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Abstract

Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syn-

drome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing bio-

medical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the

formation and development of atherosclerosis. The current review focuses on the vulnerable pla-

ques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the

plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for

vascular compensation and that angiogenesis is a critical factor for HSS which induces atheroscle-

rotic vulnerable plaque formation. These results greatly challenge the established belief that low

shear stress is important for expansive remodelling, which provides a new perspective for prevent-

ing the transition of stable plaques to high-risk atherosclerotic lesions.
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1. Introduction

The current review focuses on the vulnerable plaques observed in the

HSS regions. Evidence is provided to support that ACS and ischemic

strokes occur at or near the proximal region of the stenosis. Arterial

diseases such as acute coronary syndrome (ACS) and ischemic strokes

are the leading causes of death worldwide [1]. ACS and ischemic

strokes are frequently caused by rupture of vulnerable plaque leading

to thrombus formation and distal cessation of blood flow. The

morpho-mechanical characteristics of vulnerable plaques are critical

for their tendency to rupture [2, 3]. ACS and ischemic strokes often

occur at sites where the stenosis level is lower than 50% [4, 5].

Atherosclerotic plaque rupture or damage of the vascular surface

leads to incomplete or complete obstructive thrombus formation and

ultimately cause ACS or ischaemic strokes [6–8]. Vulnerable plaques

have the following pathological characteristics: (1) A huge lipopro-

tein core being larger than 40% of the plaque volume; (2) A thin fi-

brous cap [9]; (3) High content of inflammatory cells (including

macrophages, T lymphocytes and mast cells) [10, 11, 13]; (4)

Reduced number of vascular smooth muscle cells (VSMCs); and (5)

Plenty of new born blood vessels in the plaques [12, 13].

Shear stress participates in the formation of atherosclerosis, vas-

cular remodelling, plaque stability, and restenosis after stent implan-

tation and in intimal hyperplasia after blood vessel grafting [14, 15].

The magnitude and spatial distribution of SS change with the devel-

opment of the plaque [16–18] (Table 1). When plaques protrude

into the lumen, high shear stress (HSS) is formed at the proximal

end of the stenosis whereas low shear stress (LSS) is formed at the

distal part [16, 19 and 20] (Fig. 1).
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2. Vulnerable Plaque Animal Model for Shear
Stress Research

Change of SS is a critical external factor for the plaque characteris-

tics [21]. Therefore, a proper experimental model of atherosclerotic

vulnerable plaques is fundamental for our understanding of SS-me-

diated vulnerable plaque formation [22]. One model used perivascu-

lar carotid collar placement, which rapidly induced atherosclerosis

in apolipoprotein E-deficient or low-density lipoprotein receptor-

deficient mice [23]. Our group has previously demonstrated the effi-

cacy of this model in studying the development of atherosclerotic

plaques induced by SS [24, 25, and 28]. The collar develops HSS in

the proximal region and LSS in the distal region of the plaque simi-

lar to the plaques intruding into the lumen [26]. Cheng and cow-

orkers improved the perivascular SS modifier that induces regions of

lowered, increased and lowered/oscillatory shear stresses in mouse

carotid arteries [27, 28].

Another model is ligation of the left external and internal carotid

branches. In this situation left carotid blood flow is reduced to flow

via the occipital artery. In response to partial ligation of the left ca-

rotid artery (LCA), blood flow significantly decreased by 90% in the

LCA and increased by 70% in the right carotid artery (RCA) [29–

31]. The major advantage of the first model is the similarity to well-

defined plaques, the accelerated atherosclerosis formation and in-

duction of at least two kinds of SS stimulations simultaneously. HSS

occurs inside the stenosis and low and/or oscillatory SS is localized

to the distal region of the stenosis. However, the change of SS in the

proximal and the distal regions is more serious with the ligation

model which can induce very LSS in the ligated LCA. However, the

ligation model is not localized, i.e. the SS is changed throughout the

vessel.

