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detector computed tomography using an automated segmentation 
framework

Jannis Bodden1^, Michael Dieckmeyer1, Nico Sollmann1,2,3, Sebastian Rühling1, Philipp Prucker1, 
Maximilian T. Löffler1,4, Egon Burian5, Karupppasamy Subburaj6, Claus Zimmer1,2, Jan S. Kirschke1,2, 
Thomas Baum1

1Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 

Munich, Germany; 2TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; 3Department 

of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany; 4Department of Diagnostic and Interventional Radiology, 

University Medical Center Freiburg, Freiburg im Breisgau, Germany; 5Department of Diagnostic and Interventional Radiology, School of Medicine, 

Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; 6Department of Mechanical and Production Engineering, Aarhus 

University, Aarhus, Denmark

Contributions: (I) Conception and design: J Bodden, M Dieckmeyer, T Baum; (II) Administrative support: C Zimmer, JS Kirschke, T Baum; 

(III) Provision of study materials or patients: JS Kirschke, C Zimmer, T Baum; (IV) Collection and assembly of data: J Bodden, M Dieckmeyer,  

JS Kirschke, T Baum; (V) Data analysis and interpretation: J Bodden, M Dieckmeyer, JS Kirschke, T Baum; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Jannis Bodden, MD. Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, 

Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany. Email: jannis.bodden@tum.de.

Background: To investigate reproducibility of texture features and volumetric bone mineral density (vBMD) 
extracted from trabecular bone in the thoracolumbar spine in routine clinical multi-detector computed 
tomography (MDCT) data in a single scanner environment.
Methods: Patients who underwent two routine clinical thoraco-abdominal MDCT exams at a single scanner 
with a time interval of 6 to 26 months (n=203, 131 males; time interval mean, 13 months; median, 12 months) 
were included in this observational study. Exclusion criteria were metabolic and hematological disorders, bone 
metastases, use of bone-active medications, and history of osteoporotic vertebral fractures (VFs) or prior diagnosis 
of osteoporosis. A convolutional neural network (CNN)-based framework was used for automated spine labeling 
and segmentation (T5–L5), asynchronous Hounsfield unit (HU)-to-BMD calibration, and correction for the 
intravenous contrast medium phase. Vertebral vBMD and six texture features [varianceglobal, entropy, short-run 
emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP)] were 
extracted for mid- (T5–T8) and lower thoracic (T9–T12), and lumbar vertebrae (L1–L5), respectively. Relative 
annual changes were calculated in texture features and vBMD for each vertebral level and sorted by sex, and 
changes were checked for statistical significance (P<0.05) using paired t-tests. Root mean square coefficient of 
variation (RMSCV) and root mean square error (RMSE) were calculated as measures of variability.
Results: SRE, LRE, RLN, and RP exhibited substantial reproducibility with RMSCV-values below 2%, 
for both sexes and at all spine levels, while vBMD was less reproducible (RMSCV =11.9–16.2%). Entropy 
showed highest variability (RMSCV =4.34–7.69%) due to statistically significant increases [range, mean ± 
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Introduction

Bone demineralization and deterioration of the trabecular 
microarchitecture are the hallmarks of osteoporosis, a 
potentially debilitating bone disease that leads to substantially 
decreased bone strength and increased vertebral fracture 
(VF) risk (1,2). According to the World Health Organization 
(WHO) criteria, approximately 21% of females aged 50 
years and older suffer from osteoporosis (3). Despite being a 
considerable source of health care cost, the disease remains 
vastly underdiagnosed (3-5). Commonly, bone mineral 
density (BMD) measurements for osteoporosis diagnostics 
are assessed using dual-energy X-ray absorptiometry 
(DXA) or quantitative computed tomography (QCT) (6-8). 
However, both methods do not take into account changes in 
trabecular bone architecture and demand additional radiation 
exposure and specific scanning setups. Texture analysis (TA) 
is an image analysis approach that allows assessment of bone 
microarchitecture in three-dimensional (3D) computed 
tomography (CT) datasets (7,8). Since texture feature 
(TF) extraction from aggregate routine clinical CT scans 
is feasible opportunistically, it promises to overcome both 
aforementioned limitations of DXA- and QCT-based BMD 
measurements.

The usefulness of TFs in opportunistic osteoporosis 
screening and fracture risk assessment as well as fracture 
classification as measures of bone quality has been shown 
in previous studies (9-11). However, TA at the spine relies 
on exact labeling and accurate segmentations of trabecular 
bone to yield acceptable reproducibility. Recent advances in 
automated spine segmentation have streamlined this time-
consuming process: A recently developed convolutional 
neural network (CNN)-based framework (https://anduin.

bonescreen.de) allows for automated labeling and spine 
segmentation, asynchronous Hounsfield unit (HU)-to-
BMD calibration, and correction for the intravenous 
contrast medium phase and has demonstrated its efficacy in 
predicting prevalent VFs and assessing risk for imminent 
fractures (12-16). Furthermore, Dieckmeyer et al. used this 
pipeline to establish reference values for TFs in females 
and males in the mid-thoracic, lower thoracic, and lumbar 
spine levels (17). Furthermore, the authors identified a set 
of six features with good scan-rescan reproducibility over a 
follow-up (FU) interval of up to 77 days.

