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The trend in our society to delay procreation increases the difficulty to conceive spontaneously. Thus, 
there is a growing need to use assisted reproduction technologies (ART) to form a family. With advanced 
maternal age, ovaries not only produce a lower number of oocytes after ovarian stimulation but also a 
lower quality—mainly aneuploidies—requiring further complex analysis to avoid complications during 
implantation and pregnancy. Although there are different options to have a child at advanced maternal age 
(like donor eggs), this is not the preferred choice for most patients. Unless women had cryopreserved their 
eggs at a younger age, reproductive medicine should try to optimize their opportunities to become pregnant 
with their own oocytes, when chances of success are reasonable. Aging has many causes, but telomere 
attrition is ultimately one of the main pathways involved in this process. Several reports link telomere 
biology and reproduction, but the molecular reasons for the rapid loss of ovarian function at middle age are 
still elusive. This review will focus on the knowledge acquired during the last years about ovarian aging 
and disease, both in mouse models of reproductive senescence and in humans with ovarian failure, and 
the implication of telomeres in this process. In addition, the review will discuss recent results on ovarian 
rejuvenation, achieved with stem cell therapies that are currently under study, or ovarian reactivation by 
tissue fragmentation and the attempts to generate oocytes in vitro.
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INTRODUCTION

Aging can be described as a degenerative process 
leading to the accumulation of senescent cells [1] and 
poor tissue homeostasis, accompanied with the decline of 

organ function [2]. In fact, the removal of senescent cells 
of tissues increases lifespan [3]. Ovaries are different to 
other organs in that they have a limited window of time 
for full function, which ends at middle age in humans, 
usually around 50 years, when menopause ensues. Ac-
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cordingly, the concept of ovarian aging is different, and 
usually understood as a decline in the number and quality 
of oocytes produced with age [4] until cessation of men-
ses, but during all this time, ovarian somatic cells such as 
granulosa and cumulus cells will develop their function 
normally. Among all the pathways involved in aging, 
telomere attrition is a primary cause of aging. Telomere 
function has a crosstalk with other bona fide aging path-
ways such as stem cell exhaustion, genomic instability, 
epigenetic alterations, mitochondrial dysfunction, and 
cellular senescence [5]. Mutations in telomerase lead to 
poor organ regeneration and diseases, both in mice and 
humans [6]. Ovarian dysfunction, caused by normal ag-
ing or diseases (idiopathic or not) is a topic of intense 
research, but many questions remain open, such as the 
possibility of oocyte renewal in the adult ovary, the choice 
of reactivating the ovaries to rescue dormant follicles, or 
the likelihood of developing in vitro functional oocytes.

OVARIAN AGING AND TELOMERES

Ovarian oocytes are generated during development 
and will remain arrested at meiosis prophase I for many 
years. Only upon follicle growth, starting at menarche, 
meiosis can continue, and oocytes can be fertilized [7]. 
At birth, ovaries contain over 1 million follicles (Fig-
ure 1), but most of them will decay, thus, at menarche 
only 300,000 to 400,000 follicles will be operative in 
the ovary [8]. Endocrine and paracrine factors such as 
Follicle-Stimulating Hormone (FSH) and Luteinizing 
Hormone (LH) are decisive for follicle growth and sur-
vival [9]. About 1000 follicles are activated each month, 
but most of them undergo atresia, and those ovulated, 
have lower quality [10]. Indeed, advanced age correlates 
with the loss of sister-chromatid cohesion which may 
cause spindle instability and chromosome segregation 
errors, leading to aneuploidies (Figure 1) [8]. Analysis of 
blastocyst biopsies [11] showed that between 26 and 30 