3. High Shear Stress Induces Vascular Outward
Remodelling

Vascular remodelling encompasses chronic changes of the vascular

lumen size and morphology, vessel wall structure, and vascular func-

tion [32]. SS induced vascular remodelling is a very complex process

involving nitric oxide (NO) expression, extracellular matrix (ECM)

synthesis and degradation, and VSMCs proliferation and migration.

3.1. High shear stress up-regulates the

expression of NO
NO is an important vasodilator participant in vascular remodelling

[33]. Endothelial cells (ECs) are the main sensor of the SS and also

the critical player in vascular remodelling [34]. In the early stages of

atherosclerosis, LSS occurs at the two sides of an arterial bifurcation

and on the inside of vascular curvatures whereas HSS occurs at the

apex of an arterial bifurcation [35] and on the outside of the vascu-

lar curvature [36]. In resistance arteries as well as in large blood ves-

sels, chronic increase in blood flow enhances endothelial nitric oxide

synthase (eNOS) expression and NO-dependent vasorelaxation [28,

32–39] whereas LSS decreases endothelial NO synthesis [28].

Furthermore, reduction in blood flow induces inward remodelling

and reduced arteriolar contractility [33, 40]. Moreover, NO is essen-

tial for arterial outward hypertrophic remodelling after a chronic

rise in flow [33, 41]. In addition, NO can induce ECM degradation

through increasing the expression of matrix metalloproteinases

(MMPs) [33]. This remodelling allows the effect of altered SS on the

vascular wall to be normalized [42]. Therefore, HSS induces vascu-

lar outward remodelling through increasing NO expression

[43, 44].

3.2. High shear stress induces the degradation of ECM
ECM synthesis and degradation plays an important role in vascular

wall remodelling [45]. MMPs regulate vascular remodelling by

ECM degradation [46]. Hence, the study of SS regulating the expres-

sion of MMPs can clarify the understanding of vascular remodelling

under SS [47]. HSS induces MMPs expression and vascular out-

wards remodelling [48]. The likely mechanism involves NO in

MMPs expression where HSS induces NO synthesis [28, 36–39] and

NO increases the expression of MMP [49, 50]. HSS also induces

secretion of plasmin (a strong specific activator protein for MMP-

specific precursors secreted by macrophages) [51]. In addition, Pro-

MMP-2, activated MMP-2, and proMMP-9 levels were modestly

increased by high flow after 7 days [51]. Therefore, HSS may induce

high MMPs expression [52]. MMPs promote plaque wall structural

changes, severe internal elastic lamila (IEL) degradation. This pro-

vides a channel for inflammatory cell and SMC invasion which in

turn produces intensive MMPs to degrade collagen and elastic

fibres. These processes lead to severe wall and lumen expansion and

may be the cause that the HSS region forms a thin fibrous cap in

vulnerable plaque on the proximal side of the vascular stenosis

[19, 53].

3.3 High shear stress induces the apoptosis of VSMCs
Under physiological conditions, SS does not directly act on VSMCs.

However, when medial VSMCs migrate into intima after endothelial

injury, they become directly exposed to blood flow [54]. The studies

in apoE-deficient mice have revealed that VSMCs in atherosclerotic

Figure 1. When plaques protrude into the lumen, high shear stress (HSS) is

formed at the proximal end of the stenosis also whereas low shear stress

(LSS) is formed at the distal part [16].

Table 1. The magnitude of HSS and LSS

Term Location Magnitude The relationship with atherosclerosis Reference

High shear stress (HSS) The proximal region of plaque >25dyn/cm2 Proathero-sclerotic plaque rupture [16][17][18][32]

Low shear stress (LSS) The distal region of plaque <10-15dyn/cm2 Proathero-sclerosis
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plaques are derived exclusively from the local vessel wall rather than

from circulating progenitor cells [55]. LSS induces VSMCs migra-

tion into the intima in the ECs-VSMCs coculture model [56].

