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Abstract: Ammonium molybdate tetrahydrate ((NH4)6Mo7O24) (AMT) is commonly used as the
precursor to synthesize Mo-based oxides or sulfides for lithium ion batteries (LIBs). However, the
electrochemical lithium storage ability of AMT itself is unclear so far. In the present work, AMT is
directly examined as a promising anode material for Li-ion batteries with good capacity and cycling
stability. To further improve the electrochemical performance of AMT, AMT/polydopamine (PDA)
composite was simply synthesized via recrystallization and freeze drying methods. Unlike with block
shape for AMT, the as-prepared AMT/PDA composite shows flake morphology. The initial discharge
capacity of AMT/PDA is reached up to 1471 mAh g−1. It delivers a reversible discharge capacity of
702 mAh g−1 at a current density of 300 mA g−1, and a stable reversible capacity of 383.6 mA h g−1

is retained at a current density of 0.5 A g−1 after 400 cycles. Moreover, the lithium storage mechanism
is fully investigated. The results of this work could potentially expand the application of AMT and
Mo-based anode for LIBs.

Keywords: (NH4)6Mo7O24; flake; lithium ion battery; anode; polydopamine

1. Introduction

In recent years, lithium ion batteries (LIBs) have been recognized as the solution to
many challenges due to the booming development of electric vehicles and energy storage
industries [1–4]. Their benefits include higher specific energy and a longer lifespan, and
they are also more cost-effective. Anode materials with lower work potential and higher
energy/power density have been widely studied to improve the integral performance
of LIBs [5]. Three main types of anode materials, including carbon-based material (such
as graphite [6], carbon nanotubes [7], and graphene [8]), transition metal oxides (such
as Fe2O3 [9] and Co3O4 [10]), and elementary substances (Si [11], Sn [12]) have drawn
extensive attention, and great progress has been made in recent year to promote their
practical application. However, to meet the high energy storage requirements of electric
vehicles and smart devices, anode materials with advantages of high specific capacity,
long-term cycling stability, and facile synthesis approach that can be easily scaled up are
still urgently needed.

Polyoxometalate is a type of compound obtained via the condensing and recrystalliz-
ing process of the oxoacid ion of a pro-transition metal with a d0 electronic configuration
in a solution. Ammonium molybdate tetrahydrate (AMT), one of the polyoxometalates
with the advantage of industrial low cost, has been studied extensively [13]. Researchers
have mainly used AMT to synthesize MoS2 or MoOx (x = 2, 3) via a series of complicate
procedures [14]. For example, Luo et al. [15] synthesized MoO2@carbon nanofiber using
AMT as a precursor. When applied as an anode for LIBs, MoO2@carbon nanofiber com-
posite showed a discharge capacity of 762.7 mAh g−1 after 100 cycles at a current density
of 50 mA g−1. Chang et al. [16] prepared MoS2-graphene composite via a solution-phase
approach. MoS2 in the composites possessed a typical layered structure with a sheet size of
100–200 nm. The composite exhibited a specific capacity of about 900 mAh g−1 at a current
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density of 1000 mA g−1. Furthermore, hexagonal Mo based cluster compounds such as
Mn2Mo3O8 and Fe2Mo3O8 have also been developed for LIB anodes in recent years [17–19].
Although the above reports achieve high capacity Mo-based oxide or sulfides, the syn-
thesis procedures of these nanostructured materials are generally complex and need to
be precisely controlled. Inspired by the conversion mechanism of Mo-based compounds
during the lithiation and delithiation process in LIBs, our concern is, can AMT be directly
used as an anode material for LIBs? If so, the complex synthesis process from AMT to
Mo-oxides/sulfides would be unnecessary. However, the electrochemical lithium storage
ability of AMT itself is still unclear so far. Herein, we initially investigate the lithium
storage properties of AMT and focus on its electrochemical performance improvement.

In addition, polydopamine (PDA) is widely employed as a coating material owing
to its natural non-toxicity and super adhesion [20]. The multiple N types derived from
the amine functional group of PDA could improve the electronic conductivity and help
Li+ transportation [21]. Interestingly, it has been found that pure PDA can show some
lithium storage ability, and the electrochemical lithium storage ability of PDA could be
enhanced by molecule adjustments such as oxidation and heat treatment [22,23]. Therefore,
PDA was applied to modify the surface of AMT in this work. The flake AMT/PDA sheets
were synthesized by a low-temperature treatment process. Differing from the large block
morphology of the pristine AMT, AMT/PDA shows a flake structure. The pure AMT is
confirmed to store lithium reversibly under electrochemical conditions. The electrochemical
performance of AMT could be significantly enhanced by synthesis of AMT/PDA. The
initial discharge capacity of AMT/PDA is reached up to 1471 mAh g−1, and the capacity
remains 702 mAh g−1 at a current density of 300 mA g−1 and 383.6 mA h g−1 at a current
density of 0.5 A g−1 after 400 cycles. The results can potentially expand the application of
AMT and Mo-based anodes for LIBs.

