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Abstract
As a major metabolite of kynurenine in the oxidative
metabolism of tryptophan, kynurenic acid is of considerable
biological and clinical importance as an endogenous antago-
nist of glutamate in the central nervous system. It is most
active as an antagonist at receptors sensitive to N-methyl-D-
aspartate (NMDA) which regulate neuronal excitability and
plasticity, brain development and behaviour. It is also thought
to play a causative role in hypo-glutamatergic conditions such
as schizophrenia, and a protective role in several neurode-
generative disorders, notably Huntington’s disease. An addi-
tional hypothesis, that kynurenic acid could block nicotinic
receptors for acetylcholine in the central nervous system has
been proposed as an alternative mechanism of action of
kynurenate. However, the evidence for this alternative mech-
anism is highly controversial, partly because at least eight
earlier studies concluded that kynurenic acid blocked NMDA
receptors but not nicotinic receptors and five subsequent,
independent studies designed to repeat the results have failed

to do so. Many studies considered to support the alternative
‘nicotinic’ hypothesis have been based on the use of analogs
of kynurenate such as 7-chloro-kynurenic acid, or putatively
nicotinic modulators such as galantamine, but a detailed
analysis of the pharmacology of these compounds suggests
that the results have often been misinterpreted, especially
since the pharmacology of galantamine itself has been
disputed. This review examines the evidence in detail, with
the conclusion that there is no confirmed, reliable evidence for
an antagonist activity of kynurenic acid at nicotinic receptors.
Therefore, since there is overwhelming evidence for kynure-
nate acting at ionotropic glutamate receptors, especially
NMDAR glutamate and glycine sites, with some activity at
GPR35 sites and Aryl Hydrocarbon Receptors, results with
kynurenic acid should be interpreted only in terms of these
confirmed sites of action.
Keywords: cholinergic receptors, galantamine, kynurenic
acid, kynurenine, nicotinic receptors, NMDA receptors.
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Introduction: the kynurenine pathway and
receptors

The kynurenine pathway accounts for the metabolism of
around 95% of free tryptophan (Fig. 1). Kynurenine is a
product of tryptophan oxidation by indoleamine-2,3-dioxy-
genases (IDO-1 or IDO-2) or tryptophan-2,3-dioxygenase
(TDO) and is further oxidised to quinolinic acid and
nicotinamide adenine dinucleotide. Interest in the pharma-
cological importance of the kynurenine pathway in the
central nervous system (CNS) dates from the observation that
quinolinic acid is a selective agonist at ionotropic glutamate
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receptors sensitive to N-methyl-D-aspartate (NMDA), pro-
ducing neuronal excitation (Stone and Perkins 1981; Perkins
and Stone, 1983). Shortly afterwards it was found that another
tryptophan catabolite, kynurenic acid, also had pharmacolog-
ical activity, blocking glutamate receptors especially those
activated byNMDA (Perkins and Stone 1982). The conclusion
that kynurenate was a selective antagonist was supported by a
subsequent series of functional studies detailed below, and by
Sakurai et al. (1991) who showed that the highly selective
NMDA receptor blocker dizocilpine (MK-801) was displaced
by kynurenic acid, while others have shown a lack of activity at
a range of receptor sites including, most recently, opiate
binding (Zador et al. 2014) (Fig. 2).
Since then evidence has been obtained for a major role of

NMDA receptors in synaptic transmission and plasticity
including learning and memory and other aspects of cognition
(Tsien et al. 1996; Cammarota et al. 2000; Bartlett et al. 2007;
Berberich et al. 2007; Zorumski and Izumi 2012; Paoletti et al.
2013; Mukherjee et al. 2014). Since maintained or excessive
activation of NMDA receptors causes cellular calcium over-
load, quinolinic acid can produce excitotoxicity and neurode-
generation (Stone and Addae 2002; Kalia et al. 2008;
Hardingham 2009; Hardingham and Bading 2010; Danysz
and Parsons, 2012; Guillemin, 2012; Stone et al. 2012a,b;
Lovelace et al. 2017), again balanced or prevented by
endogenous levels of kynurenic acid (Harris et al. 1998;
Sapko et al. 2006; Stone and Darlington 2013). This balance
between quinolinic acid as an agonist and kynurenic acid as an
antagonist can be controlled by the relative expression and
activity of kynurenine aminotransferases (KATs), kynureni-
nase and kynurenine-3-mono-oxygenase (Fig. 1), perhaps
indicating a significant physiological or pathological rele-
vance of the quinolinate/kynurenate ratio. Correspondingly,
disorders of cognition have been linked with high levels of
kynurenate and ascribed to the slowing or suppression of
excitatory neurotransmission by this compound (Stone and
Darlington 2013; Schwieler et al. 2015; Erhardt et al. 2017).
Schizophrenia, for example, has been linked closely with

kynurenic acid concentrations in the CNS (Stone and
Darlington 2013; Cho et al. 2017; Plitman et al. 2017; Erhardt
et al. 2017; Ogyu et al. 2018; Laumet et al. 2017; Dantzer et al.
2011; Kindler et al. 2019). In schizophrenia, the concentration
of kynurenate in the brain is elevated above normal and
nucleotide polymorphisms of kynurenine pathway enzymes
have been identified (Wonodi and Schwarcz 2010; Holtze
et al. 2012; Stone and Darlington 2013; Erhardt et al. 2017;
Hahn et al. 2018). Work in progress is attempting to identify
inhibitors of KAT as potential treatments for schizophrenia.
Conversely, raising kynurenic acid levels in the CNS by
inhibiting the enzyme kynurenine-3-monoxygenase (Forrest
et al. 2016) has overall neuro-inhibitory and neuroprotective
effects which are potentially of value in the treatment of
neurodegenerative disorders, especially Huntington’s disease
(Stone 2001a; Stoy et al. 2005; Giorgini et al., 2005, 2013;

Guidetti et al. 2006; Forrest et al. 2010; Schwarcz et al. 2010;
Stone et al. 2012a,b; Lovelace et al. 2017; Jacobs et al., 2018).
Kynurenine metabolites, especially quinolinic acid and
kynurenic acid may also be involved in the brain damage
resulting from cerebral infarcts (strokes), and may be involved
in dysfunctional conditions such as multiple sclerosis (Love-
lace et al. 2016, 2017; Lim et al. 2017).
Perhaps even more importantly, raising kynurenic acid

levels in the developing embryo or neonatal animals results
in changes in CNS anatomy (neocortex, hippocampus,
cerebellum), physiology and behaviour which persist well
into adulthood (Pocivavsek et al. 2012; Alexander et al.,
2012, 2013; Forrest et al., 2013a,b; Khalil et al., 2014; Pisar
et al. 2014). This carries fundamental implications for the
effects of environmental influences on embryonic develop-
ment in humans, since infections and inflammation induce
and activate IDO-1 and other enzymes in the kynurenine
pathway, while stress – via the hypothalamo-pituitary-
adrenal axis and the secretion of corticosteroids – induces
and activates tryptophan-2,3-dioxygenase (Fatokun et al.
2013).
In view of these clinical connections it is important to

understand the sites and mechanisms of action of kynurenic
acid (Schwarcz and Stone 2017). The blockade of NMDA
receptors has been confirmed and supported in countless
reports since 1982 as detailed below, with kynurenate rapidly
becoming a routine tool for the exploration of glutamate’s
physiological activity and pathological relevance (see Stone
and Burton 1988; Stone 1993; Stone and Darlington, 2002;
Moroni et al. 2012; Schwarcz et al. 2012). In addition, a
large number of compounds developed to block glutamate
activity are based on the structure of kynurenic acid (see
Stone 2000a,b), including halogenated derivatives (Kemp
et al 1988; Foster et al 1992), quinoxalines (Leeson et al.
1991; Leeson and Iversen, 1994), tetrahydroquinolines
(Carling et al. 1992; Leeson et al. 1992; Cai et al. 1996)
and indolyl-propionic acid derivatives (Salituro et al. 1992).
The status and value of kynurenate as an endogenous,
reliable and reproducible antagonist at glutamate receptors,
especially NMDA receptors is, therefore, very well estab-
lished from functional, binding and electrophysiological
analyses as detailed in the following sections.
Throughout most of this earlier work the selectivity of

kynurenate and its interactions with glutamatergic systems
was emphasised by the absence of any interaction with
cholinergic receptors, as will be described below. A debate
has developed, however, initiated by a report that kynurenic
acid could block nicotinic receptors for acetylcholine and
other ligands (Hilmas et al. 2001), possibly at lower
concentrations than those which blocked NMDAR. This
concept has been used to interpret a range of results using
kynurenate and its synthetic analogs and to argue that the
primary physiological and pathological role of kynurenic
acid may be mediated by a blockade of nicotinic receptors in
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Fig. 1 A schematic of the kynurenine pathway of tryptophan metabolism.
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the CNS. The present overview examines the evidence for
actions of kynurenic acid on NMDA and nicotinic receptors
and assesses the validity of studies which have been based on
these concepts.

