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Abstract
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly
related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal
stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant)
species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of
thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history
components, and morphological traits. Total mRNA from each population was compared to a reference pool
mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA
microarrays.

Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false
discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C),
also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and
Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted
populations. Analysis of functional categories defined by the Gene Ontology project point to an
overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of
transcription among other categories. Although the location of differently expressed genes was approximately at
random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D.
subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.

Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in
Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge
to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within
inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required
in any future approach if we want to identify the relevant candidate genes.
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Background
Temperature is a fundamental feature that affects all living
organisms. Each species, particularly ectotherms, has a
non-stressful thermal tolerance range and responds to
temperature by physiological, biochemical, and molecu-
lar level adjustments that underlie adaptation. For
instance, many latitudinal clines exist in Drosophila for
allele frequencies at allozyme loci, chromosomal inver-
sions, and microsatellites; as well as for traits like starva-
tion resistance, desiccation resistance, and body size
where the differences between populations have a genetic
basis and can even persist for many generations under lab-
oratory reared conditions [1-4]. By and large, the empiri-
cal evidence suggests that variation in these markers and
traits are directly or indirectly related to temperature (cli-
matic) gradients. Perhaps the most pertinent example
comes from recent studies on chromosomal inversion
polymorphisms showing that the genetic constitution of
populations is responding to contemporary rapid global
warming [5-8].

The native Palearctic fly Drosophila subobscura spans more
than 30° latitude in the Old World: from North Africa to
Scandinavia. As a result, its populations experience a
strong climatic gradient [9]. In the late 1970s and early
1980s the species invasively spread in North and South
America and nowadays spans about 15° latitude on each
continent [10,11]. Remarkably enough, latitudinal clines
in the New World for inversion polymorphism and body
size parallel to the long standing ones in the native geo-
graphic area were evident after a few years since the Amer-
ican colonization. This 'replicated time series experiment
of evolution in action' [12,13] strongly suggests that those
traits are indeed subject to selection from temperature-
related factors. However, a laboratory natural selection
experiment (i.e., an experimental protocol where stocks of
organisms are reared under different conditions and
allowed to evolve by natural selection over many genera-
tions [14]) specifically designed to test the putative role of
temperature per se in the evolution of these clines found
results conflicting to those expected from the latitudinal
gradients for both inversions and body size [3,15,16].
Certainly, laboratory experiments are not the best way to
mirror what is happening at different latitudes and to
reconstruct natural clines. But at present it is unclear
whether temperature alone drives the clines. What types
of genetic changes are needed for an organism to adapt to
new thermal conditions?

A number of authors (e.g. [17,18]) have argued that
changes in the transcriptome constitute a major compo-
nent of the genetic basis for phenotypic evolution. Gene
expression profiling by means of microarrays has become
a popular way of finding candidate genes of trait variation
and is providing new insights into some old but funda-

mental questions in evolutionary biology [19-22]. Here
we examine global gene expression by measuring the rel-
ative abundance of mRNAs in third instar larvae of D. sub-
obscura from 3-fold replicated laboratory thermal
selection stocks -derived from the estimated Chilean epi-
centre (Puerto Montt) of the original New World invasion
[15]- that had evolved at three constant temperature
regimes during 3 years: cold (13°C), optimum (18°C)
and warm (22°C). The connection between the very high
dimensional nature of the gene-expression data and the
multivariate whole organism phenotype, however, is not
straightforward and detailed functional and ecological
analyses of candidate genes will obviously be required to
understand the genetic basis for thermal adaptation (e.g.,
[23]).

In holometabolous insects like Drosophila many adapta-
tions to changing environments involve changes in larval
behaviour and physiology that may impinge on other
phases of the life cycle (e.g. [24-26]). For this reason we
used third instar larvae for the microarray experiment. A
possible drawback was that both sexes were mixed, so we
have overlooked any sex-specific thermal response that
might have been present. Total mRNA from each popula-
tion was compared to a reference pool mRNA independ-
ently derived from the optimum (P18) populations (see
Methods) in a standard two-colour competitive hybridi-
zation using cDNA microarrays with D. melanogaster
clones [27]. Heterologous hybridization to study gene
expression profiles has been validated between closely
related species (divergence time < 10 Mya), and consistent
data are also obtained for less closely related taxa (diver-
gence time ~65 Mya; [28]). Drosophila subobscura belongs
to the D. obscura group, and the divergence time between
the D. melanogaster and D. obscura groups has been esti-
mated to be ~25 Mya [29]. This apparently offers a reason-
able warranty to use D. melanogaster arrays in
heterologous hybridization with D. subobscura. In addi-
tion, we carried out some preliminary tests in order to
optimize the experimental conditions. Highly reproduci-
ble and consistent gene profiling, comparable to that
obtained with homologous hybridization by using some
D. subobscura clones added to the arrays (see Methods),
was observed.

