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The risk of morbidity and mortality increases exponentially with age. Chronic inflammation,
accumulation of DNA damage, dysfunctional mitochondria, and increased senescent cell
load are factors contributing to this. Mechanistic investigations have revealed specific
pathways and processes which, proposedly, cause age-related phenotypes such as
frailty, reduced physical resilience, and multi-morbidity. Among promising treatments
alleviating the consequences of aging are caloric restriction and pharmacologically
targeting longevity pathways such as the mechanistic target of rapamycin (mTOR),
sirtuins, and anti-apoptotic pathways in senescent cells. Regulation of these pathways
and processes has revealed significant health- and lifespan extending results in animal
models. Nevertheless, it remains unclear if similar results translate to humans. A
requirement of translation are the development of age- and morbidity associated
biomarkers as longitudinal trials are difficult and not feasible, practical, nor ethical when
human life span is the endpoint. Current biomarkers and the results of anti-aging
intervention studies in humans will be covered within this paper. The future of clinical
trials targeting aging may be phase 2 and 3 studies with larger populations if safety and
tolerability of investigated medication continues not to be a hurdle for further investigations.
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INTRODUCTION

As age increases, so does the susceptibility to a series of chronic diseases which ultimately result in
fatal endings. This is such a basic part of life that we rarely consider if there is anything we can do to
postpone it. So far, the principal of “one-disease-one-treatment” has brought medical sciences far but
this line of thought may soon be outdated when it comes to aging related conditions. It is like fighting
a many-headed monster: If one condition is treated successfully, another emerges shortly after. This
point is illustrated as eradicating the two leading causes of death (cancer and cardiovascular disease)
extends mean life span by 3.3 and 4 years, respectively (Arias et al., 2013). Interestingly, the gain of
treating multiple diseases combined exceeds the sum of these numbers.

Aging is the greatest risk factor for most diseases likely because as aging progresses, cells and tissue
undergo a series of processes which result in gradually declining functionality, accumulation of
damage, increased inflammation, and cell death. If these processes are reversable or treatable, all
aging related chronical diseases may potentially be simultaneously treated—or postponed—and
healthy aging could be achieved. This approach to treating aging itself could effectively treat chronic
diseases among the world’s elderly, shifting from treating symptoms of aging to treating the cause of
it. The fact that the number and proportion of elderly people (>65 years) is growing in every country
in the world underlines the relevance of this field of research (World Population Prospects -
Population Division, 2021).

If it is possible to treat the underlying causes of aging it is likely to achieve a prolonged health- and
lifespan. Yet, practical and ethical issues are major bumps on the road to longevity as trials in humans
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are being initiated. It is not feasible for clinical studies to have
lifespan as a primary outcome. Surrogate biomarkers of
lifespan—or more importantly, health span—are necessary for
human trials to advance. Recently, a selection of biomarker
candidates for monitoring aging treatment efficacy were
suggested including blood biochemistry markers for
inflammation, such as c-reactive protein (CRP), and

metabolism, such as insulin like growth factor-1 (IGF-1)
(Justice et al., 2018). Such biomarkers need to be correlated
with aging and morbidity, easily accessible in vivo, respond to
treatment, and present parallel changes with susceptibility to
disease. In addition to single biomarkers, computational power
and machine learning algorithms have allowed the development
of highly accurate complex biomarkers of aging. These include

FIGURE 1 | Biomarkers for clinical trials targeting aging. The effectiveness of interventions can be evaluated by using a combination of biomarkers. In the last years,
different biomarkers have been proposed using various sample- and measurement-types.

TABLE 1 | List of clinical trials targeting aging.

