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Abstract 

Background:  Acute kidney injury (AKI) is a major complication following cardiac surgery that substantially increases 
morbidity and mortality. Current diagnostic guidelines based on elevated serum creatinine and/or the presence of 
oliguria potentially delay its diagnosis. We presented a series of models for predicting AKI after cardiac surgery based 
on electronic health record data.

Methods:  We enrolled 1457 adult patients who underwent cardiac surgery at Nanjing First Hospital from January 
2017 to June 2019. 193 clinical features, including demographic characteristics, comorbidities and hospital evalua-
tion, laboratory test, medication, and surgical information, were available for each patient. The number of important 
variables was determined using the sliding windows sequential forward feature selection technique (SWSFS). The 
following model development methods were introduced: extreme gradient boosting (XGBoost), random forest (RF), 
deep forest (DF), and logistic regression. Model performance was accessed using the area under the receiver operat-
ing characteristic curve (AUROC). We additionally applied SHapley Additive exPlanation (SHAP) values to explain the 
RF model. AKI was defined according to Kidney Disease Improving Global Outcomes guidelines.

Results:  In the discovery set, SWSFS identified 16 important variables. The top 5 variables in the RF importance 
matrix plot were central venous pressure, intraoperative urine output, hemoglobin, serum potassium, and lactic 
dehydrogenase. In the validation set, the DF model exhibited the highest AUROC (0.881, 95% confidence interval 
[CI] 0.831–0.930), followed by RF (0.872, 95% CI 0.820–0.923) and XGBoost (0.857, 95% CI 0.802–0.912). A nomogram 
model was constructed based on intraoperative longitudinal features, achieving an AUROC of 0.824 (95% CI 0.763–
0.885) in the validation set. The SHAP values successfully illustrated the positive or negative contribution of the 16 
variables attributed to the output of the RF model and the individual variable’s effect on model prediction.

Conclusions:  Our study identified 16 important predictors and provided a series of prediction models to enhance 
risk stratification of AKI after cardiac surgery. These novel predictors might aid in choosing proper preventive and 
therapeutic strategies in the perioperative management of AKI patients.
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Background
Acute kidney injury (AKI), a common and potentially 
life-threatening clinical syndrome, is more and more 
frequent with increasing cardiac surgical volume in 
developed and developing countries. A meta-analysis 
reported an incidence of cardiac surgery-associated 
acute kidney injury (CSA-AKI) of 26.0–28.5% [1]. AKI 
not only severely affects in-hospital morbidity and mor-
tality but also long-term prognosis. Patients who sur-
vive an episode of AKI after surgery are also at elevated 
risk of developing major adverse cardiovascular events, 
advanced chronic kidney disease, and all-cause death [2].

The current consensus definition of AKI depends on 
the increase of serum creatinine (Scr) and/or the pres-
ence of oliguria; however, this can lead to delayed diagno-
sis and treatment. Consequently, substantial efforts have 
been made to explore biomarkers or develop clinical pre-
diction models in recent years. Several novel biomark-
ers were proposed to substitute Scr in the assessment of 
kidney function, such as NGAL, KIM-1, and DKK3 [3, 4]. 
However, an individual biomarker is inadequate in pre-
dicting AKI; that is to say, the pathophysiology of CSA-
AKI is multifactorial and intricate. On the other hand, 
these biomarkers are costly and difficult to assay and are 
thus out of consideration by the majority of clinicians 
[5]. Clinical scoring systems (e.g., Cleveland Clinic score, 
Simplified Renal Index score, Mehta score, etc.) have 
been introduced into clinical practice for more than a 
decade [6–8], while widespread adoption of these models 
would be challenging. First, these models are developed 
following the traditional logistic regression method. Their 
derivation requires the statistical assumption regarding 
a linear relationship between covariates and outcomes, 
with analytical model restricting to selection of a small 
set of parameters that are known to be clinically relevant. 
Second, most of these models perform traditional feature 
selection methods based on a small scale of exposure var-
iables and identify common risk factors (e.g., age, diabe-
tes mellitus, hypertension, cardiac function, surgery type, 
etc.). These risk factors reflect preoperative conditions 
and generally present inadequate predictive power in dif-
ferent races or populations [9].