However, before opportunistic volumetric BMD (vBMD) 
and TF measurements may be used to classify pathologic 
changes in the future, reference values and detailed 
information on reproducibility of measurements derived 
from a bone-healthy cohort are obligatory. Therefore, this 
study aimed to investigate TF and vBMD reproducibility 
over 6 to 26 months, using routine clinical multi-detector 
computed tomography (MDCT) data and to describe value 
changes over this time interval.

Methods

Patient selection

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by institutional ethics committee of Klinikum 
rechts der Isar, Technical University of Munich and 
individual consent for this retrospective analysis was waived.

For this observational study, patients who underwent 
routine thoraco-abdominal MDCT scans with a single 
specific scanner at our institution to rule out tumor 

standard deviation: (4.40±5.78)% to (8.36±8.66)%, P<0.001]. RMSCV of varianceglobal ranged from 1.60%  
to 3.03%.
Conclusions: Opportunistic assessment of texture features in a single scanner environment using the 
presented CNN-based framework yields substantial reproducibility, outperforming vBMD reproducibility. 
Lowest scan-rescan variability was found for higher-order texture features. Further studies are warranted 
to determine, whether microarchitectural changes to the trabecular bone may be assessed through texture 
features.
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recurrence were retrospectively identified using our 
institute’s local picture archiving and communication system 
(PACS). The patient inclusion interval covered a time 
period of 6 years from July 2007 to July 2013 and patients 
included in the cohort had to have received two MDCT 
scans within 6–26 months. Included scans were manually 
checked for full coverage of the mid-thoracic to the lumbar 
spine (T5–L5).

Further, patients with VFs, history of use of bone-active 
medications (e.g., bisphosphonates), bone metastases, 
and diagnosis of osteoporosis/osteopenia or any other 
hematological disease or disease of bone metabolism prior 
to this study or during the FU interval were excluded. 
Thereby, we intended to generate a cohort with supposed 
bone-healthy subjects who were not at risk for pathological 
bone loss during FU. For quality assurance, scans were 
screened for severe beam hardening and motion artifacts. If 
present, these patients were excluded from further analyses.

Image acquisition and automated vertebral body 
segmentation

All scans were performed using a single MDCT scanner 
with 64 detector rows (Somatom Sensation Cardiac 64, 
Siemens Healthcare GmbH, Erlangen, Germany). Oral 
contrast medium was applied approximately 1 h prior to 
all scans (Barilux Scan; Sanochemia Diagnostics, Neuss, 
Germany). Scans were performed 70 s after intravenous 
administration of an iodine-based contrast agent (Fresenius 
Pilot C; Fresenius Kabi, Bad Homburg, Germany) with 
body-weight adjusted dosage (80, 90, and 100 mL for body 

weight 80, >80 to 100, >100 kg, respectively) and a flow-rate 
of 3 mL/s. For the dedicated scanning protocol, the average 
tube voltage and adapted tube load were set at 120 kVp 
and 200 mAs. Using a standard bone reconstruction kernel, 
sagittal views of the spine were reformatted for each scan 
(slice thickness of 3 mm).

Using the sagittal reformations, automated vertebral 
body segmentation was performed for T5–L5 using a 
CNN-based pipeline (Figure 1) (https://anduin.bonescreen.
de) (12,13,15,18). This readily and freely available tool 
is based on a deep-learning algorithm and automatically 
labels and segments vertebrae from CT scans in a multi-
step process (12): first, vertebral bodies are registered and 
annotated using an X-ray-like projection. Second, the 
tool segments vertebral bodies and separates cortical and 
trabecular compartments. In the next step, it separately 
creates subregion segmentation masks for the laminar 
regions, facet joints, and transverse and spinal processes.

All segmentations were manually checked and corrected 
by a neuro-radiologist specialized in spine imaging, if 
necessary, as reported previously, with a correction ration 
of 1.1% (13,17). Simultaneously, the neuro-radiologist 
examined the segmented vertebrae for intra-osseous venous 
malformations and severe Modic-type endplate changes and 
excluded vertebrae presenting these anomalies.

Mean HU of trabecular bone was extracted from 
s e g m e n t a t i o n  m a s k s .  T h e  M D C T  s c a n n e r  w a s 
asynchronously calibrated to yield vBMD in mg/cm3 using 
a linear HU-to-vBMD-equation with a slope of 0.63 (14). 
In addition, automated correction of the contrast phase 
was performed by a two-dimensional anatomy-guided 

A B C

Figure 1 Steps of automated labeling and vertebral body segmentation, performed by an automated CNN-based pipeline (anduin.
bonescreen.de): (A) registration and annotation. Lateral projection of a patient’s CT scan, covering the neck, chest, abdomen, and pelvis. (B) 
Vertebral body segmentation in sagittal and coronal reformations. (C) Segmentation of the trabecular and cortical compartments. CNN, 
convolutional neural network; CT, computed tomography.
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DenseNet model (16).

