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Abstract

Background: The detection of protein complexes is of great significance for researching mechanisms underlying
complex diseases and developing new drugs. Thus, various computational algorithms have been proposed for
protein complex detection. However, most of these methods are based on only topological information and are
sensitive to the reliability of interactions. As a result, their performance is affected by false-positive interactions in
PPINs. Moreover, these methods consider only density and modularity and ignore protein complexes with various
densities and modularities.

Results: To address these challenges, we propose an algorithm to exploit protein complexes in PPINs by a
Seed-Extended algorithm based on Density and Modularity with Topological structure and GO annotations, named
SE-DMTG to improve the accuracy of protein complex detection. First, we use common neighbors and GO
annotations to construct a weighted PPIN. Second, we define a new seed selection strategy to select seed nodes.
Third, we design a new fitness function to detect protein complexes with various densities and modularities. We
compare the performance of SE-DMTG with that of thirteen state-of-the-art algorithms on several real datasets.

Conclusion: The experimental results show that SE-DMTG not only outperforms some classical algorithms in yeast
PPINs in terms of the F-measure and Jaccard but also achieves an ideal performance in terms of functional
enrichment. Furthermore, we apply SE-DMTG to PPINs of several other species and demonstrate the outstanding
accuracy and matching ratio in detecting protein complexes compared with other algorithms.

Keywords: Graph clustering algorithms, Protein complex, Protein-protein interaction networks, Density, Modularity,
functional properties

Background
A protein complex is a group of proteins that interact
with each other to perform different cellular functions
[1]. The detection of protein complexes from protein-
protein interaction networks (PPINs) plays an important
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role in the realization of the cell function in the pro-
teomics era. Specifically, protein complexes contribute to
the study of protein interaction network [2], function, dis-
eases [3], etc. Protein complexes help researchers to fully
study the causes of various diseases and further develop
new drugs. Research on protein complexes is helpful to
analyze the different stages of diseases [4]. Current studies
have shown that disease genes tend to be highly connected
among themselves in disease networks. These highly con-
nected subgraphs could be disease protein complexes and
investigation of the cause and effect of these complexes in
disease networks could contribute to providing the search
space for bioinformaticists, enhance the analysis process
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[5, 6] and help medical researchers to design new drugs.
As a result, the detection of protein complexes plays an
indispensable role in complex diseases.
During the past decade, because of the development

of high-throughput techniques such as yeast-two-hybrid
[7], mass spectrometry [8], and protein chip technologies
[9], the number of available PPINs has rapidly increased
and have been collected from different public databases.
In general, a PPIN can be naturally represented in the
form of a network, which not only provides a people
the panoramic scope of PPIs on a proteomics scale but
also help us to understand the basic organization of cell
machinery based on the whole network. How to use
PPINs to analyze biological systems remains a meaning-
ful task [10]. Although most of PPINs are missing and
inaccurate [11, 12], they reveal biological processes and
inherent organizational structures within cells [13–15].
How to accurately discover biological protein complexes
is a main subject in biology and bioinformatics. In biol-
ogy, there are some experimental methods have been
designed to detect protein complexes in PPINs, including
TAP-ms [16], Co-IP [17–19] and the two-hybrid sys-
tem [13, 20]. However, biological experimental methods
have their own shortcomings; for example, they are time-
consuming, relatively expensive and inefficient. Thus, the
use of to provide computational algorithms to improve
the effectiveness of protein complex detection in PPINs is
appealing.
To overcome these experimental constraints, various

computational methods have been developed to improve
the effectiveness of protein complex detection in PPINs.
Some researchers have shown that a protein complex
in a PPIN is a molecular structure consisting of both
function and structure [21]. Furthermore, some related
empirical studies on PPINs also support this point and
indicate that modular components in these networks do
exist [22]. These results have two implications: one is that
these modules are composed closely related proteins and
these proteins could have many common neighbor from
the perspective of network topology; the other is that
proteins in the same modules perform similar functions
together in terms of biology. Thus, many researchers
believe that proteins in the same complex generally imple-
ment the same or similar function and tend to interact
with each other [23]. Generally, a PPIN is usually modeled
as an undirected graph, where the nodes represent pro-
teins and the edges correspond to protein-protein inter-
actions. Therefore, protein complexes can be detected by
mining the modular structures (i.e., dense subgraphs or
subnetworks) from PPINs [24]. Based on this idea, the
problem of detecting protein complexes in PPINs can be
computationally addressed via graph clustering methods,
where the resulting biological subgraphs or clusters are
considered to be protein complexes. Herein, clustering

consists of grouping nodes into groups (also called clusters
or communities) such that the nodes in the same cluster
are more similar to each other than the nodes in the other
clusters [25]. Therefore, to overcome the disadvantages
of the experimental methods, a series of graph clustering
algorithms based on machine learning and data mining
are developed as an compensatory choice to detect protein
complexes.

Related work
Up to now, a variety of computational algorithms for
detecting protein complexes have been proposed. We first
try to make a brief classification of relation work. They
mainly include Approaches based on cliques or dense sub-
graphs, Approaches based on core-attachment structure,
Approaches based on hierarchical clustering, Approaches
based on model, Approaches based on supervised learn-
ing.Wewill further discuss thesemethods in the following
sections.

Approaches based on cliques or dense subgraphs
A large number of existing algorithms suppose protein
complexes correspond to k-cliques or highly dense sub-
graphs. Thus, in the past decade a series of algorithms
based on cliques or dense subgraphs have been proposed
for detecting protein complexes from PPINs. Until now,
many protein complexes detection algorithms also belong
to this category. For example, adamcsek et al. [26] provide
an application called CFinder to find the k-clique perco-
lation clusters as protein complexes in PPINs. Another
example is CMC [27], which first mines the maximal
cliques from weighted PPIN, and then removes or merges
some highly overlapping maximal cliques. However, this
kind of methods require a protein complex to be k-clique
or clique. Consequently, some researchers try to discover
dense subgraph by using a heuristical searching strategy
in a PPIN. For instance, MCODE [28] is one of the earliest
this kindmethods, which detects protein complexes based
on seed-extend method and subgraph with highly density
in a PPIN. Several years later, Altaf-UI-Amin et al. [29]
propose DPClus, unlike MCODE, DPClus detect densely
subgraphs as protein complexes based on the concepts of
density and periphery. Following the DPClus, based on
the diameter and density, Li et al. [30] present a improved
clustering algorithm called IPCA. Several years later, a
fast, memory-efficient cluster algorithm SPICi [31] is pre-
sented. This cluster algorithm uses density and support
function for clustering larger networks.
In fact, approaches based on cliques or dense subgraphs

are effective to detect the k-cliques or highly density pro-
tein complexes, but they fail to detect either the sparsely
subgraph or the relatively peripheral proteins. How to
tackle these challenges will be emphasis for further
study.
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Approaches based on core-attachment structure
Most of approaches based on cliques or dense subgraphs
mainly focus on the assumption that the highly connected
subgraphs may be protein complexes, but these methods
ignore the inherent organization of protein complexes.
Gavin et al. [14] recently have demonstrated that protein
complexes consist a core and some attachments, in which
proteins in the core are highly interconnected, and some
attachments or protein modules often interact with their
core sparsely and assist their core in performing subordi-
nate functions. Employing the core-attachment structure,
some outstanding detection algorithms are developed.
They have mainly two stages: the first stage is identi-
fying all dense subgraphs and letting them to be the
protein complex cores and the second stage is to extend
all complex cores by adding peripheral proteins into its
core. For example, Wu et al. [32] develop the algorithm
named COACH, which first mines some dense subgraphs
as protein complex cores and then identifies peripheral
proteins. And then peripheral proteins is cooperating
with their protein complex core to form a protein com-
plex. Recently, Peng et al. [33] propose another algorithm
called WPNCA, which is a new algorithm by using the
PageRank-Nibble algorithm and core-attachment struc-
ture. Experiments results show that WPNCA is supe-
rior to other state-of-the-art algorithm in detecting
complexes.
Generally speaking, identified complexes with core-

attachment structures have a larger size. In fact, the real
protein complexes have a smaller size. It is a directions for
further research in the future.

Approaches based onmodel
Up to now, approaches based on model in protein com-
plexes detection are very popular in protein complexes
detection. That because they show an excellent perfor-
mance. Unlike most of algorithms that we mentioned
above, approaches based on model focus predominantly
on seeking to some relationmodel or graph pattern to pre-
dict protein complexes. It is a new way to discover protein
complexes. Markov clustering (MCL) [34] is one of the
most popular model by using the random walk strategy
in a PPIN, and it has two basic operators called expan-
sion and inflation. MCL can tolerate more noises than
other types of algorithms. However, its result depends
on the parameter inflation and it does not detect over-
lapping protein complexes. In fact, overlapping protein
complexes takes up a large proportion of protein com-
plexes. Based on this fact, Nepusz et al. [35] introduce a
novel method (called ClusterONE) to predict overlapping
protein complexes. ClusterONE introduces a cohesive-
ness (also called graph modularity) to assess the quality of
protein complexes for the first time. On the basis of Clus-
terONE, we introduce CALM [36], a improved method,

to detect protein complexes. Firstly, we identify overlap-
ping nodes and seed nodes by calculating node degree and
betweenness, then uses a greedy local research approach
based on core-attachment and local modularity structure
to produce detected protein complexes.
Although the algorithms based onmodel have good per-

formance for the detection of protein complexes, their
accuracy need to be improved by employing network
topological features. For example, they could takemultiple
network topological property or biological informations
into account.

Approaches based on hierarchical clustering
Recently, due to the form of a tree [37] in PPINs and the
nature of modularity [38] in biological networks, some
traditional hierarchical clustering algorithms are tried to
detect protein complexes in the PPINs. The major dif-
ference among them is how to construct the hierarchical
structure. More specifically, the key is how to measure the
similarity of nodes. Next we introduce some representa-
tive algorithms.
Generally, traditional hierarchical clustering algorithms

can not be use directly in PPINs with false positives.
To overcome this challenge, based on the edge cluster-
ing coefficients and λ-module, Li et al. [39, 40] propose
a new fast hierarchical algorithm for identifying protein
complexes, named FAG-EC. Wang et al. modify FAG-
EC and propose HC-PIN [41] to identify overlapping and
hierarchical functional modules in a PPIN.
In summary, approaches based on hierarchical cluster-

ing can provide a global perspective to look at the hier-
archical modular organization of a PPIN. What’s more,
they are easy to implement and understand. However,
most of them can not identify overlapping clusters and are
sensitive to the noisiness of the PPINs [42]. Thus, their
accuracies are limited. In practice, their performance is
deficient in some cases.

Approaches based on supervised learning
The aforementioned various computational clustering
algorithms are unsupervised-based clustering and they
are used for finding protein complexes. All of these unsu-
pervised clustering algorithms only consider one of the
multiple topological structure of protein complexes and
do not use the known complexes, thus they may ignore
complexes with other types of topological structure.
To tackle the defect, with the development of supervised

learning algorithms, some researchers utilize the infor-
mation of known complexes to detect protein complexes
from the PPINs. Supervised learning algorithms gener-
ally contain three main steps: (1) extract useful features
from the known complexes; (2) train a supervised model
by distinguishing the real complexes from random sub-
graphs based on the extracted features; (3) detect protein
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complexes from the PPINs by using the trained model as
fitness evaluating function. So far ClusterEPs [43] is the
best among them. It uses emerging patterns to measure
the possibility of a subgraph being a complex.
Unfortunately, there is no appropriate feature selection

method and the PPINs always have a considerable num-
ber of noise. Moreover, the number of known protein
complexes is available for training is too small. These
disadvantages make the trained model imprecise [44].
Meanwhile, some features are often related to the specific
mapping PPINs, so these extracted featuresmay be unique
and not universal. As a result, their performance could
decrease [45]. Therefore, how to overcome these issues
is critical for further improving the accuracy of detection
protein complexes.

Our work
The above algorithms have been shown to detect pro-
tein complexes effectively. Furthermore, proteins in the
same complex generally possess high functional similar-
ity; thus, protein constituting a complex possibly have
similar function. Based on the strengths and weaknesses
of the relative works and considering the fact that high-
throughput PPINs are noisy and incomplete. Further-
more, proteins in the same protein complex generally
possess high functional similarity and more neighbors,
proteins constituting a protein complex possibly have sim-
ilar function and more the same common neighbors. In
this paper, we first integrate both common neighbors and
GO annotations to construct a weighted PPIN. According
to some evidence and research [30, 35, 46], the density-
based algorithms and modularity-based algorithms have
outstanding performance in PPINs. Thus, we define a new
model to quantitatively assess protein complex detection
by considering both the density and modularity of a sub-
graph, and we propose a new graph clustering method
based on seed-extend algorithm, namely (SE-DMTG), to
detect protein complexes of various dense and modular-
ity. In this process, we grow each seed node to a subgraph
until this subgraph is a locally optimal cluster. Further-
more, we remove redundant detected complexes and treat
the derived complexes as finally identified protein com-
plexes. Finally, to validate the performance of SE-DMTG,
we apply it to PPINs of three different species and com-
pare the results, in terms of the F-measure and Jaccard
with those of some representative state-of-the-art algo-
rithms by using several known protein complex datasets
that are widely used in biological experiments. The
experimental results demonstrate that SE-DMTG outper-
forms the other competing algorithms in terms of accu-
racy and matching with known complexes. In addition,
these identified protein complexes are subjected to func-
tional enrichment analysis to ascertain their biological
significance.