It is also important to remark here that the lower and
upper thermal regimes used in the experiment are not
stressful: the temperature range likely covers much of the
physiologically tolerable range in this species [9]. Obvi-
ously, the constant thermal regimes and light:dark period
where the populations have evolved (see Methods) do not
mirror the seasonal changes experience by natural popu-
lations, but with this experimental protocol we can con-
trol that temperature is the only factor differing between
the thermal stocks. The thermal stocks had already
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diverged for inversion frequencies, pre-adult life history
components, and morphological traits [3,16]. The experi-
mental design equated to a four-way factorial analysis of
variance (ANOVA) with thermal selection regime and cya-
nine dyes (Cy3, Cy5) in a flip dye design as fixed effects,
replicated populations as a random factor nested in ther-
mal selection regime, and slide (spotted microarray) as a
random factor nested in thermal selection, dye, and repli-
cate. The analysis allowed identifying quantitative differ-
ences in larval gene expression between cold- (P13) and
warm-adapted (P22) populations.

The candidate genes were assigned a biological function
and/or biological process when information was availa-
ble. Also important, a number of genes were mapped by
in situ hybridization to the polytene chromosomes of D.
subobscura. The karyotype of this species consists of five
acrocentric chromosomes and a dot chromosome (see
Methods). What is crucial here is that D. subobscura har-
bours one of the richest inversion polymorphisms in the
genus, with a total of 92 chromosomal arrangements
(produced from 66 inversions located on all major chro-
mosomes) recorded in the native Palearctic region [9,30].
This number reduces to 18 arrangements in colonizing
populations of the New World, all of them but one segre-
gating in the thermal stocks [16]. Variation in some traits
is known to be tied to inversion polymorphisms in Dro-
sophila (e.g. [31,32]), and quantitative associations
between larval gene expression and thermal adaptation
could be due to position effects (e.g., the inversion of a
chromosomal segment can remove or exchange the regu-
latory sequences of a gene and alter its expression pattern
[33]) or hitchhiking arisen from linkage disequilibrium.
In view of the rapidly and consistently evolved latitudinal
clines in chromosome inversion polymorphism following
the New World invasion by the species [12], and the shifts
in inversion frequencies in response to laboratory thermal
adaptation [16] and to climate change [7], we expect that
a large number of genes will be included inside inverted
chromosome segments. Linkage with inversions will
highly complicate the identification of chromosome
regions that are targets of selection.

Results and discussion
Overall patterns of gene expression in the thermal lines
An important point in the experiment was that the parents
of treatment larvae had also been reared at the same tem-
perature of 18°C to control for the possibility of non-
genetic parental effects on offspring (see Methods). In
order to generate a reliable data set we analyzed mRNA
abundance from a highly replicated experiment: four
independent batches of 250 optimum-reared larvae each
-amounting to 9,000 larvae in total (i.e., 250 larvae × 4
slides per population × 9 experimental populations)-
whose mRNAs were competitively hybridized to a refer-

ence pooled mRNA from 9,000 control larvae on contigu-
ous duplicated gene spots using a dye-reversal
experimental design, thus providing up to 72 gene expres-
sion values for each probe. Furthermore, some genes were
spotted (in duplicated) several times on the slides, which
helped to confirm the quality and consistency of the data
as there was a clear correspondence among different spots
[see Additional file 1: summary of the microarray results].

The distribution of normalized measures for valid relative
gene expression levels in the g = 11,767 cDNA clones is
shown in Fig. 1. All clones with less than 57 valid expres-
sion observations were excluded from further analyses
and, therefore, we will only focus on the right part of Fig.
1 just after the x-axis scale break. As a result, 4,651 cDNA
clones (4,310 non-redundant genes) were allowed for dif-
ferential gene expression analysis and their microarray sig-
nature, plotted as expression ratio versus fluorescence
intensity, is shown in Fig. 2a. For each clone g = 1, �,
4,651 the dye-reversal experimental design was subjected
to a least squares ANOVA model as that shown in Table 1
for (e.g.) gene CG12236. A key premise in the experimen-
tal design with 2 degrees of freedom for the main fixed fac-
tor temperature was to define a priori the linear contrast
between the two furthest apart thermal selection regimes:
warm (22°C) vs. cold-adapted (13°C) populations (each
comparison or contrast between two means has one
degree of freedom).

A total of 419 (9%) cDNA clones were identified as 'differ-
entially expressed' when considering a p-value (from

Distribution of valid gene expression levelsFigure 1
Distribution of valid gene expression levels. For a given 
probe g the maximum number of valid gene expression val-
ues for each thermal selection regime was N = 72. All probes 
with N < 57 (left part just before the x-axis scale break) were 
excluded from the statistical analysis.
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10,000 rounds of permutation) cut-off of 5% for the tem-
perature factor with 2 degrees of freedom (see Table 1),
but none of them was labelled as truly significant in terms
of the false discovery rate (FDR; [34]) method used in
detecting differential gene expression (q-value threshold
of 5%; see Methods). On the other hand, from the permu-
tation p-values obtained after the linear contrasts between
the two furthest apart thermal selection regimes the
number of 'differentially expressed genes' rose up to 950

(20.4%), with 306 (6.6%) remaining significant after a
FDR correction (recall that a q-value threshold of 5%
means that among all genes considered as significant, 5%
of these are truly null on average [35]). Fig. 2 also shows
the averages for the expression ratio versus fluorescence
intensity of the identified 306 genes differing in gene
expression (Fig. 2a), together with the corresponding box-
plots (Fig. 2b). The reason why the linear contrasts com-
paring P22 vs. P13 populations yielded more differen-

Table 1: ANOVA of relative intensity ratios for gene CG12236.