Extraction of texture features

Following generation of the vertebral segmentation masks, 
TA was performed using a customized version of a publicly 
available toolbox (https://github.com/mvallieres/radiomics), 
run on MatLAB (version R2021a; MathWorks Inc., Natick, 
MA, USA; RRID:SCR_001622) (19-21). We included 
TFs that have been shown to be highly reproducible (17).  
Analyzed TFs were varianceglobal, entropy, short-run 
emphasis (SRE), long-run emphasis (LRE), run-length non-
uniformity (RLN), and run percentage (RP). These TFs 
were analyzed on the segmented trabecular compartments 
of the vertebral bodies.

Varianceglobal is a first-order feature calculated by 
performing a global gray-level histogram-based analysis, 
and it describes the spread of the gray-level distribution (22).  
Entropy is a gray-level co-occurrence matrix analysis 
(GLCM)-based feature of second order that quantifies 
randomness (23). While many more GLCM-based 
features have been described, they often exhibit substantial 
correlation among each other, resulting in redundance, 
or lack interpretability (17,23). Entropy has shown good 
reproducibility in the past and allows for a more intuitive 
interpretation (17). For this reason, and to limit multiple 
testing bias, we decided to investigate entropy as the only 
GLCM-based TF. The GLCM describes the occurrence of 
voxel pairs with the same given gray-level value and offset 
in an image. Entries of the GLCMs at different angular 
directions θ = (0°, 45°, 90°, and 135°) were computed as 
the joint probability of two adjacent voxel intensities at 
a given offset d = (dx, dy, dz) and given θ, with dx, dy, 
and dz denoting the displacement along the x-, y-, and 
z-axis, respectively. 3D GLCM analysis was performed 
by computing the co-occurrence probabilities of voxel 
intensities from the 26 neighbors aligned in 13 directions. 
Averaging over the 13 directions ensures rotational 
invariance. SRE, LRE, RLN, and RP are considered 
features of higher order and derived based on the analysis of 
gray-level run-length matrices (GLRLM) (24). A gray-level 
run is a set of consecutive voxels with identical gray-level 
values that are arranged collinearly in a certain direction. 
The run-length is the number of voxels in a gray-level run. 
GLRLM features are calculated based on the occurrence 
and distribution of such runs within the GLCM. These 
features quantify directional changes in the GLCM. By 
simultaneously adding up all possible run-lengths in the  

13 directions of the 3D space, 3D GLRLMs were obtained. 
For both GLCM and GLRLM analysis, direction-
dependent discretization length differences were taken 
into account when measurements were combined through 
averaging or summation.

Statistical analysis

All statistical analyses were performed using STATA v13.0 
software (StataCorp LLC, College Station, TX, USA) with 
a two-sided significance threshold of 0.05. The normal 
distribution of dependent variables (vBMD and all TFs) 
was visually checked using histograms. In order to increase 
the robustness of the measurements and to reduce the 
number of observations, average values were calculated for 
the dependent variables and spine compartments by adding 
all measurements of the respective variable within one 
spine compartment of a single patient and dividing by the 
number of measurements. As QCT BMD measurements 
are typically derived from the lumbar spine, we assigned 
the lumbar vertebrae to a single compartment (lumbar: 
L1–L5) (25). Osteoporotic VFs typically occur between 
the T5 and L5 level, therefore we decided to include this 
non-superimposed thoracic spine segment, which was then 
divided into two equally sized compartments (mid-thoracic 
T5–T8 and lower thoracic T9–T12) (26).

To determine reproducibility, root mean square coefficient 
of variation (RMSCV) and root mean square error (RMSE) 
were calculated as measures of variability for vBMD and 
each TF, for males and females and each spine level. Further, 
to assess changes in vBMD and TFs, means and SDs were 
calculated for each variable, sorted by spine level and sex. 
In the same manner, the relative difference per year was 
calculated for each variable, following the equation:

( )rel FU BL BLVAR VAR / VAR /BLFU ∆ = −  
	

[1]

with VARFU and VARBL denoting the value of a variable in 
a given spine compartment at baseline (BL) and FU, and 
BLFU denoting the time interval between BL and FU scans 
in months. Statistical significance of differences between BL 
and FU values was determined using paired t-tests for each 
variable, spine compartment, and sex.

Results

Cohort characteristics

Searching our PACS database, we retrospectively identified 
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2,480 patients, who underwent a thoracoabdominal 
MDCT for cancer staging purposes between July 2007 
and July 2013. Of those, thoracoabdominal FU scans were 
available in 1,482. Further, 1,062 patients were excluded 
due to hematological diseases and bone metastases, bone 
active medication, or diagnosed osteoporosis. Lastly, 158 
were excluded as they did not meet the defined FU interval 
of 6–26 months and 59 were excluded as they presented 
VFs at the FU scan. Thus, 203 patients were eligible for 
inclusion (131 males and 72 females). Detailed information 
on cohort  demographics  i s  presented in Table  1 .  
The average age at BL was 63.0±8.8 years (range,  
42–88 years) and the average time interval between BL 
and FU scans was 13.3±5.4 months. In total, TFs and 
vBMD were extracted from 2,639 vertebrae and manual 
correction of automatically generated volumes of interest 
(VOI) was performed in 28 vertebrae.