Results
Protein-protein interactions datasets selection selection
For performance testing, we carry out all the experiments
on three species PPINs: S.cerevisiae cerevisiae (Yeast),
Homo sapiens (Human) and Mus musculus (Mouse). For
yeast, we mainly tested three real yeast PPINs. They are
Krogan core [15], DIP [55] and combined6, where com-
bined6 [27] is generated by six individual experiments,
including interactions characterized by mass spectrom-
etry technique (2002) [56], Gavin et al. (2002, 2006)
[14, 57] and Krogan et al. (2006) [15], and interac-
tions produced using two-hybrid techniques [7, 13]. For
human, we use two PPINs, which consists of DIP (ver-
sion Hsapi20170205 on 9/5/2019) [58] and a combined
dataset from HPRD (Human Protein Reference Database,
7/2010) [59] and BioGRID (version 3.2.109) [60], namely,
HPRD+BioGRID, which is downloaded from Ref [61]. For
the mouse, the PPIN of Mus musculus is also obtained
from Biogrid (version 3.5.172) [62]: we download Biogrid
Mus musculus (BIOGRID-ORGANISM-Mus_musculus-
3.5.172.tab.txt), and then we extract the related of mouse
file (Biogrid UNIPROT.tab.txt,14/5/2019). Note that, we
use all the unweight PPINs to test all algorithms and
we remove all self-connecting interactions and repeated
interactions. The detail information of these datasets is
listed in Table 2.

Protein complexes selection
To evaluate the performance of different protein complex
detection algorithms. For yeast, we employ two known
protein complexes sets as standard complexes to evalu-
ate the quality of identified protein complexes by various
algorithms in yeast PPINs, namely CYC2008 [63] and
SGD [64]. In particular, CYC2008 is constructed from
three sources, i.e., 1) MIPS [65], 2) Aloy et al [66], and
3) SGD database [67]. For human, we use two standard
complexes, which include: 1. CORUM complexes [68]. 2.
CGPK complexes [61] is constructed from four sources,
i.e., (1) the Comprehensive Resource of Mammalian pro-
tein complexes (CORUM) [68]; (2) protein complexes are
annotated by GO [69]; (3) Proteins Interacting in the
Nucleus database (PINdb) [70] and (4) KEGG modules
[71]. For mouse, we use the CORUM complexes [68].
Following the work done by Nepusz et al. [35], we fur-
ther eliminate those protein complexes that are made up
of fewer than three proteins and discard some redun-
dant protein complexes. Finally, the rest of known protein
complexes in these databases are used for performance
evaluation. The summary of the these standard protein
complexes is presented in Table 3.

Preprocessing
For yeast, we directly use the protein name to repre-
sent the proteins in the PPIN and protein complexes. For
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Table 1 Summary of metrics or scores

Symbol Description

PPINs Protein-protein interaction networks

G = (V , E) Graph G with vertex set V, edge set E andW is weight
matrix

N Number of vertices in a graph

M Number of edges in a graph

v A vertex in V

(v, u) Edge between vertices v and u in E

N(v) N(v) stands for the set of all vertex v’neighbors

CN(v, u) The weight of edge (v, u) according to common
neighbors (CN) namely, Eq. (7)

GO(v, u) The weight of edge (v, u) according to Gene
Ontology (GO) namely, Eq.(8)

w(v, u) The weight of edge (v, u) according to both CN(v, u)
and GO(v, u), see Eq. (9)

dw(v) The weight degree of vertex v

NGCC(v) The Neighborhood Graph Clustering Coefficient of
vertex v

Score(v) The priority of vertex v is used as seed according to
Eq. (12)

SG A subgraph in Graph G

D(SG) The density of subgraph (SG) according to Eq. (13)

M(SG) The modularity of subgraph (SG) according to Eq. (16)

F(SG) The fitness of subgraph (SG) according to Eq. (17)

Neighbor(SG) The neighbor of the cluster SG

inner_nodes(SG) The inner nodes in the cluster SG

weightavg(SG) The average weighted interactions within the
cluster SG according to Eq. (18)

Neighbor(SG), the set includes the neighbor node connects to at least one edge
with any protein of the cluster SG but not belongs to SG; inner_nodes(SG), the set
includes the inner node belongs to the cluster SG, but it connects to at least one
node which is the neighbor of SG;

human and mouse, different PPINs and different stan-
dard protein complexes from different sources of datasets
are heterogeneous in many aspects. Therefore, we use the
Uniprot id [72] to represent each protein in this study. As
a result, we have a uniform way to represent proteins for
both the different PPINs and the standard protein com-
plexes. In the process, we remove all duplication inter-
actions, and proteins is not exist its associated Uniprot
accession id.

Gene Ontology(GO) selection
As for the Gene Ontology (GO) file, for yeast, we use the
GO slims which is the cut-down version of GO, it is a sub-
set of the terms in the whole yeast GO. Here, since GO
slims of CC include some protein complexes information,
we only use GO slims of BP and MF as GO annotations.
Moreover, the GO slim information is downloaded from
thewebsite (https://www.yeastgenome.org/). Similarly, for

Table 2 Statistics on the used datasets of PPINs

SP Name N E D

Yeast Krogan-Core 2708 7123 0.00194

DIP 4930 17201 0.00141

combined6 4671 20461 0.00187

Homo Sapiens DIP 4615 6892 0.00064

HPRD+BioGRID 14398 139020 0.00134

Mus musculus BioGRID 6142 16725 0.00088

SP, the name of species; Name, the name of protein complex data set; N, the
number of proteins; E, the number of interactions; D, the density of the PPI network

human and mouse, we exploit each protein with their
associated Biological Process (BP), and Molecular Func-
tions (MF) GO annotation based on the web UniProt [72]
(available at https://www.uniprot.org/), and we download
these mapping files.

Evaluation metrics
For the purpose of performance evaluation, This section
introduces some evaluationmetrics that have been used in
this paper. These evaluation metrics calculate the match-
ing degree between identified complexes obtained by dif-
ferent algorithms and standard complexes. Generally, the
value of these evaluation metrics falls into the interval
between 0.0 and 1.0. The higher the value, the better
quality of clustering results and better performance an
detecting algorithm has.
1) Precision, Recall, and F-Measure: To evaluate the

performance of all algorithms, we match generated com-
plexes with known complexes. First, we introduce the
overlap score (OS) between the identified protein com-
plexes and known complexes, which is presented as fol-
lows [73]:

OS(p, g) = |Np ∩ Ng |2
|Np| · |Ng | (1)

Here, |Np| is the size of the detected complex, |Ng| is the
size of the known complex, and |Np ∩ Ng| is the common
protein number from the detected and known complexes.
If OS(p, g) ≥ ω, we consider p and g to match each other.

Table 3 Statistics of the gold standard complexes we use

SP Name N P AS

Yeast CYC2008 236 1342 6.67

SGD 238 1170 6.76

Homo Sapiens CORUM complexes 1824 3167 5.35

CGPK complexes 2285 6206 8.57

Mus musculus CORUM complexes 376 1041 4.39

SP, the name of species; Name, the set of protein complexes; N, the number of
protein complexes; P, the number of protein coverage; AS, the average size of
protein complexes

https://www.yeastgenome.org/
https://www.uniprot.org/
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Table 4 Parameters of each algorithm on datasets

ID Algorithms Parameter

1 MCODE (default setting)

2 MCL inflation=2(default setting)

3 CFinder k=3

4 DPClus CPin = 0.5, din = 0.6(default setting)

5 IPCA S=3,P=2,Tin = 0.6(default setting)

6 CMC overlap thres = 0.5 merge thres= 0.5,

size=3(author suggestions)

7 COACH w=0.225(default setting)

8 HC-PIN λ = 2.0(default setting)

9 SPICi density = 0.5, support threshold = 0.5, graph
mode = 0(default setting)

10 ClusterONE s=3,density=auto(default setting)

11 WPNCA lambda=0.3,size=3(author suggestions)

12 CALM size=3,weighted= unweighted

minimum support threshold=0.4,

maximum support threshold= 0.05,

13 ClusterEPs Maximum overlap threshold=0.9,

Maximum size of the clusters = 100

(author suggestions)

14 SE-DMTG (default setting and no need parameters)

In our experiment, we set ω = 0.2, which is consistent
with previous studies [28, 29].
After the overlap score (OS) has be defined, we can now

give the definition of Precision, Recall, and F-measure as
follows [74]:

F − measure = 2 × Precision × Recall
Precision + Recall

(2)

where Precision =Ncp
|P| and Recall =Ncg

|G| . The F-measure
is the harmonic mean of Precision and Recall, which
can assess the overall performance of the detection
algorithms.
2) JaccardI, JaccardS and Jaccard: As we all known,

Precision, Recall and F-measure by setting a threshold to
judge whether a standard complex and an identified com-
plex are matched or not. It has its limitations because
it doesn’t consider the impact of overlapping part on
both identified complexes and the corresponding stan-
dard complexes [75]. Therefore, we utilize Jaccard mea-
sure for evaluating clustering results [76, 77]. It considers
the proportion of overlap size in the union set of an iden-
tified complex and a standard complex [75]. For more
details, please refer to Song et al. [76].
Before we give these metrics, we firstly introduce some

notations. Let I be the set of identified complexes obtained
by a specific identified algorithm, and S be the set of

standard complexes. Moreover, let Si ∈ S be a stan-
dard complex and Ij ∈ I represent an identified com-
plex, and then their Jaccard coefficient between them is
defined as Jac(Si, Ij) = |Si∩Ij|

|Si∪Ij| [77]. For each identified
complex Ij, its Jaccard measure is the maximum Jac-
card coefficient over all standard complexes i.e, Jac(Ij) =
maxSi∈SJac(Ij, Si). Taking an average over these identified
complexes, weighted by complex size, we compute the
weighted average Jaccard measure for the all I identified
complexes.

JaccardI =
∑

Ij∈I |Ij|Jac(Ij)
∑

Ij∈I |Ij| , (3)

Similarly, for a standard complex Si, its Jaccard measure is
Jac(Si) = maxIj∈I Jac(Si, Ij) and

JaccardS =
∑

Si∈S |Si|Jac(Si)
∑

Si∈S |Si| , (4)

Finally, the Jaccard measure between identified complexes
and standard complexes is defined as the harmonic mean
of JaccardI and JaccardS.

Jaccard = 2 × JaccardI × JaccardS
JaccardI + JaccardS

. (5)

According to the definition of Jaccard measure, we
can see that Jaccard measure could better evaluate
the performance of the identified algorithms than F-
measure, especially to comparematching rates of different
algorithms.
3) p-value: To evaluate the statistical significance of the

detected protein complexes, many researchers annotate
their main biological functions by using p-value [23, 78].
We calculate the function enrichment test to demonstrate
the biological significance of detected protein complexes
by different algorithms. In this paper, we use LAGO [78]
to accomplish the function enrichment test with differ-
ent threshold. Note that, LAGO is a fast tool which finds
significant GO terms among a list of gene names, and
it computes the significance (p-value) via the hypergeo-
metric distribution, and applies (by default) Bonferroni
correction. For the details of calculating p-value, please
refer to [78]. The p-value is used for measuring the biolog-
ical relevance of detected protein complexes and can be
denoted as follows.

p − value = 1 −
k−1∑

i=0

(F
i
)(N−F

C−i
)

(N
C
) (6)

where k is the number of proteins of the functional group
in the protein complex, N is the number of proteins in the
PPIN. F is the size of a functional group in the PPIN, a
detected protein complex that contains C proteins. Gen-
erally, the lower the p-value is, the stronger biological sig-
nificance the protein complex has. The detected protein
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complex with less than 0.01 is deemed to be meaningful.
In additionally, the larger protein complexes possess the
smaller p-values.

