Network

The multilayer perceptron (MLP) feedforward artificial neural network (ANN) was used for
processing the absorbance values obtained. The 451 values of NIR absorbance feed the input layer
which had 451 neurons. The hidden layer has a variable number of neurons between 1 and 30
depending on the sensory parameter predicted and used the hyperbolic tangent sigmoid function.
The output layer used the pure linear transfer function and has only one neuron. This neuron shows
the estimated value of one of the sensory parameters. The use of a known seed value number to
randomly initialize the weight and bias matrix allows us the reproducibility of data [24]. The pairs
of NIRS-sensory data, i.e., input-output data, were randomly divided for all ANNs into three sets
as follows: training, validation, and test set that accounts for the 70%, 15%, and 15% of the data
respectively. Then, 28 ANN architectures, one for each of the sensory parameters, were optimized.
Tests were carried out with the Scaled Conjugate Gradient Backpropagation and Levenberg–Marquardt
Backpropagation training algorithms. The Deep Learning Toolbox of MatLab (MathWorks®) in its
R2018 version was the software used for all the tests.

3. Results

3.1. Sensory Analysis

Sensory analysis is referred to as the evaluating of perceptible characteristics or organoleptic
properties of ham termed as “attributes”. The technique used for the sensory characterization of ham
was the quantitative descriptive analysis (QDA), which is the technique most frequently used with
training panels to describe the sensory properties of different types of dry-cured ham [25–27]. In the
case of dry-cured ham, the sensory attributes are the result of the interaction between the quality of
the fresh material and the biological changes which occur during the processing [28,29], which are
influenced by both the technological process and the duration of the maturation [30]. The results
obtained in the tasting sessions for each of the attributes described in this study can be seen in Table 2.
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Table 2. Scores for each sensory attribute of dry-cured ham determined by the sensory panel and
results of the statistical analysis of the influence of the feeding and the genetics of the animals.

Sensory Attribute
Mean p-Value

IM * CM ** CC *** Feeding Genetics

V
is

ua
lp

ar
am

et
er

s

Veined 5.37 a 6.20 b 7.22 c 0.000 0.002
Fat color 6.20 a 7.05 b 7.37 c 0.001 0.000
Color homogeneity 6.78 a 7.00 a 6.82 a 0.308 0.313
Color intensity 7.50 b 7.39 b 6.42 a 0.000 0.034
Exudate 4.42 a 6.00 b 4.78 a 0.000 0.000
White dots 1.13 a 2.56 b 0.85 a 0.000 0.017

Fl
av

or
pa

ra
m

et
er

s

Odor 6.34 a 6.88 b 6.50 a 0.019 0.001
Cured aroma 6.82 b 7.04 c 6.61 a 0.000 0.414
Pig aroma 0.25 a 0.20 a,b 0.33 b 0.007 0.871
Rancidity aroma 0.79 b 0.49 a 0.63 a,b 0.235 0.004
Atypical aroma 0.16 a 0.09 a 0.15 a 0.364 0.414
Flavor intensity 6.60 a 7.34 b 6.69 a 0.000 0.000
Fat flavor intensity 4.77 a 5.79 c 5.31 b 0.135 0.000
Cured flavor 6.47 a 7.00 b 6.35 a 0.000 0.026
Saltiness 5.03 a 4.98 a 5.16 a 0.139 0.963
Sweetness 1.49 a 1.83 b 1.24 a 0.000 0.346
Sourness 0.36 a 0.27 a 0.36 a 0.255 0.381
Rancidity 1.48 b 0.94 a 1.01 a 0.711 0.000
Aftertaste 6.23 a 6.73 b 6.02 a 0.000 0.074
Atypical flavor 0.75 b 0.32 a 0.29 a 0.276 0.001