Reproducibility of vBMD and texture features

RMSEs revealed notable vBMD variability ranging from 
13.4 (L1–L5) to 16.8 mg CaHA/cm3 (T5–T8) in males and 
between 12.9 (T5–T8) and 16.8 mg CaHA/cm3 (L1–L5) in 
females (Table 2). Nonetheless a time-dependent decrease 
was observed for vBMD, irrespective of sex and vertebral 
level (Figure 2). While Females showed slight vBMD loss in 
all compartments over the FU interval, vBMD loss in males 
was more pronounced: maximum decrease per year in males 
was measured at T5–T8 with −3.9%±25.8% vBMD loss.

TF reproducibility differed substantially from vBMD 
findings: RMSCV was below 2% for all features of higher 
order (Table 3). Notably, despite low variability, changes 

Table 1 Cohort characteristics

Parameters Males Females Combined

Patients, n 131 72 203

Vertebral bodies, n 1,703 936 2,639

Age (years)

Mean ± SD 63.0±8.8 61.6±10.2 62.5±9.3

Median [range] 63 [42–88] 63 [39–86] 63 [39–88]

FU interval (months)

Mean ± SD 13.3±5.4 12.7±5.8 13.1±5.6

Median [range] 12 [6–25] 11 [6–26] 12 [6–26]

SD, standard deviation; FU, follow-up.

Table 2 vBMD reproducibility and changes (n=203)

Level Sex
BL (mg CaHA/cm3), 

mean ± SD
FU (mg CaHA/cm3), 

mean ± SD
RMSCV (%)

RMSE  
(mg CaHA/cm3)

Relative vBMD change per 
year (%), mean ± SD

T5–T8 Females 99.2±33.2 96.8±31.2 11.9 12.9 −1.5±35.2

Males 102.7±35.2 98.5±36.6 16.1 16.8 −3.9±25.8*

T9–T12 Females 98.0±32.3 95.1±30.8 16.2 14.5 −1.6±21.8

Males 96.8±30.5 93.7±31.4 12.7 14.3 −3.1±17.9*

L1–L5 Females 93.9±31.7 90.0±29.7 13.6 16.8 −2.0±16.9*

Males 93.6±27.7 91.2±28.7 12.2 13.4 −2.5±15.7*

Statistical significance of differences between BL and FU values was determined using paired t-tests. Statistically significant changes (P 
value <0.05) are highlighted by an asterisk (*). vBMD, volumetric bone mineral density; BL, baseline; FU, follow-up; RMSCV, root-mean 
square coefficient of variation; RMSE, root-mean square error; CaHA, calcium hydroxylapatite; SD, standard deviation.
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Table 3 Texture feature reproducibility and changes (n=203)

Texture feature† Level Sex BL, mean ± SD FU, mean ± SD RMSCV (%) RMSE
Relative change per  
year (%), mean ± SD

