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Abstract
Traditional Chinese medicine (TCM) compounds have recently garnered attention for the regulation of immune cell infiltration
and the prevention and treatment of Alzheimer’s disease (AD). The Liuwei Dihuang Pill (LDP) has potential in this regard;
however, its specific molecular mechanism currently remains unclear. Therefore, we adopted a bioinformatics approach to
investigate the infiltration patterns of different types of immune cells in AD and explored the molecular mechanism of LDP
intervention, with the aim of providing a new basis for improving the clinical immunotherapy of AD patients. We found that M1
macrophages showed significantly different degrees of infiltration between the hippocampal tissue samples of AD patients and
healthy individuals. Four immune intersection targets of LDP in the treatment of AD were identified; they were enriched in 206
biological functions and 30 signaling pathways. Quercetin had the best docking effect with the core immune target PRKCB. Our
findings suggest that infiltrated immune cells may influence the course of AD and that LDP can regulate immune cell infiltration
through multi-component, multi-target, and multi-pathway approaches, providing a new research direction regarding AD
immunotherapy.
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Introduction

Alzheimer’s disease (AD) is a chronic progressive neurode-
generative disease caused by multiple factors.1 It is more
common in pre-senile and elderly people. The clinical man-
ifestations of this disease include memory impairment, low
self-care ability, abstract thinking disorder, and personality
and behavioral changes.2 The main pathological features of
AD are senile plaques formed by the aggregation of extra-
cellular β-amyloid (Aβ) and neurofibrillary tangles (NFTs)
formed by the hyperphosphorylation of intracellular Tau
protein.3-5 Several pathogenesis mechanisms exist for AD6-8;
however, among all, the neuroinflammatory mechanism plays a
key role in AD pathogenesis.9 As an important part of neuro-
inflammation, immune cells are involved in thewhole process of
AD development. Furthermore, changes in their infiltration can
even directly affect the therapeutic effects and clinical outcomes
of AD.10,11 Therefore, the regulation of immune cell infiltration

and the inhibition of neuroinflammation have become important
targets for reversing the deterioration of the pathological state of
AD and for improving survival prognosis. However, it is dif-
ficult for traditional, single-target western medicines to reduce
neuroinflammation and delay cognitive impairment by regu-
lating immune cell infiltration. In recent years, traditional
Chinesemedicine (TCM) compounds have garnered attention in
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the regulation of immune cell infiltration and the prevention and
treatment of AD. This popularity stems from their multi-
component, multi-target, and multi-pathway characteristics,
with minimal side effects.

Liuwei Dihuang Pill (LDP) was first recorded in Qian Yi’s
“Key to the Therapeutics of Children’s Diseases” in the
Northern Song Dynasty. It consists of 6 herbs, namely, Re-
hmannia glutinosa (Shudihuang in Chinese, SDH), Cornus
sericea (Shanyurou in Chinese, SYR), Rhizoma dioscoreae
(Shanyao in Chinese, SY), Rhizoma alismatis (Zexie in
Chinese, ZX),Cortex moutan (Mudanpi in Chinese,MDP), and
Poria cocos (Fuling in Chinese, FL).12 Studies have shown that
LDP can promote the repair process of the reticuloendothelial
system, enhance the phagocytic ability of macrophages, im-
prove the killing activity of natural killer cells, and promote the
proliferation and differentiation of Tcells and lymphocytes.13-16

It can play a synergistic role in regulating immune cell infil-
tration, reducing neuroinflammation, degrading Aβ aggrega-
tion, and delaying cognitive impairment.17 However, its
specific molecular mechanism currently remains unclear.

The recent development of bioinformatics has provided a
more comprehensive perspective for studying the molecular
mechanism of LDP; it can also aid the selection of therapeutic
targets for AD. Therefore, the bioinformatics approach was
adopted in this study to explore the infiltration patterns of
different types of immune cells in AD and investigate the
molecular mechanism of LDP intervention. In this way, this
study aimed to provide a new basis for improving the clinical
immunotherapy of AD patients.