Figure 1. Ovarian aging. Molecular mechanisms that lead to aneuploidy. The top panel represents the follicular 
decay in the ovary during aging. At 16/20 weeks of fetal development, follicular quantity is maximum. Due to atresia, 
the number of follicles falls from 7 million to 1 million at birth. At the time of menarche, women have 300,000 to 400,000 
follicles, which are recruited cyclically until menopause (1,000 follicles). The lower panel depicts the molecular mech-
anisms that lead to aneuploidies in the aged ovary. External factors can aggravate molecular alterations promoting 
aneuploidies. Chromosomes are represented in blue, telomeres in orange, spindles in dark blue and chiasmas are 
drawn in red. Cohesins are represented in black line and altered cohesins in broken lines.
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years, the incidence of aneuploidies is the lowest, with a 
constant increase up to 43 years [12,13]. At menopause, 
very few primordial follicles remain in the ovary [8] and 
the levels of FSH and LH are elevated while AMH levels 
are low. AMH is a bona fide marker of ovarian reserve 
[9]. Therefore, at advanced age, the ovarian reserve de-
creases (diminished ovarian reserve, DOR) leading to 
female infertility [14]. In fact, childbearing delay is one 
of the most important reasons for female infertility and 
the request for ART (14% of couples considering female 
and male factors). Apart from natural ovarian aging, 
some women have a rapid decay of follicles, known as 
Premature Ovarian insufficiency (POI), which can evolve 
to Premature Ovarian Failure (POF), when none or some 
residual follicles remain in the ovary before the age of 
40 years. It can be due to autoimmune disease, ovarian 
surgery, cancer therapies, and can have genetic causes 
(Figure 2) [15,16]. Natural ovarian aging as well as POI 
and POF increase the risk of aging associated diseases, 
such as cardiovascular, osteoporosis, and neurodegenera-
tive disorders [17,18].

Telomere attrition is one of the main causes of aging 
[5]. Telomeres are protective caps at the ends of linear 
chromosomes that prevent chromosome degradation and 
fusions, to safeguard genome integrity [19]. They consist 
of several kilobases of tandem repeats of the “TTAGGG” 
sequence in mammals. Telomeres are bound by a protein 
complex called Shelterin that prevents the ends of chro-
mosomes from being recognized as double-strand breaks, 

which must be repaired. Shelterin also controls telomere 
length and aids telomere replication [20]. In addition, 
telomeres are epigenetically regulated to create heteroch-
romatic regions, refractory for transcription and unsched-
uled recombination [21]. When cells divide, the very 
ends of chromosomes cannot be copied (called the “end 
replication problem”), leading to telomere shortening. If 
telomeres reach a critically short length, the DNA Dam-
age Response (DDR) pathways, which detect and repair 
DNA, are activated, leading to senescence or apoptosis 
[22]. Telomerase, an enzyme that can add de novo repeats 
onto chromosome ends, is composed of a protein and an 
RNA component [23]. In the adult organism telomerase 
is active in the germ cells. As oocytes mature, telomerase 
activity decreases [24] and only at the blastocyst stage, 
telomerase is reactivated, setting the telomere length of 
the organism [25,26]. Good telomere maintenance in 
oocytes is critical to ensure correct chromosome segre-
gation. Metaphase II oocytes with short telomeres (4th 
generation of telomerase-deficient mice), bear misaligned 
chromosomes, aberrant spindles, and telomeres discon-
nected from microtubules causing segregation errors 
[27]. In fact, telomeres are shorter in human aneuploid 
polar bodies (Figure 1, lower panel) [28]. Interestingly, 
ovarian somatic cells have telomerase activity [29,30] 
and lower or null telomerase activity in granulosa cells 
occur in women with ovarian insufficiency [31,32]. These 
data together argue that the telomere pathway is critical 
in reproduction.

Figure 2. Telomeres and follicle dynamics in the ovary. Telomere length decreases as primordial follicles mature 
to ovulatory follicles. The aged ovary (also prematurely aged) presents a decrease in the total number of follicles. 
Different genetic causes can be involved in premature ovarian aging. Primordial follicles that remain in the menopause 
ovaries do not show the ability to resume their development, but upon stem cell therapy (SCT), they are reactivated for 
maturation and ovulation.
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fewer oocytes and present a high incidence of meiotic 
spindle aberrations and chromosome misalignments [43]. 
Because telomere shortening has been implicated in aging 
[5] and in oocyte aneuploidies [27,43], we have hypothe-
sized that telomere attrition could cause the reproductive 
senescence in SAMP8 mice. We have found that Mouse 
Embryonic Fibroblasts (MEF) from older mothers show 
shorter telomeres and an increase in telomere aberrations. 
These mice also show neurodegenerative defects at ad-
vance age [45], that may be caused by the lower levels 
of estrogen, which seems to protect neurons [44]. These 
symptoms reflect the increased risk of aging-associated 
diseases that happen in women when menopause ensues.