Te
xt

ur
e

pa
ra

m
et

er
s Hardness 4.00 b 3.24 a 3.47 a 0.694 0.002

Juiciness 5.16 a 5.47 b 6.02 c 0.007 0.000
Fatness 4.78 a 5.50 b 5.15 a,b 0.229 0.004
Fibrousness 2.93 a,b 2.53 a 3.30 b 0.000 0.474
Chewiness 2.93 a 2.70 a 3.03 a 0.102 0.581
Gumminess 1.70 a 1.48 a 1.55 a 0.855 0.366
Heterogeneity 2.19 a 2.28 a 2.32 a 0.640 0.541
Chewing Residue 1.80 b 1.24 a 1.61 b 0.068 0.013

* IM: 100% Iberian animals fed in “montanera”; ** CM: Iberian animals fed in “montanera”; *** CC: fodder-fed
Iberian animals; a,b,c—Different letters in the same line indicate statistically significant differences (p < 0.05) between
the three groups of ham samples.

As far as the appearance profile is concerned, the attributes of veined, fat color, color intensity,
exudate, and white dots present statistically significant differences (p < 0.05) which depend on the type
of ham analyzed. Hams from IM pigs therefore gave lower scores for the attributes of veineds, fat color,
exudate, and white dots. For the first two attributes, the maximum scores corresponded to CC hams
while for the exudate and white dots CM hams obtained the highest scores. For all these parameters
both the feeding and genetics of the animals had a significant influence on the scores awarded by the
samplers. All the samples analyzed in this study are from Iberian pigs, either 100% pure or crossed at
75 or 50%; a characteristic of this breed is a high intramuscular fat (IMF) content owing to both the
rearing system and the genetic features of the pig breed [31]. The high content in muscular fat has been
related to the veined and exudate parameters [32,33]. In this study, higher values of these parameters
were found for crossbred samples (CM and CC). A higher color intensity was found in animals fed
in montanera (IM and CM) related to greater exercise and to yellower fat which was probably due
to the higher unsaturation of the fat. Color homogeneity is the only visual attribute which presents
no significant differences between the groups. This attribute is more closely related to the dry-curing
process, which includes the origin of the formation of compounds associated with the characteristic
color of dry-cured meat products [34].
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In relation to flavor, all parameters have shown statistically significant differences between the
three groups of hams analyzed except for the parameters of atypical aroma, sourness, and saltiness.
These parameters are associated with defects present in cured hams and appear to be related to the
technological processes and maturation conditions of the product. CM hams showed the highest
values of odor, flavor intensity, fat flavor intensity, cured flavor, sweetness, and aftertaste, while CC
hams showed in general the lowest values of the same parameters with the exception of fat flavor
intensity which was lower in IM hams.

The factors of feeding and genetics of the animal have a different influence according to the
attributes; only odor, flavor intensity, cured flavor, and aftertaste presented significant differences
for both factors. Therefore, feeding had a significant influence on the parameters of cured aroma,
pig aroma, sweetness, and aftertaste while genetics had a significant influence regarding rancidity,
aroma and flavor, fat flavor, and atypical flavor. Lipolysis and proteolysis are the main biochemical
reactions involved in the generation of a wide range of volatile compounds [35,36]. The fat present in
both the muscles and the subcutaneous tissue appears to be of great importance in the entire flavor
of Iberian hams and means that the flavor of this type of product is highly complex. The volatile
compounds which contribute towards the odor and flavor of dry-cured ham are mainly generated
during the maturation process from the oxidation of the fatty acids and Maillard reactions [37]. To a
lesser extent, volatile compounds are formed from mold and yeast and Iberian ham has a particularly
high concentration [38]. There are also a small number of compounds which are directly accumulated
in pig fat deposits from feeding [39], which would justify the low number of parameters with significant
differences which can be directly attributed either to the different genetic purity or to the feeding
system of the pigs.

The results obtained in the texture parameters show that chewiness, gumminess, and heterogeneity
are the only attributes which do not present significant differences in the scores awarded by the assessors
for the three groups of hams analyzed. IM hams have the lowest scores in the attributes of juiciness and
fatness and the highest in the attributes of hardness and chewing residue. High intramuscular fat (IMF)
content thus appears to have a very remarkable effect on the texture of dry-cured ham [32], increasing
the juiciness and decreasing the hardness and fibrousness [32,39]. In our study, we found a correlation
between the veined and texture parameters. The lower the veined value the lower the juiciness and
fatness and the higher the hardness. During the processing of dry-cured ham proteolysis, that is
affected by an important number of factors such as pH of fresh ham, anatomic location, temperature,
water, or salt content [40–42], is one of the main biochemical reactions. In fact, proteolysis is considered
to be the major contributor to texture changes [43,44].