Functional studies on kynurenic acid

Electrophysiological studies

In the first studies to report receptor-specific actions of
compounds in the kynurenine pathway, quinolinic acid was
found to depolarise neurons in the cerebral cortex of
anaesthetised rats (Stone and Perkins, 1981, Perkins and
Stone, 1983), and actions mediated by NMDA receptors since
it was blocked selectively by the newly reported and highly
selective antagonists 2-amino-5-phosphono-pentanoic acid
(Davies et al. 1981; Perkins et al. 1981; Stone et al. 1981) and
its more potent analogue 2-amino-7-phosphono-heptanoic
acid (Perkins et al. 1982; Stone 1986). Subsequent testing of
other compounds in the kynurenine pathway using similar

microiontophoretic applications to single neurons in vivo
(Stone 1985) led to the identification of the antagonistic
activity of kynurenic acid (Perkins and Stone 1982). Kynure-
nate was found to block all three ionotropic receptor subtypes
for glutamic acid (known then as NMDA, kainate and
quisqualate receptors) but with greatest potency blocking
NMDA receptors (Perkins and Stone 1982). This receptor
selectivity of kynurenate was later confirmed in different
regions of the CNS (Ganong et al. 1983; Elmslie and
Yoshikami 1985; Herrling 1985; Peet et al., 1986; Cotman
et al., 1986; Curry et al., 1986; Ganong and Cotman, 1986),
although the potency of kynurenate as antagonist varied, being
active at concentrations fivefold lower in the spinal cord, for
example, than in the neocortex (Ganong et al 1983).
Correspondingly, kynurenate was soon found to inhibit

monosynaptic and polysynaptic potentials in the spinal cord
and hippocampus (Ganong et al., 1983; Stone and Perkins,
1984; Harris and Cotman, 1985; Stevens and Cotman, 1986)
and to inhibit spontaneous miniature glutamate-mediated

Fig. 2 A summary of the major molecular targets known for kynurenic

acid, with an indication of the qualitative and quantitative activity
expanded in the text. The citation numbers refer to the following: [1]
Henderson et al., 1990; [2] Watson et al. 1988; [3] Kessler et al. 1989a;
[4] Kessler et al. 1989b; [5] Kloog et al. 1990; [6] Mayer et al. 1988; [7]

Olverman et al. 1988; [8] Moroni et al. 1989; [9] Robinson et al. 1985;

[10] Danysz et al. 1989a; [11] Danysz et al. 1989b; [12] Fisher and
Mott, 2011; [13] DiNatale et al. 2010; [14] Opitz et al. 2011; [15] Kimura
et al. 2017; [16] Wang et al. 2006; [17] Guo et al. 2008; [18] Kubicova
et al. 2019; [19] Lugo-Huitron et al. 2011.
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synaptic potentials (Cotman et al. 1986). The postsynaptic
site of action of kynurenate was confirmed in a quantal
analysis of synaptic transmission which revealed a decrease
in the mean quantal size of excitatory potentials by
kynurenate, but no change in the number of quanta released
per stimulus (Brooks et al. 1986), consistent with an action
of kynurenate at postsynaptic targets.
Results from these studies also showed that kynurenic acid

had no effect on the basic biophysical properties of neurons
(such as resting membrane potential, input resistance, or
action potential thresholds) even at concentrations of
kynurenate higher than those acting on amino acid receptors,
thus eliminating non-specific actions on cell polarisation or
excitability (Ganong et al., 1983; Herrling, 1985; Jahr and
Jessell, 1985; Ganong and Cotman, 1986; Brady and Swann,
1988; Cherubini et al., 1988a,b; Lewis et al., 1989).
In several of these early studies, acetylcholine, nicotine or a

nicotinic agonist were included as control for the amino acid
selectivity of kynurenate. Concentrations of kynurenate suffi-
cient to block glutamate responses and synaptic potentials had
no effect on responses to acetylcholine (Perkins and Stone
1982; Jahr and Jessell 1985; Jahr andYoshioka, 1986; Tsumoto
et al., 1986; Perrins and Roberts, 1994), broad spectrum
nicotinic agonists such as carbachol (Jahr and Yoshioka,1986;
Bijak et al. 1991) or nicotine itself (Perrins and Roberts, 1994;
Bertolino et al 1997) which could be blocked by mecamy-
lamine but not by kynurenic acid even at millimolar concen-
trations. Also at 1 mM, kynurenic acid had no effect on
nicotinic excitatory postsynaptic potentials (EPSPs) and was
used to help distinguish these from glutamate-mediated EPSPs
(Perrins and Roberts, 1995) (Fig. 2).
Despite these various reports that kynurenic acid did not

affect nicotinic receptors, it was later claimed reported that
kynurenic acid could block a7-nicotinic receptors expressed
in cultured hippocampal or neocortical neurons and hip-
pocampal slices. Hilmas et al. (2001) Choline was used as a
nicotinic receptor agonist to induce whole-cell inhibitory
post-synaptic currents (IPSCs) which were reduced by
kynurenic acid. The results were interpreted as choline
acting on nicotinic receptors on c-amino-butyric acid
(GABA)-releasing neurons, either depolarising the cell
bodies to initiate the invasion of GABA-releasing terminals
by action potentials, or by acting on cholinoceptors located
on synaptic terminals and able to induce GABA release
directly (independently of action potentials). Kynurenic acid
was then assumed to block those cholinoceptors (somatic or
terminal), reducing the choline-induced increase in frequency
of GABA-mediated IPSCs. This result contrasts with earlier
and subsequent studies (above and Table 1) in which
kynurenate had no effect on nicotinic receptor activity.
In cultured cells kynurenic acid was reported to be more

potent than on slices, with nanomolar concentrations being
sufficient to inhibit significantly the responses to choline
(Hilmas et al. 2001). The difference between cultures and

slices was attributed to the absence of ‘diffusion barriers’ in
the former which might impede the access of kynurenate to
sites of action in intact, freshly prepared slices. While this is
probably true, the low nanomolar potency of kynurenate has
become widely cited in relation to work not only on cell
cultures but also in slices and in vivo, where it is now often
assumed that kynurenate would be as active as in culture.
Even if the results are correct, the concentrations of
kynurenate claimed to reduce a7-nicotinic receptor responses
exhibit a very shallow concentration-response relationship:
although nanonolar levels were reported to have minimal
activity on nicotinic responses, concentrations of around
100 lM were required to inhibit choline responses by ~60%
(90% inhibition at 1 mM). These activities are in the same
micromolar range which block NMDA receptors in brain
slices examined in previous studies. In the brain slice
experiments of Hilmas et al. (2001) kynurenate at 1 mM
reduced choline responses by 50–75%, a smaller inhibition
than is normally obtained against NMDA.
Since the results of these studies contradict all of the earlier

work outlined above which could find no effect of kynurenic
acid on nicotinic receptors, there is a need to re-evaluate the
results and interpretation of the work in comparison with
related work from other laboratories.

