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Apoptosis plays an important role in white spot syndrome virus (WSSV) pathogenesis, and caspases are central
players in apoptosis. Here, we cloned four novel caspases (Lvcaspase2-5) from the Pacific white shrimp Litopenaeus
vannamei, and investigated their potential roles in WSSV replication using dsRNA-mediated gene silencing.
Lvcaspase2-5 have the typical domain structure of caspase family proteins, with the conserved consensus motifs p20
and p10. Lvcaspase2 and Lvcaspaseb were highly expressed in muscle, while Lvcaspase3 was highly expressed in
hemocytes and Lvcaspase4 was mainly expressed in intestine. Lvcaspase2-5 could also be upregulated by WSSV
infection, and they showed different patterns in various tissues. When overexpressed in Drosophila S2 cells,
Lvcaspase2-5 showed different cellular localizations. Using dsRNA-medicated gene silencing, the expression of
Lvcaspase2, Lvcaspase3, and Lvcaspase5 were effectively knocked down. In Lvcaspase2-, Lvcaspase3- or
Lvcaspaseb-silenced L. vannamei, expression of WSSV VP28 gene was significantly enhanced, suggesting
protective roles for Lvcaspase2, Lvcaspase3 and Lvcaspaseb in the host defense against WSSV infection.
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Introduction

Apoptosis plays a protective role in eliminating harmful cells
and in the host response to viral infections [1,2]. When virus-
infected cells undergo apoptosis, the viruses already replicated
in these cells are unable to diffuse and infect other cells [1,2].
Viruses have developed distinct strategies to escape or retard
apoptosis triggered by various apoptotic pathways [1-3]. For
instance, viruses can block apoptosis to prevent premature
death of a host cell, thereby maximizing the viral progeny from
a lytic infection or facilitating a persistent infection; in contrast,
viruses can also actively promote apoptosis to spread viral
progeny to neighboring cells [1-3]. Viruses may perform both
pro- and anti-apoptotic functions to facilitate different stages of
infection.
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Interference with apoptosis by inhibiting the proteolytic
activity of cysteine aspartic acid proteases (caspases) prolongs
the life of virus-infected cells, resulting in enhanced viral
replication and viral persistence [4]. Caspases are a family of
structurally related cysteine proteases, and they play a central
role in apoptosis. Caspases contain three main domains,
namely a prodomain, a large (p20, 20 kDa) catalytic subunit,
and a small (p10, 10 kDa) catalytic subunit [5-7]. Based on
their roles in apoptosis, the caspase family proteins are divided
into two subgroups, initiator caspases and effector caspases
[2,6]. The initiator caspases have a long prodomain (> 90
amino acids) containing specific protein-protein interaction
motifs that are necessary for their activation, whereas the
effector caspases usually have a short prodomain of only 20-30
residues [8]. Initiator caspases such as caspases 2, 8, 9, and
10 can be activated by autocatalysis in response to apoptotic
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signals [2,6,7]. Subsequently, the initiator caspases cleave and
activate effector caspases such as caspases 3, 6, and 7 in a
cascade [2]. Next, the effector caspases cleave many specific
substrates and degrade numerous cellular proteins, leading to
the disintegration of the entire cell contents into apoptotic
bodies [2,7]. Some members of the caspase family of proteins,
such as caspase-3, are key players in the virus-induced
apoptosis [9,10]. The proper activation of caspase-3 is believed
to be essential for efficient virus propagation during influenza
infections [9].

White spot syndrome virus (WSSV) is one of the most
common and destructive pathogens in shrimp aquaculture.
Shrimp mortality can reach 100% 3-10 days after infection.
WSSV infection induces apoptosis in bystander cells that are
free of WSSV virions, while virion-containing cells are non-
apoptotic [11-15]. Two WSSV anti-apoptosis proteins have
been identified, AAP-1 (ORF390 or WSSV449) and WSSV222
[11,16,17]. WSSV449 bind to and is cleaved by Penaeus
monodon (Pm) caspase, inhibiting Pm caspase activity in vivo
and in vitro [18,19]. WSSV449 can also modulate NF-kB
activity, which might be another way of inhibiting apoptosis
during WSSV infection besides direct inhibition of Pm caspase
activity [11,20]. WSSV222, an E3 ubiquitin ligase that acts
through ubiquitin-mediated degradation, may function as an
anti-apoptosis protein in WSSV-infected shrimp via ubiquitin-
mediated degradation of a suppressor-like protein [11,17].
WSSV infection also actively modulates the expression of
several shrimp apoptosis-related genes, including PmCasp,
PjCaspase, Pm-fortilin and voltage-dependent anion channels
(VDAC), to benefit viral multiplication [11,17,21-27]. Currently,
two different effector caspase genes, PmCasp and Pm
caspase, have been cloned from P. monodon [19,24].
PjCaspase from P. japonicas, the sole initiator caspase
identified in shrimp, might also be upregulated by WSSV
infection [22]. Many studies have indicated that WSSV-induced
apoptosis represents an antiviral immune response in shrimp
and that inhibition of apoptosis by the inhibitor zZVAD-FMK or
PjCaspase silencing would facilitate the multiplication of WSSV
[11,22,28]. However, another group reported that silencing the
caspase3 gene of L. vannamei provided partial protection
against WSSV infection [23]. To further investigate the
contribution of shrimp caspases to host defense against WSSV
infection, we cloned four novel caspases from L. vannamei and
studied their expression profile, cellular localization and
potential functions in WSSV infection.

Materials and Methods

2.1: Microorganisms and experimental shrimp
Gram-negative Vibrio alginolyticus and WSSV inocula were
prepared as described previously [29-31]. Pacific white shrimp,
L. vannamei (~8-10 g each for gene expression analysis;
~1-2 g each for dsRNA-mediated gene silencing), were
purchased from a shrimp farm in Zhuhai, Guangdong Province,
China. The shrimp were cultured in a recirculating water tank
system filled with air-pumped seawater (2.5% salinity) at
24-26°C and were fed a commercial diet at 5% of their body
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weight twice daily. The shrimp were cultured for at least seven
days to acclimate before beginning experiments.