Recent advancements in electronic health record (EHR) 
systems, data accessibility, and artificial intelligence have 
raised great interest in developing completely electronic 
data-driven machine learning (ML) models for predicting 
specific clinical outcomes. Several studies have used ML 
to predict inpatient AKI using EHR data. For instance, a 
continuous deep learning algorithm can predict 55.8% of 

all inpatient episodes of AKI up to 48 h in advance and 
over 90% of all AKI patients requiring subsequent renal 
replacement therapy (RRT) [10]. Therefore, our first 
objective was herein to develop three tree-based ML 
models to predict CSA-AKI by incorporating preopera-
tive, intraoperative, and early postoperative data from the 
EHR of Nanjing First Hospital. In addition, to uncover 
the “black-box” of ML, SHapley Additive exPlanation 
(SHAP) values were utilized to explain the ML model and 
evaluated individual variable prediction [11]. Given the 
generalizability of the linear model, a nomogram model 
was finally constructed based on the logistic regression 
analysis.

Method
Study design and participants
This is a retrospective, observational study. Consecu-
tive patients who underwent cardiac surgery, admitted 
between January 2017 and June 2019, were recruited 
from Nanjing First Hospital. We enrolled patients who 
had received coronary artery bypass grafting (CABG), 
valve surgery, and a combination of both treatments. 
Patients were excluded if they met the following criteria: 
(i) aged < 18 years; (ii) preoperative AKI, end-stage renal 
disease, or dialysis; (iii) did not receive cardiopulmonary 
bypass (CPB); (iv) missing Scr data. Patient informed 
consent in this study was waived due to the retrospective 
nature of the study. This study was approved by the Ethi-
cal Committee of Nanjing First Hospital. We reported 
our work following TRIPOD statement guideline [12].

Data preprocessing
The study cohort was acquired from two popula-
tion-based databases, consisting of patient informa-
tion available from EHR in digital format: Jiangsu 
Province Coronary Artery Bypass Grafting Register 
(218.2.200.37:2356/Multicenter) and Patient Informa-
tion Management Platform (218.2.200.37:2356/Patien-
tList). The databases are specifically designed for cardiac 
patients and consist of perioperative clinical character-
istics including patient demographics, admission assess-
ment, comorbidities, laboratory test, medication, surgical 
information, and CPB data. All clinical data regarding 
preoperative, intraoperative and early postoperative vari-
ables were included for model derivation (preoperative 
laboratory biomarkers were collected at 6 a.m. the next 
day following hospital admission; early postoperative 
variables were measured within 6 h after surgery). Miss-
ing values were filled in by a second manual review of the 
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EHR, and personal information was de-identified before 
delivering for analysis. The final dataset was randomly 
partitioned to a discovery (80% of observations) set and a 
validation (20%) set.

Anesthesia, CPB, and critical care
All participants received general intravenous-inhalation 
combined anesthesia, which was maintained intraopera-
tively with a continuous infusion of propofol (4–6  mg/
kg/h), remifentanil (0.2–0.4  μg/kg/min), cisatracurium 
(0.2–0.3  mg/kg/h) as well as an intermittent addition 
of sufentanil and midazolam. CPB was performed with 
non-pulsatile perfusion, with a perfusion flow of 2.0–2.8 
L/kg/min and a mean arterial pressure of 55–85 mmHg 
in most cases. During CPB, monitoring records included 
nasopharyngeal temperature, bladder temperature, rectal 
temperature, perfusion flow, oxygen delivery, perfusion 
pressure, central venous pressure (CVP), conventional 
ultrafiltration (CUF), and urine output. After the surgery 
was completed, patients were transferred to the intensive 
care unit (ICU) and placed on ventilators in synchro-
nized intermittent mandatory ventilation or assist-con-
trol models set at 8–10 mL/kg tidal volume and 5 cmH2O 
positive end-expiratory pressure. Arterial blood gas was 
checked at the time of ICU admission; other laboratory 
measurements (e.g., blood cell analysis, liver and kid-
ney function, coagulation function, etc.) were obtained 
within 6 h postoperatively.

AKI definition
Postoperative AKI was defined according to the Scr-
based criteria from the Kidney Disease: Improving Global 
Outcomes (KDIGO) consensus definition, specifically an 
acute increase in Scr ≥ 50% within 7  days or ≥ 0.3  mg/
dL within 48  h compared with the baseline level, or a 
requirement for RRT [13]. In this case, the patient’s base-
line Scr was determined by the Scr level measured at hos-
pital admission.

Model development
This study mainly comprised two stages: (1) feature selec-
tion; and (2) model development. We used a ML-based 
feature selection method, the sliding windows sequential 
forward feature selection (SWSFS), to identify the num-
ber of important variables among the 193 clinical fea-
tures. Then two types of models were developed based on 
the selected variables including three tree-based super-
vised learning models and a nomogram model.