Comparison with existing algorithms based on known
protein complexes
We have experiments on six PPINs to compare our SE-
DMTG algorithm with the following state-of-the-art pro-
tein complex detection algorithms, including MCODE
[28], MCL [34], CFinder [26], DPClus [29], IPCA [30],
CMC [27], COACH [32], HC-PIN [41], SPICi [31], Clus-
terONE [35], WPNCA [33], CALM [36], and ClusterEPs
[43]. Here all parameters are set as their authors advised
in Table 4. Meanwhile, to evaluate the performance of
all algorithms more comprehensively, all the detection
algorithms are tested on the three different species that
are yeast, human and mouse. Where three yeast PPINs
include the Krogan-core, DIP and combined6 dataset.
For human, it includes DIP and a combined dataset
(HPRD+BioGRID). And we use the BioGRID dataset as
mouse PPIN for testing all algorithms. All tested results
are presented in Tables 5, 6, 7, 8 and 9. Because the results
are similar, we only analyze the results on the yeast in
detail and the rest of results are briefly introduced.
The experimental results of F-measure for different

algorithms on yeast PPINs have been summarized in
Table 5. As the Table 5 shows, although SE-DMTG doesn’t
always obtain best performance on precision or recall,
but it always keeps in the top three in all cases. Fur-
thermore, SE-DMTG obtains best F-measure in all three
yeast datasets. It means that SE-DMTG makes a bet-
ter compromise between precision and recall. Therefore,
the results of F-measure for SE-DMTG are better than
other algorithms. In other words, SE-DMTG is obviously
better than other algorithms, especially for the overall
accuracy in detected protein complexes. Generally, the
performance of SE-DMTG in detecting protein complexes
is very promising. The principle reason is that SE-DMTG
takes into consideration not only gene ontology data but
also the topological structure of the tested PPIN.
We have mentioned the limitations of precision, recall

and F-measure earlier in this paper. Furthermore, we
employ Jaccard measure to reflect that match ratio
between detected protein complex set and standard com-
plex set. Table 6 presents all comparative performance
results for different algorithms evaluated based on Jaccard
metrics by using CYC2008 and SGD standard complexes,
respectively. As can be seen from Table 6, in three yeast
PPINs, for Jaccard metric, SE-DMTG consistently outper-
forms other compared algorithms. That is SE-DMTG has
the best value of Jaccard and superior performance. Fur-
thermore, we can see that SE-DMTG clearly dominates
the other algorithms in all tested datasets. Therefore,
SE-DMTG algorithm can get more competitive value of

Jaccard compare to other algorithms, which suggests that
SE-DMTG performs better than other classic algorithms
in terms of matching ratio on all three datasets. Accord-
ing to the above analysis, we known that the new fitness
function we designed is used for dealing with the problem
of protein complex detection and seems reasonable to use
GO annotations for the detection of protein complexes.
Moreover, we make use of Krogan core dataset to

compare the performance of all comparing methods by
using CYC2008 and SGD as the standard complexes. As
shown in Table 6, the Jaccard of SE-DMTG achieve 0.4688
and 0.4008, respectively, which significantly outperforms
other algorithms. Similarly, on DIP dataset, SE-DMTG
achieves the highest Jaccard (0.386 and 0.3485). For the
combined6 dataset, SE-DMTG also achieves the highest
value of Jaccards and the values of Jaccards are 0.5208 and
0.493, respectively. Therefore, it shows that the values of
Jaccard in combined6 dataset for SE-DMTG is superior to
the results in other datasets. This is mainly because com-
bined6 is more reliable than other two datasets. In other
words, PPIN contains multiple source dataset, which
maybe lead to more real protein-protein interactions.
To further demonstrate the effectiveness of SE-DMTG

algorithm in PPINs on other species, we also carry exper-
iment on the human and mouse PPINs. All comparison
results are listed in Tables 7, 8 and 9. Similarly, SE-DMTG
also achieves the highest F-measure and Jaccard on other
species in most cases. It is noteworthy that the higher F-
measure means we can identify protein complexes more
accurately and the higher Jaccard represents that detected
algorithms have a better matching ratio between detected
protein complexes and real protein complexes. In sum-
mary, for different species PPINs, SE-DMTG has the best
performance over other comparative algorithms in terms
of F-measure and Jaccard.

Biological significance of the detected protein complexes
Due to the incompleteness of the known protein com-
plexes, we should calculate the p-value of the detected
protein complexes on Cellular component ontologies
(CC) by using the tool LAGO (http://go.princeton.edu/
cgi-bin/LAGO), which is used for making a functional
enrichment analysis [78]. All parameters of LAGO are set
default. Because CC includes the information of protein
complexes, thus it can better compare the performance
of different algorithms. Generally speaking, each protein
complex detected by detection algorithm is associated
with a p-value to show its GO annotations. If the p-value
of a protein complex is less than 0.01, we consider it
biologically significant. In fact, the p-values of detected
protein complexes have close relationship with their
size [33].
Here, to evaluate the functional enrichment of pro-

tein complexes detected by different algorithms more

http://go.princeton.edu/cgi-bin/LAGO
http://go.princeton.edu/cgi-bin/LAGO
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Table 5 Performance comparision on Krogan-core, DIP and combined 6 datasets

Data set Algorithm Number CYC2008 SGD

Precision Recall F-measure Precision Recall F-measure

Krogan-Core MCODE 78 0.74361st 0.2839 0.4109 0.67951st 0.2941 0.4105

MCL 374 0.2727 0.5 0.3529 0.2487 0.4832 0.3283

CFinder 13963rd 0.4047 0.5551 0.4681 0.3266 0.5042 0.3965

DPClus 497 0.2656 0.61442nd 0.3709 0.2334 0.5632nd 0.33

IPCA 579 0.5889 0.5339 0.56013rd 0.4214 0.4916 0.4538

CMC 21361st 0.0126 0.0636 0.0211 0.0164 0.0798 0.0272

COACH 348 0.5517 0.5254 0.5383 0.431 0.4832 0.45563rd

HC-PIN 167 0.4371 0.3983 0.4168 0.4072 0.4034 0.4053

SPICi 227 0.3789 0.4322 0.4038 0.3436 0.4034 0.3711

ClusterONE 243 0.4979 0.4915 0.4947 0.4074 0.4202 0.4137

WPNCA 374 0.64442nd 0.5 0.56312nd 0.4439 0.4412 0.4425

CALM 14112nd 0.3671 0.63141st 0.4643 0.3246 0.5841st 0.4173

ClusterEPs 540 0.5333 0.5763 0.554 0.46113rd 0.5423rd 0.49832nd

SE-DMTG 371 0.62533rd 0.59323rd 0.60891st 0.53642nd 0.5423rd 0.53921st

DIP MCODE 53 0.4151 0.0975 0.1579 0.3585 0.084 0.1362

MCL 609 0.1741 0.5042 0.2588 0.1511 0.4454 0.2256

CFinder 21472nd 0.2399 0.5508 0.3342 0.2068 0.542 0.2994

DPClus 909 0.1584 0.6653 0.2559 0.1265 0.584 0.208

IPCA 12423rd 0.3575 0.66953rd 0.4661 0.3309 0.6261 0.433

CMC 1192 0.1695 0.70342nd 0.2731 0.1518 0.63873rd 0.2454

COACH 329 0.51671st 0.5424 0.52923rd 0.45292nd 0.5294 0.4882

HC-PIN 21 0.0476 0.0042 0.0078 0.0476 0.0042 0.0077

SPICi 402 0.2537 0.4915 0.3347 0.2189 0.4664 0.298

ClusterONE 341 0.3343 0.428 0.3754 0.305 0.4412 0.3607

WPNCA 654 0.50152nd 0.5593 0.5289 0.44653rd 0.5588 0.49643rd

CALM 24471st 0.17 0.6441 0.269 0.1553 0.584 0.2453

ClusterEPs 728 0.46983rd 0.6483 0.54482nd 0.46571st 0.65972nd 0.54591st

SE-DMTG 758 0.4644 0.75851st 0.57611st 0.3971 0.70171st 0.50722nd

combined6 MCODE 63 0.55562nd 0.1822 0.2744 0.52381st 0.1765 0.264

MCL 508 0.2126 0.5424 0.3055 0.1969 0.5168 0.2851

CFinder 51401st 0.1842 0.69492nd 0.2913 0.1471 0.64711st 0.2397

DPClus 658 0.2128 0.661 0.3219 0.1839 0.5798 0.2792

IPCA 21602nd 0.52963rd 0.70341st 0.60432nd 0.45003rd 0.6176 0.52072nd

CMC 892 0.1973 0.6822 0.3061 0.1783 0.6345 0.2783

COACH 682 0.3959 0.6483 0.4916 0.2918 0.5882 0.3901

HC-PIN 176 0.4148 0.3602 0.3855 0.3693 0.3361 0.3519

SPICi 348 0.3506 0.6059 0.4442 0.3132 0.5588 0.4014

ClusterONE 648 0.2315 0.6229 0.3375 0.2052 0.5882 0.3043

WPNCA 898 0.4555 0.589 0.51373rd 0.3697 0.5336 0.43683rd

CALM 20643rd 0.2902 0.68643rd 0.408 0.2539 0.6218 0.3606

ClusterEPs 907 0.366 0.6271 0.4623 0.3473 0.63873rd 0.4499

SE-DMTG 490 0.5981st 0.68643rd 0.63921st 0.48982nd 0.64292nd 0.5561st

CYC2008 and SGD are used as standard complexes.
NOTE: The highest value in each row is shown in bold
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Table 6 Performance comparision on Krogan-core, DIP and combined6 datasets

Data set Algorithm Number CYC2008 SGD

JaccardI JaccardS Jaccard JaccardI JaccardS Jaccard

Krogan-Core MCODE 78 0.44923rd 0.2163 0.292 0.40011st 0.2192 0.2832

MCL 374 0.2507 0.342 0.2893 0.2195 0.3236 0.2616

CFinder 13963rd 0.2913 0.3437 0.3154 0.2311 0.3263 0.2705

DPClus 497 0.2816 0.41423rd 0.3352 0.2443 0.38973rd 0.3003

IPCA 579 0.47442nd 0.4016 0.4352nd 0.3403 0.3671 0.35322nd

CMC 21361st 0.1065 0.1403 0.1211 0.091 0.1346 0.1086

COACH 348 0.4206 0.3971 0.4085 0.325 0.3575 0.3405

HC-PIN 167 0.3543 0.2891 0.3184 0.3152 0.292 0.3032

SPICi 227 0.3453 0.3383 0.3417 0.2991 0.3165 0.3075

ClusterONE 243 0.426 0.3568 0.38843rd 0.35563rd 0.3244 0.33933rd

WPNCA 374 0.3889 0.3646 0.3764 0.2673 0.3239 0.2929

CALM 14112nd 0.2728 0.44951st 0.3395 0.2377 0.42991st 0.3061

ClusterEPs 540 0.3185 0.3034 0.3108 0.2927 0.3034 0.2980

SE-DMTG 371 0.51241st 0.4322nd 0.46881st 0.39732nd 0.40442nd 0.40081st

DIP MCODE 53 0.188 0.1099 0.1387 0.184 0.1098 0.1375

MCL 609 0.142 0.33 0.1986 0.1241 0.3031 0.1761

CFinder 21472nd 0.1654 0.346 0.2238 0.1544 0.3437 0.2131

DPClus 909 0.1786 0.3991 0.2468 0.1602 0.3695 0.2235

IPCA 12423rd 0.2283 0.40623rd 0.2923 0.1986 0.3938 0.2641

CMC 1192 0.2086 0.43442nd 0.2818 0.1894 0.40813rd 0.2587

COACH 329 0.29863rd 0.3878 0.3374 0.2509 0.3659 0.2977

HC-PIN 21 0.0097 0.0075 0.0085 0.0142 0.0077 0.01

SPICi 402 0.2213 0.3303 0.265 0.1944 0.3175 0.2412

ClusterONE 341 0.2752 0.2909 0.2828 0.25563rd 0.2918 0.2725

WPNCA 654 0.2889 0.4059 0.33763rd 0.2458 0.3922 0.30223rd

CALM 24471st 0.1031 0.3773 0.1619 0.0931 0.3519 0.1473

ClusterEPs 728 0.29922nd 0.3941 0.34022nd 0.29631st 0.41072nd 0.34422nd

SE-DMTG 758 0.32661st 0.47171st 0.3861st 0.28422nd 0.45041st 0.34851st

combined6 MCODE 63 0.2309 0.1661 0.1932 0.2089 0.1625 0.1828

MCL 508 0.2182 0.3799 0.2772 0.1854 0.3456 0.2414

CFinder 51401st 0.1829 0.4858 0.2658 0.1621 0.45063rd 0.2384

DPClus 658 0.2548 0.4742 0.3315 0.2227 0.4261 0.2925

IPCA 21602nd 0.38502nd 0.50253rd 0.43602nd 0.31362nd 0.45562nd 0.37152nd

CMC 892 0.2573 0.5006 0.3399 0.2188 0.4442 0.2932

COACH 682 0.2872 0.50822nd 0.36703rd 0.221 0.4458 0.2955

HC-PIN 176 0.2606 0.2481 0.2542 0.2225 0.2139 0.2181

SPICi 348 0.30333rd 0.4307 0.3560 0.26143rd 0.382 0.31043rd

ClusterONE 648 0.2292 0.4387 0.3011 0.1944 0.3971 0.261

WPNCA 898 0.2252 0.4339 0.2965 0.181 0.3943 0.2482

CALM 20643rd 0.2229 0.476 0.3036 0.1894 0.4255 0.2621

ClusterEPs 907 0.2542 0.3206 0.2836 0.2533 0.3381 0.2896

SE-DMTG 490 0.46791st 0.52081st 0.4931st 0.35201st 0.4711st 0.40291st

CYC2008 and SGD are used as standard complexes.
NOTE: The highest value in each row is shown in bold
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Table 7 Performance comparision on Homo sapiens (Human) DIP and HPRD+BioGRID datasets