Materials and Methods

Downloading the Gene Expression Omnibus Data

The GEO database was searched to find relevant data,18 with
“Alzheimer’s disease” used as a keyword. The restricted
search condition was “expression profiling by array,” the
restricted species was “Homo sapiens,” and the obtained gene
expression profile data number was GSE1297.

Screening the Differentially Expressed Genes of
Alzheimer’s Disease

Based on the R (v.4.0.3) software,19,20 the differentially ex-
pressed genes (DEGs) in the hippocampus tissue samples of
AD were screened according to a |log2 fold change (FC)| >.5
and p < .05, and visualized by a heat map and volcano plot.

Assessing Immune Cell Infiltration and Acquisition of
Immune-Related Genes

The proportions of 22 kinds of immune cells in AD and normal
hippocampal tissue samples were calculated using the “de-
convolution method” (in Cibersort software and Perl language)
to evaluate their infiltration.21 R (v.4.0.3) and its related packages

were used to plot a histogram, distribution heat map, violin
diagram, and correlation matrix to show the difference of the
results (P < .05 indicated statistically significant difference). The
ImmPort database was used to obtain immune-related genes.22

Prediction of Liuwei Dihuang Pill Target Genes

All active ingredients in LDP and their corresponding po-
tential targets were manually acquired from the Traditional
Chinese Medicine Systems Pharmacology (TCMSP) data-
base.23 The screening conditions were as follows: drug-
likeness (DL) ≥ .18 and oral bioavailability (OB) ≥ 30%.24

The UniProt database was used to standardize the names of
drug targets to obtain the target genes of LDP.25

Construction of Protein–Protein Interaction Network

The DEGs of AD, immune-related genes, and target genes of
LDP were uploaded to the Venn online mapping software to
get the intersection targets.26 The intersection targets were
imported into the Cytoscape (v.3.8.0) software,27 and the
Bisogenet and CytoNCA plug-ins were used to construct a
protein–protein interaction network; the core immune targets
were screened according to the degree value of >61.

Gene Ontology Enrichment and Kyoto Encyclopedia of
Genes and Genome Enrichment Analyses

To clarify the possible biological functions and key pathways
of LDP in the treatment of AD, R (v.4.0.3) was used to
perform ID conversion on the names of the intersection
targets,28,29 following which Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway ana-
lyses were carried out.30 Moreover, the top ten items with the
smallest P values for the BP, CC, MF, and KEGG signaling
pathways were selected (all items with less than ten items were
selected) to plot bubble charts. As p represents the significance
of enrichment, the screening condition was limited to P < .05.

Construction of “Ingredient-Target-Pathway-Disease”
Network

An Ingredient-Target-Pathway-Disease (I-T-P-D) network was
constructed using the Cytoscape (v.3.8.0) software to intuitively
reflect the key active ingredients in LDP’s prescription for the
treatment of AD targets involved in KEGG signaling pathways.

Verification of Molecular Docking

The three-dimensional (3D) crystal structures of core immune
targets were obtained from the Protein Data Bank (PDB)
database,31 while the molecules of key active ingredients were
obtained from the PubChem database structure. After using
Pymol (v.2.5) and AutoDockTools (v.1.5.6) software to re-
move the water molecules, separate the ligands, and conduct

2 Dose-Response: An International Journal



the hydro treatment,32,33 molecular docking was carried out
using the Autodock vina (v.1.2.0) software.34 Herein, the
docking effect between key active ingredients and core immune
targets was evaluated, with a binding energy of <-5 kcal�mol-1

as the reference standard.35 A molecular docking diagram was
then plotted.