2.2: Rapid amplification of cDNA ends

Total RNA (0.5 ug) was isolated from shrimp gills using an
RNeasy Mini Kit (Qiagen, Germany) and reverse transcribed
into cDNA using a SMARTer™ RACE cDNA Amplification Kit
(Clontech, USA) for cloning the 5" and 3’ cDNA ends of genes.
Based on the expression sequence tag (EST) of L. vannamei in
the NCBI database, the full-length cDNA sequences of
Lvcaspase2-5 were obtained using a RACE-PCR approach as
described previously [29-32]. All conditions were as described
except for the primer sequences (listed in Table 1).

2.3: Bioinformatic analysis

Using the NCBI database, nucleotide blast searches were
conducted to retrieve potential caspase-like ESTs. Multiple
sequence alignments were performed using the ClustalX 2.0
program (http://www.ebi.ac.uk/tools/clustalw2). The simple
modular architecture research tool (SMART; http://smart.embl-
heidelberg.de) was used to analyze the domain structure of
Lvcaspase2-5. Neighbor Joining (NJ) phylogenic trees were
constructed using MEGA 4.0 software (http://
www.megasoftware.net/index.html) based the on protein
sequences of caspase family proteins in typical species.
Bootstrap sampling was reiterated 1,000 times.

2.4: Sample preparation and real-time quantitative PCR

For tissue distribution studies, the hemocyte, eyestalk, gill,
heart, hepatopancreas, stomach, intestine, nerve, muscle,
pyloric cecum, and epithelium samples were collected from
healthy L. vannamei to extract total RNA for first-strand cDNA
preparation. For immune challenges, healthy L. vannamei were
injected intramuscularly at the third abdominal segment with
2.4x10% V. alginolyticus or 100 pl of WSSV inoculum
(approximately 107 copies/shrimp). PBS-injected shrimp were
used as controls. At 0, 3, 6, 12, 24, 36, 48 and 72 hours post-
injection (hpi), five shrimp from each group were randomly
selected for the gill, hemocyte, hepatopancreas, intestine, and
muscle sample collection. Shrimp total RNA isolation and
preparation of cDNA templates for PCR were conducted as
previously described [29-32]. Five-fold dilutions of cDNA
templates were prepared, and 1 pl was used to detect the
expression of Lvcaspase2-5 in healthy and immune-challenged
shrimp using the Master SYBR Green | system and a
LightCycler (Roche) with the following program: 1 cycle of 95°C
for 30 s and 40 cycles of 95°C for 5 s, 57°C for 20 s, and 78°C
for 1 s. Three qPCR replicates were performed per sample,
and three shrimp were analyzed for each sample. The
expression of L. vannamei elongation factor 1a (LvEF-1a) was
used as an internal control. Standard curves for Lvcaspase2-5
and LvEF-1a were generated by running triplicate reactions of
a 10-fold dilution series (10 different cDNA concentrations).
The primer amplification efficiencies for Lvcaspase2,
Lvcaspase3, Lvcaspase4, Lvcaspase5 and LvEF-1a were
1.943, 1.958, 2.019, 1.851 and 1.953, respectively. The relative
standard curve method was used for calculation of the fold
changes in gene expression [33-35].
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Table 1. PCR primers used in this study.

Primer

Primer sequence (5’-3’)

cDNA cloning

5’ Lvcasp2-RACE1
5’ Lvcasp2-RACE2
3’ Lvcasp2-RACE1
3’ Lvcasp2-RACE2
5’ Lvcasp3-RACE1
5’ Lvcasp3-RACE2
3’ Lvcasp3-RACE1
3’ Lvcasp3-RACE2
5’ Lvcasp4-RACE1
5’ Lvcasp4-RACE2
3’ Lvcasp4-RACE1
3’ Lvcasp4-RACE2
5’ Lvcasp5-RACE1
5’ Lvcasp5-RACE2
3’ Lvcasp5-RACE1
3’ Lvcasp5-RACE2
qPCR analysis
gPCR-Lvcasp2-F
gPCR-Lvcasp2-R
gPCR-Lvcasp3-F
gPCR-Lvcasp3-R
gPCR-Lvcasp4-F
qPCR-Lvcasp4-R
gPCR-Lvcasp5-F
gPCR-Lvcasp5-R
gPCR-LVEF-1a-F
gPCR-LVEF-1a-R
dsRNA preparation*
dsGFP-F
dsGFP-R
dsGFP(T7)-F
dsGFP(T7)-R
dsLvcasp2-F
dsLvcasp2-R
dsLvcasp2(T7)-F
dsLvcasp2(T7)-R
dsLvcasp3-F
dsLvcasp3-R
dsLvcasp3(T7)-F
dsLvcasp3(T7)-R
dsLvcasp5-F
dsLvcasp5-R
dsLvcasp5(T7)-F
dsLvcasp5(T7)-R
Cellular localization
pAS5.1Lvcasp2-F
pAS5.1Lvcasp2-R
pA5.1Lvcasp3-F
pA5.1Lvcasp3-R
pA5.1Lvcasp4-F
pAS5.1Lvcasp4-R
pA5.1Lvcasp5-F
pA5.1Lvcasp5-R
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TTGGAATCCCAGGTTAGTGAAG
ACCGTTGACAGTTTCCTCCATT
TCTTCAACCACCGCCACTT
TGGCTACCAGGCTTACAGATTC
CACCCCACCCTCTTCGTC
CACCATCGGGTATGTCAAGC
GGGCGGAACACCACTCAC
ATGCGGAAGACGAAGAGGG
TGGGGTCTTTTCCGCTCTT
CTTTCTCCAGTGCCCTTTGAT
ACCGACCTCATCCAACCATTC
ACCGAAAGAGGTTCTCGTCAAC
GGTCTTCAAAATCCTTGTCTCG
GAACTCCACATCAAGGGAAGAAT
TTCTTCCCTTGATGTGGAGTTC
TTATACAGGGAGGTCGAGGCG