Intervention Outcome References

CR Glucose ↓, Blood pressure ↓ Wierik et al. (1994)
CR Glucose ↓, Blood pressure ↓, resting metabolic rate ↓ Loft et al. (1995)
CR Insulin ↓ Racette et al. (2006)
CR T3 ↓, T4 ↓, Body temperature ↓, Mitochondria ↑, resting metabolism ↓ Civitarese et al. (2007)
CR Cholesterol ↓, Blood pressure ↓ Lefevre et al. (2009)
CR Insulin ↓, body temperature ↓, resting metabolic rate ↓ Heilbronn et al. (2006)
CR DNA methylation pace of aging ↓ Waziry et al. (2021)
CR Body mass ↓, IGF-1/IGFBP1 ↓, IGFBP1 ↑, cortisol ↓ Fontana et al. (2016)
CR Body mass ↓, cholesterol ↓, blood pressure ↓, CRP ↓, insulin sensitivity ↑ Waziry et al. (2021)
NR + PT NAD ↑, liver enzymes ↓, blood pressure↓ Dellinger et al. (2017)
NR + PT No effect on muscle regeneration Jensen et al. (2021)
NR NAD ↑ Martens et al. (2018)
NR NAD (blood) ↑, NAD (muscle) -, IL-2 ↓, IL-5 ↓, IL-6 ↓,TNF-α ↓ Elhassan et al. (2019)
NR No effect Dollerup et al. (2018), Dollerup et al. (2020)
NR Mitochondria ↑, IL-1B ↓, IL-6 ↓, IL-18 ↓ Zhou et al. (2020)
D + Q Gait speed ↑, Walking distance ↑, Char stand ↑ Justice et al. (2019)
D + Q p16 ↓, p21 ↓, IL-1α, IL−2 ↓, IL−6 ↓, IL-9 ↓, MMP-2 ↓, MMP−9 ↓, MMP−12 ↓ Hickson et al. (2019)
RAD001 + BEZ235 (mTOR inhibition) Infections ↓, Immune response ↑ Mannick et al. (2018)
Rapamycin (topical) p16 ↓, Collagen ↑ Chung et al. (2019)
UA Acylcarnitine ↓, mitochondria ↑ Andreux et al. (2019)
Exercise IL-8 ↓ Balan et al. (2020)
Exercise + diet DNA methylation age ↓ Fiorito et al. (2021)
Exercise + diet + sleep + phytochemicals DNA methylation age ↓ Fitzgerald et al. (2021)
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whole-genome DNA methylation (Horvath and Raj, 2018) and
transcriptomic changes as well as other omics-based analyses
(Osborne et al., 2020). Further, simple facial photographs appear
to accurately predict not only age but also morbidity (Dykiert
et al., 2012). In addition, machine learning analyses of a panel of
standard blood biochemistry markers also appear to be able to
predict age and morbidity (Mamoshina et al., 2018). Excitingly,
after decades of work it now appears that we have the possibility
of measuring biological age (Figure 1).

While good biomarkers are just now being described, clinical
trials have already been completed that attempt to target aging. In
the following we will describe key trials that have attempted to
target aging (Table 1). We will specifically focus on interventions
where there is strong preclinical evidence for an effect on aging.
However, we encourage the reader to also investigate emerging
interventions such as stem cell reprogramming (Sarkar et al.,
2020), senescence immunotherapy (Song et al., 2020),
microbiome augmentation (Wilmanski et al., 2021) as well as
more targeted nutraceutical interventions (Sharma and Padwad,
2020) that could prove revolutionary for healthy aging.

CALORIE RESTRICTION

Calorie restriction (CR) is a dietary intervention with sufficient
nutrition but reduced overall calorie content that has been shown
to extend the lifespan of organisms from yeast to primates (de
Cabo and Mattson, 2019). Throughout the 1990s, a series of CR
studies investigated the effect of various grades of CR on glucose
metabolism, blood pressure, and other vital parameters in
humans. Reductions in glucose concentrations, systolic and
diastolic blood pressure were observed (Wierik et al., 1994;
Loft et al., 1995). Both body mass and resting metabolic rate
were reduced. Interestingly, the resting metabolic rate decrease
was greater than expected when adjusting for weight (residual
resting metabolic rate), indicating possible CR-induced metabolic
adaptive mechanisms. The Washington University CALERIE
group conducted a 12-month randomized trial with 48
healthy, overweight, non-obese (mean BMI 27.3 kg/m2),
middle-aged individuals (Racette et al., 2006). Accordingly, a
decrease in fasting insulin and improved insulin sensitivity has
been reported after CR. However, TNF-α levels showed no
changes between the CR and control group, suggesting no
effect of CR on inflammation (Weiss et al., 2006). CR also
caused reductions in plasma T3 and T4 levels at 3 and
6 months, and core body temperature and DNA damage were
significantly reduced among all intervention groups. Decreased
activity of the antioxidant superoxide dismutase (SOD) suggested
reduced oxidative stress (Civitarese et al., 2007), although protein
carbonylation (another marker of oxidative stress) remained
unchanged (Heilbronn et al., 2006). Gene expression of
proteins involved in mitochondrial functioning, (SIRT1,
endothelial nitric oxide synthase, and Presenilin-associated
rhomboid-like protein, PARL) increased after CR, along with
mtDNA levels which increased by 35%. Though, no changes were
observed in the activity of key enzymes involved in the Krebs’
cycle (citrate synthase), beta oxidation (beta-hydroxyacyl-CoA