Varianceglobal T5–T8 Females 26.47±2.71 26.39±2.76 2.24 0.86 −0.18±4.23

Males 34.53±4.27 34.64±4.29 3.03 1.47 0.31±4.66

T9–T12 Females 39.97±3.90 39.79±3.79 1.60 0.91 −0.50±2.81

Males 51.44±5.89 51.40±5.70 1.60 1.19 0.05±2.43

L1–L5 Females 56.82±5.30 56.67±5.19 1.73 1.40 −0.04±3.21

Males 67.98±7.02 67.97±6.65 2.24 2.13 0.28±4.05

Entropy T5–T8 Females 14.14±0.56 14.78±0.66 4.34 0.50 4.40±5.78**

Males 14.20±0.57 15.15±0.68 5.91 0.56 6.66±7.26**

T9–T12 Females 14.32±0.61 15.02±0.81 4.92 0.54 4.75±6.93**

Males 14.31±0.56 15.30±0.76 6.20 0.55 6.89±7.73**

L1–L5 Females 14.54±0.62 15.68±0.89 5.73 0.58 6.07±7.86**

Males 14.45±0.58 15.43±0.86 7.36 0.58 8.36±8.66**

SRE T5–T8 Females 0.9918±0.0021 0.9945±0.0024 0.27 0.0020 0.25±0.35**

Males 0.9909±0.0022 0.9949±0.0023 0.36 0.0023 0.38±0.40**

T9–T12 Females 0.9913±0.0022 0.9942±0.0029 0.30 0.0021 0.27±0.40**

Males 0.9903±0.0023 0.9944±0.0026 0.38 0.0024 0.40±0.43**

L1–L5 Females 0.9914±0.0022 0.9947±0.0028 0.32 0.0022 0.30±0.39**

Males 0.9907±0.0024 0.9950±0.0028 0.40 0.0024 0.41±0.43**

LRE T5–T8 Females 1.0338±0.0088 1.0222±0.0100 1.45 0.0086 −1.01±1.39**

Males 1.0375±0.0096 1.0209±0.0095 1.11 0.0096 −1.52±1.59**

T9–T12 Females 1.0359±0.0093 1.0239±0.0120 1.21 0.0090 −1.06±1.61**

Males 1.0400±0.0100 1.0228±0.0108 1.54 0.0101 −1.58±1.72**

L1–L5 Females 1.0353±0.0095 1.0218±0.0117 1.28 0.0092 −1.21±1.57**

Males 1.0383±0.0101 1.0203±0.0115 1.61 0.0102 −1.63±1.72**

RLN T5–T8 Females 0.9784±0.0054 0.9856±0.0062 0.72 0.0053 0.67±0.92**

Males 0.9762±0.0058 0.9865±0.0059 0.94 0.0058 1.01±1.06**

T9–T12 Females 0.9771±0.0058 0.9846±0.0075 0.79 0.0056 0.71±1.05**

Males 0.9747±0.0060 0.9853±0.0067 1.00 0.0061 1.05±1.14**

L1–L5 Females 0.9775±0.0058 0.9859±0.0073 0.84 0.0057 0.81±1.04**

Males 0.9757±0.0061 0.9869±0.0072 1.05 0.0061 1.09±1.14**

RP T5–T8 Females 0.9890±0.0028 0.9927±0.0032 0.38 0.0027 0.34±0.47**

Males 0.9878±0.0030 0.9931±0.0030 0.48 0.0030 0.52±0.54**

T9–T12 Females 0.9883±0.0030 0.9922±0.0038 0.40 0.0029 0.36±0.54**

Males 0.9870±0.0031 0.9925±0.0035 0.51 0.0032 0.53±0.58**

L1–L5 Females 0.9885±0.0030 0.9929±0.0038 0.43 0.0029 0.41±0.53**

Males 0.9876±0.0032 0.9934±0.0037 0.54 0.0032 0.55±0.58**
†, texture features are dimensionless. Statistical significance of differences between BL and FU values was determined using paired 
t-tests. **, P<0.001. BL, baseline; SD, standard deviation; FU, follow-up; RMSCV, root-mean square coefficient of variation; RMSE, root-
mean square error; SRE, short-run emphasis; LRE, long-run emphasis; RLN, run-length non-uniformity; RP, run percentage.
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between BL and FU were statistically significant for each 
one of these features. While LRE decreased over time, 
all remaining TFs of higher-order (SRE, RLN, and RP) 
increased, irrespective of sex and vertebral level (P<0.001) 
(Figures 3-5). With relative changes per year between 
4.40%±5.78% (females, T5–T8) and 8.36%±8.66% (males, 

level L1–L5), entropy experienced the greatest variability, 
compared to higher-order TFs, ranging from 4.34% 
in females at the T5–T8 level to 7.36% in males at the  
L1–L5 level. Considering the magnitudes of BL and FU 
values, RMSEs were considerably low for all investigated 
TFs. Notably, no statistically significant changes were found 
for the first-order TF varianceglobal (P>0.05, for each level 
sex and vertebral level, respectively), although the variability 
was slightly greater compared to higher-order TFs (RMSCV 
=1.60–3.03%).

Discussion

This study provided evidence for reproducibility of a set of 
TFs and vBMD up to 26 months in a bone-healthy cohort 
and a single-scanner environment. Precise knowledge 
of physiological TF values and reproducibility thereof is 
warranted, as it may serve as the basis for future analyses, 
aiming to differentiate the healthy from osteopenic and 
osteoporotic subjects. However, TA is highly susceptible to 
both, changes in scan protocol and post-processing steps. 
This can result in inherently difficult comparability of 
absolute values between scans and studies. This study used 
an identical scan protocol for BL and FU scans to reduce 
related precision errors and provides reference values for 
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Figure 4 Boxplot indicating TF change per year in (%), measured 
at the L1–L5 vertebrae, across the entire cohort (n=203). Notably, 
LRE showed a statistically significant annual decrease, and entropy 
increased most profoundly. SRE, short-run emphasis; LRE, 
long-run emphasis; RLN, run-length non-uniformity; RP, run 
percentage; TF, texture feature.

Figure 3 Changes in texture features (n=203). Similar to Figure 2, each black point in the scatter plot represents an individual observation. 
The estimated linear regression models (black line) are flanked by 95% confidence intervals for the model (gray area).
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relative annual TF changes. Following this principle, the 
observed changes of the TFs should also be comprehensible 
using other scanners and protocols, as long as the setup 
remains unchanged for BL and FU scans.

vBMD values decreased steadily in both sexes by about 
2% per year, matching established models for trabecular 
bone loss in healthy subjects by Mazess et al. (13% per 
decade) and Block et al. (1.99–4.39 mg/mL per year) 
(27,28). The examined TFs had lower variability compared 
to extracted vBMD values, resulting in lower RMSCVs 
and RMSEs. The low variability of the analyzed TFs is in 
line with findings previously documented by Dieckmeyer 
et al., who found reproducibility errors of <5% over a 
period of 2 months, and magnitudes of TFs were also 
comparable (17). In contrast, varianceglobal values reported 
by Mannil et al. differ substantially from our findings (29). 
This may be explained by methodological differences, 

as we performed TA analogously to Dieckmeyer et al. 
on 3D regions of interest (ROIs) using an automated 
segmentation algorithm (17). At the same time, analyses 
by Mannil et al. was carried out two-dimensionally on 
mid-spine sagittal slices (29).