2. Materials and Methods
2.1. Material Synthesis

In a typical experiment, 20.0 mg of dopamine was weighted and transferred into a
conical flask. Afterwards, 1.0 g AMT was also added to the above conical flask, and 50 mL
of deionized water was poured in. Subsequently, the pH of the solution was adjusted
to 8.5 by adding Tris-HCl buffer solution. The solution was stirred vigorously at 40 ◦C
for 24 h. Finally, the obtained composites were freeze dried to gain the resultant product
AMT/PDA.

2.2. Material Characterizations

The crystalline structure of all the samples were detected by X-ray diffraction (XRD)
technology with a Bruker D8 advance (Bruker, Billerica, MA, USA) (Cu Kα, λ = 1.5418 Å).
The chemical environment of various elements in the samples was measured via X-ray
photoelectron spectroscopy (XPS) with a Thermo Scientific ESCALAB 250Xi (ThermoFisher
Scientific, Waltham, MA, USA). The morphology of the AMT freeze dried AMT and
AMT/PDA was observed by employing scan electron microscopy (SEM, Nova Nano230,
FEI Company, Hillsboro, OR, USA). The chemical information of the AMT and AMT/PDA
was collected by a Fourier transform infrared (FTIR) spectrometer (FTIR-650, Gangdong
Instrument Company, Tianjin, China). The weight loss of the sample was measured by
thermogravimetric analysis (TGA) (STA2500, Netzsch, Waldkraiburg, Germany) under an
Ar atmosphere from room temperature to 500 ◦C with a heating rate of 5 ◦C/min.

2.3. Electrochemical Measurements

The electrochemical properties of AMT, freeze dried AMT, and AMT/PDA electrodes
were investigated by assembling a CR2032 coin cell (MIT Company, Shenzhen, China).
The active material AMT or freeze dried AMT, AMT/PDA, or PDA, polyvinylidenefluo-
ride(PVDF), and carbon black super-P was vigorously stirred at a mass ratio of 7:2:1 for
12 h and cast on copper foil to obtain the working electrodes, which were dried in an
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oven at 60 ◦C for 12 h. The CR2032 coin cells were assembled in an argon-filled glove
box with lithium metal as the counter electrode, with H2O and O content below 0.1 ppm.
The ingredient of electrolyte is comprised of 1.0 M LiPF6 solution containing ethylene
carbonate/dimethyl carbonate (EC/DEC, 1:1 in volume). Glass-fiber (Whatman, CF-F,
Maidstone, UK) was applied as the separator. The electrochemical performance for all the
electrodes was evaluated by galvanostatic charge/discharge test (LAND CT2000, Wuhan
LAND electronics Co., Wuhan, China) in the voltage range from 0.005 V to 2.5 V vs. Li+/Li.
The area mass loading for every electrode was about 1.2 mg cm−2. Cyclic voltammetry (CV)
curves for AMT and AMT/PDA were collected on a CHI660E electrochemical workstation
between 0.005 V and 2.5 V at a scan rate of 0.1 mV s−1. Electrochemical impendence spectra
(EIS) of the AMT and AMT/PDA electrodes before and after cycles were measured with an
electrochemical workstation (CHI660E) (Chenhua Instrument Company, Shanghai, China)
between 100 kHz and 0.01 Hz.

3. Results and Discussion

The XRD patterns of the AMT, freeze dried AMT, and AMT/PDA samples, as well
as the standard card of the AMT, are shown in Figure 1a. Because PDA is an amorphous
structure, AMT/PDA presents no obvious new peaks compared with AMT and freeze
dried AMT [24]. This also results in much weaker characteristic diffraction peaks for
AMT/PDA than for AMT and freeze dried AMT. Furthermore, the peak intensity of freeze
dried AMT is much higher than that of AMT. This is probably due to the presence of
crystal water in AMT, which could be removed after the freeze drying process. Meanwhile,
Figure 1b shows the thermogravimetric analysis of the AMT and AMT/PDA. Both AMT
and AMT/PDA samples underwent three weight loss phases when the temperature was
≤300 ◦C. The lost weight resulted from H2O in step one (S1), H2O and NH3 in step two
(S2), and NH3 in step three (S3). Corresponding lost content are 8.82%, 4.31%, and 5.13%,
respectively, which is consistent with the calculation of the integrant weight of N, H, and
O in AMT. There was another weight loss (S4) when the temperature increased to about
410 ◦C. This could be as a result of the pyrolysis of PDA, whose corresponding content is
2.5%, which further illustrates the existence of the PDA [25].