Previous studies suggest that the color of Spanish dry-cured hams has a strong correlation with
their texture [45]. From our results, a negative correlation (at the 0.01 level) can be observed between
the attributes of color fat and color homogeneity and the parameters of texture: hardness, chewiness,
gumminess, heterogeneity and chewing residue. Likewise, they show a positive correlation with the
fatness attribute. For its part, the color intensity attribute presents no correlations with any of the
texture parameters analyzed.

3.2. Spectral Characteristics

In the ham samples analyzed by the assessors, the register of their spectra was carried out by
using NIRS technology and a remote reflectance fiber-optic probe. The mean spectral curves of the
registered samples are shown in Figure 1.
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Figure 1. Near Infrared Spectroscopy (NIR) spectra obtained from a remote reflectance fiber-optic
probe applied directly to samples of ham. (a) 100% Iberian animals fed in “montanera2 (IM), (b) Iberian
animals fed in “montanera” (CM) and (c) fodder-fed Iberian animals (CC).

The wavelengths responsible for the NIR are due to C-H stretching combinations with other
vibrational modes, in addition to the strong absorptions shown by the molecules containing N-H,
S-H, and P-H. In this way, the NIR spectra obtained allow us to establish a relationship between
different chemical molecules and functional groups and the sensory parameters analyzed in the ham.
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Group C-oil is therefore strongly related to the perception of the saltiness and fatness of the ham and
group C-Cl is related to saltiness and rancidity. Group C-O-oil is related to the fibrousness of the
product and group SH-SH is strongly related to texture parameters such as fibrousness, chewiness,
and gumminess. In addition to these chemical groups which provide greater weight and higher
correlation coefficients in the NIR predictive models, we have been able to relate other groups with
some of the sensory attributes analyzed as is shown in Table 3.

Table 3. Sensory attributes for which it has been possible to establish a relationship with the spectral
wavelengths and the chemical groups responsible for the perception of this attribute.