Varianceglobal measurements were reproducible in 
females and males, irrespective of the vertebral level, and 
our results match previous findings (11). While absolute 
values were greatest at the lumbar spine. As a TF of first-
order, varianceglobal is a measure for the spread of gray-level 
distribution within the segmented vertebral bodies, and 
differences in trabecular bone architecture along the vertebral 
levels may explain the different values along the spine (22). 
However, a time-dependent decrease in varianceglobal, as 
expected in light of the results by Mannil et al., could not 
be confirmed (29). Nevertheless, considering the spatial 
distribution of varianceglobal values, Dieckmeyer et al. pointed 
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out, that degenerative changes (typically most pronounced at 
the lumbar spine) and differences in vertebral body size may 
account for the observed differences (17).

Of all analyzed TFs, entropy showed greatest variability. 
The observed significant increases in entropy which 
occurred in both, females and males, may partially account 
for this finding. Similar to varianceglobal, we observed 
the greatest changes at the lumbar spine. The spatial 
dependence of our findings is supported by a previous study 
that observed significantly greater entropy in the lumbar 
spine compared to the thoracic spine (17). As this TF is a 
measure of inhomogeneity in gray-value distribution, it is 
thought to reflect trabecular deterioration, which could 
explain the observed annual increases. If this association 
is confirmed in future studies, entropy may be of interest 
as marker for the structural integrity, i.e., quality, of the 
trabecular bone. However, in contrast to our findings, 
Tabari et al. found positive associations between entropy 
values and vBMD by QCT in a study investigating 
trabecular microarchitectural changes in anorexia nervosa 
patients (30). A possible reason may be the different 
etiologies of BMD loss in anorexia nervosa patients versus 
a healthy, aging population. Nonetheless, the distinct 
biological correlate of this complex measure are yet to be 
determined.

Values of the higher-order TFs RLN, LRE, RP, and 
SRE demonstrated substantial reproducibility, although 
the observed changes were homogeneous and statistically 
significant. Notably, LRE was the only TF to decrease in 
both sexes and all vertebral compartments. However, an 
inverse relationship of SRE and LRE is non-surprising, as 
the greater emphasis on shorter run-lengths (captured by 
SRE) inherently describes less emphasis on longer run-
lengths (captured by LRE). While it seems somewhat 
intuitive, that LRE may be a measure reflecting the 
quantity of long trabeculae and SRE of short trabeculae, 
it remains unclear how these findings correspond to 
actual microarchitectural changes in the trabecular bone. 
Further studies, e.g., with multiple FU time-points and a 
robust ground truth, are needed to further investigate the 
observed time-dependent changes in TFs and to determine 
their biologic equivalent. Thus, caution is warranted when 
interpreting the TFs.

The retrospective design of this study is the first 
limitation demanding attention: As data were collected 
retrospectively, important demographic factors and 
biomarkers of this chronic metabolic disease, e.g., race, 
diet, smoking status and body mass index that can impact 

the development and progression of osteopenia and 
osteoporosis, could not be assessed or adjusted for. However, 
the aim of this study is not to assess TFs as diagnostic tool 
for osteoporosis, but to investigate TF reproducibility 
and to describe the observed TF changes over time in a 
bone healthy population in order to lay the foundation 
for further, highly warranted studies concerning the value 
of TFs in osteoporosis diagnostics. Second, participants 
included in this study were scanned for cancer staging and/
or FU purposes. Although we screened for and excluded 
patients receiving bone-active medications, the effects that 
drugs may have on bone microarchitecture rather than on 
BMD are largely unknown, introducing a possible bias into 
BMD measurements and TA. Third, the external validity is 
limited, as TF values are extremely susceptible to changes 
in scanning protocols and the scanning setup. However, 
this study investigated reproducibility of TFs and changes 
thereof, which ought to be reproducible in different 
scanning environments, as long as scan protocols are not 
altered between BL and FU scans. The manual correction 
performed during the vertebral body segmentation may 
introduce a bias into our data. Yet, only 28 out of 2,639 
vertebral bodies required manual correction, therefore we 
regard this possible bias acceptable.

In conclusion, this  study established reference 
reproducibility values for TFs for up to 26 months in 
a single-scanner environment. Overall, reproducibility 
was greater in TFs compared to opportunistic vBMD 
measurements. Entropy and all TFs of higher order showed 
characteristic time dependent changes. However, it remains 
unclear, to what extent TFs capture bone microarchitecture 
and changes thereof, thus cautious interpretation and 
further investigations are highly warranted.