Assessing reproducibility

Since the original work had been based primarily on the use
of cell cultures, one study was performed to examine the
possibility of nicotinic receptor antagonism in more detail in
intact hippocampal slices, using single cell recordings from
interneurons in the stratum radiatum (Stone 2007). When
tested initially for its effects on depolarising actions of
NMDARs and nicotinic receptors, kynurenic acid blocked
the former at micromolar concentrations but had no effect on
NMDARs or nicotinic receptors when applied at submicro-
molar levels. This failure to observe any high potency effects
of kynurenate might reflect the major differences between
intact tissues and cultured cells where the use of artificial
media, the loss of pericellular barriers, changes in intercel-
lular adhesion, the absence of natural ligands for receptors
and a lack of critical compounds or factors found in tissues
(enzymes, inhibitors, growth factors, hormones, trace ele-
ments etc), may affect the physiological status of the cells
and their sensitivity to test compounds. It was therefore
considered that the different results of Hilmas et al (2001)
and Stone (2007) might be attributable to these various
technical differences, and the work was extended to examine
the effects of kynurenate on synaptic transmission, testing
bath-applied kynurenic acid at known concentrations on a7-
nicotinic receptor-mediated EPSPs.
a7-nicotinic receptors mediate fast cholinergic transmis-

sion onto hippocampal interneurons and EPSPs are blocked
by the selective nicotinic antagonist methyl-lycaconitine
(MLA) (Alkondon et al. 1992; Stone 2007). These EPSPs are

© 2019 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
International Society for Neurochemistry, J. Neurochem. (2020) 152, 627--649

Kynurenic acid and nicotinic receptors 631



difficult to detect and a cocktail of antagonists was used to
isolate them by blocking muscarinic, GABA-A, GABA-B, 5-
hydroxytryptamine-3 (5-HT3), a-amino-3-hydroxy-5-

methyl-4-isoxazole-propionic acid (AMPA) and NMDA
receptors to suppress non-nicotinic transmission (Stone
2007). Even excluding these various synaptic influences on

Table 1 A summary of studies testing kynurenic acid against nicotinic receptor responses

Experimental preparation Summary of relevant results References

Anesthetised rat; single neuron

responses in cerebral neocortex

Kynurenic acid:-

- blocked responses to NMDA and quisqualate
- little effect on responses to acetylcholine

Perkins and Stone, (1982)

Synaptic potentials in hemisected

spinal cord

Kynurenic acid:-

- blocked responses to NMDA, glutamate
- no effect (2.5 mM) on cholinergic EPSPs

Elmslie and Yoshikami, (1985)

Xenopus spinal neurons Kynurenic acid:-

- blocked glutamate-mediated EPSPs
- no effect on nicotinic receptor-mediated EPSPs

Perrins & Roberts (1984)

Dorsal root ganglion cell synapses

onto dorsal horn spinal neurons

Kynurenic acid:-

- blocked excitatory amino acid responses and EPSPs
- no effect on ATP-induced depolarisation

Jahr and Jessell, (1985)

Rat spinal cord in vitro Kynurenic acid:-
- blocked glutamate-mediated EPSPs and responses to glutamate

or NMDA
- no effect on carbachol-induced depolarisation

Jahr and Yoshioka 1986

Cat visual cortex neurons in vivo Kynurenic acid:-

- blocked glutamate and aspartate responses
- no effect on acetylcholine-induced excitation

Tsumoto et al. (1996)

Dissociated midbrain neurons in

culture

Kynurenic acid:-

- blocked EPSCs and responses to quisqualate and AMPA
- no effect on excitation induced by acetylcholine or nicotine

Bijak et al. (1991)

Neurons in the rat dorsal motor
nucleus of the vagus in vitro

Kynurenic acid: -
- no effect (1 mM) on excitatory activity of nicotine or nicotinic

agonists epibatidine and cytisine

Bertolino et al. 1997

Cultured hippocampal neurons Kynurenic acid: -
- blocked NMDA-mediated excitation (IC50 = 15lM)

- blocked nicotinic depolarization (IC50 = 7lM)

Hilmas et al. (2001)

Rat neocortex slices Kynurenic acid:-
- does not block (5 mM) nicotinic EPSPs in neocortex

Chu et al. (2000)

Interneurons in rat hippocampal
slices in vitro

Kynurenic acid:-
- possible reduction of small, putatively nicotinic EPSPs in
complex receptor and channel blocking medium

Stone, (2007)

Primary hippocampal neurons in
culture

Kynurenic acid:-
- no blockade (1 mM) of nicotinic excitation

Arnaiz-Cot et al. (2008)

Human cell lines (HEK293-MSRII
and a7NR-expressing GH4-a7),

transfected with human or rat
NMDAR subunits; cultured primary
neurons

Kynurenic acid:-
- no effect (up to 3 mM) on responses to acetylcholine or nicotinic

agonists

Mok et al. (2009)

Interneurons in rat hippocampal
slices

Kynurenic acid:-
- blocked glutamate-mediated EPSCs
- no effect on responses to nicotinic receptor activation

Dobelis et al. (2012)

The following studies examined kynurenic acid on general neuronal properties
Various Kynurenic acid:-

- No effect on membrane potentials or resistance, indicating no
non-specific depression of excitability or membrane function

Ganong et al., (1983); Herrling, (1985);
Jahr and Jessell, (1985);
Ganong and Cotman, (1986);

Brady and Swann, (1988);
Cherubini et al., (1988a,b);
Lewis et al., (1989)

© 2019 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
International Society for Neurochemistry, J. Neurochem. (2020) 152, 627--649

632 T. W. Stone



EPSP generation, nicotinic EPSPs can be demonstrated on
only a few neurons and they are usually very small relative to
the residual background activity.
Under these restrictive conditions, kynurenic acid did

appear to reduce EPSP size but several important factors
must be emphasised. Firstly and most importantly, the
concentrations of kynurenic acid needed to reduce nicotinic
transmission (EC50 136lM), were similar to those which
block NMDA receptors – similar to those reported by Hilmas
et al. (2001) in slices but orders of magnitude greater than
those claimed to work in cell cultures (Hilmas et al. 2001).
Secondly, the reduction in EPSP size was consistent with

a7-nicotinic receptor blockade, but does not represent proof
since the apparent blockade could have been indirect, or a
result of reduced acetylcholine release (see below).
Thirdly, the cocktail of ionotropic receptor blocking agents

listed above, used at relatively high concentrations to
maximise the blockade of interfering receptors needed to
isolate nicotinic EPSPs, could have affected the nicotinic
ionotropic receptors or ion channels associated with excitabil-
ity and transmitter release in an isolated, vulnerable prepara-
tion. The mixture of antagonists could also have modified
functional receptor interactions which might make cells more
susceptible to kynurenic acid. Atropine, for example, has been
found to have some activity on nicotinic receptors (Gonzalez-
Rubio et al. 2006). It is also likely that the antagonist cocktail
did not totally block excitatory sensitivity to all the amino
acids, neuropeptides (such as neurokinins, cholecystokinin,
neuropeptide Y, opioid peptides), or other endogenous
neuroactive compounds which affect neuronal excitability.
These results clearly demonstrated a total absence of kynure-
nate blockade of nicotinic receptors at low concentrations with
possibly weak activity at high micromolar levels when it was
difficult to exclude effects on other excitatory mediators.
Lastly, the potential actions of kynurenic acid on the Aryl

Hydrocarbon Receptors (Opitz et al. 2011) or the orphan G-
protein-coupled receptor G-protein-coupled receptor-35
(GPR35) (Wang et al. 2006; Mackenzie and Milligan 2015;
Shore and Reggio, 2015) were not considered by Stone (2007)
since kynurenines had not yet been linked with their activity.
AHRs have received little attention in the CNS since primary
interest has been in their role in immune system cells and the
regulation of kynurenine pathway activation in tolerogenesis.
Neverthelesss, they play an important role in the kynurenine-
AHR-IDO cycle which is a key factor in immune tolerogenesis
and tumour development, where they are sensitive to physi-
ological concentrations of kynurenine and kynurenic acid
(Opitz et al. 2011; Bessede et al. 2014). Consistent with this,
AHRs can regulate neuronal development, differentiation and
synaptic function (Huang et al. 2004, 2011; Qin and Powell-
Coffman 2004), neuronal or glial migration (Kimura et al.
2017) and may modulate cholinesterase activity and hypoxic
sensitivity (Xie et al. 2013; Rzemieniec et al. 2016). The
concentrations of kynurenate which activate AHRs are

generally the same or lower than those acting on amino acid
receptors (Fig. 2) (DiNatale et al. 2010; Opitz et al. 2011).
The G-protein-coupled receptor GPR35 is expressed in

glia and neurons of the hippocampus (Berlinguer-Palmini
et al. 2013; Alkondon et al 2015). When activated they
inhibit adenylate cyclase and depress pain-induced beha-
viours (Rojewska et al, 2018; Cosi et al. 2011; Moroni 2012;
Resta et al. 2016). On neurons, they depress excitability and
synaptic transmission in the hippocampus (Alkondon et al.
2011) and dorsal root ganglia, where they depress N-type
calcium channels (Guo et al., 2008; Ohshiro et al. 2008)
possibly mediated by Hyperpolarisation-activated-Cyclic
Nucleotide-gated ion channels (Resta et al. 2016). In general,
concentrations of kynurenate required to activate GPR35 are
of the same order as those which block NMDA receptors
(Wang et al. 2006; Berlinguer-Palmini et al. 2013). In
Chinese Hamster Ovary cells expressing GPR35, kynurenic
acid was more potent on rat GPR35 (EC50 7.4 lM) than
mouse (10.7 lM) or human (39.2) receptors (Wang et al.
2006). The latter activity was similar to that observed to
reduce calcium currents in rat superior cervical ganglion
neurons (EC50 58 lM) (Guo et al. et al. 2008). These sites
may be physiologically relevant and able to contribute to the
effects of kynurenic acid under appropriate conditions.
Later work from Mok et al. (2009) examined two human