dehydrogenase), or electron transport chain (cytochrome C
oxidase II). In general, it appears that CR confers diverse
health benefits upon metabolism and inflammation.

CR caused a change in lipid profile, reducing low density
lipoprotein (LDL) cholesterol and triglyceride levels and
increasing high density lipoprotein (HDL) cholesterol levels
(Lefevre et al., 2009; Kraus et al., 2019). This was also
observed by Kraus et al. with cardiovascular markers
improved with reduced diastolic blood pressure and a decrease
in CRP (Kraus et al., 2019). However, one study found that
inflammatory markers (hsCRP, TNF-α, IL-6) increased with only
IL-6 changes reaching significance (Larson-Meyer et al., 2008).
Furthermore, adiponectin levels were increased significantly and
despite its increasing effect on energy expenditure, residual
resting metabolic rate was reduced in all intervention groups
and not in the control group (Civitarese et al., 2007). A decrease
of resting metabolic rate was observed by Heilbronn et al., but CR
led to a decrease 6% greater than expected among intervention
groups compared to control groups, indicating metabolic
adaptions, similar to what Loft and colleagues observed
2 decades earlier (Loft et al., 1995; Heilbronn et al., 2006).
Work from rhesus monkeys have suggested that glycemic load
might impact lifespan extension in response to CR (Mattison
et al., 2017). However, in a 6 months trial on humans exposed to
high glycemic load CR and low glycemic load CR both
interventions led to similar changes in markers of oxidative
stress (Meydani et al., 2011).

Calorie reduction induces metabolic, inflammatory changes
proposed to extend life span in animal models (de Cabo and
Mattson, 2019). Randomized, placebo-controlled, clinical trials in
humans have produced similar results, as cardiovascular factors
have improved (blood pressure and lipid profile) and metabolism
has been more efficient (increased insulin sensitivity). More
recently, a trial investigated the effect of CR on DNA
methylation markers of aging was performed on a
considerable group of individuals (n = 175). Somewhat
disappointingly, only changes in some DNA methylation
biomarkers were observed perhaps suggesting that CR mainly
affects healthspan and not the pace of aging (Waziry et al., 2021).
In total, biomarkers suggest promising health-improving results
of CR in humans, however, the feasibility of CR in humans
outside of a clinical setting is quite limited. Thus, CR mimetics,
such as metformin are of huge interest. Metformin is an
established anti-diabetic drug which has improved health and
lifespan substantially in mice (Martin-Montalvo et al., 2013).
Interestingly, a study has shown that human diabetics treated
with metformin live longer than non-diabetics not treated with
metformin, suggesting that metformin not only treats diabetes
but provides health-gaining effects beyond that (Bannister et al.,
2014). A multi-center, 6-year clinical trial with 3,000 subjects
[Targeting Aging with Metformin (TAME)] is soon to be
underway and will specifically investigate the anti-aging effects
further (Justice et al., 2018). Further, altering dietary patterns with
intermittent fasting periods has shown considerable potential as
an intervention that is easier to implement than CR but yields the
same benefits (de Cabo and Mattson, 2019). It will be exciting to
see how these interventions affects human aging in larger cohorts.
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In sum, CR appears to increase parameters of health in
humans yet the effect of CR on biomarkers of aging are still
under investigation.