Source of variation d.f. Sum of Squares Mean Square F p-value (parametric) p-value (permutation)

Temperature (T) 2 1.3882 0.6941 11.475 0.009 0.008
P22 vs. P13 1 1.2829 1.2829 21.210 0.004 0.002

Replicatea 6 0.3629 0.0605 0.346 0.905
Dye (D) 1 3.5337 3.5337 20.193 < 0.001
T × D 2 0.0392 0.0196 0.112 0.895
Slideb 24 4.1998 0.1750 11.816 < 0.001
Errorc 36 0.5332 0.0148

Temperature stands for the fixed effects due to thermal selection regime (13, 18 and 22°C), replicate for the random effect of replicated 
populations (R1, R2 and R3) nested in thermal regime, dye for the fixed effect of cyanine dye Cy3 (green) or Cy5 (red) in the flip dye design, and 
slide for the random effect of cDNA microarray glass slide nested in thermal regime, replicate and dye.
a Error term for temperature and for the planned contrast comparing warm- (P22) vs. cold-adapted (P13) populations. b Error term for replicate, 
dye, and temperature × dye interaction. c Error term for slide.

Microarray signatureFigure 2
Microarray signature. Gene expression profiles in the three thermal regimes. (a) Expression ratio versus fluorescence 
intensity of the 316,229 spots (black dots) from the 4,651 clones approved for statistical analyses. The averages for those 
probes identified as differentially expressed when contrasting the two extreme thermal regimes (i.e.,13°C vs. 22°C) are in blue 
(P13), green (P18) and red (P22). (b) Box-plots of the average expression ratios for the differentially expressed genes.

a b
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tially expressed genes was because the averages of log 2
relative intensity ratios for optimum (P18) populations
were normally in between the averages for P13 and P22
populations. Therefore, a substantial proportion of the
sum of squares for the temperature factor with 2 degrees
of freedom in the ANOVAs was accounted for by the lin-
ear contrast (e.g., ~92% in Table 1).

A far more informative plot is shown in Fig. 3, where gene
expression values are sorted according to the contrast esti-
mates. It is clear that those populations that have evolved
at the optimum thermal regime (18°C) ranged in
between, and that the average gene expression difference
between warm- and cold-adapted populations was gener-
ally low: from 0.6 for CG4183 (heat shock protein 26;
Hsp26) to 1.7 for CG4867 (bc10).

Gene expression grouped by cellular function and 
biological process
Analysis of functional categories defined by the Gene
Ontology project [36] using the GOToolBox [37] revealed

that our reference dataset (the 4,651 cDNA clones with
4,310 non-redundant genes that were allowed for differ-
ential gene expression analysis) includes 989 annotated
genes, and only 66 out of 306 genes labelled as 'differen-
tially expressed' were annotated. These genes could be
assigned to different cellular or molecular functions: over
two-thirds are involved in metabolism processes (41
genes), in transport processes (14 genes), and in regula-
tion of transcription (8 genes). (Note that many genes
belong to more than one category.) For each functional
category, we compared the actual number of occurrences
with the expected one under the null hypothesis that all
categories should be equally represented. Namely, the
probability of obtaining by chance a number n of anno-
tated genes for a given term among a dataset of size N,
knowing that the reference dataset contains m such anno-
tated genes out of G genes, is calculated. This test follows
the hypergeometric distribution and the GOToolBox
allows for FDR correction, pointing at statistically relevant
over- or underrepresented terms within a dataset. The
results obtained are shown in Fig. 4 and indicate an over-

Transcriptome changes following thermal adaptationFigure 3
Transcriptome changes following thermal adaptation. Scatterplots of the average log2 relative intensity ratio for the 
306 'differentially expressed genes' detected from the linear contrasts between the two furthest apart thermal selection 
regimes (i.e., 13°C vs. 22°C) and sorted according to the difference between warm- and cold-adapted (i.e., P22 – P13) popula-
tions. The sorted CG names of genes are given at the bottom (1, 3, 5, �) and top (2, 4, 6, �) axes. For each gene, the points 
in blue (P13), green (P18) and red (P22) give the average log2 relative intensity ratio for the different thermal regimes. The cor-
responding points have been connected by polynomial fitting to enhance visibility.
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representation of genes involved in carbohydrate metabo-
lism, nucleic acids metabolism and regulation of
transcription among other categories. Two categories are
apparently underrepresented: organic acid and carboxylic
acid metabolism [see Additional file 2: molecular func-
tion gene ontology categories of differentially expressed
genes].