To verify the chemical information of AMT/PDA composite, Fourier transform in-
frared (FTIR) characterization was carried out. The bending vibration band of the N-H
functional group for AMT and AMT/PDA samples locates at about 1639 cm−1. Meanwhile,
the peak at about 1397 cm−1 for the AMT/PDA sample is narrower and sharper compared
to that of AMT, which could be assigned to the shear vibration superposition band of C = C
in the benzene ring and the N-H functional group. Moreover, there are two broad peaks at
about 3400 and 3200 cm−1. This could be considered as the symmetric and asymmetric
stretching vibration absorption of the N-H functional group. The above results confirm the
presence of PDA in the AMT/PDA composite [24].

The XPS analysis was used to obtain the chemical environment of several elements
(such as Mo and O). Four main strong expected XPS peaks, Mo 3d at 233.3 eV, Mo 3p3/2 at
399.3 eV, Mo 3p1/2 at 417.2 eV, and O 1s at 530.9 eV, are shown in Figure S1a. Figure 1d
shows the fitting pattern of the Mo 3d XPS spectra, which can give more detailed valence
state of Mo cations in the AMT/PDA and AMT samples. There are two peaks located at
232.7 eV and 235.8 eV, which could be matched with the tetravalent (Mo4+) and hexavalent
(Mo6+) states [26]. There is no significant difference in binding energy between AMT and
AMT/PDA. This shows that the chemical environment of the Mo cations has not been
changed via low-temperate treatment. The above results are consistent with those of XRD.
The fitting C 1s and O 1s XPS spectra of AMT and AMT/PDA are shown in Figure S1b,c.
There is a clear XPS peak at 530.5 eV as for the AMT and AMT/PDA samples, which
belongs to the chemical environment of oxygen in MoOx (2 < x < 3) [27]. It is intriguing to
note for the AMT/PDA samples that there is an XPS peak at 532.0 eV, which is assigned
to the C-O bond [8]. The existence of the C-O bond revealed that PDA exists in the AMT.
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Moreover, the Mo atomic percentage for AMT/PDA (35.32%) is less than that of AMT
(41.63%) (Table S1), which could be ascribed to the coverage role of PDA.
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It has been reported that the freeze drying process might effectively rebuild the
morphology structure of the material [28]. SEM was employed to obtain the morphology
of the AMT and AMT/PDA samples, and the results are shown in Figure 1e,f. The shape of
AMT has a cuboid-like and rock-like appearance, with a slick surface (Insets in Figure 1e,f).
The size of the cuboid-like AMT is approximately ~200 µm. The morphology of the freeze
dried AMT is still cuboid-like, with about 5 µm thickness (Figure S2a). There are significant
changes for the AMT/PDA regarding morphology, transforming from rock-like shapes to
sheets (Figure 1f). The length, width, and thickness of AMT/PDA is, on average, about
100, 60, and 1.2 µm, respectively, according to Figure S2b–d.

Sheet morphology, as well as the presence of PDA, may lead to differences in elec-
trochemical performances. The corresponding electrochemical performances for all the
samples have been investigated and are shown in Figure 2.

The delicate charge/discharge process was measured with cyclic voltammetry at a
scanning rate of 0.1 mV s−1 from 0.005~2.5 V vs. Li+/Li, and the results are shown in
Figure 2a and Figure S3. AMT, freeze dried AMT, and AMT/PDA exhibit very similar
sharpness in the CV curves, suggesting similar electrochemical lithium storage properties,
especially reversible oxidation and reduction behavior. This also demonstrates that the
main electrochemical lithium storage ability contribution for AMT/PDA comes from AMT.
During the first discharge process, a broad cathodic peak appearing at around 1.65 V illus-
trates the formation of the solid electrolyte interphase (SEI) film, and it disappears in the
subsequent cycles [29]. The Mo6+ state converts to the Mo4+ state when the potential further
decreases to 1.25 V. Finally, the Mo4+ reacts with Li+ to form certain stable composites.
Meanwhile, a stable anodic peak at about 1.49 V is observed. It is assigned to the re-
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versible conversion reaction of the Li/Mo composites back to oxides (MoO3/MoO2) [30,31].
Figure 2b shows the charge/discharge voltage profiles at different current densities for
the AMT/PDA electrode, with a charge platform range from 1.25 to 1.75 V. Figure 2c,d
shows the rate capability and cycling performances of the AMT, freeze dried AMT, and
AMT/PDA electrodes, respectively. The AMT/PDA electrode exhibited obvious rate ca-
pability improvement compared to the AMT and the freeze dried AMT electrodes from
Figure 2c. At a current density of 300 mA g−1, AMT/PDA delivered a reversible discharge
capacity of 702 mAh g−1, which was only about 300 mAh g−1 for AMT and freeze dried
AMT. With a current density increase to 500 and 1000 mA g−1, capacities of 465 mAh g−1