Feature selection
First, we applied a random forest (RF) classifier to cal-
culate variable importance score (VIS) according to the 
Gini index via the importance function in R. To minimize 

random errors, we performed the RF 30 times by setting 
the random seeds from 1 to 30 and calculated the average 
Gini index of each variable. SWSFS was used to identify 
a set of important variables. Briefly, VIS of all the clini-
cal features (except age and gender) was obtained from 
RF and ranked by the averaged Gini index in descend-
ing order. Next, the features were included one by one 
to the RF model based on their VIS ranks. Afterward, 
we plotted the model error, which measured the “out of 
bag (OOB)” rate of each RF model consisting of different 
numbers of variables. Finally, the number of features was 
identified based on the lowest model error rate.

Tree‑based ensemble algorithms
We developed the prediction models using the follow-
ing tree ensemble methods, which are the most popular 
and advanced ML algorithms for binary classification: 
extreme gradient boosting (XGBoost), RF, and deep for-
est (DF). Both XGBoost and RF use rules to binary split 
data based on decision trees. Generally, a tree with many 
splits will probably lead to overfitting and result in poor 
performance in new datasets. RF works based on the idea 
of the ensemble method, which collects individual deci-
sion trees, bagging and random feature selection, thus 
providing more accurate results and making the model 
more resistant to overfitting [14]. XGBoost is the engi-
neering realization of the Gradient Boosting Decision 
Tree, which provides superior prediction by combin-
ing multiple decision trees in boosting ways [15]. As a 
novel and advanced deep learning method, DF generates 
a multi-layer cascade forest containing various RFs [16]. 
This structure has been designed to ensure the diversity 
of the model by including different types of forests. Each 
layer in the cascade forest receives the information pro-
cessed by the previous stage and outputs the processing 
results to the next layer (Additional file 1: Fig. S1).

The area under the receiver operating characteristic 
curve (AUROC) was performed to compare the discrimi-
nation of various ML models. Model calibration was 
evaluated using a calibration plot based on the isotonic 
regression method [17]. Furthermore, for evaluating ML 
models, a series of interpretable parameters were deter-
mined: accuracy, sensitivity, specificity, positive predic-
tive value, negative predictive value, and F score. It is 
worth noting that the correct interpretability of a ML 
model is challenging. We used SHapley Additive exPlana-
tion (SHAP) values to explain the RF model. SHAP val-
ues are developed based on the concept of Shapley values 
from cooperative game theory [18]. It approximates a 
complex model to a linear model and evaluates variable 
importance to demonstrate the amount by which a given 
feature changes the prediction. Specificity, the SHAP val-
ues not only highlight the contributions of the individual 
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variable to the model but also demonstrate the influence 
of each variable on global model effects. In addition, 
we used SHAP plot function to uncover the complex 
relationship between variables and outcomes in the RF 
model.

Nomogram construction
We further constructed a nomogram model based on 
the variables selected by SWSFS. It is a logistic regres-
sion model. Any multicollinearity of the variables was 
excluded by establishing the variance inflation factor 
(VIF); the maximum VIF was 1.41 (Additional file 1: Fig. 
S2). Given the high association between AKI and proce-
dure-related factors, the important intraoperative lon-
gitudinal data were handled as group-based trajectory 
modelling (GBTM). This approach is designed to identify 
clusters of individuals following similar progressions over 
time. We used the Stata command, traj, a plugin based on 
SAS PROC TRAJ macro, to fit a semi-parameter model 
for longitudinal data by maximum likelihood estimation 
[19]. The optimal number of groups with at least 5% of 
patients in the smallest trajectory was determined by 
establishing the Bayesian information criterion. Subse-
quently, the trajectory pattern of longitudinal data and 
remaining important features were incorporated into 
the multivariate logistic regression analysis to generate 
a nomogram model. This nomogram model included 
dynamic intraoperative information and provided a 
dynamic prediction paradigm. The discrimination of 
the nomogram was accessed using C-statistic, an index 
equivalent to AUROC. Model calibration was evalu-
ated using the Brier score and visualized with a calibra-
tion plot using the 1000 bootstrap resampling method. A 
lower Brier score indicates superior calibration [20]. The 
clinical net benefit of the nomogram was estimated by 
decision curve analysis [21].