NAD+ SUPPLEMENTS

NAD+ and NADH are the oxidized and reduced forms,
respectively, of the metabolite nicotinamide adenosine
dinucleotide (NAD). NAD+ is an important indicator of
intracellular energy. NAD+ levels deplete with age perhaps due
to age-associated mitochondrial dysfunction (Zhu et al., 2015),
increased expression of the NAD metabolizing enzyme CD38
(Covarrubias et al., 2020) or through an accumulation of DNA
damage driving NAD+ depletion via PARP1 activation (Fang
et al., 2014; Scheibye-Knudsen et al., 2014; Keijzers et al., 2017).
Importantly, NAD levels can be increased through ingestion of
biochemicial precursors nicotinamide riboside (NR) and
nicotinamide mononucleotide (NMN) (Petr et al., 2020).
Notably, increasing NAD levels has been shown to extend the
lifespan of mice (Zhang et al., 2016) and improve physological
parameters in old animals (Gomes et al., 2013).

The safety and efficacy of the combination of 250/500 mg NR
and 50/100 mg pterostilbene (PT, a polyphenol in blueberries
NRPT) was investigated among 120 elderly subjects between the
ages of 60 and 80 years (Dellinger et al., 2017). The eight-week,
randomized, double-blinded, and placebo-controlled study
showed that in general the intervention was safe. NRPT
treatment elevated NAD+ levels in whole blood in a dose
dependent manner and no change in NAD+ levels was
observed in the placebo group. Interestingly, low dose NRPT
showed a significant reduction in circulating levels of the liver
enzyme alanine transaminase (ALAT) and a significant reduction
in diastolic blood pressure at day 60. Higher dose NRPT
improved mobility of the elderly individuals. Obviously, it is
unclear if these interesting effects stem from PT or NR
treatments.

NRPT was also tested in the context of muscle injury in the
elderly. Thirty-two elderly men and women were recruited to the
study and treated with 1,000 mg/200 mg of NRPT (Jensen et al.,
2021). After 2 weeks of treatment muscle injury was induced
through electric stimulation and muscle biopsies were collected at
multiple time intervals after the injury. While the injury was
clearly observable no effect was seen of the NRPT treatment.

Another double-blinded trial on 30 subjects investigated if
daily 1 g NR supplementation for 6 weeks is tolerated and
stimulates NAD+ metabolism in healthy, normal weight,
middle-aged and older humans (Martens et al., 2018). No
adverse effects were reported, and no differences were seen
between NR or placebo treatment in hematology, kidney
function, liver enzymes, and lipid profile, and clinical
laboratory values never exceeded the normal reference
intervals. Isolation of peripheral blood mononuclear cells
revealed a significant 60% increase in NAD+ levels in the NR
group compared to the placebo group. Martens and his colleagues
observed no effects of NR treatment on markers of metabolic

function, exercise capacity, BMI and fat percentage or overall
motor function compared to placebo.

Another, smaller study suggested similar conclusions. Twelve
overweight, elderly, healthy men were given 1 g NR supplement
for 21 days in a placebo-controlled, double-blinded, randomized,
crossover study with a 21-day washout period between NR and
placebo treatment (Elhassan et al., 2019). NR was well tolerated
during the treatment with no adverse effects reported. Clinical
biochemical analysis revealed no changes of hematology and
kidney, liver, and thyroid function. Whole venous blood,
urine, and skeletal muscle were analyzed for NAD+ levels. In
whole blood, NAD+ levels doubled, nicotinic acid adenine
dinucleotide (NAAD) levels increased 4.5-fold, and NMN
increased 40% during NR treatment. Notably, in skeletal
muscle, NR supplement did not increase NAD+ levels
compared to placebo, but concentrations of NAAD doubled.