Data set Algorithm Number CORUM complexes CGPK complexes

Precision Recall F-measure Precision Recall F-measure

DIP MCODE 89 0.4157 0.0696 0.1193 0.4382 0.0635 0.1109

MCL 624 0.1715 0.1606 0.1659 0.1843 0.1549 0.1683

CFinder 9922nd 0.50302nd 0.28893rd 0.3673rd 0.4758 0.25033rd 0.32813rd

DPClus 747 0.249 0.2758 0.2617 0.2544 0.2376 0.2457

IPCA 9043rd 0.57961st 0.40631st 0.47771st 0.57191st 0.32951st 0.41811st

CMC 358 0.48323rd 0.2648 0.3421 0.48602nd 0.2333 0.3152

COACH 389 0.4293 0.2303 0.2998 0.4524 0.1996 0.277

HC-PIN 229 0.1921 0.0521 0.082 0.1878 0.0451 0.0727

SPICi 369 0.271 0.1804 0.2166 0.2981 0.154 0.2031

ClusterONE 363 0.3444 0.1623 0.2206 0.3526 0.1453 0.2058

WPNCA 535 0.4617 0.2072 0.2861 0.4598 0.1834 0.2622

CALM 15911st 0.2445 0.2363 0.2403 0.2476 0.2232 0.2348

ClusterEPs N/A N/A N/A N/A N/A N/A N/A

SE-DMTG 604 0.4619 0.33172nd 0.38612nd 0.48013rd 0.29982nd 0.36912nd

HPRD + BioGRID MCODE 86 0.1628 0.0148 0.0271 0.1512 0.0162 0.0293

MCL 1094 0.1088 0.1535 0.1273 0.1353 0.165 0.1487

CFinder N/A N/A N/A N/A N/A N/A N/A

DPClus 1881 0.1691 0.4073 0.2389 0.1898 0.3943 0.2562

IPCA 99891st 0.25993rd 0.45943rd 0.33203rd 0.27533rd 0.46393rd 0.34553rd

CMC N/A N/A N/A N/A N/A N/A N/A

COACH 42963rd 0.1925 0.49512nd 0.2772 0.2146 0.48622nd 0.2978

HC-PIN N/A N/A N/A N/A N/A N/A N/A

SPICi 1100 0.1409 0.1804 0.1582 0.1618 0.1891 0.1744

ClusterONE 1763 0.1469 0.2434 0.1832 0.1713 0.2538 0.2046

WPNCA 2750 0.32222nd 0.3843 0.35052nd 0.35782nd 0.4188 0.38592nd

CALM 78102nd 0.0828 0.2675 0.1265 0.0936 0.2643 0.1382

ClusterEPs N/A N/A N/A N/A N/A N/A N/A

SE-DMTG 2773 0.49261st 0.61021st 0.54511st 0.55571st 0.62671st 0.58911st

CORUM complexes and CGPK complexes are used as standard complexes.
NOTE: The highest value in each row is shown in bold. N/A means that we fails to obtain the results under given program or software

comprehensively, we mainly focus on the following three
aspects: (1) the number of significant detected protein
complexes; (2) the percentage of significant detected pro-
tein complexes; (3) the average p-value of detected protein
complexes. Furthermore, selecting the above approaches
to compare with SE-DMTG is because these algorithms
are robust performances in most of datasets. More detail
you can see their results from Tables 5, 6, 7, 8 and 9.
The p-values of DPClus, IPCA, CMC, COACH, SPICi,
ClusterONE, WPNCA and SE-DMTG are presented in
Table 10.
In Table 10, we summarize the results of DPClus, IPCA,

CMC, COACH, SPICi, ClusterONE, WPNCA and SE-
DMTG by using function enrichment tests with different

thresholds of p-value. As shown in Table 10, in most
cases, SE-DMTG can detect many candidates of protein
complexes than other methods such as DPClus, CMC,
SPICi and ClusterONE in all PPINs. Furthermore, by
analyzing functional enrichment, especially for the num-
ber, percentage and average p-value of detected protein
complexes detected by SE-DMTG have statistical sig-
nificance to compare with these algorithms mentioned
above. As the Table 10 shows, although the number of
significant protein complexes detected by IPCA is the
most, the percentage and the average p-value of signif-
icant detected protein complexes is slight lower than
SE-DMTG, COACH andWPNCA. Furthermore, the per-
centage and the average p-value of significant protein
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Table 8 Performance comparision on DIP and HPRD+BioGRID datasets

Data set Algorithm Number CORUM complexes CGPK complexes

JaccardI JaccardS Jaccard JaccardI JaccardS Jaccard

DIP MCODE 89 0.2585 0.0722 0.1129 0.2671 0.0546 0.0907

MCL 624 0.1725 0.1736 0.1731 0.1834 0.1356 0.1559

CFinder 9922nd 0.34482nd 0.1883 0.24353rd 0.3269 0.1288 0.1848

DPClus 747 0.2275 0.1966 0.2109 0.2305 0.14183rd 0.1756

IPCA 9043rd 0.34881st 0.20053rd 0.25462nd 0.34551st 0.1401 0.19942nd

CMC 358 0.34482nd 0.1881 0.2434 0.33832nd 0.1347 0.19263rd

COACH 389 0.2402 0.171 0.1998 0.2394 0.1234 0.1628

HC-PIN 229 0.0902 0.0571 0.07 0.1015 0.0478 0.065

SPICi 369 0.2364 0.1652 0.1945 0.246 0.1208 0.1621

ClusterONE 363 0.2696 0.135 0.1799 0.2694 0.1029 0.1489

WPNCA 535 0.2713 0.177 0.2143 0.2697 0.1306 0.176

CALM 15911st 0.1665 0.20572nd 0.1841 0.1756 0.15692nd 0.1657

ClusterEPs N/A N/A N/A N/A N/A N/A N/A

SE-DMTG 604 0.33833rd 0.22071st 0.26721st 0.32903rd 0.15841st 0.21391st

HPRD + BioGRID MCODE 86 0.0969 0.0603 0.0743 0.1027 0.0587 0.0747

MCL 1094 0.0853 0.1806 0.1158 0.1032 0.1582 0.1249

CFinder N/A N/A N/A N/A N/A N/A N/A

DPClus 1881 0.1943 0.2918 0.2332 0.2123 0.2442 0.2272

IPCA 99891st 0.24632nd 0.31392nd 0.2763rd 0.25482nd 0.2614 0.25813rd

CMC N/A N/A N/A N/A N/A N/A N/A

COACH 42963rd 0.183 0.31143rd 0.2305 0.1933 0.26413rd 0.2232

HC-PIN N/A N/A N/A N/A N/A N/A N/A

SPICi 1100 0.171 0.2119 0.1893 0.1944 0.1829 0.1885

ClusterONE 1763 0.145 0.2166 0.1737 0.1811 0.1932 0.1869

WPNCA 2750 0.22513rd 0.3120 0.26152nd 0.24623rd 0.26872nd 0.25703rd

CALM 78102nd 0.0283 0.2456 0.0507 0.0348 0.2001 0.0593

ClusterEPs N/A N/A N/A N/A N/A N/A N/A

SE-DMTG 2773 0.44091st 0.40461st 0.4221st 0.4671st 0.32581st 0.38381st

CORUM complexes and CGPK complexes are used as standard complexes.
NOTE: The highest value in each row is shown in bold. N/A means that we fails to obtain the results under given program or software

complexes detected by SE-DMTG from the six PPINs is a
bit lower than COACH and WPNCA. It is the third high-
est among all methods. Themajor reason is that the size of
protein complexes detected by SE-DMTG is smaller than
the size of detected protein complexes by COACH and
WPNCA. In fact, the smaller detected protein complexes
have the larger p-values. More detail about the relation-
ship between the size of detected protein complexes and
the p-value of detected protein complexes. We will dis-
cuss in the relationship of the size of identified protein
complexes and the p-value of significant detected protein
complexes section.

Examples of detected complexes
In Tables 11 and 12, we further reveal the computa-
tion results, 18 detected protein complexes with very low

p-values (�E-20) detected by our SE-DMTG algorithm in
six datasets are presented. You can see that the p-value of
these detected protein complexes are very low. It demon-
strates that the detected protein complexes by SE-DMTG
have high statistic significance.
To further reveal the comparison results obtained by

SE-DMTG, we provide with a more vivid description
by taking the 391th known protein complex of CGPK
complexes-’RNase complex’ as example. As shown in
Fig. 1a, the known protein complex has 11 proteins.
Meanwhile the detected protein complex obtained by
SE-DMTG algorithm also consists of 11 proteins and it
successfully match all proteins and itsOS is 100% which is
the highest among all algorithms. This result is shown in
Fig. 1b. However, the IPCA, DPClus, COACH, WPNCA,
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Table 9 Performance comparision on Mouse BioGRID datasets

Data set Algorithm Number F-measure Jaccard

Precision Recall F-measure JaccardI JaccardS Jaccard

BioGRID MCODE 45 0.22222nd 0.0585 0.0926 0.1222 0.0605 0.0809

MCL 425 0.0635 0.109 0.0803 0.0562 0.1385 0.08

CFinder 44201st 0.1115 0.44411st 0.1783 0.15663rd 0.28741st 0.20272nd

DPClus 669 0.1166 0.3085 0.1692 0.1389 0.2017 0.1645

IPCA 18883rd 0.1372 0.39363rd 0.2035 0.1526 0.23233rd 0.1842

CMC 737 0.1506 0.391 0.21753rd 0.17032nd 0.225 0.19393rd

COACH 611 0.20293rd 0.3404 0.25432nd 0.14 0.2154 0.1697

HC-PIN 88 0.0682 0.0186 0.0292 0.0276 0.0244 0.0259

SPICi 288 0.1146 0.1383 0.1253 0.1363 0.1482 0.142

ClusterONE 327 0.1529 0.1888 0.169 0.1376 0.1349 0.1362

WPNCA 828 0.1618 0.2553 0.1981 0.0882 0.1831 0.119

CALM 35962nd 0.035 0.2899 0.0625 0.0511 0.2135 0.0825

ClusterEPs N/A N/A N/A N/A N/A N/A N/A

SE-DMTG 942 0.3111st 0.43092nd 0.36131st 0.21331st 0.2572nd 0.23311st

CORUM Mouse complexes is used as standard complexes.
NOTE: The highest value in each row is shown in bold

MCL and SPICi just cover 11, 11, 11, 11, 6 and 10 proteins
of the real RNase complex, respectively. And for the rest of
compared algorithms, their OS (see Eq. (1)) is lower than
0.47 or they are not able to get the detected results. So we
don’t show them in Fig. 1. However, for the IPCA, DPClus,
COACH, WPNCA, MCL and SPICi algorithms, their OS
value is only 73%,73%,68%,68%,54% and 47%, respectively.
This result means that SE-DMTG can detect protein com-
plexes accurately, indicating that the new definition of
protein complex is also a good model to characterize the
topological structure of the protein complexes. Addition-
ally, from this example we explain that why SE-DMTG
could achieve highest F-measure and Jaccard but its the
percentage of significant detected protein complexes and
the average of p-value are slightly lower than COACH
andWPNCA. In summary, protein complexes detected by
SE-DMTG are more biological significance.
In a word, based on the results of p-value test, we have

the conclusion that SE-DMTG can detect quite accurately
and have good functional enrichments than other thirteen
comparative algorithms.