Therefore, LSS may be important for VSMCs proliferation and mi-

gration and for promoting blood vessel wall thickening which all are

factors leading to atherosclerosis stenosis formation [57]. LSS-asso-

ciated intimal hyperplasia was dependent on platelet endothelial cell

adhesion molecule-1 (PECAM-1) [58], suggesting that PECAM-1 is

necessary for flow-induced vascular remodelling.

High laminar SS inhibits SMCs proliferation and promotes the

apoptosis of VSMCs [59]. This has been demonstrated as a direct

factor for vulnerable plaque formation [60]. The finding is consis-

tent with the clinical finding that apoptosis of VSMCs is mainly lo-

calized in the HSS region of the stenosis [61–63]. Therefore,

vulnerable plaques are mainly found where SS is high because HSS

induces apoptosis of VSMCs [48, 51, 64]. In vessel grafts, increasing

SS inhibits smooth muscle cell proliferation and reduces intimal hy-

perplasia [65, 66]. The mechanism could be linked with Bone mor-

phogenetic protein 4 (BMP4) [67] and NO [68] signalling pathways.

HSS promotes release of endothelial NO mediating apoptosis of

VSMCs [66, 69]. HSS also upregulated the expressions of NF-kappa

B phosphorylation and MMP2 and MMP9, facilitating vascular out-

ward remodelling [70]. SS induces vascular NADPH oxidase to

comprise p47phox but not gp91phox. Generated Reactive oxygen

species (ROS) interact with NO to produce peroxynitrite, which in

turn activates MMPs and facilitates vessel remodelling [71]. ECs

have an important regulatory role in the biological behaviour of

VSMCs [72]. HSS promotes progressive arterial remodelling, which

consequently causes blood vessel rupture [35, 73]. In summary, HSS

induces adaptive and serious outward vascular remodelling through

promoting apoptosis of VSMCs [74].

3.4 The remodelling process under shear stress
Systemic factors such as hyperlipidemia, hyperglycemia, and hyper-

tension and genetics [75] exacerbate the local HSS and inflamma-

tory response and may facilitate the transition of early

atherosclerotic plaques into high-risk plaques. Vascular remodelling

is governed to maintain the previous (normal) SS. For example the

brachial artery remodels to maintain local SS despite the presence of

cardiovascular risk factors [76].

After plaque formation and protrusion into the lumen, HSS is

mainly apparent in the proximal region of the stenosis whereas LSS

is at the distal region [19, 77]. HSS leads to the expansive re-

modelling [78, 79], which is a compensatory process [30, 80].

Expansive remodelling in response to chronic or repetitive flow in-

crease involves a coordinated sequence of events in the arterial wall

as extensively reviewed by others [81–83]. HSS induces aneurysmal

remodelling through vascular expansive remodelling for maintaining

the local SS [35, 36, 84]. Research showed that HSS increased the

vascular diameter by 23%, while LSS reduced the diameter 23%

[37, 85]. Outward remodelling is the critical factor for high-risk pla-

que formation [32, 86, 87]. NO release from ECs exposed to exces-

sive shear is a fundamental step in the remodelling process. NO

potentially triggers a cascade of events, including growth factor in-

duction and MMP activation that together contribute to re-

modelling of the vessel wall [88]. Furthermore, high flow rates not

only induce HSS but also increase cyclic strains which are found to

induce arterial expansive remodelling [89]. Evaluation of vascular

local SS and cyclic strain was used to predict vascular remodelling

and plaque development [90].

Although several reports show that LSS promotes vascular ex-

pansive remodelling [27, 75, 91–93], both clinical and animal mod-

els prove that vascular expansive remodelling mainly localizes in the

HSS region [29, 94]. The increased atherosclerotic wall thickness in

HSS regions is associated with loss of compensatory remodelling

[95]. Vascular remodelling maintains luminal SS stability; hence ex-

cessive outward expansion is the direct way to reduce the local HSS.