ATGGCTCGTGGTTCATTCAG
CATCAGGGTTGAGACAATACAGG
AGTTAGTACAAACAGATTGGAGCG
TTGTGGACAGACAGTATGAGGC
CATGCTTGACATACCCGATG
TGTCCGGCATTGTTGAGTAG
GAAGGAGTGAAGCTAAACGAGAC
CAGTAGACCAGCAGATAAGGAAGT
GAAGTAGCCGCCCTGGTTG
CGGTTAGCCTTGGGGTTGAG

AGTGCTTCAGCCGCTACCC

GCGCTTCTCGTTGGGGTC
TAATACGACTCACTATAGGAGTGCTTCAGCCGCTACCC
TAATACGACTCACTATAGGGCGCTTCTCGTTGGGGTC
ATCTTCAACCACCGCCACT

AGTCAGCCGTGTTGGGAAT
TAATACGACTCACTATAGGATCTTCAACCACCGCCACT
TAATACGACTCACTATAGGAGTCAGCCGTGTTGGGAAT
GACCTTGGCTTCATAGTGCG
ACCATGAGCCGGTATTGGT
TAATACGACTCACTATAGGGACCTTGGCTTCATAGTGCG
TAATACGACTCACTATAGGACCATGAGCCGGTATTGGT
GGTGAAGAGCGAGACTACCG
TCCAATGCCTTGTGCGATA
TAATACGACTCACTATAGGGGTGAAGAGCGAGACTACCG
TAATACGACTCACTATAGGTCCAATGCCTTGTGCGATA

CGGGGTACCATGGAGGAAACTGTCAACGGT
GCTCTAGAATACTTTGGCGTAAAGTACACCTTT
AAGGAAAAAAGCGGCCGCCGCCACCATGGACATCACAAT-CCAGGC
GCTCTAGACCCTCTGCATCTCCTCACG
CGGAATTCCGCCACCATGGTGATGAGGAAACAGCTCC
GCTCTAGATTGACCCACGCCAGCCGC
CGGGGTACCCGCCACCATGGTCCCGGACTTAGACTCTCT
GCTCTAGAGTCCACTTCTTCGTCTTCTATATGTG
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Table 1 (continued).
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doi: 10.1371/journal.pone.0080418.t001

2.5: Plasmid construction

The pAc5.1-N-GFP vector constructed in our previous study
expressed sufficient green fluorescent protein (GFP) in
Drosophila S2 cells [20,30,31,36]. For cellular localization of
Lvcaspase2-5, PCR products containing the complete open
reading frames (ORFs) of Lvcaspase2-5 were inserted into
pAc5.1-N-GFP using standard molecular cloning methods to
construct the expression vectors pAc5.1-Lvcaspase2-5-GFP.

2.6: Cell culture

Drosophila S2 cells were maintained at 28°C without CO, in
Schneider's Drosophila medium (SDM) supplemented with
10% fetal bovine serum (FBS) (Invitrogen, USA). When the
culture density reached approximately 6-20 x 10° viable cells
ml~', the Drosophila S2 cells were passaged onto a new plate
at a density of approximately 5 x 10° viable cells ml™'.

2.7: Confocal microscopy analysis

Drosophila S2 cells were seeded onto poly-L-lysine-coated
cover slips in 24-well plates. Approximately 24 hours later, cells
were transfected with pAC5.1-Lvcaspase2-5-GFP. At 36 hours
post-transfection, the cells on the cover slips were washed
twice with PBS, fixed using Immunol Staining Fix Solution
(Beyotime, China) and stained with Hoechst 33258 Solution
(Beyotime, China). The cells on the cover slips were observed
using a Leica laser scanning confocal microscope as
previously described [30,31,36].

2.8: dsRNA preparation and dsRNA mediated gene
silencing in vivo

Double-stranded RNA (dsRNA) sequences corresponding to
Lvcaspase2-5 and GFP (dsLvcaspase2, dsLvcaspase3,
dsLvcaspase4, dsLvcaspase5, and dsGFP, respectively) were
prepared using the T7 RiboMAX Express Kit (Promega, USA)
as previously described [37]. In dsRNA-mediated gene
silencing experiments, the experimental group (1-2 g per
shrimp) was injected with dsLvcaspase2, dsLvcaspase3,
dsLvcaspase4 or dsLvcaspase5 (1 upg/g shrimp) by
intramuscular injection, while the control groups were injected
with dsGFP or PBS. To evaluate silencing, gill samples from at
least 3 shrimp in each treatment group were collected at 0, 24,
72, 120 and 144 hours post-dsRNA injection (hpi) for total RNA
extraction. The first-strand cDNA prepared from the gill total
RNA was used to detect gene silencing efficiency using qPCR
as described in Section 2.5.

2.9: WSSV infection experiments in dsRNA-injected L.
vannamei

The gene silencing efficiency of Lvcaspase2, Lvcaspase3,
and Lvcaspase5 was significant compared with the control
groups (> 80%) at all the examined time points. In the WSSV
infection  experiments, L. vannamei were infected
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intramuscularly with 100 yl WSSV inoculum (approximately 107
copies/shrimp) at 48 hours post dsRNA injection (hpi), and gill
samples were collected at 0, 3, 6, 12, 24, 36 and 48 hours post
WSSV infection for detection of WSSV VP28 expression.

2.10: Statistical analysis

Student’s t-test was used to compare means between pairs
of samples using Microsoft Excel. In all cases, differences were
considered significant at p < 0.05 and highly significant at
p < 0.01. The data are presented as the means * standard
error (standard error of the mean, SEM).