Statistical analysis
For descriptive analyses, continuous variables are 
described as means (standard deviation) and categorical 
variables as frequencies with proportions. The clinical 
characteristics of patients who developed AKI or did not 
were compared using the Student’s t test, Mann Whit-
ney U test, chi-square test, or Fisher’s exact probability 
method as appropriate. After a second manual review for 
data integrity, the dataset had missing data ranging from 
0% to 1.37%. We handled the missing values by using the 
multiple imputation method. Statistical analyses were 
performed using Stata (version 13.0) with the pack-
age of traj, R (version 4.0.3) with packages of mice, rms, 
and rmda, and Python (version 3.8) with the packages of 
sklearn, deep-forest, and shap. A two-sided P value < 0.05 
was considered statistically significant.

Results
Study population
From January 2017 to June 2019, 1457 consecutive 
patients were enrolled in the final cohort (Additional 
file  1: Fig. S3). The mean (standard deviation) of their 
age was 60 (12.3) years, and 848 (58.2%) of the par-
ticipants were male. Of them, 486 (33.4%) underwent 
CABG, 802 (55.0%) were subjected to valve surgery, 
and 169 (11.6%) received concomitant CABG and valve 
surgery. Each individual patient had 193 clinical fea-
tures. They were randomly assigned to a discovery set 
(n = 1170) or a validation set (n = 287). The rates of AKI 
were 24.3% and 24.0% in the discovery and validation 
sets, respectively. In both sets, differences in clinical 
characteristics between patients who developed AKI 
and those who did not are outlined in Additional file 1: 
Table S1.

Feature selection
The VIS of each variable was obtained from the RF 
algorithm and ranked in descending order. Figure  1 
illustrates the importance matrix plot of the top 100 
features. Afterward, all features (except age and gender) 
were included in SWSFS one by one in order of their 
VIS ranks. Based on the lowest OOB error rate (Fig. 2), 
SWSFS identified 14 important features including five 
preoperative factors (Scr, neutrophil to lymphocyte 
ratio [NLR], blood glucose, uric acid [UA], and high-
density lipoprotein [HDL]), five intraoperative factors 
(urine output, ultrafiltration volume, CVP_T3, CVP_
T4, and perfusion flow_T3), and four early postopera-
tive factors (intubated PaO2/FiO2 ratio, hemoglobin, 
serum potassium, and lactic dehydrogenase [LDH]).

Tree‑based learning models
Two covariates (age and gender) and the 14 impor-
tant variables were included in the following ML mod-
els: XGBoost, RF, and DF. Figure  3A illustrates the 
model performance in the validation set, measured by 
AUROC. The DF model exhibited the largest AUROC 
(0.881, 95% confidence interval [CI] 0.831–0.930), fol-
lowed by the RF model (0.872, 95% CI 0.820–0.923) and 
XGBoost model (0.857, 95% CI 0.802–0.912). Accord-
ingly, five-fold cross-validation results of AUROC and 
accuracy of XGBoost, RF, and DF are summarized in 
Additional file  1: Table  S2. The calibration plot dem-
onstrated that all these models had well calibrated. The 
Brier scores were 0.109, 0.117, and 0.116 for the DF, 
RF, and XGBoost models, respectively (Fig.  3B). The 
parameters of these algorithms are presented in Addi-
tional file 1: Table S3.
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SHAP values through visualization
We used SHAP values to provide accurate attribution 
values for each variable within the RF model. Figure 4A 
describes the SHAP summary plot for each input vari-
able in the discovery set. The y-axis displays the 16 
variables ranked in order of importance with their 

mean absolute SHAP values. The x-axis indicates the 
SHAP values associated with each variable and patient, 
which allowed the determination of whether a feature 
had a negative effect on the prediction toward a non-
AKI class or positive effect on the prediction toward 
an AKI class. (Fig. 4B). Besides, SHAP dependent plot 

Fig. 1  Importance matrix plot of random forest algorithm based on the discovery set



Page 6 of 15Zhang et al. Journal of Translational Medicine          (2022) 20:166 

provides a visualization of the impact for individual 
observations. Using zero as a dividing line, a feature’s 
effect can be clearly observed regarding its positive or 
negative contribution to the model (Fig.  5). The indi-
vidual patient-level prediction was depicted using 
the SHAP decision plot. This plot function allows for 
a better understanding of the individual decision path 
and describes why patients A-C were predicted as AKI 
whereas patients D-F were not (Fig. 6).