It seems reasonable that genetic adjustments to environ-
mental differences may involve changes in metabolism.
Thus, when inbred and non-inbred D. melanogaster lines
are reared under benign and stressful (high temperature)
environmental conditions gene expression patterns of
metabolic genes are strongly affected by both inbreeding
and temperature stress [38]. Furthermore, previous stud-
ies on thermal evolution using the same Drosophila species
have shown that differences between cold- and warm-

adapted populations can be due to differences in the effi-
ciency of larval growth [24,39]. In our thermal stocks with
D. subobscura we have shown that cold-adapted (P13)
populations had longer development times in the whole
range of developmental temperatures assayed, and that
warm-adapted (P22) populations seem to have evolved
faster development [3]. Together with the lack of diver-
gence for adult body size, it seems that cold-adapted D.
subobscura stocks achieve the 'target' size by growing more
slowly. This apparently agrees with their lower level of
gene expression for genes involved in metabolic processes
when compared to their warm-adapted counterparts.

Candidate genes for thermotolerance in Drosophila
Expression levels for genes of the heat shock protein
group (Hsps) that act as molecular chaperones and are
important for cellular housekeeping are known to covary

Genes grouped by gene ontology (GO) termsFigure 4
Genes grouped by gene ontology (GO) terms. For all statistical significance categories, the bars in the reference set plot 
the subset frequencies of annotated genes in the cDNA microarrays belonging to a particular class with valid gene expression 
data for statistical analysis (Fig. 1), and the bars in the dataset represent those frequencies in the group of genes labeled as 'dif-
ferentially expressed' when contrasting the two extreme thermal regimes. Two categories are apparently underrepresented 
(organic acid and carboxylic acid metabolism), whereas the rest are overrepresented in the dataset [see Additional file 2].
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with the thermal regimes experience by populations, spe-
cies and higher taxa [40]. Hsp70 appears to be the primary
protein involved in thermotolerance in D. melanogaster
[41] -though apparently not in other Drosophila species
[42]-, and Hsp70 allele frequencies show latitudinal clines
and change in response to thermal evolution in the labo-
ratory [43]. In addition, Hsp23 and Hsp26 latitudinal var-
iation in the D. melanogaster Australian cline [44], and
correlated responses to selection for knockdown resist-
ance at 39°C for Hsp68 [45], have also been found.
Besides Hsps, other candidate genes for adaptation to
thermal extremes (summarized in [46]) are: Hsrω (heat-
shock RNA ω, which produces two RNA products but no
known protein product [47]), Hsf (heat-shock transcrip-
tion factor), Tot (Turandot), mth (methuselah, also a candi-
date aging gene [48,49]), Dca (Drosophila cold acclimation
gene), Fst (frost; involved in recovering from cold shock
[50]), Drs (drosomycin), shark (involved in a signaling
pathway for epithelial cell polarity [51]), anon-23Da
(encoding a protein with currently unknown function),
desat2 (desaturase2; [52]), period (clock gene that deter-
mines biological rhythmicity in Drosophila [53]), Ddc
(dopa decarboxylase; involved in the catecholamine bio-
synthesis pathway, which has been implicated in the
response to various stressors including temperature [54]),
and various metabolic enzymes as Adh (alcoholdehydro-
genase; e.g., [55,56]), Gpdh (Glycerol 3 phosphate dehy-
drogenase; [56]), Gdh (NAD-dependent glutamate
dehydrogenase; [57]) and Treh (trehalase; [57]).

We had valid gene expression values (i.e., N ≥ 57 in Fig. 1)
for all but 6 of the formerly listed genes; namely, Hsp70,
Hsp23, Hsp26, Hsp68, Hsf, Fst, shark, anon-23Da, period,
Ddc, Gpdh (D. subobscura clone added to the microarrays),
Gdh and Treh. (We also had valid expression data for
desat1 but not for desat2.) Differential gene expression
with the q-value cut-off chosen for the linear contrasts
between cold- (P13) and warm-adapted (P22) popula-
tions was found only for Hsp26, which showed increased
expression levels in P13 populations. However, the q-
value thresholds for Hsp68 (0.058; P13 > P22), Fst (0.061;
P13 < P22), and Treh (0.061; P13 < P22) were low enough
as to suggest that these three candidate genes also diverged
in gene expression levels in our populations. (q-value
thresholds for the other genes were: Hsp70, 0.506; Hsf,
0.505; shark, 0.293; anon-23Da, 0.135; desat1, 0.148;
period, 0.505; Dcd, 0.353; Gdh, 0.096 [see Additional file
1].) It seems, therefore, that our survey in D. subobscura
apparently links thermal adaptation in a temporally stable
environment to some specific candidate genes (Hsp26,
Hsp68, Fst, and Treh) previously associated to thermotol-
erance in D. melanogaster. It is also worth saying that the
Hsp60 gene had a q-value threshold of 0.082 (P13 > P22)
and might have also been associated with thermal adapta-
tion. On the other hand, Hsp83 is known to be expressed

during normal development in D. subobscura but
increased transcription occurs when flies are reared at
heat-shock temperatures from 26 to 34°C [58]. Consist-
ent with this finding we did not observe a statistically sig-
nificant differential gene expression between cold- and
warm-adapted populations for Hsp83 (q-value threshold
0.467).