Results

3.1: Cloning and sequence analysis of four novel
caspases from L. vannamei

Based on the ESTs of L. vannamei in the NCBI database,
the full-length cDNA sequences of four novel caspases were
identified and named Lvcaspase2, Lvcaspase3, Lvcaspase4
and Lvcaspaseb after the reported Lvcaspase? (called
Penaeus vannamei cas-3 in the original report). The
Lvcaspase2 cDNA was 1,490 bp and contained a 924-bp ORF
encoding a putative 307-amino acid protein, a 5’ untranslated
region of 96 bp, and a 3’ untranslated region of 470 bp (Figure
S1A). The Lvcaspase3 cDNA was 2,083 bp and contained a
1,482-bp ORF encoding a putative 494-amino acid protein, a 5’
untranslated region of 47 bp, and a 3’ untranslated region of
545 bp (Figure S1D). The Lvcaspase4 cDNA was 1,634 bp and
contained a 1,176-bp ORF encoding a putative 496-amino acid
protein, a 5’ untranslated region of 59 bp, and a 3’'untranslated
region of 399 bp (Figure S1B). The Lvcaspase5 cDNA was
1,161 bp and contained an 873-bp ORF encoding a putative
290-amino acid protein, a 5’ untranslated region of 246 bp, and
a 3’ untranslated region of 42 bp (Figure S1C). Based on the
sequence identities and domain structures, we identified
Lvcaspase2 and Lvcaspase5 as effector caspases, while
Lvcaspase3d and Lvcaspase4 were initiator caspases (Figure
S2).

3.2: Phylogenetic tree construction

Phylogenetic analysis of caspase family proteins showed
that Lvcaspase1 (Penaeus vannamei cas-3), Pmcaspase1
(PmCasp) and Fmcaspase clustered in a group (Figure S3).
Lvcaspase2, Pmcaspase2 (Pm caspase) and Lvcaspase5
clustered in another group; Lvcaspase3, Mijcaspase3
(PjCaspase) and DmNedd2 clustered in a third group; and
Lvcaspase4 and Dmdream clustered in a group (Figure S3).
These results also revealed that Lvcaspase4 is a completely
novel type of shrimp caspase.
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3.3: Tissue distribution of Lvcaspase2-5

In healthy shrimp, when normalized to the mRNA expression
level in the eyestalk (1.00-fold), Lvcaspase2 was expressed at
a higher level in epithelium (1.15-fold), hepatopancreas (1.81-
fold increase), nerve (2.03-fold), gill (2.06-fold), pyloric cecum
(4.09-fold), heart (4.17-fold), hemocytes (4.17-fold), stomach
(7.24-fold), intestine (8.21-fold), and muscle (18.81-fold)
(Figure 1A); Lvcaspase3 was highly expressed in eyestalk
(1.53-fold), epithelium (1.79-fold), intestine (1.86-fold), pyloric
cecum (2.48-fold), nerve (3.51-fold), muscle (4.18-fold), gill
(6.39-fold), hepatopancreas (8.40-fold), heart (20.53-fold), and
hemocytes (41.92-fold) when normalized to the mRNA
expression level in the stomach (1.00-fold) (Figure 1B);
Lvcaspase4 was highly expressed in gill (3.43-fold), epithelium
(4.41-fold), nerve (8.82-fold), eyestalk (9.94-fold), heart (14.86-
fold), pyloric cecum (237.18-fold), muscle (366.40-fold),
hepatopancreas (654.03-fold increase), stomach (706.68-fold),
and intestine (2843.09-fold) when normalized to the mRNA
expression level in hemocytes (1.00-fold) (Figure 1C); and
Lvcaspase5 was highly expressed in hemocytes (1.88-fold),
stomach (1.90-fold), epithelium (2.03-fold), intestine (2.06-fold),
eyestalk (2.92-fold), gill (3.90-fold), nerve (4.41-fold), pyloric
cecum (5.55-fold), heart (8.51-fold), and muscle (32.51-fold)
when normalized to the mMRNA expression level in the
hepatopancreas (1.00-fold) (Figure 1D).

3.4: Expression profiles of Lvcaspase2-5 after WSSV
challenges

After WSSV infection, Lvcaspase2 expression in the gill and
hemocytes were increased compared with the PBS injection
group, but no significant changes in Lvcaspase?2 transcript level
occurred in the hepatopancreas or intestine (Figure 2).
Lvcaspase3 was wupregulated in the gil, hemocytes,
hepatopancreas and intestine after WSSV infection (Figure 3).
Lvcaspase4 was upregulated in the hemocytes but
downregulated in the intestine after WSSV infection (Figure 4).
Lvcaspase5 was upregulated in the gill and hemocytes after
WSSV infection (Figure 5). In the muscle, Lvcaspase2,
Lvcaspase3, and Lvcaspaseb were all upregulated after WSSV
infection (Figure 6).

3.5: Subcellular localization of Lvcaspase2-5 in
Drosophila S2 cells

The subcellular localization of Lvcaspase2-5 proteins may
provide clues about their functions or positions in the caspase
cascades. Fluorescent imaging of Lvcaspase2-GFP in
Drosophila S2 cells showed that Lvcaspase2 was localized to
the cytoplasm as speck-like aggregates near the membrane,
while Lvcaspase3-5-GFP proteins localized in distinct patterns
to the nucleus and cytoplasm of Drosophila S2 cells (Figure 7).