4. High Shear Stress Induces the Vulnerable
Plaque Formation

In vivo colour mapping with intravascular ultrasound and magnetic

resonance imaging (MRI) data show that coronary plaque rupture

are localized in the arterial regions with elevated SS [64, 97–102]

(Table 2). Animal models confirm that vulnerable plaques mainly

occur in the HSS region of the stenosis [62, 103].

A main difference between stable plaques and high-risk plaque is

inflammatory cell accumulation [96, 97, 104, 105]. Inflammatory

cell invasion into atherosclerotic plaques is modulated by ECs. The

recruitment and infiltration of inflammatory cells into the endothe-

lium are mediated by upregulating adhesion molecules, chemokines

and integrins [98, 106, 107]. The viewpoint that LSS induces vulner-

able plaque formation is based on the high expression of

inflammation-related proteins on ECs [27, 107, 108]. However, LSS

induces apoptosis of ECs and endothelial dysfunction [64, 109–

112]. Hence, it is inconsistent with the established role of LSS in

destabilizing atherosclerotic plaques regarding the expression and

activity of MMPs [113]. In addition, LSS induces the VSMCs prolif-

eration, migration and ECMs synthesis [114].

At present, the cross-sectional morphological characteristics of

atherosclerotic plaque have been extensively investigated. However,

less attention was paid to the axial distribution of plaques in the ar-

tery. Clinical pathology research shows that vascular plaque rupture

mainly occurs in the proximal region of the stenosis, where macro-

phages aggregate and thrombosis is found under the endothelium

[62, 103]. Connective tissue growth factor is released from platelets

exposed to HSS and is differentially expressed in endothelium along

atherosclerotic plaques [115]. In vivo MRI 3D FSI studies show that

63.5 dyn/cm2 SS induces high-risk plaque formation [116]. Taken

together, these studies demonstrate that there is a high correlation

between HSS and vulnerable plaque formation in the axial

direction.

5. Angiogenesis May Be the Main Reason That
High Shear Stress Induces Atherosclerotic
Vulnerable Plaque Formation

A growing body of evidence shows that HSS prevails in the proximal

region of atherosclerotic plaques protruding into the lumen [28,

117]. Significant differences in plaque morphology between the

proximal and distal parts of plaques indicate a role in arterial flow

in the distribution of different cell types [28, 53, 62, 98, 117, 118].

It was shown that 86% of ruptured plaques are located proximal to

the stenosis [118]. The reason that atherosclerotic plaque rupture

occurs in this region is currently unknown. Oxidized low-density li-

poprotein was proposed, because oxLDL activates/induces subsets

of smooth muscle cells and macrophages to gelatinase production

[62]. However, it is well known that HSS is endothelium-protective

and the endothelium may prevent the low-density lipoprotein (LDL)

from entering into the vessel wall [19]. Furthermore, some studies
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showed that oxidized low-density lipoprotein (ox-LDL) is mainly

accumulated in the distal region where SS is low [19, 62, 119].

Neovascularization in the vessel wall promotes the formation of

atherosclerosis and vulnerable plaque development. The new vasa

vasorum (VV) can transport cellular and soluble components such

as red blood cells, inflammatory cells and lipid/lipoproteins into the

vessel wall [120–122]. A recent report showed that bFGF and

VEGFR-2 overexpression in the adventitia induced development of

VV and accelerated plaque progression [122, 123]. Furthermore,

most microvessels in atherosclerotic arteries were immature with ab-

normality of intraplaque microvascular ECs with incomplete endo-

thelial junctions and membrane detachment. This may link the

association between the microvascular leakage and intraplaque hae-

morrhage in advanced human coronary atherosclerosis [124, 125].

HSS plays a critical role in the expression of vascular endothelial

growth factor (VEGF) [126] and endothelial NO synthesis [28, 34–

36, 68]. VEGF induces angiogenesis [127] and also disrupts the

vascular barrier function in diseased tissues [128]. NO mediates

shear-induced angiogenesis in ECs [129] and increases vascular per-

meability [130]. Furthermore, the highest concentration of NO is

also critical for the loss of VSMCs and ECM [131]. Thus, HSS

causes the ECs to form tube-like structures and increases endothelial

permeability by increasing the expression of VEGF and NO. The

leaky vasculature with high endothelial permeability and without a

restrictive basement membrane exhibits no adequate barrier func-

tion (Fig. 2).