Group‑based trajectory modelling and nomogram model
Among the 16 important predictors, CVP_T3, CVP_T4, 
and perfusion flow_T3 are CPB-related factors associ-
ated with AKI development. To observe their dynamic 
pattern, GBTMs were created in both sets, in which the 
three clusters of CVP and perfusion flow following dif-
ferent progressions could be observed. The higher indi-
ces the trajectory groups of CVP and perfusion flow, the 
greater the risk of AKI development (Fig.  7). Inclusion 

Fig. 2  Feature selection by the sliding windows sequential forward feature selection method. First, variable importance score (VIS) of features 
was obtained from a random forest algorithm and ranked in descending order. The variables were then included one by one to the random forest 
model in order of VIS rank. Finally, the optimal number of variables (14 variables) was determined by minimum model error (red circle)

Fig. 3  Performance of machine learning models. (A) Comparison of area under the receiver operating characteristic curves among XGBoost, 
random forest, and deep forest models in the validation set; (B) Calibration plots of XGBoost, random forest, and deep forest models in the 
validation set. The Brier score is reported in the lower right legend (the smaller the value, the better the calibration). AUROC: area under the receiver 
operating characteristic curve
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of trajectory groups and other important variables in 
the multivariate logistic regression model resulted in 14 
predictors (excluding UA, P > 0.1) that were statistically 
significant for AKI (Table 1). These independently associ-
ated risk factors were incorporated to form an AKI esti-
mation nomogram (Fig. 8). The nomogram was internally 
validated using the bootstrap validation method. The 
nomogram achieved good discrimination in the discov-
ery set, with a C-statistic of 0.827 (95% CI 0.800–0.854) 
and a bootstrap-adjusted C-statistic of 0.810. Corre-
spondingly, in the validation set, the nomogram displayed 
a C-statistic of 0.824 (95% CI 0.763–0.885). In both sets, 
1000 bootstrap resampling calibration plots confirmed an 
optimal agreement between the predicted and observed 
risk of AKI (Fig. 9A–D). Furthermore, the decision curve 
analysis revealed that the nomogram could provide clini-
cal net benefit for most of the examined probabilities 
(Fig. 9E, F).

Discussion
In this study, we applied the SWSFS technique to screen 
for clinical characteristics and developed a series of mod-
els to optimize AKI prediction following cardiac surgery. 
Using SWSFS, we identified 14 important risk factors 
associated with AKI among the 193 clinical variables, 
thus boosting efficiency by incorporating preoperative, 
intraoperative, and early postoperative data from EHR. 
The performance of the tree ensemble ML algorithms 
(XGBoost, RF, and DF) was clinically satisfactory, with 

AUROC ranging 0.857–0.881 in the validation set. In 
addition, we constructed a nomogram model for AKI 
which also presented good performance both in terms 
of discrimination (AUROC 0.824) and calibration (Brier 
score 0.144). Our study highlights the value of EHR data 
in the evaluation of AKI. These important perioperative 
factors might be helpful in providing individualized pre-
ventive strategies and delivering proper treatments in the 
management of AKI after cardiac surgery.

In addition to some well-known risk factors (e.g., age, 
gender, hypertension, diabetes mellitus, Scr, etc.) that 
have been identified by previous studies, most variables 
are novel predictors for AKI risk prediction. Intraop-
erative factors reflect acute physiological responses dur-
ing surgery and play pivotal roles in the development 
of AKI, particularly the unique physiological perturba-
tions of CPB. In this study, we generated developmental 
trajectories to describe the course of factors over time. 
Two specific time point measurements of CVP (T3 and 
T4) were found to be strong predictors, highlighting the 
effect of intraoperative venous congestion on renal func-
tion. Traditionally, CSA-AKI is considered to be caused 
by renal hypoperfusion due to hypotension, inadequate 
perfusion flow, or renal ischemia [22, 23]. This concept 
has been challenged by accumulating evidence that ele-
vated CVP is a more powerful hemodynamic determi-
nant than mean perfusion pressure for the development 
of postoperative AKI [24]. More recently, Lopez et  al. 
[25] uncovered that higher levels of CVP during cardiac 

Fig. 4  SHAP summary plot of the random forest model. (A) Average absolute impact of variables on the final model output magnitude ordered 
by decreasing feature importance; (B) The plot depicts the dot estimation on the model output of random forest model. Each dot represents an 
individual patient from the dataset. Red represents higher SHAP value of specific features; blue represents lower SHAP value of specific features. 
The higher the SHAP values, the greater the risk of developing acute kidney injury development. CVP: central venous pressure; CUF: conventional 
ultrafiltration; LDH: lactic dehydrogenase; NLR: neutrophil to lymphocyte ratio; Scr: serum creatinine; UA: uric acid; HDL: high-density lipoprotein
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surgery were independently associated with higher odds 
of AKI. They also demonstrated that venous congestion 
is more accurate than hypotension in predicting AKI. 
CVP-induced AKI can therefore be regarded as “con-
gestive kidney failure”. When examining the trajectory 
pattern of perfusion flow, the separate clusters of perfu-
sion flow at T3 measurement in our trajectory analysis 
implied that some patients (high-level cluster) might go 
through cardiac insufficiency, hemodynamic instability, 
or other unstable intraoperative conditions after aortic 
declamping and require additional mechanical assis-
tance before weaning off from CPB. The positive effect of 
ultrafiltration volume on AKI risk may be another latent 
indicator of the congestive state of the body, as CUF is 
used for fluid removal to reduce fluid overload [26]. 
Taken together, these findings demonstrate that not only 
renal ischemia but also renal congestion plays a vital role 