3.6: In vivo knock-down of Lvcaspase2-5 by dsRNA-
mediated gene silencing

Using dsRNA-mediated gene silencing, we successfully
suppressed the expression of Lvcaspase2, Lvcaspase3 and
Lvcaspaseb, but not Lvcaspase4, in the gill, as previously
described [37]. Using qPCR, we observed that Lvcaspase2,
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Figure 1. Tissue distribution of Lvcaspase2 (A),
Lvcaspase3 (B), Lvcaspase4 (C) and Lvcaspase5 (D) in
healthy shrimp. Hemocyte, eyestalk, gill, heart,
hepatopancreas, stomach, intestine, nerve, muscle, pyloric
cecum, and epithelium samples were collected from healthy L.
vannamei for tissue distribution analysis. Shrimp total RNA was
isolated and cDNA PCR templates were prepared as
previously described [29-32], and 1 ul of a 5-fold dilution of
cDNA template was used to determine the expression levels of
Lvcaspase2-5 in various tissues using gPCR. The expression
of Lvcaspase?2 in eyestalk, the expression of Lvcaspase3 in
hepatopancreas, the expression of Lvcaspase4 in hemocyte
and the expression of Lvcaspaseb in stomach were set as 1.0.
gPCR was performed on three replicates per sample. Data are
expressed as the means + S.E. (n =3).

doi: 10.1371/journal.pone.0080418.g001
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Figure 2. Temporal expression patterns of Lvcaspase2 in
the gill (A), hepatopancreas (B), hemocyte (C) and
intestine (D) after PBS, WSSV and V. alginolyticus
injection. Healthy L. vannamei were injected intramuscularly
at the third abdominal segment with PBS, V. alginolyticus or
WSSV inocula. Gill, hemocyte, hepatopancreas, and intestine
samples were collected at the indicated time points. The
expression levels of Lvcaspase2 in the tissues of immune-
challenged shrimp were determined by qPCR analysis. The
expression of LvcaspaseZ2 in the untreated shrimp (0 hpi) was
set as 1.0. The mRNA expression levels of Lvcaspase2 were
normalized to those of LvEF-1a using the relative standard
curve method. gqPCR was performed on three replicates per
sample. Data are expressed as the means + S.E. (n =3).

doi: 10.1371/journal.pone.0080418.g002
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Figure 3. Temporal expression patterns of Lvcaspase3 in
the gill (A), hepatopancreas (B), hemocyte (C) and
intestine (D) after PBS, WSSV and V. alginolyticus
injection. Healthy L. vannamei were injected intramuscularly
at the third abdominal segment with PBS, V. alginolyticus or
WSSV inocula. Gill, hemocyte, hepatopancreas, and intestine
samples were collected at the indicated time points. The
expression levels of Lvcaspase3 in the tissues of immune-
challenged shrimp were determined by qPCR analysis. The
expression of Lvcaspase3 in the untreated shrimp (0 hpi) was
set as 1.0. The mRNA expression levels of Lvcaspase3 were
normalized to those of LvEF-1a using the relative standard
curve method. qPCR was performed on three replicates per
sample. Data are expressed as the means + S.E. (n =3).

doi: 10.1371/journal.pone.0080418.g003

December 2013 | Volume 8 | Issue 12 | 80418



4 Lvcaspase4 (gil)

mPBS WWSSV mV.alginolyticus

Relative mRNA expression of Lvcaspase4

Lvcaspase4 (hemocyte)

* *
14 x *
: *
12 4 *
1
08
06 - &
04 - *
*
02 -
0+ v v v . v : ' y
oh 3h 6h 12h 28h 36h 48h 72h

Relative mRNA expression of Lvcaspase4

Lvcaspase4 (hepatopancreas)

Relative mRNA expression of Lvcaspase4

Lvcaspase4 (intestine)

*
0.6
* * *
4 ] * * * % * %
* *
.2 1
0+ — — - —— — - —
Oh 3h 6h 12h 24h 36h 48h 72h

Figure 4. Temporal expression patterns of Lvcaspase4 in
the gill (A), hepatopancreas (B), hemocyte (C) and
intestine (D) after PBS, WSSV and V. alginolyticus
injection. Healthy L. vannamei were injected intramuscularly
at the third abdominal segment with PBS, V. alginolyticus or
WSSV inocula. Gill, hemocyte, hepatopancreas, and intestine
samples were collected at the indicated time points. The
expression levels of Lvcaspase4 in the tissues of immune-
challenged shrimp were determined by qPCR analysis. The
expression of Lvcaspase4 in the untreated shrimp (0 hpi) was
set as 1.0. The mRNA expression levels of Lvcaspase4 were
normalized to those of LvEF-1a using the relative standard
curve method. gqPCR was performed on three replicates per
sample. Data are expressed as the means + S.E. (n =3).

doi: 10.1371/journal.pone.0080418.g004
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Figure 5. Temporal expression patterns of Lvcaspase5 in
the gill (A), hepatopancreas (B), hemocyte (C) and
intestine (D) after PBS, WSSV and V. alginolyticus
injection. Healthy L. vannamei were injected intramuscularly
at the third abdominal segment with PBS, V. alginolyticus or
WSSV inocula. Gill, hemocyte, hepatopancreas, and intestine
samples were collected at the indicated time points. The
expression levels of Lvcaspase5 in the tissues of immune-
challenged shrimp were determined by qPCR analysis. The
expression of Lvcaspase5 in the untreated shrimp (0 hpi) was
set as 1.0. The mRNA expression levels of Lvcaspase5 were
normalized to those of LvEF-1a using the relative standard
curve method. qPCR was performed on three replicates per
sample. Data are expressed as the means + S.E. (n =3).

doi: 10.1371/journal.pone.0080418.9005
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Figure 6. Temporal expression patterns of Lvcaspase2 (A), Lvcaspase3 (B) and Lvcaspase5 (C) in the muscle after PBS
and WSSV injection. Healthy L. vannamei were injected intramuscularly at the third abdominal segment with 100 yL of PBS
(control group) or 100 pL of WSSV inoculum (107 copies). At 0, 3, 6, 12, 24, 36, 48, and 72 hours post-injection (hpi), five shrimp
from each group were randomly selected to take muscle samples for gPCR analysis. The expression levels in untreated shrimp (0
hpi) were set as 1.0. The mRNA expression levels of Lvcaspase2, Lvcaspase3, and Lvcaspase5 were normalized to those of
LvEF-1a using the relative standard curve method. qPCR was performed on three replicates per sample. Data are expressed as the

means t S.E. (n =3).
doi: 10.1371/journal.pone.0080418.g006

Lvcaspase3 and Lvcaspase5 transcripts in the gill were
significantly reduced at 24, 72, 120 and 144 hpi compared with
the dsGFP control group (Figure 8).
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Figure 7. Determination of the subcellular localization patterns of Lvcaspase2 (A), Lvcaspase3 (B), Lvcaspase4 (C) and
Lvcaspase5 (D) using confocal microscopy. Drosophila S2 cells were transfected with pAC5.1-Lvcaspase2-5-GFP. At 36 hours
post-transfection, cells on the cover slips were washed twice with PBS, fixed using Immunol Staining Fix Solution (Beyotime, China)
and stained with Hoechst 33258 Solution (Beyotime, China). The cells were observed using a Leica laser scanning confocal
microscope as previously described [30,31,36]. .