cell lines (HEK293-MSRII and the a7nicotinic receptor-
expressing GH4-a7 line). The former were transfected with
human or rat NMDAR subunits (NR1A, NR2A and NR2B)
and were tested at 37°C after 24–48 h. When tested on the
NMDA receptor subunits, kynurenic acid blocked NR1A/
NR2A combinations with an IC50 of 24.4 lM (in 1 lM
glycine) up to 158 lM (at high 30 lM glycine), entirely
consistent with the large majority of earlier studies described
above. Similar results were obtained using the transfected rat
proteins or when tested on cultured rat hippocampal neurons.
However, the group found no effect of kynurenic acid on
acetylcholine-evoked, methyl-lycaconitine (MLA)-sensitive
current responses to choline or acetylcholine at concentra-
tions up to 3 mM in the three different test systems. To
circumvent the uncertainties resulting from highly localised
ejections of drugs onto neurons in a complex system such as
hippocampal slices, acetylcholine was also administered by
microinjection into rat slices, but here again, kynurenic acid
at 1 mM had no effect on nicotinic receptor responses.
An important observation in this study was that dimethyl-

sulfoxide (DMSO), used as the solvent for kynurenic acid by
Hilmas et al. (2001) did reduce a7-nicotinic receptor
sensitivity at the relevant concentration range needed for
solubilising kynurenic acid, raising the possibility that
DMSO could have been responsible for the results of Hilmas
et al. (2001). The same conclusion was drawn by Dobelis
et al. as discussed below (Technical issues).
In addition to these two reports (Stone 2007; Mok et al.

2009), two other, independent studies have been published
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on the effects of kynurenate on nicotinic receptors. Arnaiz-
Cot et al. (2008) used cultures of primary, embryonic
hippocampal neurons to allow a direct comparison with the
earlier work and nicotinic depolarisation was induced by the
non-selective nicotinic receptor agonist choline. Kynurenic
acid had no effect on this choline response, even at a
concentration of 1 mM.
These results are entirely in accord with those of Mok

et al. (2009) but they also led the authors to note that a7-
nicotinic receptors are expressed at several sites and on
different neuron types. Hippocampal GABA-releasing
interneurons are major sites of nicotinic receptors (Freedman
et al., 1993; Adams et al., 2001; Alkondon et al. 2004)
providing a means by which their activation can regulate the
excitability of GABA-releasing neurons and change the
frequency of PSPs in postsynaptic cells (Pitler and Alger
1992; Maggi et al., 2001). This view is one of many
consistent with the concept that nicotinic receptor activity is
associated primarily with modulating cell sensitivity to other
neurotransmitters, as well as, or instead of, mediating
classical fast nicotinic synaptic transmission (Gray et al.,
1996; Role and Berg, 1996; Bertolino et al., 1997; Ji and
Dani, 2000). Other authors have reached similar conclusions,
such as that fast neurotransmission rarely involves nicotinic
receptor activation in the CNS (Frazier et al., 1998;
Alkondon et al. 2004; Role and Berg, 1996; see Dani and
Bertrand, 2007) or that nicotinic postsynaptic potentials are
so small that they are unlikely greatly to affect neural
excitability (McQuiston and Madison, 1999). This would
also be consistent with indications that most central nicotinic
receptors are functionally expressed mainly on presynaptic
terminals with their main function to modulate the release of
neurotransmitters (Wonnacott, 1997) (see below).
Finally, Dobelis et al. (2012) examined the effects of choline

applied at intervals from micropipettes via a pressure system
(see Stone 1985) to prevent desensitisation, onto interneurons
in the stratum radiatum and hilar regions of hippocampal slices
from young or adult rats and mice. Voltage clamp analysis
indicated that kynurenate would block completely sponta-
neous glutamate-mediated excitatory postsynaptic currents
without affecting a7-nicotinic receptor responses to choline.
The failure to affect nicotinic receptor responses was reported
even in high (1 mM) kynurenate after incubation for 90 min to
eliminate the possibility of slow receptor blockade kinetics.
This result not only confirms the results of Stone (2007),
Arnaiz-Cot et al. (2008) and Mok et al. (2009) but indicates
that the failure to block a7-nicotinic receptor responses was
not restricted to the stratum radiatum region of the hippocam-
pus. It should be noted also that the failure to observe nicotinic
receptor blockade even in cell cultures (Arnaiz-Cot et al. 2008;
Mok et al. 2009) indicates that the absence of diffusion
barriers, and other considerations listed above in such
experiments, cannot account for the reported results of Hilmas
et al. (2001).

Enzyme deletion

In a follow-up study to examine the question of kynurenate
activity on nicotinic receptors in a more indirect manner,
Alkondon et al. (2004) and Yu et al. (2004) examined the
effect of reducing endogenous levels of kynurenic acid by
deleting its synthesising enzyme KAT-2. The reduced
kynurenic acid concentrations were associated with an
increase in the activity of a7-nicotinic receptors in stratum
radiatum interneurones, resulting in increased levels of
depolarisation and of GABA-mediated inhibitory post-
synaptic potentials on CA1 neurons. In contrast, there was
no change in NMDA sensitivity. In vivo, however, the loss of
KAT-2 would be relatively non-specific since there may be
several consequences of deleting such a major transaminase
enzyme. KAT-2 is known to accept a wide range of amino
acids as substrates including a-amino-adipic acid which
gives the enzyme its alternative name of a-amino-adipate
transaminase. However, the authors consider only the
possibility that the increase in a7-nicotinic receptor activity
following KAT-2 deletion ‘can be accounted for’ purely by a
loss of inhibition by endogenous kynurenate (Alkondon et al.
2004). While this result would be consistent with the authors’
proposal that kynurenate levels might normally maintain a
degree of tonic suppression of nicotinic receptor sensitivity,
it is only a supposition and does not represent positive
evidence. The normality of NMDA sensitivity might be an
adaptation to the loss of kynurenate as an endogenous
inhibitor, with the increased nicotinic receptor sensitivity
being the result of a series of events in the high complexity of
CNS networks. This potential complexity is exemplified and
supported by work showing that nicotine treatment and
withdrawal results in altered glutamatergic function but no
change of nicotinic receptor expression (Pistillo et al. 2016)
and studies showing that nicotinic receptor activation alters
the expression of NMDA receptors including those on the
behaviourally important dopaminergic neurons (Salamone
et al. 2014).

Technical issues

In the light of this apparent lack of reproducibility,
Albuquerque and Schwarcz (2013) presented a catalogue of
technical differences in the methods employed in these
various studies of kynurenic acid and nicotinic receptors.
These included differences in the types of micropipettes and
application systems used and the nature of the test prepara-
tion (such as slices or cultures) several of which had been
taken into account experimentally by others noted above and
some were incorrectly attributed to the use of oocytes rather
than two human cell lines – GH4 cells expressing a7-
nicotinic receptors, and HEK293-MRSII cells expressing
transfected NMDAR subunits (Mok et al. 2009).
Overall, it is unlikely that the various details considered by

Albuquerque and Schwarcz (2013) would have been consis-
tently different between the work of Hilmas et al. (2001) and
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the four independent studies performed subsequently, using
comparable concentrations and test preparations, to account
for the variant results. It would be more rational to conclude
that the negative results of the later studies are more likely to
be correct in view of their consistency.
The most convincing explanation put forward by Mok

et al. (2009) to explain any apparent blockade of nicotinic
receptors was based on the ability of DMSO to reduce
nicotinic responses. The highest concentration of kynurenic
acid that they could achieve in DMSO was 100 mM, which
would result in a final experimental concentration of 1%
DMSO for a kynurenic acid concentration of 1 mM. Not
only did this level reduce nicotinic receptor function, but
different concentrations of kynurenate in the same final
concentration of DMSO generated the same degree of
inhibition, implying that it was the DMSO solvent that was
the active component. While this explanation may be a major
factor in the study by Hilmas et al. (2001), the same
laboratory subsequently reported that the original results
could be obtained using the more usual NaOH as the solvent
(Alkondon et al. 2011). It may be relevant that normally
inactive solubilizing materials such as Tween 80 and Triton
X-100 have been reported to block a7-nicotinic receptors in a
non-competitive manner (Oz et al. 2004), perhaps suggesting
an exceptionally broad susceptibility of these receptors to
pharmacological interference and minor conformational
perturbations.