Results

Screening Results for the Differentially Expressed
Genes of Alzheimer’s Disease

According to the datasets GSE1297, a total of 31 hippocampal
tissue samples were collected, including 22 AD patients and 9

normal individuals. After data preprocessing and gene dif-
ferential expression analysis, 552 DEGs were screened in the
hippocampal tissue samples of AD patients, including 249 up-
regulated genes and 303 down-regulated genes (Figure 1A).
The heat map showed the top 20 DEGs with most significant
upregulation and downregulation (Figure 1B).

Analysis of Immune Cell Infiltration and Acquisition of
Immune-Related Genes

A total of 15 eligible hippocampal tissue samples were ob-
tained, including 11 AD patients and 4 normal individuals. As
shown in Figure 2A-C, the proportions and degrees of infil-
tration of 22 kinds of immune cells were analyzed across all

Figure 1. DEGs of AD. (A) Heat map. (B) Volcano plot. Coral dots represent significantly up-regulated genes and cornflower blue dots
represent significantly down-regulated genes.

Figure 2. Immune cell infiltration landscape. (A) Histogram of the proportions of immune cells in AD patients and healthy individuals;
different immune cells are distinguished with different colors. (B) Distribution heat map of immune cells in AD patients and healthy
individuals; the degrees of infiltration are indicated using coral and cornflower blue, respectively. (C) Violin diagram showing proportions of
immune cells in AD patients and healthy individuals; red represents AD patients and blue represents healthy individuals. (D) Correlation
diagram of proportions of immune cells in AD patients; red represents positive correlation, and blue represents negative correlation.
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samples, and the proportions of each immune cell in the
hippocampal tissue samples of AD patients and healthy in-
dividuals were compared. These results suggest that M2
macrophages and resting CD4+ memory T cells in the hip-
pocampal tissue samples of AD patients had larger distribution
ratios and higher degrees of infiltration than those of healthy
individuals. Moreover, the degree of infiltration of M1
macrophages differed significantly between the hippocampal
tissue samples of AD patients and healthy individuals (P
<.05). As shown in Figure 2D, the correlation coefficients of
the proportions of 22 kinds of immune cells were calculated
for the hippocampal tissue samples of AD patients. The results
show that the immune cells with higher positive correlation
coefficients were activated dendritic cells and activated CD4+

memory T cells (r = .81), while the immune cells with larger
negative correlation coefficients were naive B cells and
memory B cells (r = -9.0). A total of 1793 immune-related
genes was collected from the ImmPort database.

Prediction Results of Target Genes of Liuwei
Dihuang Pill

A total of 42 active ingredients of LDP were screened from the
TCMSP database corresponding to the 221 potential targets. After
converting the drug targets to standard gene names using UniProt
database, a total of 193 target genes of LDP were obtained.

Construction Results of Protein–Protein Interaction
Network

A total of 4 immune gene intersection targets were obtained
for the treatment of AD with LDP, namely, PRKCB, PPP3CA,
NFKBIA, and NR1I2 (Figure 3A). PPI network among these
intersection targets was constructed according to the degree
value of >61, and found that NFKBIA and PRKCB (which had
degree values of 178 and 114, respectively) may be the core
immune targets of LDP in the treatment of AD (Figure 3B).

Results of Gene Ontology and Kyoto Encyclopedia of
Genes and Genome Enrichment Analyses

A total of 206 GO biological function items were obtained
(including 175 biological processes [BP], 3 cellular compo-
nents [CC], and 28 molecular functions [MF]); thirty KEGG
signaling pathways were identified. As shown in Figure 4Aand
B, the intersection target BP mainly involved transcription
factor activity, response to carbohydrate, and protein import;
CCmainly involved presynaptic cytosol, the calyx of Held, and
the cytosol region; MF mainly involved transcription factor
binding, nuclear receptor binding, and hormone receptor
binding, among the other functions. The main highly enriched
KEGG signaling pathways were the B cell receptor signaling
pathway, human immunodeficiency virus 1 (HIV-1) infection,
and human cytomegalovirus (HCMV) infection.

