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1 | INTRODUCTION

Cell death is an important imaging target for assessing the
early responses of tumors to treatment, where the degree
of tumor cell death can be an indicator of treatment out-
come.! We have shown previously that 2H MRI can be used
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Purpose: There is an unmet clinical need for direct and sensitive methods to
detect cell death in vivo, especially with regard to monitoring tumor treatment
response. We have shown previously that tumor cell death can be detected in
vivo from 2H MRS and MRSI measurements of increased [2,3->H,]malate pro-
duction following intravenous injection of [2,3-2H, [fumarate. We show here that
cell death can be detected with similar sensitivity following oral administration
of the 2H-labeled fumarate.

Methods: Mice with subcutaneously implanted EL4 tumors were fasted for
1 h before administration (200 pl) of [2,3-2H,[fumarate (2 g/kg bodyweight) via
oral gavage without anesthesia. The animals were then anesthetized, and after
30 min, tumor conversion of [2,3-2H, |[fumarate to [2,3-2H,]malate was assessed
from a series of 13 2H spectra acquired over a period of 65 min. The 2H spectra
and 2H spectroscopic images were acquired using a surface coil before and at
48 h after treatment with a chemotherapeutic drug (etoposide, 67 mg/kg).
Results: The malate/fumarate signal ratio increased from 0.022 +0.03 before
drug treatment to 0.12 + 0.04 following treatment (p =0.023, n =4). Labeled
malate was undetectable in spectroscopic images acquired before treatment and
increased in the tumor area following treatment. The increase in the malate/fu-
marate signal ratio was similar to that observed previously following intravenous
administration of labeled fumarate.

Conclusion: Orally administered [2,3-2H; Jfumarate can be used to detect tumor
cell death noninvasively following treatment with a sensitivity that is similar to

that obtained with intravenous administration.

to detect cell death by measuring an increase in the rate of
malate production following an intravenous *H-fumarate
injection.? Fumarate is hydrated in the reaction catalyzed
by the enzyme fumarase to produce malate. In necrotic
cells, the loss of plasma membrane integrity results in
fumarate rapidly gaining access to the enzyme and an
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increased rate of malate production.?* The route of admin-
istration of a molecular imaging agent is critical, especially
with regard to clinical translation. Oral delivery provides
several advantages over other delivery routes: It is lower
in cost compared with intravenous administration, which
requires sterile delivery as well as medical personnel, and
patients prefer oral administration to both intravenous
and subcutaneous delivery.*> Here, we demonstrate that
oral delivery of [2,3-2H,]fumarate enables noninvasive
detection of tumor cell death in a murine lymphoma
model.

2 | METHODS

2.1 | Cell culture

A murine lymphoma cell line (EL4) was purchased
from the American Type Culture Collection, and cells
were used within 5 to 10 passages. The cell lines gave
a 100% STR (“short-tandem-repeat”) profile match and
tested negative for mycoplasma. Cells were cultured in
Roswell Park Memorial Institute 1640 medium (Life
Technologies) supplemented with 2 mM L-glutamine and
10% fetal bovine serum (Gibco/Thermo Fisher Scientific)
at 37°C and 5% CO,. Cell viability and number were
assessed using a Vi-Cell counter (Vi-Cell XR; Beckman
Coulter).

2.2 | Tumor implantation

Cells (viability > 95%) were washed, resuspended in 0.2 ml
chilled phosphate-buffered saline, and injected subcu-
taneously at 5 x10° cells into the left flank of 10- to
12-week-old female C57BL/6J mice (Charles River Labo-
ratories). The tumors were grown for 10 days and reached
about 1.5 cm in diameter, when they were imaged. Tumor
volumes were measured using a caliper, with volumes
calculated according to the formula (length x width?)/2.
The animals were then treated with etoposide (67 mg/kg
of body weight, intraperitoneally) and imaged again
48 h later. Experiments were carried out in compliance
with project and personal licenses issued by the UK
Home Office and approved by the Cancer Research UK,
Cambridge Institute Animal Welfare, and Ethical Review
Body.