Discussion
The relationship between the size of detected protein
complexes and the p-value of detected protein complexes
To illustrate the relationship between the size of detected
protein complexes and the p-value of detected pro-
tein complexes, we do some statistical analysis. Because
standard complexes and detected protein complexes are
resemble ’power law’ distribution. Thus we only display
part of the distribution informations in Fig. 2. According

to Fig. 2a, the size of most of standard complexes is very
smaller. As shown in Fig. 2b, standard complexes whose
size is less than or equal to 7 is just 76.96%. Meanwhile,
our statistic results show that the average size of the com-
bined standard complexes is 6.38 and the average size
of detected protein complexes by SE-DMTG is 6.86. But
the average size of detected protein complexes by IPCA,
COACH and WPNCA is 10.96, 10.20 and 27.12, respec-
tively. The average size of detected protein complexes by
SE-DMTG is similar with standard complexes. However,
in Fig. 2c, we found IPCA, COACH and WPNCA detect
a larger number of large protein complexes. Additionally,
the size of detected protein complexes by SE-DMTG is
similar distribution with standard complexes in Fig. 2a
and c.
Next, we make Fig. 3 to illustrate the relationship of the

size of protein complexes with the percentage of signifi-
cant detected protein complexes and the average p-value
of detected protein complexes. From Fig. 3, it is obvi-
ous that the value of p-value (E) decreases gradually with
the detected protein complexes whose size increasing.
For example, the p-value of standard complexes decreases
gradually with the size of protein complexes increasing
in Fig. 3a. Similarly, for detected protein complexes by
IPCA in Fig. 3c, the value of p-value decreases gradually
when the size of detected protein complexes increases.
Therefore, it illustrates that large detected protein com-
plexes have small p-value. But in Fig. 2a and b, we know
that most of standard complexes and protein complexes
by SE-DMTG have small size. Above analysis explains
why SE-DMTG has a higher accuracy andmatching better
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Table 10 Function enrichment analysis of the protein complexes identified by SE-DMTG and other algorithms on different datasets

Algorithms PC <E-15 <E-10 <E-5 significant Avg p-value

Yeast

Krogan core DPClus 497 37(7.44%) 67(13.48%) 186(37.42%) 231(46.47%) 1.12e-05

IPCA 579 191(32.99%) 268(46.29%) 435(75.13%) 487(84.11%) 8.24e-06

CMC 2136 13(0.61%) 109(5.1%) 559(26.17%) 997(46.68%) 2.36e-05

COACH 348 87(25.0%) 147(42.24%) 253(72.7%) 290(83.33%) 1.04e-05

SPICi 227 32(14.1%) 54(23.79%) 107(47.14%) 121(53.31%) 4.30e-06

ClusterONE 243 40(16.46%) 80(32.92%) 153(62.96%) 172(70.78%) 7.54e-06

WPNCA 374 140(37.43%) 209(55.88%) 311(83.15%) 340(90.9%) 5.00e-06

SE-DMTG 371 87(23.45%) 162(43.67%) 295(79.52%) 318(85.72%) 4.47e-06

DIP DPClus 909 49(5.39%) 92(10.12%) 267(29.37%) 353(38.83%) 6.20e-05

IPCA 1242 345(27.78%) 583(46.94%) 904(72.79%) 1032(83.1%) 1.16e-05

CMC 1192 63(5.29%) 149(12.5%) 397(33.31%) 553(46.4%) 1.76e-05

COACH 329 117(35.56%) 184(55.92%) 275(83.58%) 295(89.66%) 5.65e-06

SPICi 402 37(9.2%) 63(15.67%) 144(35.82%) 189(47.01%) 1.73e-05

ClusterONE 341 37(10.85%) 72(21.11%) 176(51.61%) 201(58.94%) 3.27e-05

WPNCA 654 289(44.19%) 420(64.22%) 560(85.63%) 605(92.51%) 6.95e-06

SE-DMTG 758 171(22.56%) 293(38.65%) 571(75.33%) 633(83.51%) 1.99e-05

combined6 DPClus 658 54(8.21%) 96(14.59%) 225(34.19%) 275(41.79%) 9.87e-06

IPCA 2160 849(39.31%) 1173(54.31%) 1724(79.82%) 1869(86.53%) 4.15e-06

CMC 892 71(7.96%) 113(12.67%) 300(33.63%) 400(44.84%) 1.63e-05

COACH 682 186(27.27%) 273(40.03%) 440(64.52%) 514(75.37%) 9.79e-06

SPICi 348 37(10.63%) 69(19.83%) 168(48.28%) 203(58.34%) 1.67e-05

ClusterONE 648 57(8.8%) 105(16.21%) 245(37.81%) 306(47.22%) 1.31e-05

WPNCA 898 441(49.11%) 593(66.04%) 751(83.63%) 801(89.2%) 3.66e-06

SE-DMTG 490 154(31.43%) 222(45.31%) 404(82.45%) 423(86.33%) 3.65e-06

Human

DIP DPClus 747 11(1.47%) 30(4.01%) 227(30.38%) 336(44.97%) 1.47e-05

IPCA 904 11(1.22%) 57(6.31%) 359(39.72%) 465(51.45%) 9.76e-06

CMC 358 16(4.47%) 38(10.62%) 169(47.21%) 231(64.53%) 1.64e-05

COACH 389 15(3.86%) 45(11.57%) 236(60.67%) 316(81.24%) 1.51e-05

SPICi 369 12(3.25%) 32(8.67%) 127(34.42%) 191(51.76%) 1.52e-05

ClusterONE 363 14(3.86%) 36(9.92%) 151(41.6%) 200(55.1%) 1.08e-05

WPNCA 535 42(7.85%) 114(21.31%) 341(63.74%) 424(79.25%) 1.03e-05

SE-DMTG 604 38(6.29%) 91(15.06%) 322(53.31%) 413(68.38%) 1.40e-05

HPRD+BioGRID DPClus 1881 126(6.7%) 240(12.76%) 692(36.79%) 960(51.04%) 1.60e-05

IPCA 9989 1605(16.07%) 3566(35.7%) 6929(69.37%) 7615(76.24%) 5.06e-06

CMC N/A N/A N/A N/A N/A N/A

COACH 4296 1106(25.74%) 1855(43.17%) 3218(74.9%) 3596(83.7%) 7.50e-06

SPICi 1100 84(7.64%) 152(13.82%) 374(34.0%) 522(47.45%) 1.65e-05

ClusterONE 1763 123(6.98%) 227(12.88%) 531(30.12%) 695(39.42%) 1.21e-05

WPNCA 2750 719(26.15%) 1126(40.95%) 1867(67.9%) 2164(78.7%) 1.00e-05

SE-DMTG 2773 626(22.57%) 1059(38.18%) 1935(69.77%) 2235(80.59%) 1.15e-05



Wang et al. BMC Genomics          (2019) 20:637 Page 14 of 28

Table 10 Function enrichment analysis of the protein complexes identified by SE-DMTG and other algorithms on different datasets
(Continued)

Algorithms PC <E-15 <E-10 <E-5 significant Avg p-value

Mouse

BioGRID DPClus 669 7(1.05%) 29(4.34%) 182(27.21%) 304(45.45%) 2.67e-05

IPCA 1888 121(6.41%) 427(22.62%) 767(40.63%) 1069(56.63%) 1.47e-05

CMC 737 4(0.54%) 30(4.07%) 217(29.44%) 367(49.79%) 2.19e-05

COACH 611 59(9.66%) 112(18.33%) 313(51.23%) 430(70.38%) 1.64e-05

SPICi 288 1(0.35%) 18(6.25%) 101(35.07%) 145(50.35%) 1.91e-05

ClusterONE 327 3(0.92%) 27(8.26%) 121(37.01%) 177(54.14%) 2.42e-05

WPNCA 828 170(20.53%) 275(33.21%) 525(63.4%) 657(79.34%) 1.23e-05

SE-DMTG 832 60(7.21%) 140(16.83%) 401(48.2%) 519(62.38%) 2.13e-05

NOTE: The table lists the percentages of protein complexes detected by DPClus, IPCA, COACH, WPNCA and SE-DMTG in PPI network of different species whose p-value falls
within different value ranges. N/A means that we fails to obtain the results under given program or software

Table 11 Eighteen detected protein complexes which have low p-value by SE-DMTG on different datasets

ID Size Gene Ontology term p-value Number annotated

Yeast Krogan core

2 20 proteasome accessory complex 1.63952e-47 19

16 15 proteasome core complex 1.22974e-36 14

24 14 RSC-type complex 9.83789e-36 14

Yeast DIP

8 21 endopeptidase complex 2.47705e-40 19

31 14 core mediator complex 6.85485e-33 13

35 13 mRNA cleavage and polyadenylation specificity factor complex 5.64982e-32 12

Yeast combined6

8 29 spliceosomal snRNP complex 4.80656e-51 27

18 22 mediator complex 2.10967e-54 22

65 12 RNA polymerase I complex 3.94103e-33 12

Human DIP

6 11 mediator complex 9.44868e-23 10

7 10 eukaryotic 48S preinitiation complex 3.32604e-24 9

47 7 transcription factor TFIIH core complex 7.88064e-22 7

Human HPRD+BioGRID

3 61 cytosolic ribosome 4.51244e-134 59

75 38 proteasome complex 3.30322e-95 37

109 31 mitochondrial large ribosomal subunit 3.84718e-73 29

Mouse BioGRID

1 29 postsynaptic density 9.9542e-26 22

67 10 PRC1 complex 2.33107e-21 8

118 7 ESC/E(Z) complex 7.92617e-20 7

NOTE: Table 6 presents 18 detected protein complexes which have low p-value. The first column and the fourth column show their ID and their p-value. The second column
presents the size of detected protein complexes. Gene ontology term (in the third column) show the detected complex contains the proteins of the detected complexes, in
which the protein with emph style matches the gene ontology. Number annotated (in the fifth column) represents the number of genes from the detected protein
complexes that are found within the annotation and within the aspect
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Table 12 Eighteen detected protein complexes detected by
SE-DMTG

ID Predicted complexes

Yeast Krogan core

2 YDL007W, YDL097C, YDL147W, YDR363W-A, YDR394W,
YDR427W,

YER021W, YFR004W, YFR052W, YGL048C, YHR027C,
YHR200W, YIL075C,

YKL145W, YLR421C, YOR117W, YOR259C, YOR261C,
YPR108W,YFR010W

16 YBL041W, YER012W, YER094C, YFR050C, YGL011C,
YGR135W, YGR253C,

YJL001W, YML092C, YMR314W, YOL038W, YOR157C,
YOR362C, YPR103W, YBR173C

24 YCR020W-B, YCR052W, YDR303C, YFR037C, YGR275W,
YIL126W, YKR008W,

YLR033W, YLR321C, YLR357W, YML127W, YMR033W,
YMR091C, YPR034W

Yeast DIP

8 YDL007W, YDL097C, YDL147W, YDR394W, YDR427W,
YEL037C, YHR200W,

YKL145W, YER012W, YER021W, YFR004W, YFR052W,
YGL004C, YGL048C,

YLR421C, YOR117W, YOR259C, YOR261C, YPR108W,
YBR272C, YFR010W

31 YBL093C, YBR193C, YBR253W, YDL005C, YER022W,
YGR104C, YHR041C,

YHR058C, YLR071C, YMR112C, YNL236W, YOL051W,
YOL135C, YOR140W

35 YAL043C, YDR195W, YDR301W, YGR156W, YJR093C,
YKL059C,

YKR002W, YLR115W, YLR277C, YNL222W, YNL317W,
YPR107C, YMR061W

Yeast combined6

8 YBL026W, YBR055C, YBR152W, YDL087C, YDR378C,
YDR473C,

YER029C, YER112W, YER172C, YFL017W-A, YGR074W,
YGR091W,

YHR165C, YJL203W, YKL173W, YLR147C, YLR275W,
YML049C,

YMR240C, YMR288W, YNL147W, YNL286W, YOR159C,
YOR308C,

YPL213W, YPR178W, YPR182W, YDL030W, YOR148C

18 YBL093C, YBR193C, YBR253W, YCR081W, YDL005C,
YDR308C,

YDR443C, YER022W, YGL025C, YGL127C, YGL151W,
YGR104C,

YHR041C, YHR058C, YLR071C, YNL236W, YNR010W,
YOL051W,

YOL135C, YOR174W, YPR070W, YPR168W

65 YBR154C, YDR156W, YJL148W, YJR063W, YNL113W,
YNL248C,

YOR210W, YOR340C, YOR341W, YPR010C, YPR110C,
YPR187W

Table 12 Eighteen detected protein complexes detected by
SE-DMTG (Continued)

ID Predicted complexes

Human DIP

6 CCNC, CDK8, MED1, MED10, MED12,MED14,MED16, MED17,

MED24, MED26, GATA1

7 EIF3A, EIF3C, EIF3D, EIF3E, EIF3H, EIF3J, EIF3K, EIF3L,
EIF3M, EIF3F

47 ERCC2, ERCC3, GTF2H1, GTF2H2, GTF2H3, GTF2H4, GTF2H5

Human HPRD+BioGRID

3 RPL10A, RPL10L, RPL11, RPL12, RPL13, RPL14, RPL15,
RPL17, RPL18,

RPL18A, RPL19, RPL21, RPL22, RPL23, RPL23A, RPL24, RPL3,

RPL30, RPL31, RPL32, RPL37A, RPL4, RPL5, RPL6, RPL7,
RPL7A,

RPL8, RPL9, RPLP0, RPS10, RPS11, RPS12, RPS13, RPS14,
RPS15A,

RPS16, RPS18, RPS19, RPS2, RPS20, RPS21, RPS23, RPS24,
RPS25, RPS26,

RPS27, RPS27A, RPS27L, RPS28, RPS29, RPS3, RPS3A,
RPS4X, RPS5,

RPS6, RPS7, RPS8, RPS9, RPSA, TSR1, PYM1

75 PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7,
PSMA8,

PSMB1, PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7,
PSMB8, PSMC1,

PSMC2, PSMC3, PSMC4, PSMC5, PSMC6, PSMD1, PSMD11,
PSMD12, PSMD13,

PSMD14, PSMD2, PSMD3, PSMD4, PSMD6, PSMD7, PSMD8,
PSME1, PSME2,

RAD23B, UBQLN1, SEM1

109 MRPL10, MRPL11, MRPL12, MRPL13, MRPL14, MRPL15,
MRPL16, MRPL19,

MRPL2, MRPL23, MRPL24, MRPL3, MRPL32, MRPL37,
MRPL38, MRPL39,

MRPL4, MRPL40, MRPL41, MRPL42, MRPL44, MRPL45,
MRPL50, MRPL51, MRPL52,

MRPL55, MRPL58, MRPL9, MRPS18A, A4, MRPS9

Mouse BioGRID

1 Baiap2, Camk2a, Camk2b, Cnksr2, Dlg1, Dlg2, Dlg4, Dlgap1,
Dnm1, Fxr1, Grin1,

Grin2a, Grin2b,Homer1, Iqsec1, Kalrn, Prkcg, Shank1, Shank2,

Shank3, Sptbn1, Syngap1,Mdk, Cyfip2, Nckap1, Pde4dip, Tnik,
Cyfip1, Agap2

67 Bmi1, Cbx2, Cbx7, Pcgf2, Phc1, Phc2, Ring1, Rnf2, Aurkb, Rybp

118 Epop Ezh2 Jarid2, Mtf2 Rbbp4 Suz12,Ezh1

NOTE: The first column show their ID. The second column presents detected
protein complexes by SE-DMTG. In this table proteins in bold are found within the
annotation and with the aspect, and the rest is not found
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with standard complexes according to Tables 5, 6, 7,
8 and 9. However, as for the percentage of significant
detected protein complexes and the average p-value of
detected protein complexes, SE-DMTG is slightly lower
than COACH and WPNCA, and it is the third highest
among all methods according to Table 10.
All in all, although p-value has limitation in evaluat-

ing functional significant of detected protein complexes,
it also reflects the function enrichment of detected pro-
tein complexes in a certain level. Overall, considering the
superior accuracy and matching ratio and their strong
performance in the function enrichment test, we believe
the protein complexes detected by SE-DMTG are more
likely to be real protein complexes.