doi: 10.1371/journal.pone.0080418.g007
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Figure 8. Expression of Lvcaspase2 (A), Lvcaspase3 (B)
and Lvcaspase5 (C) in the shrimp gill is significantly
suppressed by dsRNA-mediated RNAi. At the indicated time
points after PBS, dsGFP (control), dsLvcaspase2,
dsLvcaspase3 or dsLvcaspaseb injection, total RNA was
extracted from the gill and reverse transcribed to cDNA. The
expression levels of Lvcaspase2 (A), Lvcaspase3 (B) and
Lvcaspaseb (C) were determined using gPCR. Their
expression levels in untreated shrimp (0 hpi) were set as 1.0.
gPCR was performed in triplicate for each sample. Statistical
significance was evaluated using Student’s t-test (*, p < 0.05;
** p <0.01).

doi: 10.1371/journal.pone.0080418.g008

3.7: Knock-down of Lvcaspase2, Lvcaspase3, and
Lvcaspase5 increases WSSV replication

To further evaluate the role of Lvcaspase2, Lvcaspase3 and
Lvcaspase5 in the shrimp defense against WSSV infection, we
performed WSSV infection experiments in dsRNA-injected L.
vannamei. When L. vannamei were infected with WSSV 48
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hours after dsRNA injection, we found that at 48 hours post-
infection (hpi), but not at 24 or 36 hpi, the expression of WSSV
VP28 in the gill from the dsLvcaspase2-injection group was
dramatically higher than in the dsGFP- and PBS- injection
groups (Figure 9A). At 36 and 48 hpi (but not 24 hpi), the
expression of WSSV VP28 in the gill from the dsLvcaspase3-
injection group was dramatically higher than in the dsGFP- and
PBS-injection groups (Figure 9B). At 24, 36 and 48 hpi, the
expression of WSSV VP28 in the gill from the dsLvcaspase5-
injection group was dramatically higher than in the dsGFP- and
PBS-injection groups (Figure 9C). We also noticed that at 24
hpi, the expression of VP28 was very low in the PBS-, dsGFP-,
dsLvcaspase2- and dsLvcaspase3-injection groups but was
very high in the dsLvcaspase5-injection group (Figure 9). This
result suggests that silencing Lvcaspase5 might accelerate
WSSV infection. Collectively, these data suggest that
Lvcaspase2, Lvcaspase3 and Lvcaspase5 are all involved in
the host defense against WSSV infection but have different
roles.

Discussion

There are two distinct apoptotic pathways in mammals: the
extrinsic pathway (or death receptor pathway) and the intrinsic
pathway (or mitochondria/cytochrome c pathway) [6,38,39]. In
the extrinsic pathway, binding of the death ligand to a death
receptor such as TNFa-TNFR leads to death receptor-FADD-
procaspase-8 complex formation, thereby resulting in the
cleavage and activation of caspase-8 [6,11,40]. The
downstream effector caspase-3 is then activated, ultimately
resulting in cell death [6,7,11,40]. Intracellular signals such as
DNA damage, oxidative stress and viral infection can activate
the intrinsic pathway [6,11,40]. All these signals converge on
the mitochondria, which then release cytochrome c into the
cytoplasm [6,11,39]. The cytochrome c¢ binds to Apaf-1 and
forms the apoptosome, which can interact with and activate
procaspase-9 [6,7,11,39]. The activated caspase-9 initiates the
caspase cascade, allowing the downstream effector caspases
to execute the destruction of the cell [6,7,11,39]. The extrinsic
and intrinsic pathways converge at the point of activating the
effector caspases [6,11,39]. Thus, caspases are central
regulators of apoptosis.

In  Caenorhabditis elegans, however, the mammalian
extrinsic pathway seems not to exist, as this species lacks
essential components of this pathway [11]. Although
Drosophila encodes homologs of a mammalian death ligand
and receptor (called Eiger and Wengen in Drosophila,
respectively), the receptor Wengen lacks the death domain to
transduce death signaling, suggesting that Drosophila may not
have functional extrinsic apoptosis pathway [11,41,42]. In
invertebrates, which lack adaptive immunity, programmed cell
death (i.e., apoptosis) functions as an important immune
response against pathogen infection [43]. In our previous
studies, we cloned the TNF superfamily (LvTNFSF) gene and
the TNFR superfamily (LvTNFRSF) gene from L. vannamei,
and we found that LvTNFRSF, like Drosophila Wengen, lacks
the death domain to transduce death signaling [30]. Therefore,
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Figure 9. Silencing of Lvcaspase2 (A), Lvcaspase3 (B) or
Lvcaspase5 (C) facilitates replication of WSSV. L.
vannamei were intramuscularly injected with 100 pyl WSSV
inoculum (approximately 107 copies/shrimp) 48 hours after
dsRNA injection, and gill samples were collected at the
indicated time points. The expression levels of WSSV VP28 in
gills from WSSV-infected shrimp injected 48 hours earlier with
PBS, dsGFP (control), dsLvcaspase2, dsLvcaspase3 or
dsLvcaspase5 were determined using qPCR. gPCR was
performed in triplicate for each sample. Statistical significance
was evaluated using Student’s t-test (¥, p < 0.05; **, p < 0.01).
doi: 10.1371/journal.pone.0080418.g009

shrimp may rely mainly on the intrinsic pathway for apoptosis-
mediated immune responses.