Mapping of differentially expressed genes by in situ 
hybridization and correlated expression patterns
In situ hybridizations to the polytene chromosomes were
routinely carried out after crossing wild-type D. subobscura
males with virgin females from the ch-cu marker strain. A
total of 106 genes out of 306 differing in gene expression
as concluded from the a priori contrasts were used as
probes, and most of them (83%) yielded hybridization
signals [see Additional file 3]. In all cases the negative
results were due to failures in the amplifications. In no
instance an exchange of genes among the different chro-
mosomal elements of D. melanogaster and D. subobscura
has been detected, which agrees with the well supported
evidence for the established chromosomal homologies
previously proposed for each Muller/Sturtevant/Novitski
element [59]. The order of genes within each chromo-
somal element, however, is known to have widely
changed among different species via the fixation of para-
centric inversions (e.g.; [60-62]).

From the chromosomal homologies between D. mela-
nogaster and D. subobscura [59], and the distribution of the
~120-megabase euchromatic portion of the D. mela-
nogaster genome on each chromosomal arm [63], we
tested the null hypothesis that the location of genes differ-
ing in gene expression between warm- and cold-adapted
populations on the different D. subobscura chromosomes
was at random (Table 2). The G-test for goodness of fit
[64] detected a marginally nonsignificant random distri-
bution (p = 0.059. If candidate genes Hsp68 and Fst on
chromosome O, Hsp60 on chromosome U, and Treh on
chromosome E are included, then p = 0.076), with chro-
mosome J apparently being overrepresented and chromo-
some O underrepresented. It seems interesting to contrast
these results with the previously reported chromosomal
inversion shifts in the thermal populations [16]. Inver-
sions on chromosomes J, E and, to a lesser extent, chro-
mosomes A and O showed clear shifts in frequency
according to the thermal regime, whereas those on chro-
mosome U showed no trend whatsoever. It is not at all
evident how the distribution of the differentially
expressed genes on chromosomes matches with these pat-
terns as, for example, chromosome E and U are well rep-
resented in Table 2 but their behaviour after two years of
thermal evolution was completely different.
Page 7 of 15
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Figs. 5, 6 show a schematic representation of the location
of genes along the D. subobscura chromosomes, together
with the chromosomal regions covered by the gene
arrangements segregating in the thermal stocks. To test
whether or not there is any clustering of genes within the
inverted segments of the chromosomes we have relied on
published tables where inversion lengths of D. subobscura
are given as percentages of the total length of all chromo-
somes (except for the dot chromosome; [65]). Since over-
lapping inversions in chromosomes U, E and O introduce
potential confusion, we have only considered the follow-
ing heterokaryotypes in the analysis: Ast/A2, Jst/J1, Ust/
U1+2, U1+2/U1+8+2 (i.e., segment covered by inversion U8),
Est/E1+2+9, E1+2+9/E1+2+9+3(segment covered by E3), E1+2+9/
E1+2+9+12(segment covered by E12), Ost/O3+4, O3+4/O3+4+2
(segment covered by O2), and O3+4/O3+4+7 (segment cov-
ered by O7). The G-test for goodness of fit detected a
highly significant deviation from a random distribution
(G (9) = 61.55; p < 0.001), with all but O7 chromosome
segments covered by inversions having a higher than
expected number of genes.

We further analyzed the correlated expression levels in
cold- (P13) and warm-adapted (P22) populations and
compared the correlation matrices of gene expression lev-
els between P13 and P22 populations with a Mantel test
[64] by randomly permuting 10,000 times the rows and
columns of one of the matrices. For those physically
mapped genes (Figs. 5, 6) the Mantel tests showed that
correlated patterns of expression were similar for all chro-
mosomes (ranging from Mantel's r = 0.418, p = 6.0 × 10-4

for chromosome U to Mantel's r = 0.891, p = 2.0 × 10-4 for
chromosome J). The same conclusion was also obtained
when simultaneously comparing the correlation patterns
of the 306 differently expressed genes (Mantel's r = 0.783,
p = 1.0 × 10-4).

To summarize, the physical mapping has shown that a
larger than expected number of differentially expressed
genes are located inside inverted chromosomal segments,
and that the past thermal selection regime does not seem
to have significantly changed the correlated patterns of
gene expression. Since inversions in D. subobscura are
know to influence temporal patterns of linkage disequi-
librium between allozymes [66,67], disentangling the
effects of inversions will be obviously required in any
future approach if we want to identify the relevant candi-
date genes underlying thermal adaptation in D. subob-
scura.