Computational complexity of SE-DMTG
Experimental setup
We implement SE-DMTG in python and execute all the
experiments on a 64-bit Window system, whose memory
of PC is 12GB and Intel CPU is i7 3.60 GHz. In the mean-
time all state-of-the-art methods are also executed on the
same machine, except SPICi. While SPICi method is used
through its web site.

Time complexity analysis
In this part, we try to analyze the time complexity of
the SE-DMTG algorithm. It is difficult to give the accu-
rately computational complexity of SE-DMGT because it
depends on not only the number of detected protein com-
plexes but also their size.Moreover, for each seed, we need
to execute an iterative procedure until the current clus-
ter doesn’t changes, Obviously the number of iterations
have significant influence for the computational complex-
ity of SE-DMTG. Thus, we only roughly analyze the time
complexity. Let n and m denote the number of nodes
and edges in graph G, respectively, and let k be the aver-
age number of neighbors of all the nodes. Then we have
k =

∑
v∈V N(v)

n , where N(v) is the number of all neighbors
of v. In construct a weighted PPIN step, time complex-
ity of calculating the weight of all edge is O

(
n ∗ k

)
=

O
(
n ∗

∑
v∈V N(v)

n

)
= O

(∑
v∈V N(v)

) = O(2 ∗ m). In con-
structing a seed queue SQ and selecting the initial cluster
step, according to Eq. (12), the time complexity of we cal-
culating the score of each protein isO(n∗(k)+1)2 = O(n∗
(∑

v∈V N(v)
n + 1

)2 = 4∗m2

n +4∗m+n and the time complex-
ity of sorting all proteins by their Score(v) is O(n ∗ log(n)).
In the generate detected protein complex step, the worst
case is that we need calculate the fitness of each protein
and its worst time complexity also is 4∗m2

n + 4 ∗ m + n.
In generating detected protein complexes step, we firstly

analysis the time complexity when SE-DMTG iteratively
adds proteins to the cluster SG from its neighbors. It has

three basic phases: (1) obtain all candidate nodes which
will be added to the cluster SG, whose time complexity
is O(nSG ∗ k) = O

(
nSG ∗

∑
v∈V N(v)

n

)
= O

(
2∗nSG∗m

n

)
,

where nSG is the number of the cluster SG. (2) find
the highest priority vertex according to Eq. (18) then
add it into the cluster SG. The worst time case is that
each candidate node is checked, so the time complex-
ity of this case is O

(
(NSG + NSG − 1 + ... + 1) ∗ k

)
=

O
(
m∗NSG∗(NSG−1)

n

)
, whereNSG is the number of neighbors

of SG. (3) calculate the fitness of graph SG, whose time
complexity is O(n2SG). Thus, the time complexity of the
whole time when program iteratively add candidate nodes
to the cluster SG is O

(
2∗nSG∗m

n + m∗NSG∗(NSG−1)
n + n2SG

)
.

Meanwhile, we further analyze the time complexity of
iteratively removing some inner nodes from SG. Sim-
ilar, it also has three basic calculations: (1) determine
the inner nodes which are removed them from the clus-
ter SG. Its time complexity is also O

(
2∗nSG∗m

n

)
. (2) find

a high priority vertex according to Eq. (18) in order to
remove it from the cluster SG. Its time complexity is also
O

(
(nSG + nSG − 1 + ... + 1) ∗ k

)
= O

(
m∗nSG∗(nSG−1)

n

)
.

(3) calculate the fitness of graph SG. Its time complex-
ity is O(n2SG). Hence the time complexity of this step is
O

(
2∗nSG∗m

n + m∗nSG∗(nSG−1)
n + n2SG

)
.

Suppose t is the number of iteractions when we
generate a detected protein complex and N is the
number of detected protein complexes. Finally, the
time complexity of Algorithm 2 is O(N ∗ t ∗ m

n ∗
(NSG ∗ (NSG − 1) + 3 ∗ nSG ∗ (1 + nSG)). Finally, we need
to discard some redundant protein complexes whose
time complexity is O(PCs2), where PCs is the size of
candidate identified protein complexes. All in all, the
time complexity of the algorithm SE-DMTG is O(2 ∗
m + 4∗m2

n + 4 ∗ m + n + n ∗ log(n) + N ∗ t ∗
m
n ∗(

NSG ∗ (NSG − 1) + 3 ∗ nSG ∗ (1 + nSG) + len(PCs)2
)
,

where N , t and PCs are constant. In addition, we assume
NSG and nSG as variables. To facilitate the intuitive under-
standing of these variables, we provide Table 13 so that
you can get more details.

Conclusion
Many high-throughput experimental techniques and
computational algorithms have been developed to iden-
tify protein complexes from the PPINs. However, most
of these methods are based on the original network or
use the topological property alone and are thus limited
in terms of not only the quality of protein complex iden-
tification but also ignoring other useful biological infor-
mation, such as functional properties. In our opinion,
both topological and functional properties are mean-
ingful and important for identifying protein complexes.
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Fig. 1 A standard protein complex called ’RNase complex’ which is come from CGPK complexes is detected by different algorithms in
HPRD+BioGRID dataset. Fig.a shows the real ’RNase complex’ in the PPIN of human HPRD+BioGRID dataset. Fig.b-h are the protein complexes
detected by SE-DMTG, IPCA, DPClus, COACH, WPNCA, MCL and SPICi, respectively. The red nodes represent the accurately detected proteins and
the blue nodes represent the proteins that are not inaccurately identified proteins

We therefore combine common neighbor and func-
tional properties to calculate edge weights and con-
struct weighted PPINs. Moreover, we also propose a
new local search heuristic graph clustering algorithm,
SE-DMTG, to extract detected protein complexes with
various densities and modularities based on a new
model. Although models that consider density or mod-
ularity have been applied to study PPINs, our model

is novel in considering both density and modularity
simultaneously.
We evaluate the performance of the proposed SE-

DMTG on three PPINs of species under some stan-
dard complex datasets and compare the results with
those of thirteen competing algorithms. The experimental
results show that SE-DMTG is competitive in identify-
ing protein complexes and that adding the topological
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Fig. 2 The distribution of the size of protein complexes in the PPIN. In Fig.a and c, the horizontal axis is the different algorithms and the size of
protein complex, and the vertical axis is the number of protein complexes which fall in each size. In Fig. b, it is the distribution of the different size of
combined standard protein complexes consisting of CYC2008 and SGD complexes

information and GO information increases the detection
accuracy. Meanwhile, the experimental results reveal that
SE-DMTG outperforms the current state-of-the-art algo-
rithms in terms of somemeasures in overall. Furthermore,
we analysis the biological significance of detected pro-
tein complexes by different methods. The results show

that these detected protein complexes by SE-DMTG have
biological significant. With the wide application of super-
vised learning, we will try to design a new algorithm that
combines classification model and unsupervised cluster-
ing algorithms to improve the performance in the future.
Additionally, SE-DMTG is also robust to false positives in
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Fig. 3 Values of p-value (E) for different sizes of standard and detected protein complexes in combined6 dataset. The horizontal axis is the size of
protein complexes and the vertical axis is the average p-value (E) of this size protein complex. a CYC2008 standard protein complexes; b SGD
standard protein complexes; c detected protein complexes by IPCA; d detected protein complexes by SE-DMTG; e detected protein complexes by
COACH; f detected protein complexes by WPNCA

experimental data because of the integration of functional
properties. Furthermore, SE-DMTGmay be extended nat-
urally to other types of biological data fusion to study
more comprehensive characteristics of the biological net-
works and to analyze other forms of complex networks,
such as Internet networks, citation networks, ecological
networks and social networks.

Methods
Preliminaries
Since the interactions among proteins in the PPINs are
symmetric, these PPINs could be formulated as a undi-
rected weighted graph G = (V ,E,W ), where V is a set

of nodes representing the proteins of the PPINs, E is a
set of undirected edges corresponding to those interac-
tions, and W represents the likelihoods between nodes.
In this paper, we obtain the weights by using the topo-
logical information and the biological information. The
symbols, abbreviations and their interpretation are shown
in Table 1.

Algorithm framework
The SE-DMTG algorithm is developed to detect pro-
tein complexes based on GO annotations and PPINs
topological structure. Furthermore, we propose a com-
posite model for the identification of protein complexes.
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Table 13 Some variables used in SE-DMTG algorithm

Species Datasets Number Average size Average iterations Time

Yeast

Krogan core 371 5.77 2.41 3.24 s

DIP 758 5.48 2.47 14.88 s

combined6 490 6.86 2.44 11.50 s

Human
DIP 604 4.37 2.40 2.80 s

HPRD+BioGRID 2773 7.66 2.55 679.01 s

Mouse BioGRID 942 5.74 2.62 43.41 s

Algorithm 1 represents the main function of the pro-
posed SE-DMTG. SE-DMTG operates in three phases. In
the first step, given a PPIN, and we construct a weighted
PPIN by using common neighbors and GO annotations
defined by Eqs. (7) and (8). In the second step, SE-DMTG
constructs a seed node queue based on a seed score func-
tion to form the initial cluster defined by Eq. (12). In
the third step, based on the initial cluster in the previ-
ous step, we provide a quantitative definition of protein
complexes to formulate the problem of protein complexes
identification as an optimization problem defined by Eq.
(17). Finally, we apply an iterative greedy search process
to generate protein complexes (See Algorithm 2).False and
redundancy candidate protein complexes are filtered to
ultimately obtain identified protein complexes. Figure 4
shows a flowchart of SE-DMTG, which is composed of the
following main steps:

1. Construct a weighted PPIN based on common
neighbors and GO annotations.

2. Generate a seed queue and form an initial cluster.
3. Define the protein complex model.
4. Extend and correct the cluster to generate a locally

optimal subgraph.
5. Obtain a list of identified protein complexes.

In step 1, the edge clustering coefficient probability is
computed based on common neighbor via Eq. (7). The
functional similarity between two proteins is calculated
based on GO annotations according to Eq. (8). In step
2, we give each protein a score on the basis of both the
weight degree (see Eq.(10)) and the neighborhood graph
clustering coefficient (see Eq.(11)), and we sort the pro-
teins based on their score according to Eq.(12). In step
3, we introduce a new model to estimate the quantitative
value of a cluster (see Eq.(17)). In step 4, we iteratively
extend and correct the cluster to generate a protein com-
plex from the weighted PPIN. This process involves four
sub-steps: selecting the highest score protein as the seed
node to generate a seed queue and form the initial cluster;
assessing the priority of boundary nodes in determining
the priority section; iteratively adding neighbor nodes to
the cluster, removing inner nodes from the cluster, and
filtering and removing false candidate identified protein

complex with size less than or equal to two in the extend-
ing and correcting cluster to generate a locally optimal
subgraph section. In step 5, we discard some redundant
candidate protein complexes and output a list of identified
protein complexes. For more details of this processes, see
the related sections.

Construction of a weighted PPIN based on common
neighbors and GO annotations
Recent studies [30, 35, 36] have shown that the accuracy of
protein complex detection can be significantly improved
by taking network weights into account. In the following
subsections, we introduce how to calculate the weight of
the PPIN.