Five caspase genes have been reported in penaeid shrimp
that are extremely sensitive to WSSV: Penaeus merguiensis
cap-3, Penaeus vannamei cas-3 (called Lvcaspase? in this
study), PjCaspase from P. japonicas (called Mjcaspase3 in this
study), PmCasp and Pm caspase from P. monodon (called
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Pmcaspase1 and Pmcaspase2, respectively, in this study) [11].
These five shrimp caspases fall into 3 different types:
caspase-1 type, caspase-2 type, and caspase-3 type (Figure
S3). To further investigate function of the caspase family
proteins in the host defense against WSSV infection, we cloned
four novel caspases from L. vannamei in this study.
Lvcaspase2-5 show the typical domain structure of caspase
family proteins, with the conserved consensus motifs p20 and
p10 (Figure S2). Like Pmcaspase1 (PmCasp) and Mjcaspase3
(PjCaspase), expression of Lvcaspase2-5 mRNA can be
induced by WSSV infection but show distinct patterns.
Lvcaspase2 mRNA is induced in the gill and in hemocytes
(Figure 2); Lvcaspase3 mRNA is induced in all the tissues
detected in our study including the gill, hepatopancreas,
hemocytes, intestine and muscle (3 and 9); Lvcaspase4 mRNA
was mainly induced in the hepatopancreas and hemocytes
(Figure 4); and Lvcaspase5 mRNA was induced in the gill,
hepatopancreas, hemocytes and muscle (Figures 5 and 9).
The different expression patterns observed after WSSV
infection may suggest that Lvcaspase2-5 play different roles in
host defense.

Although shrimp caspases have the signature p20 and p10
domains of the caspase family proteins, their sequence
identities with mammalian caspases are not high enough for
sequence-based classification into existing caspase classes. In
this study, we named shrimp caspases based on their reported
orders. According to our analysis, Lvcaspasel (Penaeus
vannamei cas-3), Pmcaspase1 (PmCasp) and Pmcaspase2
(Pm caspase) are effector caspases, and Mijcaspase3
(PjCaspase) is an initiator caspase (Figure S2). The domain
structures of Lvcaspase2-5 indicated that Lvcaspase2 and
Lvcaspase5 are effector caspases, while Lvcaspase3 and
Lvcaspase4 are initiator caspases (Figure S2).

Although five shrimp caspases have been reported, until now
their cellular localization has remained unknown. Using
confocal microscopy, we found that Lvcaspase2-GFP
appeared as speck-like aggregates in the cytoplasm near the
membranes of Drosophila S2 cells, while Lvcaspase3-5-GFP
localized with distinct patterns to the nucleus and cytoplasm of
Drosophila S2 cells (Figure 7). The different cellular localization
patterns of GFP-tagged Lvcaspase2-5 may suggest different
roles or positions in the caspase cascade.

Silencing Mjcaspase3 (PjCaspase) resulted in increased
WSSV virus copy number, indicating a requirement of
Mjcaspase3 in apoptotic responses against viral infection [22].
Recently, the same group also found that the sequence
diversification of Mjcaspase3 could generate a specifically
antiviral defense against WSSV infection [43]. Pmcaspase2
(Pm caspase) from P. monodon can induce apoptosis in SF9
insect cells, and the apoptotic activity can be blocked by AAP-1
(ORF390 or WSSV449) [19]. Further studies confirmed that
AAP-1 (ORF390 or WSSV449) can directly bind to and be
cleaved by Pmcaspase2 (Pm caspase), thereby inhibiting
Pmcaspase2 (Pm caspase) activity [18]. Lvcaspase2 shows
high similarity to Pmcaspase2 (Figure S3). To further
investigate its function in WSSV infection, we suppressed the
expression of Lvcaspase2 using dsRNA-mediated gene
silencing. We found that at 24 and 36 hpi, the expression of
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WSSV VP28 in dsLvcaspasez2-injected shrimp showed no
obvious difference from the dsGFP-injected shrimp, but at 48
hpi, WSSV VP28 expression in the dsLvcaspase2-injected
shrimp was dramatically higher than in the dsGFP- and PBS-
injected shrimp (Figure 9A). These results suggested that
Lvcaspase2 may be required for defending against WSSV
infection. In future studies, we will investigate the effect of
WSSV449 on the activities of these four novel caspases and
will test whether they interact with each other. Lvcaspase3 is a
homolog of Mjcaspase3 (PjCaspase). When Lvcaspase3 was
silenced, VP28 expression was significantly higher than in the
dsGFP control group at 36 and 48 hpi, in accord with results
from Mjcaspase3 (Figure 9B) [22]. Lvcaspase4-5 are novel
types of shrimp caspases. Unfortunately, we were unable to
knock down the expression of Lvcaspase4 using dsRNA-
mediated gene silencing. When we suppressed the expression
of Lvcaspaseb, VP28 expression was dramatically higher than
in the dsGFP control group at 24, 36 and 48 hpi (Figure 9C).
We also noticed that Lvcaspaseb was the only caspase when
knocked down could cause higher expression of VP28 at the
early infection stage of 24 hpi, suggesting a different role or
position in the caspase cascade from Lvcaspase2-3 (Figure 9).
Pmcaspase2 (Pm caspase) has been targeted by small-
molecule drugs to improve the apoptotic activity of shrimp
hemocytes and thereby inhibit WSSV infection [11,44]. In future
studies, we will investigate the detailed functions of
Lvcaspase2-5 at different stages of WSSV infection.
Development of drugs targeting caspases and manipulating
shrimp apoptosis may provide novel strategies for the
prevention and control of WSSV infections.