We propose that angiogenesis is the reason that vulnerable pla-

ques are localized in HSS regions. Furthermore, NO induced smooth

muscle cell apoptosis and matrix degradation. The result is loss of

mural cell and basement membrane around newborn microvessels,

causing microvascular leakage. The leaky vasculature becomes entry

points for inflammatory cells, red blood cells and lipid/lipoproteins.

This may result in inflammation, intra-plaque haemorrhage, lipid

core accumulation and eventually plaque rupture.

6. The Mechanical Mechanism Underlying
Plaque Rupture

As pointed out above, SS in the proximal region of stenosis is signifi-

cantly higher than in the distal region. HSS is critical for vulnerable

plaque [132]. Intraplaque haemorrhage is associated with higher SS

and higher structural stresses in human atherosclerotic plaques as

shown by in vivo examining MRI-based 3D fluid-structure

interaction [133]. Numerical simulation shows that the SS in the

proximal region of stenosis may reach 50-60 dyn/cm2 when the ste-

nosis degree is 50%. The SS in the proximal region does not exceed

20 dyn/cm2 once 70% stenosis is reached. This may precipitate the

rupture of vulnerable plaque in the proximal regions when less than

50% stenosis [130, 134]. Although increased SS in the proximal re-

gion may lead to plaque fibrous cap rupture, 75% of the plaque rup-

ture is believed not to be due to SS since the wall SS is much smaller

than tensile stress during the cardiac cycle [19].

The haemostatic system is a modulator of atherosclerosis [135].

HSS induces intra-thrombus fibrin deposition and platelet adhesion

to the arterial wall [136–138]. HSS also promotes platelet aggrega-

tion [139]. Hence the haemostatic dysregulation caused by HSS may

contribute to our understanding of why ACS and ischemic strokes

are located preferentially in the distal region of the stenosis. SS rate

is the rate change of the local SS and it is an important factor for vul-

nerable plaque rupture [136, 140]. Microfluidics is an important

tool for blood clotting [141, 142] where platelets preferentially ad-

here in low-shear zones downstream of the formed thrombus, with

stabilization of aggregates dependent on the dynamic restructuring

of membrane tethers [143].

Under HSS conditions, blood pressure decreased and uniaxial

tensile stress increased at the site of vascular injury. The magnitude

of SS is smaller compared with the overall loading of plaques.

Hence, pressure may be the main mechanical trigger for plaque rup-

ture and risk stratification [144]. 3D critical plaque wall stress in

prior rupture plaques is 100% higher than that for plaques that do

not rupture. However, flow SS is 92.94 dyn/cm2 for rupture plaque,

which is 76% higher than that for non-rupture plaques (52.70 dyn/

cm2) [145]. Rupture sites in human atherosclerotic carotid plaques

are associated with high structural stresses [146]. Once the thin fi-

brous cap is formed, the internal stress increased 200% when the fi-

brous cap thickness decreased by 50% [147]. These results

demonstrate that intravascular haemodynamic factors are responsi-

ble for the progression of coronary atherosclerosis and development

of vulnerable plaques [148]. Autopsy data have shown that there are

obvious difference between circumferential plaque stress and vulner-

able plaques. The plaque rupture zone is associated with a high de-

gree of stress concentration [149]. Circumferential stress and

Young’s modulus are important direct factors for plaque rupture

[150, 151]. Furthermore, plaque wall stress and flow SS may pro-

duce a significant uniaxial strain [152]. Research results have shown

that the small pressure difference in the order of 20 mmHg can

Table 2. High shear stress induce rapture-prone plaque formation or rapture in clinical report