Common neighbors
The edge clustering coefficient [47] is first developed to
describe how strongly neighbors are connected. However,
Radicchi et al. [47] note that the edge clustering coefficient
may not be suitable for using in PPINs because PPINs
are disassortative networks. To overcome this limitation,
Zhao et al. [48, 49] propose a new method to calculate the
possibility of protein-protein interactions. Following their
work, we also use the samemethod to calculate the weight
of each edge, namely common neighbors (CN). Then, the
existence probability of an edge (v,u) in a PPIN is defined
as follows:

CN(v,u)=
{ √

|N(v)∩N(u)|2
|N(v)|∗|N(u)| , |N(v)|�1 and |N(u)| � 1

0, otherwise
(7)

where N(v) and N(u) are the neighborhood sets of v
and u, respectively. In Eq. (7), |N(v) ∩ N(u)| denotes the
set of common neighbors between two proteins. CN is
a measure that can describe how closely proteins v and
u are related. In this paper, we assume that the simi-
larity of different interactions are independent of each
other. The higher the value is, the larger the probabil-
ity that proteins v and u belong to the same protein
complex is.
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Protein functional similarity computation
On the other hand, from a biological perspective, gene
ontology (GO) [50] is currently one of the most com-
prehensive ontology databases in the bioinformatics com-
munity [51]. The database provides a series of GO terms
to describe gene product features. Proteins constituting a
complex possibly have similar function. A large functional
similarity means higher confidence that two proteins
share similar functions. In other words, if two interacting
proteins v and u have more common GO annotations and
their functions are more similar, then they are more likely
to belong to the same protein complex. Additionally, pro-
teins with similar functions tend to be co-expressed [52].
Note that when two terminal nodes v and u of an edge
(v, u) do not have common GO annotations, the weight
of edge (v, u) may be regarded as noise and set 0.0. Here,
we define a new measure to describe the similarity of
two interacting proteins v and u based on a biologically
similarity function defined as follows:

GO(v,u)=
{ |GO(v)∩GO(u)|

max(min(|GO(v)|,|GO(u)|),Average(GO))
, |GO∩GO(u)|>0

0, otherwise

(8)

where |GO(v)| and |GO(u)| represent the number of
GO annotations in protein v and protein u, respectively.
|GO(v)∩GO(u)| represents the common GO annotations
for both proteins v and u. If proteins v and u share more
common neighbors, the functional score is larger. Here,
we use min(|GO(v)|, |GO(u)|) because some proteins are
overlapping nodes. Average(GO) =

∑
i∈V ,|GO(i)|�1 |GO(i)|

|N | is
the average of the number of GO annotations for each
protein in the whole PPIN. |N | is the number of pro-
teins for which the number of GO annotations is greater
than or equal to 1. Based on this definition, if the num-
ber of the proteins containing GO annotation is below
the number of the average, then the number is adjusted
to the average. max(min(|GO(v)|, |GO(u)|),Average(GO))

can penalize the reliability of edge (v,u) between protein
v and protein u with very few GO annotations.
In this paper, SE-DMTG integrates both the topological

and biological information of the PPIN by using the CN
and GO. CN captures the static topological information
and GO assesses the functional similarity of proteins. To
incorporate both measures into our method, we use the
arithmetic mean as the edge weights in the PPINs. The
weight of each edge between two proteins is calculated as
follows:

w(v,u) =
{ GO(v,u)+CN(v,u)

2 , GO(v,u) + CN(v,u) > 0
0, otherwise (9)

Here,

1. Neighbors shared by two proteins in the network
are called the common neighbors (CN) of Eq. (7).

2. The functional similarity of two proteins is
quantified in terms of the GO annotation (GO) in
Eq. (8).

The above two properties express the interaction based
on CN and GO annotations. Note that the value of w(v,u)

has a range between 0.0 and 1.0 and is used for evaluat-
ing the reliability of protein pairs to construct a weighted
PPIN. The weights of each edge in the PPIN are obtained
by integrating both topological information and biological
information. Edges whose weights are 0.0 are considered
to be noise and are deleted from the PPIN.

Generation of a seed queue and formation of the initial
cluster
Choosing high-quality protein seeds for expansion is crit-
ical. Each cluster starts at an initial cluster that consists
of a single node that is generally called the seed node. An
inappropriate choice of a seed node will likely affect the
process of detecting protein complexes. For example, a
low-quality seed nodemay result in a false positive protein
complex being detected. Furthermore, if a protein that
belongs to multiple complexes is chosen as a seed node,
the resulting identified complex may subsume the multi-
ple complexes under an unrealistically large false protein
complex that cannot match any real protein complex [36].
From a topological perspective, the central part of a pro-
tein complex often corresponds to a dense subgraph with
high clustering coefficient and more reliable weight in the
PPINs [29–31, 46, 53].
According to the preliminaries section, we have given a

confidence score 0 � wv,u � 1.0 to every edge (v,u) ∈ E.
We utilize several measures to select seed nodes. For each
node v in the PPIN, we define its weight degree, dw(v), as
the sum of all its edge weight values:

dw(v) =
∑

(v,u)∈E
w(v,u). (10)

For each node v, the neighborhood graph consists of v,
all its neighbors and the edges among them, is defined as
Gv = (Vv,Ev), where Vv = {v} ∪ {u|u ∈ V , (v,u) ∈ E}
and Ev = {(ui,uj)|(ui,uj) ∈ E,ui,uj ∈ Vv}. Futhermore,
the neighborhood graph clustering coefficient (NGCC) is
the sum of the weights of the edges, divided by the total
number of possible edges. Thus, for a node v, the NGCC
is defined in Eq. (11) [54]:

NGCC(v) =
∑

v,u∈Vv w(v,u)

(|Vv| ∗ (|Vv| − 1))/2
. (11)

Here,Vv is the degree of node v,
∑

v,u∈Vv w(v,u) is the sum
of the weights of the edges, and (|Vv|∗(|Vv|−1))

2 is the total
number of triangles that could pass through node v. The



Wang et al. BMC Genomics          (2019) 20:637 Page 23 of 28

NGCC reflects the weight degree of aggregation of pro-
teins in the PPINs. Note that the NGCC is a measure of
the closeness of the node v and its neighbors, which varies
from 0.0 to 1.0.
We devise the following score function to sort all pro-

teins in a PPIN. If a protein has a higher score according
to Eq. (12), it is more likely to be used as the seed node,
to be inside a protein complex, and to have high central-
ity in the complexes. Thus, the score of each protein v is
defined as the product of the its neighborhood graph clus-
tering coefficient and its weight degree, and is defined in
Eq. (12):

Score(v) = dw(v) ∗ NGCC(v). (12)

The seed score function takes both weight degree cen-
trality and neighborhood graph density into consideration
for prioritizing the proteins for seeds. Here, we sort all
proteins in the PPIN and use a queue (data structure) SQ
to record the order. We select the highest score according
to Eq. (12) as the seed node to grow a detected pro-
tein complex. Once the new detected protein complex is
generated, all nodes in the detected protein complex are
recorded in a list table and we choose the next highest
node that is not visited in the queue SQ as the next seed
node. Note that, we calculate the score of each protein
only once based on the PPIN, which is more biological
meaning [30].

Definition of a protein complex model
As mentioned in the Background section, several protein
complexes identification algorithms have been presented.
Most existing algorithms make many assumptions to
define a subgraph of possible protein complexes in the
PPINs. However, in terms of the actual performance
of these algorithms, the graphs with high density or
high modularity in PPINs generally correspond to pro-
tein complexes [29, 35]. In fact, a dense graph could
have low modularity, and a graph with high modularity
may have low density. Therefore, the density-based algo-
rithms ignore protein complexes with low density and
the modularity-based algorithms miss protein complexes
with low modularity. Overall, these methods have limi-
tations when identifying protein complexes with various
densities and modularities [46]. To overcome these limi-
tations, we define a new protein complex model to detect
protein complexes by considering both density and mod-
ularity in the PPINs. We begin by presenting some related
definitions.
According to the preliminaries section, for an undi-

rected weighted subgraph SG, its density is donated as
DSG:

DSG =
∑

(u,v)∈SG wu,v

|SG| ∗ (|SG| − 1)/2
(13)

where
∑

u,v∈SG wu,v is the sum weight of the edges con-
tained in subgraph SG, and |SG| represents the size of the
subgraph SG, respectively. The density of a graph mea-
sures how close the graph is to a clique, and the density
takes value between 0.0 and 1.0.
For the subgraph SG ⊆ G, its weighted in-degree,

denoted as dinw (SG), is the sum of the weights of all edges
belonging to SG, and its weighted out-degree, denoted as
doutw (SG), is the sum of the weights of the edges connect-
ing the nodes in SG to the nodes in the rest of graph G.
dinw (SG) and doutw (SG) can be obtained as follows [46]:

dinw (SG) =
∑

u,v∈SG;(u,v)∈E
w(u, v). (14)

doutw (SG) =
∑

v∈SG;u/∈SG;(u,v)∈E
w(u, v). (15)

Clearly, the weighted degree of dw(SG) is equal to the sum
of dinw (SG) and doutw (SG).
The modularity MSG of a subgraph SG ⊆ G is defined

as follows:

MSG = dinw (SG)

dinw (SG) + doutw (SG)
. (16)

Obviously,MSG takes values from 0.0 to 1.0. If a subgraph
has higher modularity, it has more connections within
itself and fewer connections to the rest of the PPIN. A sub-
graph with a modularity of 1.0 has no connections with
the rest of the PPIN.
In this model, in the process of identifying protein com-

plexes, we measure the quality of SG by considering its
density (DSG) and modularity (MSG). DSG describes the
density of subgraph SG, MSG describes the modularity
of subgraph SG and

√
DSG ∗ MSG describes the subgraph

with both high density and highmodularity. Here, tomake
the value range of a subgraph with both high density and
high modularity the same as that of the density and mod-
ularity, i.e, [0.0,1.0], the value of DSG ∗ MSG is normalized
by the geometric mean of DSG and MSG. The fitness of a
subgraph SG in an undirected weighted graph G, denoted
as F(SG), is defined as:

F(SG) = DSG + MSG + √
DSG ∗ MSG

3
. (17)

Generally, as the subgraph SG expands, its modularity
increases and its density decreases. Thus, by expanding
from a node, we can obtain a subgraph with the local
maximum fitness score and output the result as a protein
complex. Thus, this new model can be used for identify-
ing protein complexes with different topology, including
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high density but low modularity, high modularity but low
density, and high density and high modularity. Therefore,
our model can identify the protein complexes with various
densities and modularities.

Extending and correcting the cluster to generate a locally
optimal subgraph
Determining the priority of boundary nodes
An initial cluster (SG) starts as single protein, and then
grows and shrinks gradually as proteins are added and
removed one by one. The process of adding proteins from
the neighbor of SG, and is denoted as Neighbor(SG), and
the process of removing proteins from the inner nodes
is denoted as inner_nodes(SG). In this process, we first
define two concepts: if p ∈ Neighbor(SG), the neigh-
bor node connects to at least one edge with any pro-
tein of cluster SG but does not belong to SG; If p ∈
inner_nodes(SG), the inner node belongs to SG, but con-
nects to at least one node which is a neighbor of SG. A key
problem is to decide the priority to add and remove pro-
teins in terms of SG. In general, if a protein v belongs to
SG, it may have a strong connection with its cluster SG =
(VSG,ESG). Therefore, if the protein v is added to SG, it
could increase the average of the weighted interactions
within SG. By contrast, if the protein v is removed from
SG, it could increase the average of the weighted interac-
tions within SG. Here, we introduce a measure to assess
the priority, denoted asweightavg(SG), which is defined as:

weightavg(SG) = 2 ∗ ∑
(v,u)∈ESG weight(v,u)

|VSG| , (18)

where weightavg(SG) is the average of the weighted inter-
actions of all proteins within SG, |VSG| is the number
of proteins in SG and

∑
(v,u)∈ESG weight(v,u) represents

the total weight of the interactions in SG. The prior-
ity of adding the node p into the cluster SG, where
p ∈ Neighbor(SG), or deleting the node p from the clus-
ter SG, where p ∈ inner_nodes(SG), SG is determined
by the value of weightavg(SG). We choose the highest
weightavg(SG) of the boundary node to add it to SG or
remove it from SG to maximize the value of F(SG) (see
Eq.(17)).

Extending and correcting estimation
For a cluster SG, in extending step, we first obtain all
the neighbors, namely, Neighbors(SG). The priority of all
neighbors is determined by the value of weightavg(SG)

see Eq. (18). Whether the highest priority protein v is
added to SG is determined by whether the fitness (F(SG))

of SG is increased after the highest priority protein v is
added and whether the actual edge between the highest
priority protein v and the SG, denoted as |SG ∩ N(v)|,
which is the number of proteins in SG connected with v is
greater than the expectation edge, denoted as F(SG)∗|SG|,

where F(SG) is the fitness of SG and |SG| is the num-
ber of proteins in SG. Once the highest priority protein
v is added to SG, SG is updated, i.e., the highest priority
protein v is removed from Neighbors(SG). Then, the next
highest priority protein is tested, and the priorities of list
Neighbors(SG) and the fitness (F(SG)) of SG are recalcu-
lated, and so on. If the highest priority protein v fails any
of two tests, then SG cannot be further extended.
For a cluster SG, in the correcting step, we first obtain all

inner nodes, namely Inner_nodes(SG). The priority of all
proteins in Inner_nodes(SG) is determined by the value of
weightavg(SG) (see Eq. (18)). Whether the highest priority
protein v is deleted from SG is determined by whether the
fitness (F(SG)) of the cluster SG−{v} is increased after the
highest priority protein v is removed from SG andwhether
the actually edge between the highest priority protein v
and SG − {v}, denoted as |SG − {v} ∩ N(v)|, which rep-
resents the number of proteins in SG − {v} connected
with v, is greater than the expectation edge, denoted as
F(SG) ∗ |SG|, where F(SG) is the fitness (F(SG)) of SG
and |SG| is the number of proteins in SG. Once the high-
est priority protein v is removed from SG, the cluster SG
is updated, i.e., the highest priority protein v is removed
from Inner_nodes(SG). Then, the next highest priority
protein is tested, and the priorities of Inner_nodes(SG)

and the fitness of the cluster SG−{v} are recalculated, and
so on. If the highest priority protein v fails any of two tests,
then the cluster SG cannot be further corrected.