2.3 | 2H MRS MRSI in vivo

Animals were fasted for 1 h before oral adminis-
tration (200pl) of sodium [2,3-2H,|fumarate (2 g/kg

bodyweight; Cambridge Isotope Laboratories) via a blunt
gavage needle. For imaging, the animals were anes-
thetized by inhalation of 2% isoflurane in air/O, (75%/25%,
2 L/min). Breathing rate and body temperature were
monitored and body temperature maintained using warm
air. 2H imaging and spectroscopy experiments were per-
formed at 7 T (Agilent), as described previously.>® A
72-mm-diameter birdcage volume coil was used for 'H
transmit and receive (Rapid Biomedical), and a home-built
10-mm-diameter single-loop surface coil, located over
the tumor, was used for 2H transmit and receive. The
tumors were localized in T,-weighted fast spin-echo 'H
images (TR = 2 s; TE = 50ms; FOV = 32X 32mm,
matrix = 256 X 256; slice thickness = 1 mm; 10 slices).
Serial 2H spectra were acquired using a home-built sur-
face coil with a 2-ms B;-insensitive rotation (BIR-4)
pulse,” a nominal flip angle of 67°, a TR of 140ms,
and were the sum of 2142 signal averages.> The TR
was optimized for the T; of fumarate (147 ms), as
described previously.? Spectra were phase-corrected and
the AMARES toolbox®° used for peak fitting. The 3D
CSI was acquired using a 2-ms BIR-4 pulse, nominal flip
angle of 50°, with phase-encoding gradients encoding a
9 X 9 x 3 k-space matrix with a FOV of 27 x 27 x 27 mm?.
Data were acquired into 256 complex points with a
sweep width of 4 kHz and a TR of 70 ms. Each image,
which took 5 min to acquire, was the sum of 4328
transients, as described in Kreis et al.® Signal-to-noise
ratios were calculated from the integral of the metabo-
lite peak divided by the SD of the spectral noise (-8 to
—18 ppm).

2.4 | Magnetic resonance spectroscopy
of blood extracts

Tumor-bearing mice (N = 12) were given 2 g/kg
[2,3-2H,]fumarate orally and then anesthetized. Blood was
taken via cardiac puncture at 30 min (etoposide-treated
N = 3, untreated N = 3), and 70 min (etoposide-treated,
N = 3; untreated, N = 3) after [2,3->H,]fumarate admin-
istration, vortexed in ice-cold 2 M perchloric acid for 30s,
centrifuged at 13000 g at 4°C for 15min, and then neu-
tralized with ice-cold 2 M KOH. The neutralized extract
was centrifuged for 10 min at 13000 g, and 200 pl of the
supernatant was mixed with 300 pl H,O and a formate-d
standard added to give a final concentration of 4 mM.
The 2H-NMR spectra were acquired using the 2H coil of
a 5-mm 'H/broadband inverse detection probe in a 14.1T
high-resolution NMR spectrometer (Bruker Spectrospin)
at 310K, using a 90° pulse, a TR of 3 s, with a 2000-Hz
spectral width into 1024 data points and were the sum of
1024 transients.
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2.5 | Magnetic resonance spectroscopy
of tumor extracts

Following oral administration of 2 g/kg [2,3-*H,|fumarate,
tumor-bearing mice (etoposide-treated, N = 3; untreated,
N = 3) were anesthetized and euthanized after 30 min by
cervical dislocation. Tumors were freeze-clamped in lig-
uid nitrogen-cooled tongs, homogenized in ice-cold 2 M
perchloric acid using a Precellys Cryolys Evolution tis-
sue homogenizer (Bertin Instruments) and neutralized
with 2 M KOH. Extracts were centrifuged for 15min at
13000 g and 200 pl of the supernatant mixed with 300 pl
of H,O and a formate-d standard added to a final con-
centration of 4mM. 2H spectra were acquired using the
same acquisition parameters as used for the blood sam-
ples. 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid
was then added as a 'H standard, to give a final concen-
tration of 1 mM, together with 50 pl 2H,0, and 'H spectra
were acquired with water pre-saturation and a flip angle
of 90° into 16 384 data points, with a spectral width of
7788 Hz and a TR of 8 s. Concentrations were calculated as
described previously.?

2.6 | Statistical analysis

Statistical and graphical analyses were performed using
Prism v9.0 (GraphPad). Analysis of variance was used for
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FIGURE 1

multiple comparisons of groups to determine significance.
For single-parameter comparisons, a paired or unpaired
Student ¢ test was used, with errors representing SD.