Cell motility, cell adhesion, and actin cytoskeleton
organization genes were upregulated upon NR treatment in
skeletal muscle. Genes related to energy metabolism
(glycolysis, Krebs’ cycle, mitochondria) were significantly
downregulated and no change in transcription of key genes of
NAD+ metabolism was found. It has previously been reported
that glycolysis increases in mouse cardiac cells upon NR
treatment (Diguet et al., 2018), but the results of Elhassan
et al. did not support this, as the expression of glycolytic
enzymes was unchanged. Skeletal muscle biopsies revealed no
change in mitochondrial bioenergetics after NR treatment. Nor
was sirtuins (NAD+-dependent protein deacetylases) activity
changed in skeletal muscle in the NR group. Some
proinflammatory biomarkers saw reduced levels, as IL-6, IL-5,
IL-2, and TNF-α decreased significantly upon NR treatment
compared to baseline values. Other biomarkers of
inflammation, including hsCRP, remained unchanged. Fasting
glucose, fasting insulin, insulin resistance, blood pressure, body
weight, lipid profile remained unchanged. Physical markers of
frailty did not change due to NR either, as hand grip and body-
weight-adjusted relative strength did not differ between groups
(Elhassan et al., 2019). Though, this is not surprising as physical
strength is not expected to increase after 21 days of supplement
and no muscle training, supported by a meta-study on
sarcopenia, suggesting a minimum three-month intervention
in order to improve muscle strength (Yoshimura et al., 2017).
Interestingly, in a study of heart failure patients NR also appeared
to decrease markers of inflammation although the study is quite
underpowered (Zhou et al., 2020).

NAD+ depletion is suspected as a factor of aging-related
diseases, causing metabolic dysfunction. The effects of NR
supplement on insulin sensitivity and other metabolic
parameters were investigated in a 12-week study (Dollerup
et al., 2018). NR supplement (2 g/day) or placebo was given to
40 healthy, sedentary, obese, insulin-resistant men. NR did not
change insulin sensitivity, rate of lipolysis, resting energy
expenditure, respiratory exchange ratio, HbA1c, fasting
glucose, insulin, ALAT, body composition or cholesterol levels
compared to placebo. In a follow up study, Dollerup et al. further
investigated the effect of NR on mitochondrial function in obese
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and insulin resistant men and observed no effect of 1 g NR per
day for 12 weeks (Dollerup et al., 2020).

NR is not the only NAD metabolite well-tolerated in humans.
Ten healthy men were monitored for 5 h after non-blinded oral
consumption of either 100, 250, or 500 mg nicotinamide
mononucleotide (NMN). The doses were well tolerated and
did not result in severe AEs (Irie et al., 2020).

To summarize progress on human trials with NAD
supplement, researchers are still at the early stage of human
studies, investigating the safety and dosage of NAD+-increasing
molecules. So far, NR supplementation, NAD+ levels and
metabolites related hereto have been elevated significantly as a
result of oral NAD supplement. Effects of increased NAD+ levels
on metabolic and mitophagic pathways through exogenous
supplements have not been demonstrated and remain to be
investigated thoroughly in large-scale trials, covering longer
periods of time to investigate potential benefits beyond a
limited treatment duration.

TARGETING SENESCENT CELLS WITH
SENOLYTICS

An accumulation of senescent cells is a hallmark of aging. They
can occur due to damage-associated signals like DNA damage,
telomere erosion, ROS accumulation, NAD+ depletion,
inflammatory signals, pathogen-associated molecular patterns,
damage-associated molecular patterns, oncogenes, and signals
from dysfunctional mitochondria (McHugh and Gil, 2018).
Importantly, removal of these cells using genetic or
pharmacological (so called senolytics) interventions appear to
extend the health- and lifespan of mice and these approaches have
recently begun to be translated to humans.

Idiopathic pulmonary fibrosis is a fatal disease associated with
aging related hallmarks including telomere attrition, oxidative
stress, DNA damage, inflammation, and particularly cellular
senescence (Waters et al., 2018). Studies of idiopathic
pulmonary fibrosis mice indicate positive effects of the
senolytic drugs dasatinib and quercetin (D + Q) on
pulmonary and physical function (Schafer et al., 2017) and a
study with idiopathic pulmonary fibrosis patients, mainly
investigating the safety of D + Q treatment, suggests beneficial
effects on physical function in humans as well (Justice et al.,
2019). Fourteen idiopathic pulmonary fibrosis patients were
treated with D + Q for 3 weeks and the results showed not
only significant but also clinically meaningful improvements in
physical function including 6-min walking distance, 4-m gait
speed, and chair-stand time. The study showed no effect of D + Q
treatment on pulmonary function, clinical chemistries, reported
health, and frailty. The study was not initially intended to
investigate effects on circulating senescent associated secretory
phenotype (SASP, pro-inflammatory markers of cellular
senescence) factors but weak indications of such were
suggested (Justice et al., 2019).