Acknowledgments

The authors express their gratitude towards Malek 
El Husseini and Anjany Sekuboyina (co-founders of 
bonescreen GmbH) for developing the segmentation tool.
Funding: This work was supported by the Deutsche 
Forschungsgemeinschaft (No. 432290010 to JSK and TB, 
and No. BA 4906/4-1 to TB).

Footnote

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-19/coif). 

https://qims.amegroups.com/article/view/10.21037/qims-23-19/coif
https://qims.amegroups.com/article/view/10.21037/qims-23-19/coif


Quantitative Imaging in Medicine and Surgery, Vol 13, No 9 September 2023 5481

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5472-5482 | https://dx.doi.org/10.21037/qims-23-19

JSK is co-founder of bonescreen GmbH, received funding 
by the Deutsche Forschungsgemeinschaft and honoraria 
for lectures on multiple sclerosis by Novartis. TB received 
funding by the Deutsche Forschungsgemeinschaft. The 
other authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by institutional 
ethics committee of Klinikum rechts der Isar, Technical 
University of Munich and individual consent for this 
retrospective analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Osteoporosis prevention, diagnosis, and therapy. JAMA 
2001;285:785-95.

2.	 Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now 
and the future. Lancet 2011;377:1276-87.

3.	 Hernlund E, Svedbom A, Ivergård M, Compston J, 
Cooper C, Stenmark J, McCloskey EV, Jönsson B, 
Kanis JA. Osteoporosis in the European Union: medical 
management, epidemiology and economic burden. A 
report prepared in collaboration with the International 
Osteoporosis Foundation (IOF) and the European 
Federation of Pharmaceutical Industry Associations 
(EFPIA). Arch Osteoporos 2013;8:136.

4.	 Chesnut CH 3rd. Osteoporosis, an underdiagnosed 
disease. JAMA 2001;286:2865-6.

5.	 Löffler MT, Kallweit M, Niederreiter E, Baum T, 
Makowski MR, Zimmer C, Kirschke JS. Epidemiology and 
reporting of osteoporotic vertebral fractures in patients 
with long-term hospital records based on routine clinical 
CT imaging. Osteoporos Int 2022;33:685-94.

6.	 Link TM, Kazakia G. Update on Imaging-Based 

Measurement of Bone Mineral Density and Quality. Curr 
Rheumatol Rep 2020;22:13.

7.	 Link TM. Osteoporosis imaging: state of the art and 
advanced imaging. Radiology 2012;263:3-17.

8.	 Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël 
PB, Kirschke JS, Baum T. X-ray-based quantitative 
osteoporosis imaging at the spine. Osteoporos Int 
2020;31:233-50.

9.	 Muehlematter UJ, Mannil M, Becker AS, Vokinger KN, 
Finkenstaedt T, Osterhoff G, Fischer MA, Guggenberger R. 
Vertebral body insufficiency fractures: detection of vertebrae 
at risk on standard CT images using texture analysis and 
machine learning. Eur Radiol 2019;29:2207-17.

10.	 Mookiah MRK, Rohrmeier A, Dieckmeyer M, Mei K, 
Kopp FK, Noel PB, Kirschke JS, Baum T, Subburaj 
K. Feasibility of opportunistic osteoporosis screening 
in routine contrast-enhanced multi detector computed 
tomography (MDCT) using texture analysis. Osteoporos 
Int 2018;29:825-35.

11.	 Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz 
C, Löffler MT, Zimmer C, Baum T, Kirschke JS. 
Opportunistic osteoporosis screening in multi-detector 
CT images via local classification of textures. Osteoporos 
Int 2019;30:1275-85.

12.	 Sekuboyina A, Husseini ME, Bayat A, Löffler M, Liebl H, 
Li H, et al. VerSe: A Vertebrae labelling and segmentation 
benchmark for multi-detector CT images. Med Image 
Anal 2021;73:102166.

13.	 Löffler MT, Jacob A, Scharr A, Sollmann N, Burian E, 
El Husseini M, Sekuboyina A, Tetteh G, Zimmer C, 
Gempt J, Baum T, Kirschke JS. Automatic opportunistic 
osteoporosis screening in routine CT: improved prediction 
of patients with prevalent vertebral fractures compared to 
DXA. Eur Radiol 2021;31:6069-77.

14.	 Dieckmeyer M, Löffler MT, El Husseini M, Sekuboyina A, 
Menze B, Sollmann N, Wostrack M, Zimmer C, Baum T, 
Kirschke JS. Level-Specific Volumetric BMD Threshold 
Values for the Prediction of Incident Vertebral Fractures 
Using Opportunistic QCT: A Case-Control Study. Front 
Endocrinol (Lausanne) 2022;13:882163.

15.	 Sollmann N, Löffler MT, El Husseini M, Sekuboyina A, 
Dieckmeyer M, Rühling S, Zimmer C, Menze B, Joseph 
GB, Baum T, Kirschke JS. Automated Opportunistic 
Osteoporosis Screening in Routine Computed 
Tomography of the Spine: Comparison With Dedicated 
Quantitative CT. J Bone Miner Res 2022;37:1287-96.