“Ingredient-Target-Pathway-Disease” Network
Analysis

The constructed “I-T-P-D” network contained 27 nodes and 46
edges (Figure 5), suggesting that the targets of LDP in the
treatment of AD were not only regulated by a variety of key
active ingredients in LDP (quercetin and kaempferol) but also
related to multiple KEGG signaling pathways.

Molecular Docking Verification Results

As shown in Figure 6A-D, the key active ingredients (quercetin
and kaempferol) were molecularly docked with the core immune
targets (NFKBIA and PRKCB). The results showed that there were
strong interactions between the key active ingredients and the core
immune targets (Table 1). The binding effect between quercetin
and PRKCBwas the best; the binding energy was -9.0 kcal�mol-1.

Discussion

Although there is no relevant record or mention of AD in
TCM, according to its clinical manifestations and functional

Figure 3. Intersection targets. (A) Venn diagram of intersection targets. (B) PPI network diagram of intersection targets. Size and color of
each node reflect the degree value of the target; edge thickness reflects correlations between nodes.
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characteristics, AD can generally be classified into the categories
of diseases such as “forgetfulness” and “dementia.” In TCM, the
emptiness of the sea ofmarrow, which is thought to be caused by
the depletion of kidney essence, is considered to be an important
cause of AD.36,37 LDP, as a typical formula for invigorating the
kidney and filling essence,38 has been confirmed by clinical and
pharmacological studies to significantly improve the cognitive
function of AD patients.39-41 Moreover, its mechanism of action
may be related to the regulation of immune cell infiltration and
the inhibition of neuroinflammation.

In this study, the M2 macrophages and resting CD4+

memory T cells showed relatively high degrees of infiltration
in the hippocampal tissue samples of AD patients than in those
of healthy individuals. Furthermore, M1macrophages showed

significantly different degrees of infiltration in the hippocampus
tissue samples of AD patients and healthy individuals (P < .05).
In AD, the activation of Aβ can increase the permeability of the
blood–brain barrier, which in turn would promote the entry of
peripheral macrophages and CD4+ memory T cells into the
brain.42,43 Thus, immune infiltration can occur under the stim-
ulation of environmental factors. This infiltration not only affords
a certain degree of immune protection but also plays a certain role
in promoting the formation of neuroinflammation and the
pathological evolution of AD.44,45 Moreover, the disruption of
this balance is an important factor regarding the occurrence and
development of AD.

In addition, a large positive correlation coefficient was
identified between activated dendritic cells and activated
CD4+ memory T cells. This suggests that there may be mutual
assistance between these 2 immune cells. Previous studies
have shown that activated dendritic cells can not only ef-
fectively initiate the immune response of CD4+ T cells in the
primary immune response but can also regulate them by in-
teracting with memory cells in almost every stage of memory
cell production.46-49 In this way, they play a key role in the
reactivation and response of CD4+ memory T cells. A large
negative correlation coefficient was identified between naive
B and memory B cells, suggesting that there may have been
mutual inhibition between these 2 types of immune cells. This
correlation may be cause by a phenomenon whereby, after
recognizing the antigen exposed by antigen-presenting cells,
naive B cells can immediately activate, expand, and differ-
entiate into memory B and plasma cells.50-52 Therefore, fo-
cusing on the interactions between immune cells and
determining their potential correlations is expected to become
a new strategy for AD immunotherapy.

The PPI network suggested that LDP may directly or in-
directly exert its therapeutic effect on AD by regulating 2 core
immune targets: NFKBIA and PRKCB. Studies have shown
that NFKBIA can not only regulate immune inflammation and
tissue damage but also be closely related to the development,
differentiation, and migration of immune cells.53-55 In

Figure 4. Enrichment analysis of immune intersection targets of LDP against AD. (A) GO biological function enrichment. (B) KEGG signaling
pathway enrichment. Pathways with significant changes (P < .05) were identified. Dot size represents number of genes and color represents
P value.