Interpreting results

While most of the foregoing discussion centres on direct
attempts to replicate or explain results in vitro, a greater
problem is encountered when considering studies in vitro or
in vivo where experiments are performed under conditions
where assumptions and interpretations of data are con-
founded by the complexity of neural connectivity and
network.

Transmitter release

For example, nicotinic receptors are present on many neurons
and glial cells (Marchi et al. 2015). The two major subtypes
of CNS nicotinic receptors, a7 and a4b2 are expressed on
cell bodies and synaptic terminals (Wonnacot, 1997; Parikh
et al. 2008, 2010; Puddifoot et al. 2015; Howe et al. 2016)
where they promote the influx of extracellular calcium
leading to the release of neurotransmitters (Turner 2004;
Zappettini et al. 2010, 2014). Nicotinic receptors can regulate
the release of, at least, glutamate (McGehee et al., 1995;
Gray et al., 1996; Albuquerque et al. 2009; Gu et al., 2012;
Puddifoot et al. 2015; Pistillo et al. 2015, 2016; Howe et al.
2016; Ryu et al. 2017) and can modulate the release of
GABA (Gray et al., 1996; Le Magueresse et al., 2006),
dopamine (Schilstrom et al., 1998a,b; Kaiser and Wonnacott
2000; Livingstone and Wonnacott, 2009; Livingstone et al.

2009) and norepinephrine (Pittaluga and Raiteri 1992;
Pittaluga et al. 1992; Raiteri et al. 1992; Li et al., 1998). It
is reasonable to expect that the release of many other
transmitters and modulators including serotonin, glycine,
neuroactive peptides and perhaps kynurenines, proteases,
cytokines and other factors may also be affected by nicotinic
receptors on glia or synaptic terminals or cell bodies. This is
a very significant problem of interpretation since not only
would the effect of nicotinic receptor stimulation then be
indirect, but the endogenous compounds whose release is
affected would in turn affect neuronal excitability and
transmitter release, generating the network complexity which
always bedevils work in the CNS. Several groups have
specifically noted that the effects of nicotinic receptor
activation on transmitter release are not direct, but mediated
indirectly via the release of glutamate and the activation of
NMDA receptors (Schilstrom et al. 1998a,b). Many of the
NMDA receptors on nerve terminals are blocked by
kynurenic acid including those which can release acetyl-
choline (Bouvier et al. 2015, 2018; Banerjee et al. 2016) and
other transmitters including glutamate (Ransom and Desch-
enes, 1989; Fink et al., 1990; Krebs et al., 1991; Overton and
Clark, 1991; Garcia-Munoz et al., 1991).

In vitro pharmacology

A major complication in the interpretation of results is that
a7 receptor activation is usually facilitated by a degree of
glutamate receptor activation (Gray et al. 1996; Fu et al.
2000; Hilmas et al. 2001). Indeed a report by Alkondon et al.
(2003) concluded that the activation of NMDA receptors and
AMPA receptors contributed directly to the modulation of
cholinergic excitation. This strongly supports the above
arguments that the apparent loss of a7 sensitivity by
kynurenate is likely to be due to the well-established
blockade of glutamate receptors with secondary, indirect
effects on nicotinic receptors. Blockade by kynurenic acid of
the facilitatory glutamate sites would remove their facilitation
of nicotinic receptor activity and generate an apparent
reduction in cholinergic sensitivity.
A further complication of nicotinic receptors is the

functional and histochemical evidence for their frequent co-
expression with other receptors (Vizi and Lendvai, 1999;
Sher et al., 2004; Patti et al., 2006; Grilli et al., 2008, 2009a,
b; Lin et al., 2010; Marchi and Grilli, 2010; Salamone et al.
2014), including receptors for NMDA and AMPA (Marchi
et al., 2009, 2015; Marchi and Grilli, 2010), the combined
activity of which can modify synaptic function and trans-
mitter release (Raiteri et al., 1992; Musante et al., 2011).
Complexes usually imply crosstalk between the component
receptors such as the ability of nicotinic receptor to up- or
down-regulate the expression of glutamate receptors (Pistillo
2015, 2016) and may account for the report that activation of
a7nicotinic receptors is required for the activation of NMDA
receptors in the prefrontal cortex (Yang et al. 2013).
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In vivo pharmacology

A number of studies have attempted to understand the effects
of kynurenic acid by examining its pharmacological interac-
tions with other neuroactive compounds in vivo. The
interpretation of kynurenate pharmacology is most con-
tentious in behavioural studies in which there are two areas
of particular concern: (i) the use of derivatives of kynurenic
acid which are assumed, incorrectly, to have the same sites
and mechanisms of action as kynurenate itself (ii) the use of
galantamine, on the assumption that it acts uniquely on
nicotinic receptors and is therefore diagnostic of their
involvement, but whose basic mechanism of action cannot
be confirmed and is in doubt (Kowal et al. 2018; see below).

Kynurenic acid derivatives

Following the discovery that the activation of glutamate
receptors by NMDA required the allosteric co-agonist
glycine (Johnson and Ascher 1987), it was recognised that
antagonists of NMDA could act directly on the glutamate/
NMDA binding site (Olverman et al. 1988; Moroni et al.,
Danysz et al., Robinson et al.) or the strychnine-resistant
glycine co-agonist site. Indeed it is now clear that kynurenic
acid can act directly on both of these sites (Stone et al. 2013).
Detailed biophysical analyses have indicated that kynurenate
is a competitive antagonist at the glutamate/NMDA recog-
nition site (Mayer et al. 1988; Birch et al., 1988a,b; Pullan
and Cler 1989; Kloog et al 1990) but also blocks NMDA at
the NMDA co-agonist glycine-2 site partly by a non-
competitive inhibition, although there has been debate on the
relative competitive or non-competitive nature of this activity
(Mayer et al. 1988; Watson et al., 1988; Birch et al. 1988a,b;
Dingledine et al. 1990; Henderson et al. 1990) although
increasing glycine concentrations can displace kynurenate
and reverse the blockade (Pullan and Cler 1989; Kessler
et al., 1989a,b; Danysz et al. 1989a,b). It should be stressed
that many of these detailed single-cell analyses of kynurenate
pharmacology and receptor kinetics were based on results
from mammalian hippocampal neurons and repeatedly
confirmed the blockade of NMDA receptors by kynurenate.
Later structure-activity studies have identified derivatives

of kynurenate with higher potency and greater selectivity as
antagonists at these sites (Leeson et al. 1991; Leeson and
Iversen, 1994; Rover et al. 1997; Stone 2000a,b, 2001b).
Prominent among these are compounds which, by acting
almost exclusively on the strychnine-resistant glycine site,
should show greater suppression of NMDA receptor activa-
tion relative to AMPA or kainate receptors, at which
kynurenic acid has lower potency (Fisher and Mott, 2011).
From this work the NMDAR antagonists most often used

experimentally are 7-chloro-kynurenic acid (7CKA) or 5,7-
dichloro-kynurenic acid (57diCKA) but it must be empha-
sised that these do not act at exactly the same sites as
kynurenic acid. Both 7CKA and 57diCKA are highly
selective antagonists acting only on the glycine co-agonist

site of the prominent NR1/2 subunits of NMDA receptors
(Kemp et al. 1988; Kleckner and Dingledine, 1989;
Dingledine et al., 1990; Benveniste et al. 1990; Benveniste
and Mayer, 1991; Priestley et al. 1995). Thus, any action of
kynurenate at the glutamate or NMDA recognition site will
not be reproduced by 7CKA or 57diCKA. The argument that
an action of kynurenate which is not mimicked by 7CKA or
57diCKA must therefore be mediated by a nicotinic (or
other) receptor is therefore completely spurious.
Furthermore, chemical analogues or derivatives, even with