Increased senescent cell burden is associated with diabetes and
kidney dysfunction, especially in adipose tissue of these patients.
A clinical trial investigated the effect of D + Q on adipose tissue

senescent cells in humans (Hickson et al., 2019). Eleven subjects
with diabetes and kidney dysfunction were treated with D + Q for
3 days. Results revealed a significant decrease in markers of
senescence and further analysis of the cellular composition
supported a significantly decreased senescent cell burden in
adipose tissue. Finally, the study supported a suggestion
proposed by Justice et al. (2019), as D + Q significantly
reduced circulating SASP factors in patients.

Testing of senolytics in humans have so far shown
promising results in improving physical function in
idiopathic pulmonary fibrosis patients and reducing
senescence load in patients with diabetes and kidney
dysfunction. Non-pharmaceutical interventions have also
been proposed as senescence-reducing treatments:
Endurance training did seem to affect inflammation in
skeletal muscle, but no changes on senescence was
observed. In a recent study, preliminary results indicate the
failure of a phase two trial investigating 12-week senolytical
treatment of knee osteoarthritis, with the full results yet to be
presented (UNITY, 2021) Biotechnology Announces 12-week
data from UBX0101 Phase 2 Clinical Study in Patients with
Painful Osteoarthritis of the Knee Unity Biotechnology. There
could be many reasons why the trial failed, perhaps the
approach is simply not feasible for this disease, perhaps the
drug concentrations used were wrong, perhaps the inclusion
criteria could have been tighter or wider etc., With that being
said, clinical trials with senescence-reducing interventions are
still at an early stage and need further investigation. Though,
drug tolerance and safety have not been issues, paving the way
for future trials.

CLINICAL TRIALS TARGETING MTOR

mTOR inhibition with rapamycin has shown promising life
extending results in animal models (Harrison et al., 2009).
Rapamycin has been used in the clinic as an
immunosuppressant for kidney transplant and the side
effect profile is relatively well studied in this patient
population (Li et al., 2014). However, mTOR inhibitors
such as rapamycin has also been tested in healthy elderly
with little to no side effects reported after up to 8)weeks of
treatment (Kraig et al., 2018; Mannick et al., 2018). A main
concern inhibiting mTOR in the elderly is the possibility of
immune suppression. However, six-week treatment with an
mTOR inhibitor revealed promising results in 264 elderly
individuals (Mannick et al., 2018). Whole blood mRNA
sequencing analysis showed that genes involved in anti-viral
immune response were upregulated significantly in the
treatment group, and infections rates were reduced
significantly compared to placebo treatment. No significant
effects on inflammatory markers were observed as IL-6,
interferon-gamma, TNF-α, and IL-18 concentrations
remained unchanged. Furthermore, the immune response to
an influenza vaccine showed significant improvements in the
treatment group as hemagglutination inhibition tests showed
increased anti-viral antibody response. The results indicate
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that TORC1 inhibition improves systemic immune function in
the elderly with decreased infection rates and upregulated
immune function perhaps due to an augmentation of
interferon mediated viral defences (Mannick et al., 2018).

Further clinical evidence for mTOR as a target for aging
comes from topical rapamycin treatment on senescence in
aging human skin (Chung et al., 2019). Seventeen subjects over
40 years and with age-related photoaging of skin applied
rapamycin-containing hand cream to the dorsal side of the
same hand and placebo hand cream to the other, daily or every
other day for 8 months. The rapamycin-treated hands showed
significantly reduced p16INK4A protein levels, indicating
reduced skin senescence. Collagen VII protein, critical to
the basement membrane integrity, increased significantly
upon rapamycin treatment, which was supported by
clinically improved skin appearances as the treated hands
appeared younger than the other on photographs.
Immunohistochemical analysis revealed histological
improvements of skin tissue. The results indicated that
rapamycin treatment potentially has anti-aging effects in
humans—at least in skin.