Conclusion
By looking at changes in the transcriptome this study has
identified a large number of genes that appear to be
involved in thermal adaptation in Drosophila subobscura,
with a substantial fraction implicated in metabolism.
Interestingly, expression levels of four previously reported
candidate genes for thermotolerance in Drosophila (Hsp26,
Hsp68, Fst, and Treh) were found to be correlated with past
thermal selection regime. The highest experimental tem-
perature used in our stocks (22°C) was not expected to be
stressful. This was apparently confirmed by the lack of
induction in the P22 populations of a heat shock response
known to occur in D. subobscura [58]. The data also sug-
gest an association with polymorphic inversions as some
clustering of genes within inverted chromosomal sections
was detected. This result is probably not surprising in view
of the rapidly evolved latitudinal clines in inversion fre-
quencies after the introduction of the species into the New
World [12], as well as the quick response of inversion pol-
ymorphism to laboratory temperature [16]. The challenge
now is to elucidate what associations are causal and what
are due to correlated responses or hitchhiking arisen from
linkage disequilibrium with the inversions.

Table 2: Chromosomal distribution of genes differing in gene expression

Muller's chromosomal element D. melanogaster D. subobscura Size of euchromatic portion (Mb; [63]) Genes differing in gene expression
Observed Expected

f

A X A 21.8 45 52.576
B 2L U 23.0 63 55.471
C 2R E 21.8 58 52.576
D 3L J 24.4 70 58.847
E 3R O 28.0 51 67.529

Sum 119 287 287

The G-test for goodness of fit [64] is ; p = 0.059.
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Methods
Microarray experiment
a) Experimental populations and sampling protocol
All nine laboratory populations used here were initiated
from an ancestral population of Drosophila subobscura
derived from a large outbred stock collected in November
1999 at the estimated Chilean epicentre of the original
New World invasion (Puerto Montt, Chile, 41° 28' S, 73°
00' W [68]). From that ancestral population three sets
(P13, P18 and P22) of three replicate populations each
(R1, R2 and R3) were set up in May 2001 and have since
kept at three experimental temperatures on a discrete gen-
eration, controlled breeding under constant larval density
(~5 larvae/mL of food) and constant 12:12 light:dark
period: cold (13°C), optimum (18°C) and warm (22°C),
respectively. The number of breeding adults per popula-
tion is typically well over 1,500 flies. Complete details of

the derivation and maintenance of these populations
have been previously described [15,16].

Because we wanted to compare cDNA microarray gene
expression patterns for all populations in a nested
ANOVA design (see below), the use of a common refer-
ence mRNA to be competitively hybridized to treatment
mRNAs coming from the different populations seemed to
be more appropriate for statistical analysis than a design
involving the correct pairing of all nine samples [69].
Therefore, the three 'optimum' P18 populations were
sampled in April 2004 (two generations prior the experi-
mental flies from the same populations were obtained) by
placing a large number of eggs (± 4 h) in 120-mL plastic
chambers (~100 eggs per chamber) with spoons contain-
ing 30 mL of David's killed-yeast Drosophila medium [70]
stained with 0.05% bromophenol blue. This dye has no

Physical mapping of differentially expressed genes on chromosomes A, J, U of Drosophila subobscuraFigure 5
Physical mapping of differentially expressed genes on chromosomes A, J, U of Drosophila subobscura. Schematic 
representation of the location of 17 differentially expressed genes mapped along chromosome A (the sex chromosome), 14 
mapped along chromosome J (homologous to arm 3L in D. melanogaster), and 20 mapped along chromosome U (homologous 
to arm 2L in D. melanogaster). The centromere is placed on the left (black circle) and the telomere on the right. The linear 
order of genes is that in the standard gene arrangements, and the chromosomal regions covered by inversions segregating in 
the thermal stocks (labelled on the right-hand side next to the segments; overlapping inversions underlined) are indicated. (For 
further details on the formation of the gene arrangements by overlapping inversions, see [84].)
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effect on larval growth and allows for accurate staging of
third instar larvae just prior to pupation at their maximum
size [71]. Larvae with clean guts that stopped feeding and
started to wander on the wall of the plastic chambers were
gently removed with a spatula, cleaned several times with
distilled water, placed in bunches with 25 larvae each
inside microcentrifuge tubes containing 500 µL of TRI
Reagent® (Molecular Research Center, Inc.), and immedi-
ately homogenized and stored at -80°C. These larvae
(hereafter referred to as C18) provided the mRNA used as
reference.