extremely minor structural modifications, are distinct mole-
cules with individual profiles of activity and physico-
chemical properties. Not only do 7CKA and 57diCKA
exhibit different potencies and selectivities of action at
glycine binding sites compared with kynurenate, but their
absolute and relative activities depend on the cell type,
location, activity, chemical microenvironment and, most
importantly, subunit composition of the receptors (Nilsson
et al. 2007; Smothers and Woodward 2007). In some
situations 7CKA increases the binding of the competitive
NMDA receptor antagonist [H-3]CGP39653 (Oblin and
Schoemaker, 1994). The behaviour of 7CKA and glycine
are different at the glycine sites, since the modulatory
polyamine spermine enhances glycine binding but not that of
7CKA, possibly implying a different molecular binding
pattern at the receptor (Marvizon and Baudry, 1994).
Linderholm et al. (2007) obtained results which strongly

suggest that kynurenic acid does not act on a7-nicotinic
receptors. This group reported that 4-chlorokynurenine,
which crosses the blood-brain barrier and is converted to
7CKA in the CNS, increased the excitability of neurons in
the ventral tegmentum. The same result was obtained using
the selective NMDA receptor blocker SDZ-220-581 but not
the a7-nicotinic receptor blocker MLA, indicating that the
increase in tegmental firing rates were due to 7CKA acting as
an antagonist at glutamate receptors but not a7-nicotinic
receptors. In this case, 7CKA was probably acting at the
same site as kynurenic acid since increasing endogenous
cerebral kynurenate concentrations by kynurenine adminis-
tration produced a similar increase in tegmental activity. A
similar selectivity for NMDA rather than nicotinic sites
in vivo was also reported following intrathecal administration
of kynurenic acid (Tuboly et al. 2015).

Subunit composition

The important issue of subunit structure and receptor
composition is illustrated by the actions of these derivatives
on receptors which include NR3 subunits where it was
shown that 7CKA does not displace glycine from combina-
tions of NR1 with NR3A or NR3B subunits (Nilsson et al.
2007; Smothers and Woodward, 2007) and does not
antagonise their activation. This contrasts with the blockade
of NR1/NR2 subunit combinations. Indeed, 7CKA has been
reported to potentiate activation of NR3 subunits in studies
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where 57diCKA was an antagonist (Smothers and Wood-
ward, 2007). This difference between 7CKA and 57diCKA
probably reflects earlier conclusions that the two compounds
act, to some extent, at different sites (Baron et al. 1990,
1991). Clearly, the net effects of kynurenic acid, 7CKA and
57diCKA will depend on the density and location of different
NMDAR subunit combinations and, most importantly, the
ratios between their respective levels of expression, activa-
tion and sensitivity.
Additional problems may apply in the complexity of

in vivo studies, since 7CKA may appear to block non-
NMDA as well as NMDA receptors and may do both in a
non-competitive manner which is not reversed by glycine site
agonists (Lehmann et al. 1993), results which have not been
noted in isolated cells and tissues. In some cases the different
ratios of activity of compounds on the glutamate recognition
site compared with the NMDA-glycine site have been
correlated with major differences in their behavioural profiles
(Grimwood et al. 1995; Kehne et al. 1995).
There have also been repeated indications that the NMDA

co-agonist glycine binding sites may exist in several forms,
differentially affected by kynurenic acid, 7CKA or 57diCKA
(Danysz et al. 1989a,b; Yoneda et al., 1994). The stated
conclusion of one such study was that “These data support
the possibility that different glycine receptor antagonists may
have different therapeutic targets” (Kehne et al. 1995)
emphasising that kynurenic acid, 7CK and 57diCKA cannot
be considered pharmacologically equivalent. This conclusion
is strongly supported by evidence that there may be several
binding sites for glycine on NMDA receptors since there are
clear regional differences in the stoichiometry of glycine and
NMDA interactions (O’Shea et al. 1991).
There are, therefore, many factors operating in vitro and,

especially, in vivo, which mean that the sites of action of
kynurenic acid, 7CKA and 57diCKA are different and
determined by the concentration of the compounds them-
selves at key molecular sites, the concentrations of endoge-
nous ligands (glutamate, glycine, D-serine) and the subunit
composition of the NMDARs among many other factors. No
meaningful conclusions can therefore be drawn from the use
of these compounds in identifying molecular sites of action
as being on NMDA or non-NMDA receptors, especially
nicotinic receptors.

Galantamine as a pharmacological tool

Galantamine is one of several compounds originally identi-
fied as acetylcholinesterase inhibitors for use in disorders
such as Alzheimer’s disease. Subsequent reports have
claimed that the drug was also an Allosteric Potentiating
Ligand at nicotinic receptors with several subunit composi-
tions (Maelicke et al. 2001; Samochocki et al. 2003;
Albuquerque et al. 2009; Liu et al 2010). This putative
mechanism of action has been used to support the hypothesis

that kynurenic acid can block a7-nicotinic receptors since, it
is argued, if an effect of kynurenate can be prevented or
reversed by galantamine, kynurenate must be acting by
blocking a7-nicotinic receptors – the activity of kynurenate
is assumed to have been countered by the abilities of
galantamine to produce an allosteric potentiation of a7-
nicotinic receptor-mediated responses (in addition to its
acetylcholinesterase activity). However, there are several
reasons why this argument is not tenable, especially since
recent work by Kowal et al. (2018; discussed below) has
failed to demonstrate any allosteric potentiating activity of
galantamine at nicotinic receptors (Roman et al. 2005).
In particular, the most that can be said is that the activity of

galantamine opposes (rather than reverses) the action of
kynurenate, a conclusion which mirrors the comments
(expanded below) that the interaction is not of true antag-
onism, but of ‘response cancellation’ – galantamine simply
had the opposite effect to kynurenic acid, increasing the size
of the IPSCs and apparently preventing the inhibitory action
of kynurenate.
As an example, raising the levels of kynurenic acid in the

cerebral cortex by administering kynurenine was associated
with deficits in cognitive performance tasks such as atten-
tional set-shifting (Alexander et al., 2012, 2013). Control
levels of performance were restored when animals were
treated with galantamine, a result taken to indicate that
kynurenic acid had been working as an a7-nicotinic receptor
antagonist. However, such a conclusion is entirely inappro-
priate as discussed below. In related work, Pershing et al.,
(2015) employed partial agonists at ɑ7-nicotinic receptors to
demonstrate that they could successfully overcome behav-
ioral impairments caused by kynurenate, but making a
similar incorrect inference that this indicated that kynurenate
was acting at a7-nicotinic receptors.
These are just two examples of where a fundamental

principle of pharmacology has not been recognised. A
compound X may appear to be an antagonist of Y if it merely
exhibits the opposite activity, thus cancelling the action of X
but with no interaction at the receptor sites or transduction
pathways. The example usually used to illustrate this concept
of ‘physiological antagonism’ or ‘response cancellation’ is
that of autonomic regulation in the heart. Acetylcholine
lowers heart rate and the addition of adrenaline negates this
effect, while adrenaline increases heart rate but this is
prevented by acetylcholine. However, neither of these
compounds is an antagonist of the other in the pharmaco-
logical meaning of the term, and they clearly act on
completely different sets of receptor. The entire basis of
pharmacology and drug development is based on well-
established and recognised concepts of ‘receptors’ and their
agonists and antagonists, and response cancellation must
always be eliminated as an explanation of results, not used to
draw meaningless conclusions about drug targets, receptors
or sites of action. Results from such work cannot be used as
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positive or confirmatory evidence for a receptor-based
hypothesis, nor does it exclude a myriad of alternative
possible explanations, some of which are far more likely to
be correct. The logical error involved is equivalent to
concluding that a simple correlation between two factors can
be taken to indicate cause and effect. In this particular case
the most probable explanation of the results – and possibly
many similar observations by others – is that galantamine
and the a7-nicotinic receptor agonists were acting on
molecular targets or neurons with actions interfering with
those affected by kynurenic acid.
The ‘galantamine test’ and kynurenate analogues discussed

above (7CKA and 57diCKA) have also been used in
neurochemical studies of GABA concentrations in the rat
striatum (Beggiato et al. 2013) or prefrontal cortex (Beggiato
et al. 2014). Infusions of kynurenic acid reduced the
extracellular concentration of GABA, an effect ascribed to
nicotinic receptor blockade on the grounds that (a) the effect
was reversed by galantamine and (b) the effect was not
replicated by 7CKA. As noted above this type of result
merely indicates the opposing, but not necessarily antago-
nistic, actions of kynurenate and galantamine. Similarly, the
absence of any effect of 7CKA was interpreted to exclude
NMDAR involvement on the basis that 7CKA and kynure-
nate should have the same activity on NMDARs, an
interpretation which, as noted above, is incorrect.
In a related study kynurenic acid reduced the concentrations