A main effect of mTOR inhibition is the activation of
autophagic pathways such as mitophagy that removes
damaged mitochondria. Functional mitochondria are
essential to a healthy organism as they are important in
oxidative metabolism, lipid metabolism, production and
handling of ROS, and apoptotic signaling pathways
(Wallace et al., 2010). With age, the efficiency of mitophagy
mechanisms decrease and faulty mitochondria accumulate.
This aging-related process is closely associated with slowed
walking speed, reduced muscle strength, and other aging
phenotypes in humans (Coen et al., 2013; Kauppila et al.,
2017; Zane et al., 2017; Bakula and Scheibye-Knudsen, 2020).
The AMPK-SIRT1 axis is involved in mitochondrial health as
activation hereof induces mitophagy. AMPK induces the PGC-
1α transcription factor, a regulator of autophagy, while SIRT1
activates UCP-2 (uncoupling protein 2), stimulates mitophagy,
and alleviates aging features in preclinical models (Fang et al.,
2014; Scheibye-Knudsen et al., 2014). Currently, the strategies
of treating declining mitophagy include NAD+ supplements,
activation of AMPK and/or SIRT1 via other substrates, and
mTOR inhibition. Urolithin A (UA) proposedly inhibits
mTOR and has shown promising improving results on
mitochondrial health, life span, and endurance capacity in
animal models (Ryu et al., 2016) and is generally recognized as
safe by the US Food and Drug Administration. A 2019 clinical
trial showed significant improvements of UA treatment on
mitochondrial health as plasma acylcarnitine (an inverse
indicator of mitochondrial function and fatty acid oxidation
capacity) levels decreased and skeletal muscle expression of
essential mitochondrial genes increased, supported by
microarray analysis of mRNA levels (Andreux et al., 2019).
Quantitative PCR (qPCR) analysis showed that mtDNA levels
increased significantly. Interestingly, similar trends have been
observed in physically active humans as endurance training
triggers mitochondrial biogenesis and improved fatty acid
oxidation (Jeppesen et al., 2012).

EXERCISE

Endurance training is associated with reduced systemic and
muscle inflammation, and telomere-improving mechanisms
can be seen in long-term high-intensity cross country skiers
(Beavers et al., 2010; Østhus et al., 2012). A recent study
investigated if endurance training affects senescent cells in
skeletal muscle (Balan et al., 2020). Thirtyfour men were
divided into four groups based on age and cycling experience
(young sedentary, old sedentary, young trained cyclist, and old
trained cyclist) and skeletal muscle biopsies were taken.
Quantification of telomere-associated DNA damage and SA-β-
Gal staining showed increased senescent cell levels in older
individuals, unaffected by endurance training status. Similarly,
mRNA levels of p16 and p21 increased with age (4-fold and 2-
fold, respectively), independent of training status, suggesting
increased senescence. Old age was also associated with
doubled CD68 mRNA levels, hinting increased macrophages in
skeletal muscle, possibly due to increases in SASP. With regards
to inflammatory status, training did seem to play a role as IL-8
mRNA levels were significantly reduced by 70% in trained
individuals compared to sedentary. TNF-α mRNA levels were
decreased by 40% in trained individuals, but the change did not
reach significance. Overall, the study argues that endurance
training reduces inflammation in young and old men while
senescence levels increase with age and are perhaps unaffected
by endurance training.

Recently, reversal of DNA methylation age has been shown in
a randomized trial on 43 adult males aged 50–72 subjected to
multiple interventions targeting diet, sleep, exercise and others
(Fitzgerald et al., 2021). Here, the intervention cohort showed a
3.23 year age reversal. These findings have been corroborated in a
larger 2-year study on 219 women subjected to diet and exercise
where the intervention group showed significant reduction in a
marker of DNA methylation age (Fiorito et al., 2021). Clearly,
these prospective trials show that epigenetic markers of aging can
indeed be reversed.