Sensory Attribute Wavelength (nm) Chemical Structure and Functional Groups

Fat color

1362 CH3

1460 Urea, Starch, Amides

1536 Amides

1772 Cellulose

Cured aroma

1510 Protein

1620 =CH2

1770 Cellulose

1954 Aromatic ester

Rancidity aroma

1450 Water, Ketone, Starch

1512 Protein

1922 Cellulose, Starch

Atypical aroma

1458 Amides

1482 Amides, Aromatic amides, Cellulose, Urea, Aromatic amines

1622 =CH2

Cured flavor

1416 CH-aromatic compounds

1512 Protein

1882 Cellulose

1982 Amides

Saltiness

1406 H2O

1416 C-Oil *, ROH-H2O

1446 CH2, aromatic compounds, starch

1488 Cellulose, Amines, Aromatic amines

1520 Urea

1686 Aromatic compounds

1866 C-Cl *

1950 Aromatic amides

Sourness
122 CH2

1538 Starch

Rancidity

1390 CH2

1454 Starch

1506 -NH, Protein

1528 Aromatic amines

1682 C-Cl *
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Table 3. Cont.

Sensory Attribute Wavelength (nm) Chemical Structure and Functional Groups

Hardness

1416 OH-H2O, Alcohol/aromatic compounds

1502 Amines

1518 Urea

1530 Aromatic amines

Juiciness

1162 C=O

1452 Starch

1772 Cellulose

Fatness

1162 C=O

1488 CONHR, Amides, Aromatic amines

1520 Urea

1720 CO-Oil *

Fibrousness

1148 CH2 aromatic compounds

1518 Urea

1528 R-NH2

1722 C-O-Oil *

1736 SH- SH- *

1928 Cellulose, Starch

1956 Second overtone of CO2R

Chewiness

1218 -CH2

1458 Starch

1490 Amides, Urea, Aromatic amines, Starch, Cellulose

1514 Protein

1736 SH- SH- *

Gumminess

1488 CONR, Cellulose, Urea

1504 Amines

1526 Aromatic amines

1736 SH- SH- *

1746 SH- *

1928 Cellulose, Starch

Heterogeneity

1510 Protein

1534 R-N H2

1922 Cellulose

Chewing Residue

1218 CH-CH2

1514 Protein

1530 Aromatic amines

1618 =CH2

* Chemical structure and functional groups which have greater weight in the NIR models for predicting
sensory attributes

3.3. Artificial Neural Network (ANN)

The results obtained in the sensory analysis of the hams presented in this study allow the
availability of sufficiently heterogeneous products, owing to which we have a satisfactory sample for
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assessing the application of neuronal networks in the prediction of the same. ANNs become useful in
those cases in which the rules underlying the data are unknown or only partially known [17].

The neural networks tested were constructed by using the NIR spectra and the sensory parameters
such as input and output data respectively. The diagram of the network structure used is shown in
Figure 2.Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 
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Figure 2. Structure of feedforward multi-layer Artificial Neuronal Network (ANN) for calculating
sensory parameters of cured ham; this diagram is repeated for each of the 28 sensory parameters studied.

The input data were the values obtained from NIR spectra. A total of 451 reflectance data for each
sample, corresponding to the 451 log 1/R values obtained between 1100 and 2000 nm were measured
every 2 nm. In turn, each register is the result of the measurement of the NIR spectrum at 32 different
points of that sample. As output data, we used the average values of the sensory parameters provided
by the assessors for each of the sensory parameters analyzed.

Although the ANN technique has many advantages, model users always spend a great deal of
time and effort in the process of parameter training. Identifying the optimum parameters of ANNs can
help us avoid an unnecessary waste of time and effort [46]. For this reason, an attempt was made to
assess the training algorithm and the network architecture in order to predict dry-cured ham sensory
analysis. The ANN training algorithms Scaled Conjugate Gradient (SGC) and Levenberg-Marquardt
(LM) were examined. For each of them between 1 and 30 neurons were tested in the hidden layer.
In total 1500 networks were analyzed, 30 different values of neurons in the hidden layer with 50 different
initial states for each of them. The suitability of the networks obtained was established from the
value R2 (the R-square between the target and the estimated parameter). For each sensory parameter,
the networks with a value exceeding R2 > 0.72 in the test set were taken into account, which gives an
idea of the number of networks generated with the capacity for predicting this parameter. The results
obtained reveal that the parameter with the largest number of networks capable of predicting it were
heterogeneity (26.4% of the networks) followed by the parameters of sourness (13.4%), atypical flavor
(9.5%), and odor (7.0%). The LM training algorithm allowed the finding of networks for the prediction
of all the sensory parameters and was the one providing the largest number of networks with R2 > 0.72.

The number of neurons in the hidden layer should be between the input and the output layer size
and be determined empirically [47,48]. Networks with from 1 to 30 neurons and three different number
of training times (30, 100, and 500) were tested. Table 4 shows the number of neurons providing the
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best ANN architecture (in terms of obtaining the highest R2) for each number of training times assessed.
The results show that when the training times increase the number of neurons in the hidden layer
necessary for obtaining the network with the highest R2 falls, in such a way that in the case of 100 and
500 training times it will not be necessary to test a number of neurons higher than 10 in the hidden
layer. The optimum number of neurons in the hidden layer and training times was different for each of
the sensory parameters analyzed in the ham. Owing to the variability of the results it was decided to
assess the sensitivity of the parameters of ANN architecture. Following the model proposed by [46] to
identify the sensitivity of parameters of ANN architecture, the sensitivity index (S) was calculated.

Table 4. ANN architecture (training times and the number of neurons in the hidden layer) for each of
the sensory parameters analyzed.