3 | RESULTS

3.1 | Detection of tumor cell death
in vivo following oral administration
of deuterated fumarate

Localized 2H spectra, acquired by placing a surface coil
over the tumor, were used to monitor the conversion
of [2,3-2H,]fumarate into [2,3-H,]|malate from about
30min after oral gavage of 2 g/kg labeled fumarate
by EL4 tumor-bearing mice (Figure 1A,C). Spectra
acquired previously? following intravenous injection of
[2,3-°H,|fumarate (1 g/kg) are reproduced in Figure 1E,G.
The concentrations of deuterium-labeled fumarate,
malate, and water in the tumor following oral fumarate
administration were determined by linear extrapolation
of the water (HDO) signal back to the time of fumarate
ingestion and assuming that this corresponded to 13.7 mM
deuterium.’® The concentrations of the deuterated
fumarate and malate concentrations were then deter-
mined by comparison of their signal intensities with that
of the water resonance (Figure 1B,D). The concentrations
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Representative 2H MRS measurements of labeled fumarate, malate, and water in EL4 tumors. Tumor spectra were acquired

before (A,E) and 48 h after etoposide treatment (67 mg/kg) (C,G) following oral (2 g/kg body weight) (A,C) or intravenous (1 g/kg body
weight) (E,G) administration of [2,3-2H,] fumarate. The spectra are the sum of thirteen 5-min spectra recorded over 65 min. Oral [2,3-2H,]
fumarate administration started approximately 30 min before the start of acquisition of the first spectrum, whereas intravenous infusion
began 5 min after the start of spectral acquisition. The peaks were fitted individually using prior knowledge.?' Labeled water, fumarate, and
malate concentrations before (B,F) and after (D,H) etoposide treatment and following oral (B,D) or intravenous (F,H) [2,3-2H,] fumarate
administration. Data are shown as the mean + SD (N = 4) for (B) and (D) and N = 3 for (F) and (H). The data shown in (E)-(H) are

reproduced from Hesse et al?
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following intravenous fumarate injection were recalcu-
lated from the data shown in Hesse et al> by assuming
a tissue HDO concentration of 13.7mM (Figure 1F,H).
In both cases, there was a significant increase in labeled
malate concentration following etoposide treatment. For
the animals administered fumarate orally, this was con-
firmed by 2H-NMR measurements on freeze-clamped
tumor extracts (Table 1). The concentrations of 2H-labeled
fumarate and malate measured in the extracts were
comparable with those measured in vivo (Figure 1B,D).
The SNR of the most intense malate peak in one of
the 5-min 2H spectra acquired from etoposide-treated
EL4 tumors following oral administration of labeled
fumarate was 2.6+ 0.8 (Figure 1D), as compared with
2.9+ 0.2 measured previously after intravenous injection
(Figure 1H).”? In untreated tumors, the concentration
of [2,3-2H,]malate determined by 2H NMR, following
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oral fumarate administration, was about 6% of the unla-
beled concentration, determined by 'H NMR, whereas
in treated tumors the [2,3-*H,]malate concentration
increased approximately 30 times, constituting about 31%
of the total malate concentration (Table 1). The malate/fu-
marate signal ratios measured in vivo following etoposide
treatment increased similarly to those measured previ-
ously after intravenous injection of [2,3-2H,]fumarate,?
from 0.022+0.03 to 0.12+0.04 (p = 0.023, N = 4) fol-
lowing oral administration (Figure 2A) as compared
with 0.016+0.02 to 0.16+0.14 (p = 0.0024, N = 3)
measured previously following intravenous injection
(Figure 2B).> The blood fumarate concentrations at
both 30 min and 70 min after oral administration were
lower compared with the concentrations measured previ-
ously after intravenous injection: 7.45+1.31 mM versus
12.35+3.61mM after 30min and 2.67+0.56 versus

TABLE 1 Deuterium-labeled fumarate, malate, and water concentrations measured in tumor and blood extracts using 2H NMR
Control Etoposide-treated
Concentrations of deuterated species
[2,3-2H, [fumarate [2,3-H, malate [2,3->°H, ][fumarate [2,3-*H,|malate
(pmols/g) (pmols/g) (nmols/g) (pmols/g)
Tumor 2.92+1.05 0.03+0.01 2.50+0.63 0.92+0.27
Blood [2,3-H, ]fumarate (mM) [2,3-2H, malate (mM) [2,3-2H, ]fumarate (mM) [2,3-2H,|malate (mM)
30 min 7.45+1.31 0.02+0.01 6.87 +1.11 0.22+0.10
70 min 2.67 +0.56 n.d. 2.23+1.62 0.10+0.05
Concentrations of protonated species
Fumarate (pmols/g) Malate (pmols/g) Fumarate (pmols/g) Malate (pmols/g)
Tumor 4.12+0.32 0.51+0.002 3.94+0.21 2.05+0.36

Note: For malate, this was based on the up-field resonance at 2.4 ppm; the down-field resonance was not resolved from the water resonance. The concentrations
of the protonated species in tumors were also measured using 'H NMR. The tumor concentrations were measured at 30 min after oral administration of 2 g/kg
[2,3-2H, |fumarate. Blood was collected by cardiac puncture at the specified times after [2,3->H, |fumarate administration. The measurements were made in

EL4 tumor-bearing mice, which were either etoposide (67 mg/kg) or vehicle-treated (Control). Data are expressed as the mean + SD (N = 3).