DISCUSSION

Clearly, several trials have shown that targeting aging is feasible in
humans. Calorie restriction has been associated with protective
cardiovascular effects (lowered blood pressure and improved
lipid profile), improved mitochondrial biogenesis and
metabolic efficiency (increased insulin sensitivity). A drawback
of calorie restriction is that the feasibility is quite low for most
humans. Of note, some evidence suggests that the Mediterranean
diet, a diet rich in greens, fish, nuts and oil, may affect similar
processes as caloric restriction with a reduction in cardiovascular
risk (Estruch et al., 2018). Recently, an improvement of the
immune function and an augmented gut microbiome has been
suggested as possible mechanisms underlying the beneficial effect
of the Mediterranean (Maijo et al., 2018; Ghosh et al., 2020).
However, altering dietary patterns can be challenging and calorie
restriction mimetics may be a promising alternative. NAD+

supplements are safe in humans and increase NAD+-related
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metabolites but the influence on cellular energy-sensing
pathways, and aging itself, has not shown clear results. Trials
with senolytics have shown promising systemic results in subjects
with idiopathic pulmonary fibrosis, diabetes, and kidney
dysfunction. Nevertheless, senescence is an essential anti-
cancer mechanism and interfering with this may be associated
with cancer development (Heckenbach et al., 2021). Also,
senolytics might even cause further inflammation in already
inflamed tissues if a compromised immune system (due to
immunosenescence) may not be able to handle increased loads
of apoptotic bodies following senolytica-induced apoptosis of
senescent cells (McHugh and Gil, 2018). Other potential side
effects are delayed skin healing and unwanted targeting of
proliferating cells (Zhu et al., 2017). Although senolytics are
actively developed for anti-aging treatment, clinical researchers
must step carefully in future regulation of these pathways.
Further, mTOR inhibition causes improved mitochondrial
function, dermatological skin improvements and overall
improved immune function in elderly individuals, possibly by
lowering immunosenescence.

An important feature of potential aging drugs must be a
relative absence of side-effects. Here, the benefit of utilizing
wide-spread drugs that are approved for treatment of other
diseases is that safety and tolerability is already thoroughly
investigated, making it possible to commence larger-scale trials
sooner. However, if treatment duration is prolonged periods of
time, the health gaining effects must outweigh potential side-
effects. For example: Dasatinib can cause gastrointestinal
bleeding and liver damage (Liu et al., 2020). A possible
approach to avoid this may be combining medication,
i.e., handling rapamycin-caused glucose dysmetabolism with
metformin (Blagosklonny, 2019).

A bump on the road for expansion of aging trials is the
inclusion of mainly healthy subjects in current anti-aging
clinical trials, as long lists of wide-spread morbidities and
medication often are among exclusion criteria. Thus, studies
may include only exceptionally healthy elderly where effects of
therapies targeting aging may be less efficient. Further, this
could cause a blind-spot in catching potential side-effects of
aging treatments as the side-effects may be related to other
conditions (Vaiserman et al., 2021). Instead, one could
consider having slightly less stringent inclusion criteria
which would allow individuals with mild chronic diseases
(eg. hypertension) to be included. Similarly, an estimated 1/
3 of all elderly receive five or more prescription drugs,

potentially resulting in missed drug-drug interactions
(Maher et al., 2014).

Medication often has a therapeutical concentration window,
where too little poses no effect and too much is toxic (Gagne et al.,
2013). The same principle is relevant in anti-aging treatment but
may include an additional temporal aspect. Initiation of some
anti-aging treatments may require early intervention and might
not be efficient if subjects are already old, while other treatment
forms may show promising results in the elderly but cause
unwanted, harmful side-effects in healthy, young subjects. This
temporal therapeutical window has been experimentally observed
in cancers (Lin et al., 2020) and could cause major issues for anti-
aging clinical trials. If no effect of a treatment is observed due to
“incorrect” age of subjects or if it simply has no effect in any age-
group can only be investigated by comparing identical studies on
different age-groups. Preclinical studies might assist in hinting at
potential age-windows for treatment, but clinical trials have to
face the issue in some degree (Vaiserman et al., 2021).

In conclusion, clinical trials targeting aging in humans have
shown promising but limited results on biomarkers so far. With
the emergence of AI driven complex age- and health-predictors
that finally allows us to accurately measure the aging process, this
will likely change. Nevertheless, biomarkers should be chosen
carefully considering the specific trial that is investigated and the
likelihood of affecting that specific marker. Indeed, as pointed out
a list of biomarkers for monitoring healthy aging has been
proposed and shown to be mutable in patients population,
suggesting that aging can indeed be targeted in humans.
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