in worsening kidney function. Our study suggested that 
the clinician may need to pay more attention to hemody-
namic changes, in particular during the cardiac resusci-
tation period. Although adequate urine output does not 
assure normal kidney function as a result of non-pulsatile 
flow and cold-induced diuresis, the presence of oliguria 
typically indicates an acute response to renal hypoper-
fusion. This result is consistent with the study by Tseng 
et al. [27], who observed that intraoperative urine output 
was the most influential feature in predicting AKI.

Early postoperative laboratory biomarkers could 
reflect the acute pathophysiology of kidney injury. In this 
study, we identified four laboratory biomarkers (intu-
bated PaO2/FiO2 ratio, serum potassium, hemoglobin, 
and LDH) associated with CSA-AKI. These biomarkers 
reflect the patient’s overall disease severity. For example, 
hypoxemia (low intubated PaO2/FiO2 ratio) is a severe 

Fig. 5  SHAP dependence plot of the random forest model. Each panel demonstrates that each feature affects the output of the random forest 
prediction model. The x-axis represents the raw values of each feature and the y-axis indicates the SHAP values of features. When the SHAP value of 
a specific feature exceeds zero, it indicates an increased risk of acute renal injury. CVP: central venous pressure; CUF: conventional ultrafiltration; LDH: 
lactic dehydrogenase; NLR: neutrophil to lymphocyte ratio; Scr: serum creatinine; UA: uric acid; HDL: high-density lipoprotein
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complication after cardiac surgery and has been shown 
to be highly related to prolonging mechanical ventila-
tion, respiratory complications, and in-hospital death 
[28]. The loss in glomerular filtration rate reserve usually 
leads to electrolyte disorder. It was observed that some 
patients experienced abrupt deterioration in renal func-
tion and decreased glomerular filtration capacity in the 
early postoperative period, resulting in fluid overload and 
elevated serum potassium levels [29]. LDH is abundant 
in the kidney, heart, liver, and muscle and is, therefore, 
most commonly measured to detect tissue damage as 
well as disease severity of critical patients [30]. Although 
LDH acts as a nonspecific biomarker for kidney injury, it 
demonstrates adequate predictive value for AKI risk pre-
diction in several clinical settings [31, 32]. On the other 
hand, the elevated LDH in the immediate postoperative 
period may be an indicator of hemolysis from CPB, and 
CPB-induced hemolysis is associated with the develop-
ment of AKI [33].

Previous studies have concluded that inflammation, 
oxidative stress, and endothelial dysfunction are central 
components of the pathogenesis of AKI. NLR, a prom-
ising marker of inflammation, has been identified as a 
novel predictor of AKI [34]. Moreover, it has emerged 
as a potential biomarker for lethal outcomes and adverse 
events in patients undergoing cardiac surgery [35, 36]. 
Interestingly, lower baseline HDL levels were indepen-
dently associated with an increased risk of AKI after 

cardiac surgery. This relationship was also observed in 
Smith et  al.’s study [37]. Systematically, high HDL levels 
inhibit systemic inflammation and reduce oxidative stress 
via acting as receptors of prooxidant lipids and associ-
ated antioxidant enzymes and therefore play a role in 
the pathogenesis of AKI [37–39]. However, the natural 
effect of HDL may be pharmacologically modified by tra-
ditional preoperative lipid-lowering treatment in cardiac 
patients; novel pharmacologic agents with the potential 
for improving HDL function are warranted. Collectively, 
the pathophysiology of CSA-AKI is complex and multi-
factorial. Our study identified a set of important factors 
attributed to CSA-AKI such as venous congestion, renal 
hypoperfusion, inflammatory response, metabolic disor-
der, and baseline renal function. However, many of these 
factors are modifiable. Using these factors may therefore 
provide a basis for early diagnosis, prevention, and treat-
ment strategies in the preoperative, intraoperative, and 
early postoperative management of AKI patients, such as 
optimizing hemodynamic status, intensified early post-
operative biomarkers monitoring, and individualized 
blood glucose and lipids management.