Abbreviation: n.d., not detected.
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FIGURE 2 Tumor * - *
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Metabolite maps in the central slice derived from dynamic 3D-CSI images acquired over 35 min following oral

[2,3-2H,]fumarate administration in EL4 tumor-bearing mice. The color code represents arbitrary units, and the x and y scales are in

millimeters. The locations of the tumors are outlined by dotted white lines. A, Metabolite maps of fumarate pretreatment. B, Malate
pretreatment. C, Fumarate 48 h following treatment. D, Malate 48 h following treatment

4.95+1.43mM after 70 min in untreated tumor-bearing
animals, respectively. Drug treatment resulted in an
increase in the labeled malate concentration in the blood,
reflecting washout from the tumor, as was observed
previously.

A dynamic 3D-CSI sequence was used to acquire a
series of 5-min images. The sum of the first seven images,
acquired over a period of 35 min, are shown in Figure 3.
This is a period when the spectroscopy data (Figure 1)
showed that the SNR of the malate and fumarate res-
onances were maximal following oral [2,3-2H,|fumarate
administration. The images showed no detectable malate
signal before treatment, whereas an increased malate sig-
nal was observable at 48 h after etoposide treatment, which
was localized to the tumor area (Figure 3).

4 | DISCUSSION

MRSI of the metabolism of hyperpolarized '3*C-labled
and 2H-labeled fumarate, following their intravenous

administration, has been shown to be capable of detect-
ing cell death in vivo.>*!1"17 We have shown here that
this is also possible following oral administration of the
2H-labeled fumarate, where the SNR of the most intense
malate peak was comparable to that measured previously
after intravenous administration, using the same coil and
acquisition parameters.? This was despite the fact that the
concentration of 2H-labeled fumarate in the blood was
approximately 1.5-2-fold lower following oral administra-
tion. This may reflect the low Km (5 pM) of fumarase
for fumarate'®; therefore the enzyme is still saturated at
the lower fumarate concentration. The acquisition time
window following oral delivery of a deuterium-labeled
substrate can be quite broad, which may facilitate clini-
cal translation. De Feyter et al, who measured lactate and
glutamate/glutamine labeling in both healthy volunteers
and glioblastoma patients, were able to vary acquisition
timings from immediately following to up to 75 min after
oral administration of [6,6-2H,]glucose.!® We observed
here that oral administration of [2,3-*H, ]fumarate approx-
imately 30min before the start of image acquisition
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resulted in relatively high levels of labeled malate in
etoposide-treated tumors that were sustained for a further
60 min. This flexibility in timing represents a significant
advantage over the use of hyperpolarized '*C-labeled sub-
strates, where imaging must be initiated within minutes of
administration. Furthermore, the increase in the malate/-
fumarate ratio is much larger for *H-labeled fumarate
as compared with hyperpolarized 13C-labeled fumarate,
reflecting the longer time period over which the malate
concentration can build up.??

Single-dose oral toxicity of fumaric acid in
Sprague-Dawley rats has been reported as 10.7 g/kg for
males and 9.3 g/kg for females.?® The 2 g/kg body weight
of sodium [2,3-2H,Jfumarate used here is well below the
LDsg, and we did not observe any toxicity associated with
fumarate administration. Moreover, it should be possible
to lower the fumarate dose, as the lower blood fumarate
concentration obtained following oral administration had
little effect on the SNR of the malate resonance. How-
ever, translation of this technique to the clinic will require
further toxicity testing.

5 | CONCLUSIONS

Detecting tumor cell death using H MRI measure-
ments of the increased production of [2,3-2H,]malate
from [2,3-*H,]fumarate is equally sensitive if the labeled
fumarate is administered orally or intravenously. Oral
delivery may improve clinical acceptability and could offer
a new approach to detecting tumor cell death and moni-
toring treatment response in the clinic.
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