Undoubtedly, the mouse work has unveiled the ge-
netic causes involved in ovarian aging, but more work is 
needed to complete this complex picture. Understanding 
the molecular mechanisms involved in ovarian aging 
will help develop therapies targeted to solve the different 
problems of ovarian failure.

STRATEGIES TO REACTIVATE OVARIAN 
FUNCTION

Fertility preservation, either oocyte or ovarian cortex 
cryopreservation (OCC), functions to delay motherhood. 
With OCC, recommended for prepubertal girls and can-
cer-diagnosed women, a 29% of pregnancies are achieved 
[46]. In many cases, women did not preserve fertility so 
new strategies must be developed to help couples pass 
their own genetic material to their offspring.

Mechanical Strategies
After ovarian cortex extraction or OCC, the in vitro 

activation (IVA), consisting in slicing ovarian cortex into 
small cubes, changes the cytoskeletal actin dynamics re-
activating follicle maturation by interfering with Hippo 
pathway [47]. This pathway is involved in the regulation 
of follicular growth through the control of cell prolifera-
tion and apoptosis factors [48]. Indeed, IVA using AKT 
activators, led to two healthy babies from POI women 
[49,50]. The caveat of IVA is that in cancer patients it 
could have negative consequences if ovarian cubes con-
tain cancer cells and are introduced in the ovary.

Strategies that Avoid Fibrosis and Inflammation
Fibrosis and inflammation occur with aging, altering 

tissue homeostasis. Fibrosis, with an increase in collagen 
fibers [51], the presence of macrophages, and a higher 
percentage of monocytes, has been reported [51,52] in 
the ovary. Fibrosis leads to inflammation, which causes 
alterations in the transcriptome profile contributing to 
ovarian dysfunction and poor oocyte quality [52]. These 
observations open the possibility of ovarian rejuvenation 

UNDERSTANDING OVARIAN AGING IN 
MICE

Because of the ethical concerns to obtain human 
samples, study embryos, or make fertility treatments, 
several mouse models have been developed to understand 
female infertility and the consequences for the offspring. 
The FSH receptor knockout mice have loss of fertility and 
aging-associated diseases [33]. The knockout of a subunit 
of the glutamate cysteine ligase, an enzyme that catalyzes 
the formation of Glutathione, which is an antioxidant, 
shows increased follicle decline through excessive fol-
licular activation. In addition, oxidative stress causes the 
decline of primordial follicles and preimplantation em-
bryo death [34]. OCT4 is expressed during the migration 
and colonization of primordial germ cells (PGCs) and 
its conditional deletion in the germline shows its role in 
germline viability and follicle maturation [35,36]. Cohes-
in-null mice are infertile because of meiotic errors [37]. 
Most of these studies show defects of the reproductive 
system already during development. In order to generate 
models that show the processes which take place at mid-
dle age, the gonadotoxicity of chemotherapy drugs has 
been tested [38]. Thus, most of the ovarian characteristic 
and reproductive outcomes of POI and DOR patients have 
been reproduced, including an increase in LH hormone, 
ovarian damage, and mild degeneration of oocytes, which 
are not observed in normal aging [38,39] Telomerase-de-
ficient mice, which at the first generation have normal 
telomeres, do not show reproductive problems. At later 
generations, telomeres are shorter and mice show accel-
erated aging and poor tissue regenerative capacity [40]. 
Ovaries and uteri of late generations present smaller size, 
with atrophy in the uterine myometrium. The ovaries 
produce less follicles, but with a complete spectrum of 
follicular stages [27]. The number of fertilized oocytes is 
smaller in telomerase-deficient mice and most of them do 
not reach the blastocyst stage, producing smaller litters. 
G6 telomerase-deficient females cannot support exog-
enous embryo development after zygote implantation. 
Infertility is caused by poor oocyte production and uterus 
failure [40]. In addition, telomerase deficiency disturbs 
meiotic progression only at late generations, suggesting 
that telomerase knockout per se, does not alter meiosis 
[41].