Before implementing ML models in clinical practice, 
their predictive power must be validated in different 
clinical settings. Previous studies developed ML models 
using all features as input variables [27, 40]. However, 
inclusion of numerous features makes the models much 
more complicated and difficult to validate in additional 

Fig. 6  SHAP decision plot of individual patient-level prediction. The plots depict the decision path for predicting acute renal injury. All patients 
started with mean predictive values and were evaluated at each factor level to obtain the final probability of acute kidney injury. A–C Delineate 
illustrative examples of patients predicted to be acute renal injury; D–F display illustrative examples of patients predicted to be non-acute renal 
injury. CVP, central venous pressure; CUF: conventional ultrafiltration; LDH: lactic dehydrogenase; NLR: neutrophil to lymphocyte ratio; Scr: serum 
creatinine; UA: uric acid; HDL: high-density lipoprotein
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representative datasets, as most variables are irrelevant 
to AKI classification. Besides, many ML algorithms 
exhibit a decrease in predictive power when the number 
of variables is significantly higher than optimal [41]. For 
example, as outlined in Additional file  1: Fig. S4, these 
ML models were further evaluated with all variables as 
input variables, and no improvement in model discrimi-
nation was noted. Our study confirms the significance of 
feature selection in ML applications. We applied SWSFS 
technique to determine the optimal and minimum size of 
features, thus increasing the efficiency and usefulness of 
the models for further validation.

Our study has several strengths. First, a major bar-
rier to the widespread use of ML models is their cor-
rect interpretation, as a true “black-box” can hardly 
be accepted by clinicians or decision-makers. As an 
additive model explainable approach, SHAP analy-
sis is seldom employed in ML application. We utilized 
the SHAP values to demystify the ML, providing a 

“white-box” AKI prediction model that allowed a quick 
comprehension of the effect of a single feature on the 
model’s prediction. This explainable or “white-box” 
predictive technique may be helpful in ML transport-
ability across hospitals. Second, the three tree-based 
ensemble learning algorithms demonstrated high calcu-
lating efficiency and may be adapted to certain medical 
working environments. Indeed, XGBoost and RF have 
the advantages of being trained quickly and providing 
reliable feature importance estimates and are increas-
ingly emphasized as competitive alternatives to tradi-
tional regression methods. In addition, both XGBoost 
and RF algorithms are bootstrapping method applica-
tions, which can improve predictive power when avail-
able datasets are small. Notably, for the first time to our 
knowledge, we used DF to predict AKI after cardiac 
surgery. As an alternative to the deep learning frame-
work, DF improves the robustness of the traditional 
deep learning method working on small-scale clinical 

Fig. 7  Group-based trajectory modelling of central venous pressure and perfusion flow in the discovery (A) and validation (B) sets. These variables 
were repeatedly measured at specific time points (T1, initial phase of cardiopulmonary bypass; T2, 20 min after aortic cross-clamping; T3, 10 min 
after aortic declamping; T4, before weaning off from cardiopulmonary bypass)
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data and provides an effective solution for binary clas-
sification. Third, given the importance of intraopera-
tive factors on AKI development, we applied GBTM 

method to handle intraoperative longitudinal data 
in which the dynamic process of variables over time 
could be clearly observed. GBTM identifies distinctive 

Table 1  Multivariate logistic regression model for predicting acute kidney injury after cardiac surgery based on discovery set

OR, odds ratio; CI, confidence interval; Scr, serum creatinine; NLR, neutrophil to lymphocyte ratio; HDL, high density lipoprotein; CUF, conventional ultrafiltration; CVP, 
central venous pressure; LDH, lactic dehydrogenase

Risk factor β OR (95% CI) P value

Age, years 0.0170 1.017 (1.001–1.035) 0.048

Male 0.4076 1.503 (1.027–2.209) 0.036

Preoperative Scr, mg/dL 1.0381 2.824 (1.427–5.859) 0.004

Preoperative NLR 0.1333 1.143 (1.065–1.233) < 0.001

Preoperative blood glucose, mmol/L 0.1441 1.155 (1.048–1.273) 0.003

Preoperative HDL, mmol/L -0.6207 0.537 (0.299–0.947) 0.034

Intraoperative urine output, mL/kg/hr -0.0602 0.942 (0.889–0.990) 0.027

CUF, mL/kg 0.0205 1.021 (1.009–1.033) < 0.001

CVP, cmH2O (trajectory group)