Figure 5. “I-T-P-D” network diagram of LDP against AD. Pink
squares show ingredients, yellow diamonds show targets, coral
“Vs” show pathways, and lavender triangles show diseases.
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addition, as the most important inhibitor of the nuclear factor
kappa B (NF-κB) pathway, NFKBIA usually exists in the
mitochondria of the cytoplasm in a relatively static state. Once
stimulated by Aβ, NFKBIA will be phosphorylated and de-
graded, causing NF-κB activation, and leading to AD neuronal

degeneration and cognitive impairment.56,57 As a member of
the PKC family, PRKCB also plays an important role in the
regulation of immune cells.58 Previous studies have shown
that PRKCB is associated with immune cell infiltration and
that its increased expression not only promotes increases in the

Figure 6. Molecular docking diagrams. (A) Quercetin and PRKCB. (B) Kaempferol and PRKCB. (C)Quercetin andNFKBIA. (D) Kaempferol and
NFKBIA.
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numbers of naive B cells, M1macrophages, and other immune
cells but also predicts a better prognosis.59 Meanwhile,
negative PRKCB expression leads to severe immunodefi-
ciency and memory impairment; in particular it affects B cell
polarity and metabolic reprogramming.60

Gene Ontology analysis revealed that the biological function
of LDP in the treatment of AD was mainly related to tran-
scription factors. Studies have shown that transcription factors
can regulate gene expression and participate in a variety of life
activities.61 Moreover, they can play a key role in the activation
or inhibition of AD-related signaling pathways.62-64 The KEGG
results showed that the pathways of LDP in the treatment of AD
were mainly enriched in the B cell receptor-signaling pathway
and in HIV-1 and HCMV infections. Studies have shown that
activated B cells can not only induce the differentiation of
effector T cells and lead to neuroinflammation65-67 but also
participate in the pathological process of AD by secreting cy-
tokines and acting on other immune cells (such as
macrophages).45,68 Further studies have found that B cell re-
ceptors play an essential role in maintaining the survival,
proliferation, and differentiation of B cells.69,70 Therefore, in-
hibiting the activation of the B cell receptor-signaling pathway is
of great significance in improving AD neuroinflammation and
immune damage.71,72 In the brain, HIV-1 can not only cause
neuroinflammation and neuronal death by infecting immune
cells (such as macrophages) but also lead to the abnormal el-
evation of Aβ, thereby affecting cognitive function.73-75 The
HCMV-congenital latent infection of old mouse models has
been found to display typical AD-like pathological changes in
the brain, such as Aβ, NFTs, and phosphorylated Tau (P-
Tau).76,77 The low immune function caused by long-term
HCMV latent infection may be an important mechanism in
promoting the occurrence and development of AD.78,79

According to the “I-T-P-D” network developed in this
study, quercetin and kaempferol were found to be the key
active ingredients of LDP in the treatment of AD. As common
flavonoids,80 these ingredients can exhibit anti-AD activities
by regulating the migration ability of macrophages, blocking
the antigen presentation of macrophages, inhibiting the ex-
pression of downstream signal molecules, such as NF-kB, and
preventing the excessive production of inflammatory
factors.81,82 Further research has revealed that macrophages,
as important immune cells, have key roles in inhibiting im-
mune cell infiltration and improving neuroinflammation.83

In this study, the bioinformatics methodwas used to evaluate
the immune cell infiltration patterns of AD, explore the key

active ingredients and core immune targets of LDP in the
treatment of AD, construct PPI and “I-T-P-D” networks, pre-
liminarily reveal LDP’s immune mechanism of intervention on
AD, and conduct molecular docking verification. Thus, the
study provides a new direction for experimental research in the
use of LDP for the treatment of AD through immune pathways.
Moreover, this study can provide more possibilities for the
clinical application of ancient prescriptions used in TCM.
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