Sample Proximal Shear stress Phenomenon Device (detected method) Reference

Twenty patients Proximal High shear stress

>25dyn/cm2

Increase necrosis area Virtual histology-IVUS and CFD 100

A 67-year-old

woman

Proximal High shear stress

>32dyn/cm2

Lipid/necrotic core,

intraplaque

hemorrhage

MRI at 10-month follow up 97

20 patients Proximal to the point

of maximum stenosis

Blood wall pressure was

82 6 18 mm Hg

Coronary plaquerupture 3-dimensional IVUS 98

119 patients Proximal to the point

of maximum stenosis

Higher than the distal Ulceration Angiographic ulceration 103

42 human carotid

atherosclerotic

plaques

Proximal to the point

of maximum stenosis

Higher than the distal Apoptosis in the distal Immunohistochemical (anti-CD31,

anti-Ki-67)

110

12 patients Proximal 38.9 versus 14.4 dyn/cm2 Ruptured plaques MRI 101

12 patients Proximal >25dyn/cm2 Angiography and IVUS 102
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generate quite a high uniaxial strain in 75 lm thick plaques.

Eccentric plaques would be exposed to a more serious uniaxial

strain [153]. Hence HSS and the vessel wall thickness are also re-

sponsible for plaque rupture [154–156]. In summary, increased wall

SS, circumferential stress and pressure are all important for plaque

rupture, especially the pressure of the plaque. However, SS is closely

related to plaque formation and progression [157].

7. Research Perspective

The current review focuses on the vulnerable plaques observed in

the HSS regions. Evidence is provided to support that ACS and is-

chemic strokes occur at or near the proximal region of the stenosis.

Having reviewed the published results in the literature, we noted

that data on the relationship between SS and plaque rupture is con-

tradictory and inconsistent. Previous research mainly focused on the

biological function of SS, and less attention was paid to the mechan-

ical properties of extracellular surroundings and the blood vessel it-

self [158]. The roles of blood vessels, vessel wall thickness and

elastic modulus factors have been somewhat ignored considering

plaque rupture [159]. From the literature reviews we can conclude

that LSS is the main mechanical factor in plaque formation while

HSS may be the main cause for the transition of stable plaques into

inflamed lesions. Vascular mechanical stress may be the direct

trigger for plaque rupture. How and when do those mechanical

stresses function to regulate vulnerable plaque formation and desta-

bilization? And what is the association between blood pressure and

mechanical stresses? These issues remain uncertain, but it is quite

necessary to further illuminate the molecular mechanisms underly-

ing the plaque formation in response to SS [159–164]. SS and chemi-

cal stimuli may synergistically regulate vascular remodelling [165].

Currently, numerical analyses have been effectively used to simu-

late the physical and geometrical parameters characterizing the hae-

modynamics of various arteries during physiological and

pathological conditions [166–168]. Numerical analysis can contrib-

ute to reveal the mechanism for development of plaques and predict

the tendency for a plaque to rupture [169, 170]. Moreover, clinical

imaging techniques such as magnetic resonance or computed tomog-

raphy (CT) combined with numerical analysis methods have assisted

considerably in gaining a detailed patient-specific picture of blood

flow and structure dynamics, which could effectively prevent and

treat this disease [171, 172].

8. Clinical Implications

SS changes with the degree of stenosis, and the changed stress regu-

lates the development of plaques into high risk plaques [173].

Locally increased SS using a developed flow divider indicates that SS

Figure 2. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. High shear stress promotes the expression of vascular en-

dothelial growth factor (VEGF) and endothelial nitric oxide (NO), resulting in angiogenesis of endothelial cells (EC) that form vasa vasorum and increases the en-

dothelial cell permeability. Furthermore, NO induces smooth muscle cell (SMC) apoptosis and matrix degradation, resulting in loss of mural cells and the

basement membrane around newborn microvessels. This results in microvascular leakage. The leaky vasculature becomes entry points for inflammatory cells,

red blood cells (RBC) and lipid/lipoproteins. This may result in inflammation, intra-plaque haemorrhage, lipid core accumulation and eventually plaque rupture.
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reduces in-stent neointimal formation by 50% [174, 175]. Attempts