of glutamate in the cerebral cortex (Konradsson-Geuken et al.
2010; Wu et al. 2010) and the reversal of this by galantamine
was claimed to indicate that kynurenic acid blocks the
galantamine-sensitive allosteric potentiation site on a7-nico-
tinic receptors. Similarly, kynurenate suppressed dopamine
release in the rat striatum and the effect was prevented by
galantamine leading to the conclusion that kynurenate was
acting on a7-nicotinic receptors (Wu et al. 2007; Rassoulpour
et al. 2005). In reality, both kynurenic acid and galantamine
could have been acting on any of their totally independent
confirmed target sites to produce opposite effects on glutamate
levels: the results offered no direct (or indirect) support to
indicate an action specifically on nicotinic receptors for either
compound. The results are at best only suggestive or consistent
with the authors’ concept and with many others which cannot
be excluded. This criticism is strengthened by reports that
galantamine alone increases dopamine release by acting ona7-
nicotinic receptors (Wang et al. 2007), so that a ‘cancellation’
of an inhibitory effect of kynurenate by a positive action of
galantamine may again be involved rather than a true
antagonist action.
In marked contrast to the above studies, several groups

have performed similar work without using galantamine and
have reached conclusions that the effects of kynurenic acid
on dopaminergic projections to the Ventral Tegmental Area
can be explained entirely in terms of its blockade of NMDA
receptors without any need to invoke the involvement of

acetylcholine, nicotinic receptors or any other mechanism
which does not involve NMDA receptors. As noted above,
Linderholm et al. (2007) demonstrated that 7CKA or a
selective NMDA antagonist increased neural excitability
although the a7-nicotinic receptor blocker MLA did not
leading to the conclusion that the excitation was due to
7CKA blocking glutamate receptors but not a7-nicotinic
receptors.

Galantamine and NMDA receptors

Conclusions using galantamine in particular are often not
justified because the compound itself has a complex
pharmacology. First, although it does block acetyl-
cholinesterase, it also inhibits other esterase enzymes
(Nordberg and Svensson, 1998; Darvesh et al. 2003), some
of which hydrolyse neuroactive peptides including the
neurokinins and may affect other proteinaceous compounds
affecting excitability such as growth factors and cytokines.
Second, galantamine has several recognised sites of action

other than nicotinic receptors, including the ability to
potentiate response to NMDA receptor activation (Moriguchi
et al 2004; Narahashi et al. 2004; Zhao et al. 2006).
Although the authors subsequently suggested that this effect
was mediated indirectly via nicotinic receptors (Moriguchi
et al. 2009a), their earlier experiments seem to have been
conducted in the absence of an NMDA receptor blocker,
since 2-amino-5-phosphono-pentanoic acid was used only to
confirm the NMDAR-dependency of long-term potentiation
(LTP) but was not included in the experiments on galan-
tamine. Thus, many of the observations could have been
mediated indirectly via NMDA receptor activity and
enhancement resulting from induced glutamate release,
whether or not there was a contribution from a7-nicotinic
receptors, and the conclusions are not secure. On balance
these studies remain consistent with the original explanation
(Moriguchi et al. 2004; Narahashi et al. 2004; Zhao et al.
2006) that galantamine can enhance NMDAR activation.
Many studies have reported effects of galantamine on

synaptic transmission involving glutamate receptor activation.
a7-nicotinic receptors facilitate glutamatergic neurotransmis-
sion and LTP in the hippocampus (Radcliffe and Dani 1998;
Mansvelder and McGehee 2000; Gu et al. 2012; Puddifoot
et al 2015) and other regions such as the amygdala (Jiang et al.
2016). Galantamine potentiates NMDA-induced depolarisa-
tion as noted above and the effects of galantamine can be
blocked by NMDAR antagonists (Schilstrom et al. 2007).
Clearly, these agonist actions of galantamine on NMDARs
would explain its ability to reverse the behavioural effects of
NMDA receptor inhibitors such as dizocilpine (MK-801) as
well as the effects of kynurenic acid without involving
nicotinic receptors at all. Recent reports that a combination of
galantamine and memantine show improved cognition-en-
hancing activity compared to either alone (Koola 2018) are
compatible with these data since galantamine could increase

© 2019 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
International Society for Neurochemistry, J. Neurochem. (2020) 152, 627--649

638 T. W. Stone



the beneficial effects of memantine on the neuronal signal-to-
noise ratio by potentiating NMDA receptor activation without
the need to invoke nicotinic receptor involvement.
For example, galantamine increases the magnitude of LTP

in the hippocampus (Moriguchi et al. 2009b; Forrest et al.
2015) by a mechanism which involves calcium/calmodulin-
dependent protein kinase II and activation of Protein Kinase
C. An involvement of nicotinic receptors was concluded
from the ability of a-bungarotoxin to block the galantamine
activity on a7-nicotinic receptors, whereas dihydro-b-ery-
throidine (DHbE), blocking mainly a4b2-nicotinic receptors,
had no effect. The authors suggested that an initial enhance-
ment of a7-nicotinic receptors could account for the
succeeding activation of protein kinases and NMDARs.
However, the data do not exclude additional indirect effects
of galantamine on neurons affecting LTP, or direct effects
potentiating NMDAR activation.
Nicotinic receptors exist on glutamatergic synaptic termi-

nals and can promote glutamate release (McGehee et al.,
1995; Gray et al.,1996; Albuquerque et al., 1997; Wonna-
cott, 1997; Alkondon, Pereira, Barbosa et al., 1997; Alkon-
don, Pereira, Cortes et al., 1997; Aramakis and Metherate,
1998; Radcliffe and Dani, 1998; Mansvelder and McGehee,
2000) and enhance LTP (Santos et al. 2002; Ge and Dani
2005). However, even when produced by a selective agonist
at a7nicotinic receptors, an action blocked by MLA or a7-
nicotinic receptor deletion, galantamine did not modify the
induced LTP (Lagostena et al 2008). These results might
imply that galantamine can facilitate NMDA receptor
function in inducing LTP in the absence of nicotinic receptor
activity. To examine this possibility, the effect of galan-
tamine was studied on NMDA-dependent LTP in hippocam-
pal slices incubated with the nicotinic receptor blockers
MLA and DHbE (Forrest et al. 2015). The results showed
that galantamine does indeed potentiate NMDA-dependent
LTP induced by a theta-stimulation protocol, confirming that
the drug could reverse or antagonise an effect produced by
blocking NMDA receptors in the presence of nicotinic
receptor blockade. This is consistent with the earlier reports
that galantamine can facilitate LTP (Moriguchi et al. 2009b)
but in the absence of nicotinic receptor activation the results
support the proposal that the effect is via the activation or
modulation of NMDARs. Interestingly, Alkondon et al.
(2003) had earlier published that NMDA receptors might
contribute to the effects of a7-nicotinic receptor agonists, a
finding which, if expanded, might explain many of the
controversial data discussed above.
The problems of using galantamine are not confined to the

interpretation of kynurenic acid activity. Dizocilpine is
another well-established antagonist at NMDA receptors and
its administration to rats produces deficits in learning and
memory. These effects were prevented by the co-adminis-
tration of galantamine (Su et al. 2014) but, while this would
be most readily explained by the well documented opposing

but independent actions of dizocilpine and galantamine on
NMDA receptors as summarised above, the authors inter-
preted the results to imply that dizocilpine was working via
changes in a7-nicotinic receptor function. In this case, the far
more obvious, simple and well-established explanation has
been ignored in favour of a more complex one on the
assumption that galantamine is an entirely specific compound
with a single pharmacological action to promote cholinergic
function. The recognised activity of dizocilpine at NMDARs
interacting with the less-established action of galantamine on
NMDARs has been ignored.
In related work, galantamine reversed the suppression of

pre-pulse inhibition produced by dizocilpine in a model for
schizophrenia (Shao et al. 2014) and this interaction was also
interpreted as implicating a7-nicotinic receptors in the
phenomenon with no consideration of the major established
alternative explanations of NMDA receptor involvement,
despite the fact that dizocilpine is a recognised, highly
selective antagonist at NMDA receptors.
A similar story applies to another NMDA antagonist,