16.	 Rühling S, Navarro F, Sekuboyina A, El Husseini M, 
Baum T, Menze B, Braren R, Zimmer C, Kirschke JS. 

https://creativecommons.org/licenses/by-nc-nd/4.0/


Bodden et al. Long-term vBMD and texture feature reproducibility5482

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):5472-5482 | https://dx.doi.org/10.21037/qims-23-19

Automated detection of the contrast phase in MDCT 
by an artificial neural network improves the accuracy of 
opportunistic bone mineral density measurements. Eur 
Radiol 2022;32:1465-74.

17.	 Dieckmeyer M, Sollmann N, El Husseini M, Sekuboyina 
A, Löffler MT, Zimmer C, Kirschke JS, Subburaj K, Baum 
T. Gender-, Age- and Region-Specific Characterization 
of Vertebral Bone Microstructure Through Automated 
Segmentation and 3D Texture Analysis of Routine 
Abdominal CT. Front Endocrinol (Lausanne) 
2021;12:792760.

18.	 Rühling S, Scharr A, Sollmann N, Wostrack M, Löffler 
MT, Menze B, Sekuboyina A, El Husseini M, Braren R, 
Zimmer C, Kirschke JS. Proposed diagnostic volumetric 
bone mineral density thresholds for osteoporosis and 
osteopenia at the cervicothoracic spine in correlation to 
the lumbar spine. Eur Radiol 2022;32:6207-14.

19.	 Vallières M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, 
Aerts HJWL, Khaouam N, Nguyen-Tan PF, Wang CS, 
Sultanem K, Seuntjens J, El Naqa I. Radiomics strategies 
for risk assessment of tumour failure in head-and-neck 
cancer. Sci Rep 2017;7:10117.

20.	 Zhou H, Vallières M, Bai HX, Su C, Tang H, Oldridge D, 
Zhang Z, Xiao B, Liao W, Tao Y, Zhou J, Zhang P, Yang 
L. MRI features predict survival and molecular markers in 
diffuse lower-grade gliomas. Neuro Oncol 2017;19:862-70.

21.	 Vallières M, Freeman CR, Skamene SR, El Naqa I. 
A radiomics model from joint FDG-PET and MRI 
texture features for the prediction of lung metastases in 
soft-tissue sarcomas of the extremities. Phys Med Biol 
2015;60:5471-96.

22.	 Gaztañaga E, Croft RAC, Dalton GB. Variance, Skewness 
and Kurtosis: results from the APM Cluster Redshift 
Survey and Model Predictions. Mon Notices Royal Astron 
Soc 1995;276:336-46.

23.	 Haralick RM, Shanmugam K, Dinstein I. Textural 
Features for Image Classification. IEEE Trans Syst Man 
Cybern 1973;SMC-3:610-21.

24.	 Galloway MM. Texture analysis using gray level run 
lengths. Computer Graphics and Image Processing 
1975;4:172-9.

25.	 Engelke K, Adams JE, Armbrecht G, Augat P, Bogado 
CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans 
DB, Lewiecki EM. Clinical use of quantitative computed 
tomography and peripheral quantitative computed 
tomography in the management of osteoporosis in adults: 
the 2007 ISCD Official Positions. J Clin Densitom 
2008;11:123-62.

26.	 Siminoski K, Lee KC, Jen H, Warshawski R, Matzinger 
MA, Shenouda N, Charron M, Coblentz C, Dubois J, 
Kloiber R, Nadel H, O'Brien K, Reed M, Sparrow K, 
Webber C, Lentle B, Ward LM; STOPP Consortium. 
Anatomical distribution of vertebral fractures: 
comparison of pediatric and adult spines. Osteoporos Int 
2012;23:1999-2008.

27.	 Block JE, Smith R, Glueer CC, Steiger P, Ettinger B, 
Genant HK. Models of spinal trabecular bone loss as 
determined by quantitative computed tomography. J Bone 
Miner Res 1989;4:249-57.

28.	 Mazess RB. On aging bone loss. Clin Orthop Relat Res 
1982;(165):239-52.

29.	 Mannil M, Eberhard M, Becker AS, Schönenberg 
D, Osterhoff G, Frey DP, Konukoglu E, Alkadhi H, 
Guggenberger R. Normative values for CT-based texture 
analysis of vertebral bodies in dual X-ray absorptiometry-
confirmed, normally mineralized subjects. Skeletal Radiol 
2017;46:1541-51.

30.	 Tabari A, Torriani M, Miller KK, Klibanski A, Kalra MK, 
Bredella MA. Anorexia Nervosa: Analysis of Trabecular 
Texture with CT. Radiology 2017;283:178-85.

Cite this article as: Bodden J, Dieckmeyer M, Sollmann N, 
Rühling S, Prucker P, Löffler MT, Burian E, Subburaj K, 
Zimmer C, Kirschke JS, Baum T. Long-term reproducibility of 
opportunistically assessed vertebral bone mineral density and 
texture features in routine clinical multi-detector computed 
tomography using an automated segmentation framework. 
Quant Imaging Med Surg 2023;13(9):5472-5482. doi: 10.21037/
qims-23-19