Subsequently, samples from all nine populations were
obtained in May-June 2004 (25 generations at 13°C, 35 at
18°C, and 46 at 22°C) by placing eggs into twelve 130-
mL bottles (~200–250 eggs per bottle). These bottles were
cultured at 18°C and emerging adults were dumped into

Plexiglas cages for egg collections. Eggs for the experiment
were collected over a six days period by placing Petri
dishes containing non-nutritive agar with a generous
smear of live yeast in the cages. As before, ~100 eggs (± 4
h) were placed at 18°C in 120-mL plastic chambers with
stained Drosophila medium to sample the treatment third
instar larvae for further mRNA extraction.

b) RNA extraction and gene expression analysis
Total RNA was extracted from the frozen homogenized
larvae by using TRI Reagent® (MRC, Inc.), and mRNA was
extracted by using Promega PolyATtract® isolation system
following the manufacturer's specifications. Three mRNA
extractions were performed from 9,000 C18 reference lar-
vae (i.e., 3,000 larvae from each replicated population) to
obtain a single reference pooled mRNA, and four inde-
pendent extractions from 250 larvae each were made for

Physical mapping of differentially expressed genes on chromosomes E and O of Drosophila subobscuraFigure 6
Physical mapping of differentially expressed genes on chromosomes E and O of Drosophila subobscura. Sche-
matic representation of the location of 20 differentially expressed genes mapped along chromosome E (homologous to arm 2R 
in D. melanogaster), and 16 mapped along chromosome O (homologous to arm 3R in D. melanogaster). The centromere is 
placed on the left (black circle) and the telomere on the right. The linear order of genes is that in the standard gene arrange-
ments, and the chromosomal regions covered by inversions segregating in the thermal stocks are indicated (labelled on the 
right-hand side next to the segments; overlapping inversions underlined). Inversions O5 and O7 were also sporadically found 
but are ignored here: the first is associated to a lethal gene and the second is probably the result of a recombination event in 
the O3+4+7/Ost heterokaryotype [16]).
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each treatment population. This procedure ensured true
replication in the experiment; namely, the reference
mRNA was always hybridized with treatment mRNAs
coming from independent larvae and extractions.

Relative mRNA levels were determined by parallel two-
colour hybridization to cDNA microarrays from the Cana-
dian Drosophila Microarray Centre (CDMC D12Kv1;
[72]). The arrayed elements in these slides represent
approximately 10,500 D. melanogaster genes to which
seven D. subobscura genes were added as positive controls.
As previously discussed, we were confident that the use of
D. melanogaster arrays in heterologous hybridization with
D. subobscura could offer a reasonable warranty to obtain-
ing reliable data. However, the divergence between both
species (~25 Mya; [29]) may have been the reason for the
relatively high number of genes that failed to hybridize
(Fig. 1), even though other factors like lack of gene expres-
sion in third instar larvae may have also been important.
1 µg of poly(A)+-enriched RNA was labelled using the
SuperScript Indirect cDNA labelling system (Invitrogen
Corporation, California, USA). mRNA concentrations and
cDNA synthesis were checked with Agilent 2100 bioana-
lyzer (Agilent Technologies, California, USA). Equal
amounts of labelled cDNA were combined with 10 µg of
yeast tRNA, speed vac dried and re-suspended in 230 µl
Dig Easy Hyb solution (Boehringer-Roche). The solution
was incubated at 65°C for 10 min to denature the probes.

Hybridizations and washes were performed using the
automatic system Lucidea SlidePro (Amersham, UK). The
hybridization was allowed to proceed for 15 h at 25°C,
and the slides were sequentially washed three times at
50°C for 10 min with medium stringency buffer (1 × SCC,
0.1% SDS), twice at room temperature for 1 min with
high stringency buffer (1 × SCC), post wash buffer (0.1 ×
SCC) and air dried. Then each slide was scanned using an
Axon GenePix 4000B microarray scanner (Axon Instru-
ments, Union City, California, USA). Data were extracted
from the scanned images using GenePix® Pro (Axon
Instruments) microarray image analysis. Labelling,
hybridization and scanning were carried out at the Plata-
forma de Transcriptòmica from the Parc Cientific de Bar-
celona and Universitat de Barcelona (PCB-UB; [73]).

The raw data were adjusted using lowess normalization
software (TIGR MIDAS ver. 2.19; [74]) with a tri-cube
weight function and 0.33 smooth parameter applied to
the C18 reference mRNA dye-labelled green (Cy3) or red
(Cy5). For each experimental population four microarrays
were independently hybridized and scanned, adding to 36
arrays in total. There were 14,440 duplicated spots on
each array, and only the spots that passed a quality control
of image analysis (i.e., array elements with intensities sig-
nificantly different from background) were used in the

differential expression analysis. The gene spots were fur-
ther filtered by excluding those with less than 57 out of 72
(i.e., <79%) valid expression observations (Fig. 1), leaving
4,651 probes for differential gene expression analysis. The
data acquired from these procedures were relative meas-
ures of gene expression independent of larval size differ-
ences among the thermal stocks.

c) Experimental design and data analysis

The unit of analysis here is the population, and the three
replicated populations (R1, R2 and R3) of each thermal
selection stock were treated as a random factor nested
within experimental temperature (13, 18 and 22°C),
which was a fixed effect [64]. Given any treatment popu-
lation pop = 13R1, 13R2,�, 22R3, and any probe g = 1, �,
G for which valid expression levels were obtained, we use

notation ,  to denote normalized and

background adjusted gene expression from the reference
C18 mRNA sample that was dyed green (G) or red (R);

and ,  for gene expression intensities

obtained from the treatment mRNAs dyed green or red.