and 397 mAh g−1, respectively, were maintained. After the current density went back to
500 and 300 mA g−1, the capacity gradually recovered, suggesting the good reversibility
of the AMT/PDA electrode. The AMT, freeze dried AMT, and AMT/PDA electrodes
delivered initial discharge capacities of 1331.8, 878.6, and 1471 mAh g−1, respectively, at a
current density of 100 mA g−1 with an initial coulombic efficiency (ICE) of 55.42%, 54.28%,
and 51.31%, respectively. As shown in Figure S4, the pure PDA electrode showed an
irreversible discharge capacity of about 170 mAh g−1 in the first cycle. This is the reason
for the lower ICE of AMT/PDA compared to the AMT and freeze dried AMT electrodes.
However, in the subsequent cycles, the pure PDA electrode only delivered a reversible
stable capacity of less than 20 mAh g−1, suggesting that the most capacity contribution in
AMT/PDA comes from AMT. The specific capacity of the AMT/PDA electrode maintained
383.3 mA h g−1 after 400 cycles at a current density of 0.5 A g−1, which was the best
among the prepared electrodes (Figure 2d). Meanwhile, a long-term galvanostatic test at
an even higher current density of 1 A g−1 was carried out to compare the stability of the
materials under high current density conditions (Figure S5). The AMT/PDA electrode
exhibited the most stable performance (267.7 mAh g−1 after 1000 cycles). There is obvious
capacity decay for all electrodes. However, there is a difference of attenuation cycles
(50 cycles for the AMT/PDA electrode, 100 cycles for the AMT electrode). The decay
could be related to the structure of the AMT. MoO3 might collapse and pulverize during
the cycle phase [30]. When the surface of the AMT is coated by PDA, the PDA can be
regarded as a protective layer to alleviate the structure collapse. The charge/discharge
voltage profiles of AMT and AMT/PDA during long-term cycling shown in Figure S6
further confirm the similar lithium storage mechanism from the similar voltage plateau.
The voltage profiles also indicate the higher cycling stability of AMT/PDA compared
AMT. As a result, the AMT/PDA composite exhibits much higher capacity than that of
the commercialized graphite anode, particularly at current densities over 0.5 A g−1 [32].
In addition, the rate capability and cycling stability of AMT/PDA is much better than the
pure Mo-based oxides [15]. Therefore, considering the facile synthesis procedure and the
micro-size scale, the AMT/PDA could be regarded as a promising anode material for high
energy and high power lithium ion batteries. However, similar to the other high theoretical
capacity anode materials, including silicon and transition metal oxides/sulfides [33], the
ICE of AMT/PDA is still to be improved for future practical application.

In order to understand the electrochemical characterization of AMT/PDA electrodes
for lithium ion storage, the anodic/cathodic peak current at different scanning sweeps was
selected. The results are shown in Figure 3a.
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The mathematical relationship between the response peak current and the scanning
rate could be descripted as the following (Equation (1)):

I = aνb (log(i) = blog(ν) + log(a)) (1)

where i is the current, ν represents the scanning rate, and a and b are adjustable parameters.
The working mechanism of the electrode is controlled by the value of b, which is attributed
to the fact that i and ν are known with regard to an explicit scanning process. When the
value of b is closer to 1, this indicates that the capacitance property of the electrode material
is superior. On the contrary, the closer the value of b is to 0.5, the better the battery property
of the electrode material [34,35] The value of b, the slope of the linear line in Figure 3b, is
equal to 0.684 and 0.503, respectively, for the lithiation/delithiation process. The b value is
close to 0.5, indicating that the working mechanism of the AMT/PDA electrode does not
belong to the capacitance property.