Sensory Attribute
The Best ANN Architecture (Higher R2 Value)

No. of Neurons in the Hidden Layer No. of Training Times

Veined 6 500
Fat color 17 30
Color homogeneity 8 100
Color intensity 1 500
Exudate 6 500
White dots 3 500

Odor 10 500
Cured aroma 10 500
Pig aroma 27 30
Rancidity aroma 25 30
Atypical aroma 6 500
Flavor intensity 1 500
Fat flavor intensity 9 500
Cured flavor 6 500
Saltiness 7 500
Sweetness 23 30
Sourness 10 500
Rancidity 8 500
Aftertaste 27 30
Atypical flavor 3 100

Hardness 9 500
Juiciness 4 100
Fatness 7 500
Fibrousness 7 100
Chewiness 6 100
Gumminess 9 500
Heterogeneity 3 500
Chewing Residue 1 500

Our results show that there is a direct relationship between the number of neurons in the hidden
layer and the number of training times and the R2 for all the parameters analyzed with the exception of
the “rancidity aroma.” According to our results, 23 of the 28 estimated sensory parameters in dry-cured
ham are more sensitive to the number of neurons in the hidden layer than the number of training times
in ANN architecture. Only the visual color intensity parameter, the flavor intensity and atypical flavor
parameters, and the juiciness and chewing residue texture parameters show more sensitivity to the
training times.

Once the best network architecture had been established, the sensory parameters of dry ham
were predicted. Figures 3–5 show the prediction graphs and the R2 values and the adjustment lines
obtained. The R2 values obtained vary between 0.51 for the pig aroma parameter to 0.82 for the flavor
intensity parameter.
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parameters and R2.

As far as the appearance profiles (Figure 3) are concerned, all of them show a satisfactory
correlation between the target and the values predicted by the network. In relation to the odor and
flavor of dry-cured hams (Figure 4), the values with the highest correlation were aftertaste, rancidity,
and flavor intensity. The results obtained for the texture parameters (Figure 5) show that juiciness,
fatness, and fibrousness provide the networks with the best adjustments. Of the 28 sensory parameters
analyzed no relation was found between the prediction capacity of the network and the significant
differences in the values given by the assessors, whether owing to the purity effect of the breed or to
the feeding effect.

The prediction network generated was further tested with 14 samples of ham (a set test) which
were neither part of the training nor the validation set. The mean squared errors (MSEs) between the
targets and the ANN outputs were assessed (Table 5). The MSEs found varied between 0.0196 and
0.5878; the highest errors occurred in the prediction of the texture and visual parameters. The best
results in the prediction of sensory parameters were obtained for the parameters related to flavor.
The lower prediction capacity of the network could be seen in the attributes of pig aroma, atypical
aroma, sourness, and gumminess with an R2 between 0.51 and 0.59 (Figures 4 and 5). However,
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when the network generated was checked against the set test the number of errors made by the network
in the prediction of these parameters is low. The values obtained in all the sensory parameters analyzed
suggest that the network generated can be applied satisfactorily to unknown samples.

Table 5. The best ANN architecture and the mean square error of prediction (MSE) for each of the
sensory parameters, obtained in the test set.

Sensory Attribute No. of Neurons in the Hidden Layer No. of Training Times MSE

Veined 6 500 0.587
Fat color 17 30 0.088
Color homogeneity 8 100 0.110
Color intensity 1 500 0.081
Exudate 6 500 0.216
White dots 3 500 0.374

Odor 10 500 0.047
Cured aroma 10 500 0.031
Pig aroma 27 30 0.020
Rancidity aroma 25 30 0.025
Atypical aroma 6 500 0.019
Flavor intensity 1 500 0.039
Fat flavor intensity 9 500 0.216
Cured flavor 6 500 0.053
Saltiness 7 500 0.054
Sweetness 23 30 0.078
Sourness 10 500 0.029
Rancidity 8 500 0.044
Aftertaste 27 30 0.053
Atypical flavor 3 100 0.066