For each treatment population / ,

/  are the relative intensity ratios measured

from the corresponding slides. The fully balanced dye-
reversal experimental design can be written as the linear
model:

where for probe g, µg is the overall grand mean of the log

2 relative intensity ratios;  is the fixed effect of the ith

experimental treatment (P13, P18, P22);  is the ran-

dom effect of the jth replicate population (R1, R2, R3)

within treatment i;  is the fixed effect of dye k (Cy3,

Cy5);  is the interaction term;  is the random

effect of slide l = 1, 2 within treatment i, replicate j and dye

k; and  is the residual error associated with the cor-

responding log 2 relative intensity ratio of the ijklmth
spot. This linear model easily allows partitioning all
sources of experimental variation: biological (temperature
and replicated population effects) and technical (dye and
slide effects).
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Notice that for the treatment effect we are interested in

(i.e., the  component due to thermal adaptation) the

linear model (1) can be conveniently reduced to the fol-
lowing two-level nested ANOVA model:

where the sum of squares for the error term  is simply

the sum of the sum of squares for the remainder terms in
(1). The usefulness of this model reduction is obvious to
efficiently perform randomization tests to test the null
hypothesis about treatment effects in a randomized (i.e.,
random assignment) experiment [75]. Permutation tests
are far less sensitive to the presence of outliers and are par-
ticularly necessary with unequal sample sizes; i.e., when
some data points are missing as is usually the case with
microarray experiments. The null hypothesis of no treat-
ment or evolutionary thermal regime effect was tested
here after performing random permutations among repli-
cate and selection temperature for the among selection
temperature F-statistics. Each test used 10,000 random
permutations of the log 2 relative intensity ratios (recall

that when N = 72 there are 

possible assignments of observations).

A planned comparison between the two treatment means
from the stocks at the two extreme thermal regimes (i.e.,
P13 vs. P22) that had already diverged for 71 generations
was also performed for each probe g. The permutation
tests were performed following [76]; namely, we first cal-

culated the  statistic for the observed data and next the

residuals of the log 2 relative intensity ratios from the
populations at P13 and P22 were randomly allocated to
both treatment temperatures. From B = 10,000 random

permutations we got a set of null statistics , b = 1,2, ...,

B; and the p-value was computed as:

Given the high-dimensionality of the data set the p-values
were adjusted based on the concept of false discovery rate
(FDR; [34]). If no probe g is differentially expressed the p-
values will follow a U (0,1), where U stands for 'uniform
distribution'. The so-called Mixture Distribution Parti-
tioning (MDP) methodology assumes that the distribu-

tion of p-values consists of a set of null p0 and alternative
p1 components. This partition forms the basis for estimat-
ing various quantities as for example the q-values, which
were obtained here with the QVALUE software [35]. The
problem now is to select a threshold of significance to
identify a set of genes likely to be differentially expressed.
As an unsupervised criterion we used a q-value cut-off ≤
0.05 for the P13 vs. P22 planned comparisons, meaning
that the maximum expected proportion of false positives
incurred when calling a particular gene 'differentially
expressed' is 5%.

d) Computer software for statistical analysis
The computer programs used for statistical data analyses
were MATLAB algebra program environment (ver. 7.0.4
[77]) together with the collection of tools supplied by the
Statistics Toolbox (ver. 5.0.2 [78]). The statistical software
packages STATISTICA version 6 [79] and SPSS version 13
[80] were also used.

Mapping of candidate genes
The flies used for physical mapping of candidate genes
were collected from a natural population in Bordils (70
Km North-east of Barcelona, Spain; 42° 3' N, 2° 54' E).
About 150 males were individually crossed to three or
four virgin females from the ch-cu marker strain to help in
the identification of polymorphic inversions (the genetic
background of this strain is highly homogeneous and
fixed for the standard arrangements in all major acrocen-
tric chromosomes but chromosome O, where it is fixed
for arrangement O3+4.

DNA isolation, DNA amplification, polytene chromo-
some preparation and in situ hybridization were carried
out using standard techniques [81]. The karyotype of D.
subobscura consists of five acrocentric chromosomes and a
dot chromosome. Following [82] the large chromosomes
in this species are traditionally named as A (= X, the sex
chromosome), J (= chromosomal element D of Mueller/
Sturtevant/Novitski and homologous to arm 3L in Dro-
sophila melanogaster [59]), U (= chromosomal element B
and homologous to arm 2L), E (= chromosomal element
C and homologous to arm 2R), and O (= chromosomal
element E and homologous to arm 3R). The five major
acrocentric chromosomes and the dot chromosome are
divided into 100 sections (A: 1 – 16; J: 17 – 35; U: 36 – 53;
E: 54 – 74; O: 75 – 99; Dot :100), and each section into 3–
5 subsections (A, B, ...) [83].
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