to increase SS to inhibit intimal hyperplasia are not applicable to

atherosclerotic vulnerable plaque treatment [68] because HSS is the

critical factor for high-risk coronary plaque formation. After the

treatment of stenosis with percutaneous transluminal coronary an-

gioplasty (PTCA) balloon and stent, the SS increases, which pro-

motes vascular outward remodelling. This eventually leads to

restenosis or even vulnerable plaque formation [176, 177]. Besides

SS, the average wall shear stress (AWSS), average wall shear stress

gradient (AWSSG), oscillatory shear index (OSI) and relative resi-

dence time (RRT) are important parameters for reducing the num-

ber of false positives. AWSS identifies the largest number of plaques,

but produces more false positives than OSI and RRT [178]. It is nec-

essary to increase the variety of detection methods, especially to pay

attention to the proximal region of the vascular stenosis for detect-

ing the SS [98, 179, 180]. Evaluation of the volume of the plaque is

also an indirect method for the SS around the plaque [181]. A 3D fu-

sion of intravascular ultrasound and coronary CT are useful for in-

vivo wall SS analysis [182, 183]. It is necessary to combine optical

CT tomography and coronary angioplasty in vivo for the evaluation

of the connection between the SS and the characteristics of vulnera-

ble plaques [180]. Regarding drug development, the regulatory ef-

fects of drugs on the SS should be cautiously considered; otherwise it

may lead to more serious vascular disease [184, 185].

Lipid-lowering drugs may change the characteristics of plaques

and the thickness of blood vessel wall and elastic modulus [186].

The vascular stiffness affects the sensitivity of ECs to SS and thereby

participates in the regulation of vascular remodelling [187].

Changes in vascular cyclic stress can also influence SS-mediated vas-

cular remodelling of VSMCs [188]. MRI assessment of plaque bio-

mechanical properties including wall SS and internal plaque strain

provides information on early plaque progression and vessel re-

modelling [189, 190]. More precise magnetic resonance, intravenous

ultrasound (IVUS), CT and angiography were applied to analyse

and predict plaque development and stability [191]. Morphological

and mechanical features should also be considered in an integrated

way for more accurate assessment of plaque vulnerability, allowing

for early identification of plaques with inflamed phenotypes [191,

192]. Critical plaque stress/strain conditions are affected consider-

ably by stenosis severity, eccentricity, lipid pool size, shape and posi-

tion, plaque cap thickness, axial stretch, pressure, and fluid-

structure interactions. These variables may be used for plaque rup-

ture predictions [193–195].

If our hypothesis that angiogenesis is the main reason that high

SS induces atherosclerotic vulnerable plaque formation is true, it may

provide new perspectives for clinically predicting the location of pla-

ques vulnerable to rupture and how to prevent plaque instability.

Theoretical models could be developed to predict the relationship be-

tween the magnitude of SS and atherosclerosis plaque rupture. It also

could be applied to arterial bypass grafting through selection of the

most appropriate geometry to adjust the SS for reducing the forma-

tion of microvessels. Finally, previous studies have shown that plaque

microvessels may serve as an interface for plaque expansion.

Therefore, we can narrow the range of treatment strategy since pla-

que angiogenesis is primarily localized in the proximal plaque region.

In summary, SS has been shown to play a role in plaque forma-

tion, progression and rupture. The underlying mechanism of plaque

formation seems to differ from plaque rupture. Plaque formation is

localized in the LSS region whereas plaque rupture occurs primarily

in HSS region. HSS induces up-regulation of NO and VEGF of ECs

in the proximal region, which leads to microvessel formation in the

plaque from VV. Moreover, the pathological angiogenesis is an en-

try point for infiltration of inflammatory cells, deposition of lipo-

proteins and the occurrence of intra-plaque haemorrhage.

Decreasing the angiogenesis or the leaky vasculature [196, 197] in-

duced by HSS may establish a more favourable microenvironment,

which can impede vulnerable plaque formation.
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