Hardness 9 500 0.204
Juiciness 4 100 0.077
Fatness 7 500 0.183
Fibrousness 7 100 0.205
Chewiness 6 100 0.242
Gumminess 9 500 0.207
Heterogeneity 3 500 0.086
Chewing Residue 1 500 0.107

4. Conclusions

The results obtained in this study allow us to conclude that NIR spectral information and the
application of ANNs could be an interesting tool for predicting the sensory parameters of dry-cured
hams. The sensory analysis of ham requires a great investment of time and a trained panel to carry it
out. With the methodology proposed it would be possible to predict the sensory parameters of the
ham at the same time as it is sliced. The results showed that these models have the ability to predict the
most important sensory parameters for dry-cured ham with relatively high accuracy. Future studies
with greater heterogeneity of samples will be necessary to improve the results obtained for some
sensory parameters.
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Classification of dry-cured hams according to the maturation time using near infrared spectra and artificial
neural networks. Meat Sci. 2014, 96, 14–20. [CrossRef]

http://dx.doi.org/10.1016/j.meatsci.2006.07.003
http://dx.doi.org/10.1016/j.foodqual.2009.08.014
http://dx.doi.org/10.1016/j.meatsci.2016.06.009
http://www.ncbi.nlm.nih.gov/pubmed/27322593
http://dx.doi.org/10.1016/j.meatsci.2018.11.021
http://www.ncbi.nlm.nih.gov/pubmed/30528719
http://dx.doi.org/10.1016/j.meatsci.2018.11.015
http://dx.doi.org/10.1016/j.foodres.2014.10.015
http://dx.doi.org/10.1111/j.1745-459X.2011.00342.x
http://dx.doi.org/10.1002/jsfa.879
http://dx.doi.org/10.1006/fstl.1999.0623
http://dx.doi.org/10.1016/j.foodcont.2014.05.024
http://dx.doi.org/10.1016/j.tifs.2019.02.011
http://dx.doi.org/10.1016/j.lwt.2018.12.029
http://dx.doi.org/10.1016/j.jfoodeng.2013.03.014
http://dx.doi.org/10.1016/j.foodchem.2013.02.094
http://www.ncbi.nlm.nih.gov/pubmed/23768372
http://dx.doi.org/10.1016/j.aca.2005.11.038
http://dx.doi.org/10.1016/j.meatsci.2009.06.015
http://dx.doi.org/10.1016/j.meatsci.2013.06.013


Sensors 2020, 20, 5624 18 of 19

20. Santos, J.P.; Garcia, M.; Aleixandre, M.; Horrillo, M.C.; Gutierrez, J.; Sayago, I.; Fernandez, M.J.; Ares, L.
Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Sci. 2004, 66,
727–732. [CrossRef]

21. Gil-Sánchez, L.; Garrigues, J.; Garcia-Breijo, E.; Grau, R.; Aliño, M.; Baigts, D.; Barat, J.M. Artificial neural
networks (Fuzzy ARTMAP) analysis of the data obtained with an electronic tongue applied to a ham-curing
process with different salt formulations. Appl. Soft Comput. 2015, 30, 421–429. [CrossRef]

22. O’Sullivan, M.G.; Kerry, J.P. Improving the Sensory and Nutritional Quality of Fresh Meat; Woodhead Publishing
Limited: Cambridge, UK, 2009; pp. 178–196.

23. Pérez Elortondo, F.J.; Ojeda, M.; Albisu, M.; Salmerón, J.; Etayo, I.; Molina, M. Food quality certification:
An approach for the development of accredited sensory evaluation methods. Food Qual. Prefer. 2007, 18,
425–439. [CrossRef]

24. Pillonel, L.; Badertscher, R.; Casey, M.; Meyer, J.; Rossmann, A.; Schlichtherle-Cerny, H.; Tabacchi, R.;
Bosset, J.O. Geographic origin of European Emmental cheese: Characterisation and descriptive statistics.
Int. Dairy J. 2005, 15, 547–556. [CrossRef]