Obtaining a list of identified protein complexes.
On the basis of the quantitative description of protein
complexes, we develop a novel clustering algorithm based
on density andmodularity with network topology and GO
annotations, named SE-DMTG, to identify protein com-
plexes in a weighted PPIN whose edge weights reflect the
reliability of the edge in a protein complex according to
topological and biological information.
The input of the SE-DMTG algorithm is a PPIN,

which is described as a simple undirected graph G(V ,E)

with GO annotations. The SE-DMTG algorithm broadly
consists of four phases. First, SE-DMTG constructs a
weighted PPIN-based topological and biological informa-
tion at lines 2-11. Second, SE-DMTG calculates the scores
of all nodes and selects the node with the maximum score
as the seed in lines 12-18. Third, starting from the seed
node, a greedy procedure is used for adding nodes to or
removing nodes from the cluster SG to obtain a subgraph
with high graph fitness. The growth process is repeated
from different seeds to form multiple, possibly overlap-
ping subgraphs in lines 19-49. Once a new cluster is
completed, all nodes in this cluster SG are recorded to pre-
vent them from being used as seed nodes. Then, we select
the next seed node from those remaining in the queue SQ
to generate the next cluster SG in lines 41-45. Moreover,
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we discard candidate complexes whose size is less than 3
[35] and remove unreliable candidate complexes at line
38-46. Finally, we discard redundant protein complexes
in lines 50-55. A detailed description of the SE-DMTG
algorithm is shown in Algorithm 1.
In the first step, we assign a weight to each edge

based on common neighbor and gene ontology data (lines
2∼11).
In the second step, SE-DMTG calculates the score of

each node (lines 12∼17). Furthermore, all the nodes in
network G are queued into SQ in non-increasing order of
Score(v) (line 18).
In the third step, we choose the node with the high-

est Score(v) that has not yet been visited before to bring
it up (lines 19∼29). The key idea of this step is that any
neighbors of the current subgraph SG that make a posi-
tive contribution to F(SG)will be added to SG or removed
from SG (line 37). The description of iterative generation
of a complex is shown in Algorithm 2. Algorithm 2 has two
subphases, and we can gradually add neighbors to cluster
SG or remove inner nodes from cluster SG. As for the pri-
ority of candidate nodes is based on (see Eq. (18)) and two
conditions. More details are introduced in the section on
extending and correcting the cluster to generate a locally
optimal subgraph.
Next the step-by-step procedure of step 3 is given in

Algorithm 2.
In the first phase in lines 3∼25, after obtaining a seed

protein, we first get an external boundary protein set that
consists of the neighbors of SG called Neighbor(SG), in
lines 4∼5. Then, we calculate the graph fitness of SG at
line 8. Furthermore, we find the neighbor protein with
the highest priority according to weightavg(SG + {p}) in
Neighbor(SG), which is added to SG to maximize the value
of weightavg(SG + {p}) in lines 7∼14. Furthermore, we
calculate the fitness of graph SG + {p} in line 15, and
Expectation_edges is calculated according to the graph fit-
ness of SG × the size of SG in line 16. Meanwhile, we
also calculate the value of Actually_edges which is the
size of the interaction set between Neighbor(node_max)
and SG, denoted as Neighbor(node_max) ∩ SG, in line
18. If the node_max with the highest priority is added
to increase the value of F(SG) and the Actually_edges
is larger than Expectation_edges, then we add node_max
to SG and remove it from Neighbor(SG) in lines 19∼24.
We continually check the next highest priority node in
Neighbor(SG) and judge whether the node can be added
to the SG in lines 6-25. Otherwise, the iterative addition
of the neighbors of SG phase is terminated when one of
two conditions is not satisfied in line 19 or when no more
remaining neighbor nodes can be added to SG in line 6.
In the second phase, SE-DMTG allows the removal of

any inner nodes in cluster SG to maximize the value
of F(SG) in lines 26∼57. We first find the inner nodes

Algorithm 1 The framework of SE-DMTG algorithm
Input: The PPIN G = (V ,E); GO: Gene ontology data.
Output: A list of detected protein complexes, namely, (PCs).
1: Initialize PCs = {};
2: Step 1: Construct a weighted PPIN by integrating common neighbors and

GO annotations.
3: Initialize Matrix Weightsimilarity =[ [ 0, 0] ];/* Saving the weight of each

edge.*/
4: for each protein v ∈V do
5: Create a set NSv and include the all neighbors of v;
6: for each protein u ∈ NSv and u is after v do
7: Calculate the CN(v,u) by Eq. (7);
8: Calculate the GO(v,u) by Eq. (8);
9: Calculate the Weightsimilarity[ [ v,u] ]= w(v,u) according to Eq.

(9);/* Calculating the weight of each edge.*/
10: end for
11: end for
12: Step 2: Construct a seed queue SQ and select the initial cluster.
13: Initialize SQ = φ; /* Saving and recording the order of seed node.*/

Seedscore = {}./* Saving the score of each seed.*/
14: for each protein v in V do
15: Calculate the score of protein v by Eq. (12) and is written as Score(v);
16: Seedscore[ v]= Score(v);
17: end for
18: Sort all proteins to queue SQ = {s1, s2, ..., sn} in descending order by their

Score(v);
19: Step 3: Generate detected protein complexes.
20: Initialize Faverage(NG) = 0.0, and count = 0; /* in order to compute the

average fitness of all proteins’s neighborhood graph.*/
21: for each protein v in SQ do
22: Obtain a neighborhood graph which contain itself and its directly

neighbors, denoted as NG(v);
23: if NG(v) � 2 then
24: Calculate the fitness of NG(v) according to Eq. (17), is written as

F(NG(v));
25: Faverage(NG) = Faverage(NG) + F(NG(v));
26: count = count + 1
27: end if
28: end for
29: Calculate Faverage(NG) = Faverage(NG)

count ;/* Faverage(NG) is used for filtrating
seeds and avoid useless greedy growth process.*/

30: Initialize Nodevisit = φ; /* Record the node with having been visited.*/
31: while !SQ.isEmpty do
32: u = SQ.pop();
33: if u is not in Nodevisit and NG(v) � 2 then
34: Calculate the fitness of NG(v) according to Eq. (17), is written as

F(NG(v));
35: if F(NG(v)) � Faverage(NG) then
36: Initialize SG = {u};//Initializing a initial cluster.
37: SG = Iteratively_generate_complex(Weightsimilarity,G, SG);//

See Algorithm2.
38: Calculate the fitness of F(SG) according to Eq. (17);
39: if F(SG) � Faverage(NG) and len(SG) � 3 then
40: PCs = PCs ∪ SG
41: for each protein h in SG do
42: if h is not in Nodevisit then
43: Nodevisit = Nodevisit ∪ {h}
44: end if
45: end for
46: end if
47: end if
48: end if
49: end while
50: Step 4:We discard some redundant protein complexes.
51: for each pair of complexes i and j in PCs do
52: if the complex i = the complex j then
53: Remove the complex j from PCs;
54: end if
55: end for
56: return Output a list of detected protein complexes, (PCs).

that have edges with nodes that are not in SG, denote as
Inner_node(SG) in lines 27∼34, and then we test whether
each node in Inner_node(SG) can be removed from SG
in lines 35-57. We first find the highest priority node
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Algorithm 2 Iteratively generate a complex
Input: The weighted PPIN G = (V ,E,W ), Weightsimilarity, SG is a singleton

cluster from Algorithm 1 in line 36.
Output: A detected protein complex, (PC).
1: Initialize PC = φ, k = 1;//Recording the number of iteration times.
2: repeat
3: Step 1: Iteratively add the neighbors of SG proteins to maximize the

value of F(SG) according to Eq. (17);
4: Initialize Neighbor(SG) = φ;/* Corresponding the set of the neigh-

bors of SG.*/
5: Insert all neighbors of SG into Neighbor(SG);
6: while |Neighbor(SG)|!=0 do
7: Initialize Fitness_node_max = 0.0, node_max = φ;
8: Calculate the fitness graph of SG, denote as F(SG) according to

Eq.(17);
9: for each protein p ∈ Neighbor(SG) do
10: Calculate the value ofweightavg (SG+{p}) according to Eq.(18);
11: if weightavg (SG + {p}) > Fitness_node_max then
12: node_max = p;
13: end if
14: end for
15: Calculate the fitness graph of SG + {p}, denote as F(SG + {p})

according to Eq.(17);
16: Compute the value of Expectation_edges = F(SG)× |SG|;
17: Find all neighbors of node_max, denote as Neighbor(node_max);
18: Calculate interaction list Neighbor(node_max) ∩ SG, namely,

Actually_edges
19: if F(SG + {p}) − F(SG) > 0.0 and Actually_edges �

Expectation_edges then
20: Add node_max to SG;
21: Remove node_max from Neighbor(SG);
22: else
23: break;
24: end if
25: end while
26: Step 2: Iteratively remove any of inner nodes (Inner_node(SG)) in SG

to maximize the value of F(SG) according to Eq.(17);
27: Initialize Inner_node(SG) = φ;
28: for each protein v ∈ SG do
29: Obtain all neighbors of v, denote as Neighbor(v);
30: Find interaction set between Neighbor(v) and SG,i.e,

interaction_set = Neighbor(v) ∩ SG;
31: if (Neighbor(v) − interaction_set)!= φ then/* The difference set

between Neighbor(v) and interaction_set.*/
32: Add v into Inner_node(SG);
33: end if
34: end for
35: while |Inner_node(SG)|!=0 do
36: initialize Fitness_node_min = 0.0, node_min = φ;
37: Calculate the fitness graph of SG, denote as F(SG) according to

Eq.(17);
38: for each protein p ∈ Inner_node(SG) do
39: Calculate the value ofweightavg (SG−{p}) according to Eq.(18);
40: if weightavg (SG − {p}) < Fitness_node_min then
41: node_min = p;
42: end if
43: end for
44: Calculate the fitness graph of SG − {p}, denote as F(SG − {p})

according to Eq.(17);
45: Calculate Expectation_edges = F(SG)× |SG|;
46: Find all neighbors of node_min, denote as Neighbor(node_min);
47: Calculate interaction set Neighbor(node_min) ∩ SG, denote as

Actually_edges
48: if F(SG − {p}) − F(SG) > 0.0 and Actually_edges �

Expectation_edges then
49: Remove node_min from SG;
50: Remove node_min from Inner_node(SG);
51: else
52: break;
53: end if
54: if the size of the cluster SG� 2 then
55: break;
56: end if
57: end while
58: k = k + 1
59: until SG is not changing;
60: PC = SG;
61: return Output a detected protein complex, (PC).

according to Eq. (18) in lines 36-43. Meanwhile, we cal-
culate the graph fitness F(SG − {p}) of SG − {p} in line
44. Similarly, we calculate the values of Expectation_edges
and Actually_edges in lines 45∼47. If the two conditions
in line 48 are satisfied, we remove the node from SG
and Inner_node(SG) in lines 49∼50; otherwise, the second
phase is terminated in lines 51∼57.
In Algorithm 2, the key idea is to iteratively add the

highest priority node in Neighbor(SG) to the cluster SG
or remove the highest priority node in Inner_node(SG)

from the cluster SG to maximize the value of graph fitness
F(SG) in lines 2∼59. This growth process is repeated until
the current cluster SG no longer changes and is a locally
optimal subgraph in line 59; then, the detected protein
complex is output by Algorithm 1 in line 37.
After we obtain a detected complex SG by using Algo-

rithm 2 in line 37, and we discard fake protein complexes
and complexes whose size is less than 3 [35] in line 39. As a
result, we save the detected complex SG in line 40. Mean-
while, SE-DMTG records the nodes in SG in lines 41∼45
and selects the next seed node by considering the rest of
nodes in seed queue SQ that have not been included in
any of the detected complexes found thus far. The next
node with the highest score is selected as the seed (lines
31∼35). We recursively perform the above key operations
in PPIN to identify the remaining candidate protein com-
plexes until no seed nodes remain in seed queue SQ (lines
31-49). Note that when this process is repeated, the nodes
in the previously generated protein complex remain in the
PPIN; therefore, SE-DMTG is able to generate overlapping
complexes.
Finally, SE-DMTG outputs all identified protein com-

plexes in line 56.
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