According to the literature reports and the analysis of CV curves, the position of
cathodic/anodic peaks and the shape of the voltage profiles are similar to the initial
lithiation of the oxide-based anode material of molybdenum in LIBs [30,31,36]. So a
possible reaction equation (Equations (2)–(5)) is proposed and shown as following:

AMT + (20 − 2x)Li+ + (14 − 2x)e− →6NH4+ + xMoO3 + (7 − x)MoO2 + (6 − x)Li2O + 8LiOH (2)

MoO3 + yLi+ + ye− →LiyMoO3 (3)
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LiyMoO3 + zLi+ + ze− →Mo0 + 3Li2 (4)

Mo0 + 3Li2O→MoO3 + 6e− + 6Li (5)
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Equation (2) presents an irreversible conversion reaction, and the others are highly
reversible for lithium storage. This could be used to explain the low ICE of every electrode.
Electrochemical impedance spectroscopy (EIS) was also employed to explain the excellent
electrochemical performance of AMT/PDA. The corresponding Nyquist plots are shown
in Figure 3c. The diameter of a semicircle could be used to describe the electrochemical
reaction resistance of the electrode [37]. The electrochemical reaction resistance of the
cycled AMT/PDA electrode (141.3 Ω) is much lower than that of the cycled AMT electrode
(314.6 Ω), demonstrating the successful modifying role. As shown in Figure 3d, the linear
relationships between Z’ and ω−1/2 in the low frequency are fitting. The σ represented by
the slope of a line is calculated by Equation (S1) (seen in Supplementary Data). Accord-
ing to Equation (S2) (seen in Supplementary Data), a minor σ value indicates faster ion
diffusion [38–40]. The slope of the cycled AMT/PDA electrodes is lower than in the AMT
electrodes, which suggests better Li-ion diffusion in the internal AMT/PDA electrodes.
The results further confirm that AMT/PDA possesses the faster charge transfer and Li-ion
diffusion kinetics, leading to excellent electrochemical performance.

In order to further comprehend the behaviors of the lithiation and delithiation pro-
cesses for the AMT/PDA electrode, ex-situ XRD and XPS measurement were conducted, as
shown in Figure 4. For the new assembled battery, two relatively strong diffraction peaks,
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located at 12.4◦ and 25.5◦and several weak diffraction peaks between 25.5◦and 30◦ were
discovered (Figure 4a), and these are in agreement with the standard card of AMT. The
diffraction peaks at 12.4◦ and 25.6◦ disappear, and other peaks come out when discharged
to 1. 6-1. 0 V. The new diffraction peaks at 17.5◦, 21.1◦, 23.5◦, 24.9◦, 26.7◦, and 33.2◦

could be consistent with the standard card of lithium molybdenum oxide (Li4Mo5O17)
(PDF#25-0492) and molybdenum trioxide (PDF#05-0506). There is no diffraction peak
during the latter lithiation and delithiation process, indicating that the crystal structure of
the electrode material may be converted to an amorphous state. As shown in Figure 4b,
there are two main valence state forms of Mo6+ (3d3/2, 235.8 eV) and Mo4+ (3d3/2, 232.7 eV)
for Mo. When the electrode is discharged to 1.6V and 0.005 V, the relative content of
Mo4+ (3d5/2, 229.6 eV) increases. However, the relative content of Mo6+ (3d5/2, 231.2 eV)
increases first and then decreases [30]. The above results indicate the redox of the Mo
element, changing from Mo6+ to Mo4+. When the electrode was charged to 1.6 V again, the
Mo (3d5/2, 231.2 eV) appears, showing excellent reversible transformation.
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Figure 4. (a) Ex-situ XRD patterns of the AMT/PDA electrode with different charge-discharge state, (b) Ex-situ XPS
spectrums of Mo 3d for the AMT/PDA electrode with different charge-discharge state

4. Conclusions

In summary, the electrochemical lithium storage performance of AMT was first proven.
To further improve its electrochemical performance, the flake AMT/PDA composite was
successfully synthesized via recrystallization and freeze drying methods. The working
mechanism of AMT/PDA as an anode material is its battery behavior. The AMT/PDA
delivers a high initial discharge capacity of 1471 mAh g−1, and a capacity of 702 mAh g−1

at a current density of 300 mA g−1 is retained. During long-term cycling, stable capacities
of 383.6 mA h g−1 at a current density of 0.5 A g−1 after 400 cycles and 267.7 mAh g−1 at a
high current density of 1 A g−1 after 1000 cycles were achieved, which are much higher
than those of AMT and freeze dried AMT. The electrochemical performance of AMT or
AMT/PDA would be further enhanced by some rational approaches such as a conducting
material coat, unique structure design, and so on. The results prove that AMT can not only
be used as a precursor to the synthesis of Mo-based anode materials, but itself can also
reversibly store lithium without a complicated synthesis process.
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voltammetry curves of (a) AMT and (b) freeze dried AMT electrodes. Figure S4: (a) Rate capability
and (b) cycling performances of the PDA electrode. Figure S5: Long-term cycling performances of
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