25. Cilla, I.; Martínez, L.; Beltrán, J.A.; Roncalés, P. Dry-cured ham quality and acceptability as affected by the
preservation system used for retail sale. Meat Sci. 2006, 73, 581–589. [CrossRef] [PubMed]

26. García-González, D.L.; Roncales, P.; Cilla, I.; del Río, S.; Poma, J.P.; Aparicio, R. Interlaboratory evaluation of
dry-cured hams (from France and Spain) by assessors from two different nationalities. Meat Sci. 2006, 73,
521–528. [CrossRef] [PubMed]

27. Rousset, S.; Martin, J.-F. An Effective Hedonic Analysis Tool: Weak/Strong Points. J. Sens. Stud. 2001, 16,
643–661. [CrossRef]

28. Arnau, J. Tecnología del jamón curado en distintos países. In El Jamón Curado: Tecnología y Análisis de Consumo:
Simposio Especial, 44th ed.; Arnau, J.Y., Monfort, J.M., Eds.; Centro de Tecnología de la Carne (IRTA). Editorial
Estrategias Alimentarias S.L.- EUROCARNE: Madrid, España, 1998; pp. 10–21.

29. Vestergaard, C.S.; Schivazappa, C.; Virgili, R. Lipolysis in dry-cured ham maturation. Meat Sci. 2000, 55, 1–5.
[CrossRef]

30. Buscailhon, S.; Berdagué, J.L.; Bousset, J.; Cornet, M.; Gandemer, G.; Touraille, C.; Monin, G. Relations
between compositional traits and sensory qualities of French dry-cured ham. Meat Sci. 1994, 37, 229–243.
[CrossRef]

31. Mayoral, A.I.; Dorado, M.; Guillén, M.T.; Robina, A.; Vivo, J.M.; Vázquez, C.; Ruiz, J. Development of meat
and carcass quality characteristics in Iberian pigs reared outdoors. Meat Sci. 1999, 52, 315–324. [CrossRef]

32. Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and appearance of dry cured ham as
affected by fat content and fatty acid composition. Food Res. Int. 2000, 33, 91–95. [CrossRef]

33. Fuentes, V.; Ventanas, J.; Morcuende, D.; Ventanas, S. Effect of intramuscular fat content and serving
temperature on temporal sensory perception of sliced and vacuum packaged dry-cured ham. Meat Sci. 2013,
93, 621–629. [CrossRef]

34. Pérez-Alvarez, J.A.; Sayas-Barberá, M.E.; Fernández-López, J.; Aranda-Catalá, V. Physicochemical
characteristics of Spanish-type dry-cured sausage. Food Res. Int. 1999, 32, 599–607. [CrossRef]

35. Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Influence of type of muscle on volatile compounds
throughout the manufacture of Celta dry-cured ham. Food Sci. Technol. Int. 2015, 21, 581–592. [CrossRef]
[PubMed]

36. Fulladosa, E.; Garriga, M.; Martín, B.; Guàrdia, M.D.; García-Regueiro, J.A.; Arnau, J. Volatile profile and
microbiological characterization of hollow defect in dry-cured ham. Meat Sci. 2010, 86, 801–807. [CrossRef]
[PubMed]

37. Ruiz, J.; Muriel, E.; Ventanas, J. The Flavour of Iberian Ham. In Research Advances in the Quality of Meat and
Meat Products; F. Toldra, Ed.; Research Signpost: Trivandrum, India, 2002; pp. 289–309.

38. Toldrá, F.; Flores, M. The Role of Muscle Proteases and Lipases in Flavor Development During the Processing
of Dry-Cured Ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [CrossRef]