Finally, the Senescence Accelerated Mouse Prone 8 
(SAMP8) is a spontaneously generated mouse model of 
the AKT/J strain [42]. SAMP8 mice have a short lifespan 
and recapitulate all the symptoms of middle-age wom-
en [43]. As these mice age, estrous cycles are extended 
and the levels of LH increased while serum estradiol 
decreased, suggesting that the function of the hypothal-
amus-pituitary-gonadal axis is poor [44]. A decrease in 
fertility at 7 months of age is observed. They ovulate 
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restores ovarian function in POF mice [61]. Bone mar-
row derived stem cells (BMDSC) have the potential to 
produce hematopoietic, mesenchymal, and endothelial 
SC, which enhance the regeneration of the ovaries, in-
creasing vascularization, cell proliferation, and reducing 
apoptosis [62]. This work is particularly interesting be-
cause it shows ovarian niche regeneration in humans for 
the first time. Later, the “homing” effect of the ovary to 
attract BMDSC was shown [46]. Infusion of autologous 
BMDSC, containing hematopoietic and mesenchymal 
cells into one ovary in poor ovarian responders, improved 
the biomarkers of ovarian reserve and vascularization and 
led to three spontaneous live births [48,63]. This method 
rescues ovarian function, but only in 23% of the cases. 
In addition, it is not known whether it functions in older 
women. Importantly, this method allows them to transfer 
their own genetic material avoiding the use of donated 
oocytes. Taken together these data indicate that the above 
methods, alone or in combinations, achieve the activation 
of dormant follicles and promote live births. However, 
these methods are experimental, requiring further re-
search.

through antifibrotic or anti-inflammatory agents [51,53].

Telomerase Reactivation Strategies
Cell rejuvenation using the Yamanaka factors [54] 

reactivates telomerase, possibly through cMyc and Klf4, 
which can modulate the expression of telomerase [55,56] 
causing telomere lengthening to the levels of embryonic 
stem cells (ESC) [57]. In mouse models, aging can be 
reversed and health span, extended. When telomerase is 
reactivated in adult and old mice, both the health span and 
lifespan of mice are extended without increasing the can-
cer incidence [58]. Furthermore, reactivation of telomer-
ase in the fourth generation of mice lacking telomerase, 
restores the number of pups at the levels of control mice 
[59]. These results suggest that telomerase reactivation 
could be, from the molecular bases to the organismal 
function, a plausible option to rejuvenate ovaries.

Ovarian Niche Regeneration with SC
Regeneration of the ovarian niche using stem cells 

(SC) (Figure 2) create a suitable environment for an-
giogenesis and dormant follicle reactivation. Indeed, 
upon ESC transplantation hormone levels are recov-
ered, apoptosis is reduced, and the number of follicles, 
increased [60]. Mesenchymal SC transplantation also 

Figure 3. Methods for the in vitro production of germ cells. Several strategies, from spontaneous differentiation 
to the supplementation of the culture media, have been used to generate PGC like cells. Yamashiro and colleagues 
have made a further step to build xenogeneic ovaries. Orange dots indicates studies carried out with hESC, and blue 
dots specify studies with hiPSC. BMPs: Bone Morphogenetic Proteins; DAZL: Deleted in Azoospermia-like; GSK3: Gly-
cogen Synthase Kinase 3; JNK: c-Jun N-terminal Kinase; MAPK: Mitogen-Activated Protein Kinase iMeLCs: incipient 
Mesoderm-Like Cells; hPGCLCs: human Primordial Germ Cell like Cells.
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which not only affects reproduction, but also decreases 
the chances of healthy aging. Currently, the concepts of 
ovarian aging and different aspects of several pathologies 
associated with infertility are better understood. There are 
new tools, such as several animal models to further study 
these infertility situations. Importantly, several strategies 
have been developed to either restore normal ovarian 
function or produce PGC in vitro. However, the strategies 
used to reactivate ovarian function need more develop-
ment so they can be applied to other types of infertility 
and the in vitro gametogenesis yielding PGC-like cells 
should be tested, but this has ethical limitations. There-
fore, new approaches should be developed, including 
reactivation of telomerase in the ovary.
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CONCLUSIONS AND OUTLOOK

There has been intense research in the reproductive 
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