 2 vs. 1 0.5632 1.756 (0.778–4.427) 0.199

 3 vs. 1 1.4666 4.334 (1.838–11.314) 0.001

Perfusion flow, L/min/m2 (trajectory group)

 2 vs. 1 0.3693 1.447 (0.937–2.227) 0.094

 3 vs. 1 0.4780 1.613 (1.091–2.389) 0.016

Intubated PaO2/FiO2 ratio − 0.0035 0.996 (0.995–0.998) < 0.001

Postoperative hemoglobin, g/L − 0.0505 0.951 (0.938–0.963) < 0.001

Postoperative serum potassium, mmol/L 0.6649 1.944 (1.448–2.623) < 0.001

Postoperative LDH, U/L 0.0037 1.005 (1.003–1.006) < 0.001

Intercept − 2.8021

Fig. 8  Nomogram predicting acute kidney injury after cardiac surgery. Scr: serum creatinine; NLR: neutrophil to lymphocyte ratio; HDL: high density 
lipoprotein; CUF: conventional ultrafiltration; CVP: central venous pressure; LDH: lactic dehydrogenase; AKI: acute kidney injury
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Fig. 9  Performance evaluation of the nomogram model. Receiver operating characteristic curve of the nomogram in the discovery (A) and 
validation (B) sets; 1000-resample bootstrapped calibration plot of the nomogram in the discovery (C) and validation (D) sets; decision curve 
analysis of the nomogram in the discovery (E) and validation (F) sets. AUROC, area under the receiver operating characteristic curve; CI: confidence 
interval
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clusters of individual trajectories within the popula-
tion, determining the subgroup patients at different risk 
levels; it provides a critical time point for clinical deci-
sion making. By monitoring intraoperative hemody-
namic parameters, it is expected to build more accurate 
dynamic early warning systems that can help clinicians 
timely identify patients at risk of postoperative AKI. 
Fourth, the incidence of AKI in our study was generally 
in line with the report from a meta-analysis [1], indicat-
ing that our patient cohort is representative of cardiac 
patients in general. Finally, the dataset contained only 
a few missing data because most of the missing values 
were filled in during a second manual review of EHR. 
Therefore, the impact of missing data on the prediction 
models is negligible.

However, several limitations should also be considered. 
First, the models were developed based on the dataset 
derived from a single center with patients undergoing on-
pump cardiac surgery. Consequently, before the models 
can be implemented in clinical practice for new patients, 
their predictive performance would require training and 
evaluation on other races, nationalities, or additional 
datasets. Second, postoperative urine output (less than 
0.5 mL/kg/h for 6 h) was not used to define AKI due to 
its unavailability in the majority of patients. However, we 
were unlikely to miss vital clinical patients as urine out-
put may have been maintained by diuretics. Moreover, 
due to intensified monitoring in ICU, persistent oliguria 
is uncommon and transient oliguria may simply imply 
insufficient volume resuscitation. Third, although SHAP 
values can explain most traditional ML models, they can-
not explain the DF algorithm. In other words, the correct 
interpretation of DF remains challenging. We are work-
ing on developing a more advanced algorithm for DF that 
could provide variable importance estimation. Fourth, 
we did not include traditional scoring systems to make 
model comparisons, because the most extensively used 
and robust models for AKI are those designed for AKI 
requiring RRT. Given the high incidence of subclinical 
AKI and its strong association with adverse outcomes, 
more advanced models should be developed to predict 
any-stage AKI after cardiac surgery.

Taken together, our study highlights the potential of 
tree-based ensemble methods in generating robust AKI 
prediction tools. By contrast to clinical scoring systems 
or biomarkers, ML algorithm is a completely data-driven 
prediction tool. As for clinical practice, a web-based 
online tool can be developed to facilitate the application 
of the ML model. By inputting the values of features of a 
patient, the online tool would estimate the probability of 
developing AKI. With advances in EHR, it can be easily 

transferred to the EHR system to calculate AKI risk by 
automatically reading features.

ML algorithms for clinical data analysis have revolu-
tionized the traditional way of conducting cardiovascu-
lar research. As clinicians continue to gather significant 
amounts of patient data through EHR, more novel asso-
ciations between specific features and AKI will be identi-
fied. Future work is ongoing on the development of more 
advanced ML algorithms and EHR systems for real-time 
adjustment of the AKI risk after cardiac surgery, which 
in return will optimize treatment and enhance prognosis.

Conclusions
In this study, based on the 16 important perioperative 
predictors, we successfully established three tree-based 
ML models and a nomogram model to optimize CSA-
AKI risk prediction.
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