39. Lorido, L.; Estévez, M.; Ventanas, J.; Ventanas, S. Comparative study between Serrano and Iberian dry-cured
hams in relation to the application of high hydrostatic pressure and temporal sensory perceptions. Lwt Food
Sci. Technol. 2015, 64, 1234–1242. [CrossRef]

http://dx.doi.org/10.1016/j.meatsci.2003.07.005
http://dx.doi.org/10.1016/j.asoc.2014.12.037
http://dx.doi.org/10.1016/j.foodqual.2006.05.002
http://dx.doi.org/10.1016/j.idairyj.2004.07.028
http://dx.doi.org/10.1016/j.meatsci.2006.02.013
http://www.ncbi.nlm.nih.gov/pubmed/22062556
http://dx.doi.org/10.1016/j.meatsci.2006.02.002
http://www.ncbi.nlm.nih.gov/pubmed/22062492
http://dx.doi.org/10.1111/j.1745-459X.2001.tb00325.x
http://dx.doi.org/10.1016/S0309-1740(99)00095-9
http://dx.doi.org/10.1016/0309-1740(94)90083-3
http://dx.doi.org/10.1016/S0309-1740(99)00008-X
http://dx.doi.org/10.1016/S0963-9969(99)00153-2
http://dx.doi.org/10.1016/j.meatsci.2012.11.017
http://dx.doi.org/10.1016/S0963-9969(99)00104-0
http://dx.doi.org/10.1177/1082013214554935
http://www.ncbi.nlm.nih.gov/pubmed/25331495
http://dx.doi.org/10.1016/j.meatsci.2010.06.025
http://www.ncbi.nlm.nih.gov/pubmed/20674188
http://dx.doi.org/10.1080/10408699891274237
http://dx.doi.org/10.1016/j.lwt.2015.07.029


Sensors 2020, 20, 5624 19 of 19

40. Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH24, NaCl content and proteolysis index on the
relationship between water content and texture parameters in biceps femoris and semimembranosus muscles
in dry-cured ham. Meat Sci. 2006, 72, 185–194. [CrossRef]

41. Bermúdez, R.; Franco, D.; Carballo, J.; Sentandreu, M.Á.; Lorenzo, J.M. Influence of muscle type on the
evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process
of Celta dry-cured ham. Food Res. Int. 2014, 56, 226–235. [CrossRef]

42. Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Relationship between water content, NaCl content, pH and
texture parameters in dry-cured muscles. Meat Sci. 2005, 70, 579–587. [CrossRef]

43. Virgili, R.; Parolari, G.; Schivazappa, C.; Soresi Bordini, C.; Borri, M. Sensory and Texture Quality of
Dry-Cured Ham as Affected by Endogenous Cathepsin B Activity and Muscle Composition. J. Food Sci. 1995,
60, 1183–1186. [CrossRef]

44. Jurado, Á.; García, C.; Timón, M.L.; Carrapiso, A.I. Effect of ripening time and rearing system on amino
acid-related flavour compounds of Iberian ham. Meat Sci. 2007, 75, 585–594. [CrossRef]

45. García-Garrido, J.A.; Quiles-Zafra, R.; Tapiador, J.; Luque de Castro, M.D. Sensory and analytical properties
of Spanish dry-cured ham of normal and defective texture. Food Chem. 1999, 67, 423–427. [CrossRef]

46. Chang, C.-L.; Liao, C.-S. Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water
Turbidity. Int. J. Geol. Environ. Eng. 2012, 6, 657–660. [CrossRef]

47. Berry, M.J.A.; Linoff, G.S. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management;
John Wiley & Sons: New York, NY, USA, 1997.

48. Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of
the Computational Cybernetics and Simulation, IEEE Systems, Man and Cybernetics Conference, Orlando,
FL, USA, 12–15 October 1997; Volume 4, pp. 3030–3035.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.meatsci.2005.06.016
http://dx.doi.org/10.1016/j.foodres.2013.12.023
http://dx.doi.org/10.1016/j.meatsci.2005.02.007
http://dx.doi.org/10.1111/j.1365-2621.1995.tb04551.x
http://dx.doi.org/10.1016/j.meatsci.2006.09.006
http://dx.doi.org/10.1016/S0308-8146(99)00144-2
http://dx.doi.org/10.5281/zenodo.1061483
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Samples 
	Sensory Evaluation 
	NIR-Chemometric Methods 
	Artificial Neural Network 

	Results 
	Sensory Analysis 
	Spectral Characteristics 
	Artificial Neural Network (ANN) 

	Conclusions 
	References