Supporting Information

Figure S1. Nucleotide and deduced amino acid sequences
of Lvcaspase2 (A), Lvcaspase3 (D), Lvcaspase4 (B) and
Lvcaspase5 (C) from L. vannamei. The nucleotide (upper
row) and deduced amino acid (lower row) sequences of
Lvcaspase2-5 are shown. The initiation codon (ATG) and stop
codon (TAA, TGA or TAG) are shown in bold. The caspase
family p20 and p10 domains in Lvcaspase2-5 are shaded.

(TIF)

Figure S2. Domain architectures of shrimp caspases.The
full-length protein sequences of shrimp caspases were
subjected to the simple modular architecture research tool
(SMART,; http://smart.embl-heidelberg.de) to generate domain
structures. The p20 and p10 domain are indicated as elliptical
boxes, and the prodomain upstream of the p20 domain is
indicated as a line. The initiator caspases have a long
prodomain (> 90 amino acids) containing specific protein-
protein interaction motifs that are necessary for their activation,
whereas the effector caspases usually have a short prodomain
of only 20-30 residues [8].

(TIF)

Figure S3. A phylogenetic tree of Lvcaspase2-5 with other
caspase family proteins.The full-length amino acid
sequences of caspase family proteins from typical organisms
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were aligned wusing the ClustalX2.0 program (http://
www.ebi.ac.uk/tools/clustalw2). The rooted tree was then
constructed by the “neighbor-joining” method and was
bootstrapped 1,000 times using MEGA 4.0 software (http:/
www.megasoftware.net/index.html). The numbers at the nodes
indicate bootstrap values. Lvcaspase2-5 are boxed in blue

lines. Lvcasp1, L. vannamei caspasel (Accession no.
ABK88280); Lvcasp2, L. vannamei caspase2 (Accession no.
KC660102); Lvcasp3, L. vannamei caspase3 (Accession no.
KC660103); Lvcasp4, L. vannamei caspase4 (Accession no.
KC660105); Lvcaspb, L. vannamei caspase5 (Accession no.
KC660104); Pmcasp1, Penaeus monodon caspasel
(Accession no. AEW91437); Mijcasp3, Marsupenaeus

Jjaponicus caspase3d (Accession no. ABK62771); Pmcasp2,
Penaeus monodon caspase2 (Accession no. ABO38430);
Hscasp1, Homo sapiens caspasel (Accession no.
NP_001214); Mmcasp1, Mus musculus caspase1 (Accession
no. NP_033937); Hscasp2, H. sapiens caspase2 (Accession
no. AAH02427); Mmcasp2, M. musculus caspase2 (Accession
no. NP_031636); Hscasp3, H. sapiens caspase3 (Accession
no. NP_116786); Mmcasp3, M. musculus caspase3 (Accession
no. NP_033940); Hscasp4, H. sapiens caspase4 (Accession
no. NP_001216); Hscasp5, H. sapiens caspase5 (Accession
no. NP_001129584); Hscasp6, H. sapiens caspase6
(Accession no. NP_001217); Hscasp7, H. sapiens caspase7
(Accession no. NP_001253987); Mmcasp7, M. musculus
caspase? (Accession no. NP_031637); Hscasp8, H. sapiens
caspase8 (Accession no. NP_001073594); Hscas9, H. sapiens
caspase9 (Accession no. NP_127463); Hscasp10, H. sapiens
caspase10 (Accession no. AAD28403); Hscasp14, H. sapiens
caspase14 (Accession no. NP_036246); Dmice, Drosophila
melanogaster Ice (Accession no. NP_524551); Dmcasp1, D.
melanogaster caspase1 (Accession no. AAB58237); Dmdream,
D. melanogaster dream (Accession no. NP_610193); Dmdeath,
D. melanogaster death executioner caspase (Accession no.
NP_477462); DmNedd2, D. melanogaster Nedd2 (Accession
no. NP_524017); Drcasp1, D. rerio caspasel1 (Accession no.
NP_571580); Drcasp2, D. rerio caspase2 (Accession no.
NP_001036160); Drcasp3, D. rerio caspase3 (Accession no.
NP_571952); Drcasp6, Danio rerio caspase6 (Accession no.
NP_001018333); Drcasp?7, D. rerio caspase7 (Accession no.
NP_001018443); Drcasp7-2, D. rerio caspase? like (Accession
no. XP_002667104); Drcasp8, D. rerio caspase8 (Accession
no. NP_571585); Drcasp9, D. rerio caspase9 (Accession no.
NP_001007405); Ggcasp1, Gallus gallus caspase1 (Accession
no. XP_003642432); Ggcasp2, G. gallus caspase2 (Accession
no. NP_001161173); Ggcasp3, G. gallus caspase3 (Accession
no. NP_990056); Ggcasp6, G. gallus caspase6 (Accession no.
NP_990057); Ggcasp7, G. gallus caspase7 (Accession no.
XP_421764); Ggcasp8, G. gallus caspase8 (Accession no.
NP_989923); Ggcasp9, G. gallus caspase9 (Accession no.
XP_424580); Ggcasp10, G. gallus caspase10 (Accession no.
XP_421936); Ggcasp18, G. gallus caspase18 (Accession no.
NP_001038154); Xicasp1, X. laevis caspasel (Accession no.
NP_001081223); Xicasp2, X. laevis caspase2 (Accession no.
NP_001081404); Xicasp3, Xenopus laevis caspase3
(Accession no. NP_001081225); Xicasp7, X. laevis caspase7
(Accession no. NP_001081408); Xicasp6, X. laevis caspase6
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(Accession no. NP_001081406); Xicasp8, X. laevis caspase8
(Accession no. NP_001079034); Xlcasp9, X. laevis caspase9

(Accession no. NP_001079035); Xlcasp10, X. laevis
caspase10 (Accession no. NP_001081410); CeCEDS,
Caenorhabditis elegans CED3 (Accession no.
NP_001255708); CeCSP1, C. elegans CSP1 (Accession no.
NP_001022452); CeCSP2, C. elegans CSP2 (Accession no.
NP_001023575).
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