phencyclidine. McLean et al (2011) examined the effects of
phencyclidine on a range of cognitive functions in rats.
Phencyclidine blocks the NMDAR-associated ion channels
in a manner similar if not identical to dizocilpine and the
effects of phencyclidine, therefore, are unambiguously
attributable to NMDAR blockade. However, the activation
of a7-nicotinic receptors by a selective full agonist prevented
and reversed these effects. Thus, the principle that a7-
nicotinic receptor activation necessarily indicates an involve-
ment of a7-nicotinic receptors in the mechanism of action of
a test compound (such as kynurenic acid or 7CKA) cannot be
assumed or supported in this way.
Some groups have recognised these limitations of

interpretation and have attempted to strengthen their inter-
pretation of the actions of kynurenate by showing that
a7-nicotinic receptor blockers can prevent the effects of
galantamine overcoming the actions of kynurenate. How-
ever, such observations and arguments remain entirely
irrelevant as they do not exclude the possibility that
galantamine might be producing its effects by acting at
NMDA receptors on neurons which then secondarily activate
a7-nicotinic receptors to yield the final result.
The same principles apply to many combinations of

agonist and antagonist ligands examined on neuronal
networks. One relevant and cautionary study showed that
the impairment of memory by scopolamine, a well-estab-
lished antagonist at muscarinic receptors, was prevented by
the nicotinic antagonist mecamylamine (Newman and Gold
2016). That does not, of course, imply that scopolamine is
acting on nicotinic receptors, only that a7-nicotinic receptors
are involved somewhere along the neuronal circuitry
involved in memory processing even when they also involve
NMDA receptors (Yang et al. 2013). Interestingly, galan-
tamine has been reported to act partly on muscarinic receptor
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subtypes in some situations (Almasieh et al. 2010). Indeed,
Wadenberg et al. (2012) have shown that the potentiation by
galantamine of antipsychotic drug efficacy in conditioned
avoidance testing is prevented by muscarinic but not
nicotinic receptor blockers, leading to their proposal that
anti-psychotic activity of galantamine involves mainly
muscarinic receptors. This would be supported by evidence
that the abnormal pre-pulse inhibition seen in mice reared in
isolation is normalised by a muscarinic action of galantamine
(Yano et al. 2009) and is not affected by a different
acetylcholinesterase inhibitor such as donepezil (Koda et al.
2008). Since the various cholinesterase inhibitors have
different structures, they are each likely to have a spectrum
of minor effects on several targets, giving them their
distinctive pharmacological and clinical profiles.

The broad pharmacology of galantamine

At this point it is appropriate to emphasise that galantamine
does have a very complex pharmacology in addition to the
actions on NMDA receptors and transmitter release discussed
above (Ago et al. 2011). In particular, galantamine can
facilitate or inhibit glutamate release (Santos et al. 2002;
Nagumo et al. 2011; Ondrejcak et al. 2012; Cheng and Yakel
2014). While that result could depend on neuronal activity
which could be excluded by the presence of tetrodotoxin, it is
clear that many nicotinic receptors, including a7-homomeric
receptors, are present on synaptic terminals (Cheng and
Yakel 2014). The induction or facilitation of glutamate
release at these presynaptic sites would not be affected by
tetrodotoxin and would be difficult to exclude from con-
tributing to a pharmacological response, unless a functionally
complete genetic deletion could be achieved. The overall
effect of altered glutamate release would be to produce an
apparent up- or down-regulation of excitability respectively
with a resulting modulation of neurochemical and beha-
vioural changes depending on the neuronal population and
CNS region being investigated.
A significant concern regarding many of the conclusions

drawn with galantamine is that this compound also blocks
several types of potassium channels (Pan et al. 2003; Zhang
et al. 2004; Vicente et al. 2010; Vigneault et al. 2012). Since
kynurenic acid tends to reduce neuronal excitability, irre-
spective of whether it is blocking NMDA, AMPA or kainate
receptors, the depolarisation induced by blocking potassium
conductances will appear to reverse those effects – another
example of ‘physiological antagonism’ or ‘signal cancella-
tion’ (see above). This effect is sufficiently potent to
contribute to the pro-cognitive actions of galantamine
(Vicente et al. 2010).
Third, at a concentration of around 1lM galantamine can

block synaptic terminal calcium-dependent potassium chan-
nels (Ales et al 2006) probably contributing to its promotion
of transmitter release. At higher levels galantamine also
suppresses spike after-hyperpolarization and neuronal

accommodation in the hippocampus (Oh et al. 2006).
Interestingly these effects were mediated through muscarinic
receptors, not nicotinic receptors, and the authors noted that
no enhancement of EPSPs could be detected unless
excitability was increased by the inclusion of a GABA-A
receptor blocker.
Fourth, and perhaps most instructively, galantamine can

even interfere with the release and actions of protein mediators
such as Insulin-like Growth Factor-2 (IGF2), Fibroblast
Growth Factor-2 (FGF2) and Brain-Derived Neurotrophic
Factor (BDNF) in the hippocampus (Kita et al. 2013).
Galantamine also reduces significantly the production and
release of Tumor Necrosis Factor-a in rats with polysaccha-
ride-induced inflammation (Liu et al. 2010) and can suppress
the induction of iNOS, resulting in lowered NO production
during hypoxia (Egea et al. 2012). Galantamine is an efficient
anti-oxidant agent, preventing cell damage caused by hydro-
gen peroxide (Triana-Vidal and Carvajal-Varona 2013) or
amyloid-b (Melo et al 2009), this possibly being one of the
mechanisms by which the drug protects against neuronal
damage by b-amyloid (Matharu et al, 2009; Li et al. 2010; Rao
et al. 2013) and the toxic compounds kainic acid and caffeic
acid (Kumar et al. 2011). There is, therefor, a plethora of
actions which, independently or combined, provide galan-
tamine with a complex pharmacology which make it even
more inappropriate as a tool to define the pharmacological
specificity of a compound such as kynurenic acid.

Conclusions and Implications

This discussion has focused on a problem arising from data
which have not been reproducible in at least 13 independent
studies (Table 1), but which have spawned other studies
which appear to be supportive but are actually only
‘consistent’ with those data and do not include any results
which substantiate the concept of kynurenic acid blocking
nicotinic receptors. The interpretation of results based on
those studies is therefore insecure, but still sometimes
ignores a wealth of contrary, established, data using
dizocilpine [MK-801], phencyclidine and other well-charac-
terized compounds. The problem is compounded by a
reliance on chemical tools which are unsuitable for drawing
definitive conclusions. Galantamine is not only a rather non-
selective drug but the widely accepted mechanism of action
(allosteric potentiation) is itself not reproducible (Kowal
et al. 2018). All these arguments are made even more
difficult in the CNS with its plethora of sites available for
drug effects at pre-synaptic and post-synaptic receptors, sub-
synaptic and extrasynaptic locations, many on complex
networks of neurons that make interpretation extremely
difficult and dependent on earlier and recent neuronal
activity. Until a wider consensus is obtained based on more
positive results and reliable pharmacological analyses, it is
clearly inappropriate to refer to kynurenic acid as a ‘nicotinic
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receptor blocker’ especially without any qualification or
reference to its more well-established actions. Since it is one
of the fundamental tenets of the Scientific Method that data
should be reproducible, then the current default position must
be that kynurenic acid does NOT directly affect nicotinic
receptors and results obtained with it must be re-assessed on
the basis of its fully documented actions on NMDA, AMPA
and kainate receptors, with the possible involvement of
AHRs or GPR35. This is particularly so since the inability to
block nicotinic receptors at the same time that glutamate
receptors or synaptic potentials are blocked (viewed as a
positive control) (Table 1) is highly reliable evidence against
nicotinic blockade. It will be necessary for independent
laboratories to examine recombinant proteins in isolation
transfected into cells (e.g. chinese hamster ovary cells cells,
HeLa cells, or oocytes) which do not constitutively express
any of the relevant competing receptors and which are not
networked as in the normal CNS. Unfortunately even those
approaches will need to consider the effects of an absence of
hormones, growth factors, neuroactive compounds, recep-
tors, ecto-enzymes, extracellular matrix components, hor-
mones, trace elements etc. which may influence receptor
structure and ligand binding. Most importantly, the use,
analysis and discussion of results under any experimental
conditions must be interpreted with due consideration of the
network complexity – structural and chemical – which
characterises the CNS, in addition to the correct understand-
ing of pharmacological principles. In view of the increasing
medical importance of the kynurenine pathway in a range of
psychiatric, neurological and metabolic disorders, and its
growing importance as a target for new drug development, it
is essential that the sites of action and pharmacology of these
tryptophan catabolites are clearly and fully understood.
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