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Purpose: One of the most frequently cited radiomics investigations showed that features automati-
cally extracted from routine clinical images could be used in prognostic modeling. These images have
been made publicly accessible via The Cancer Imaging Archive (TCIA). There have been numerous
requests for additional explanatory metadata on the following datasets — RIDER, Interobserver,
Lung1, and Head–Neck1. To support repeatability, reproducibility, generalizability, and transparency
in radiomics research, we publish the subjects’ clinical data, extracted radiomics features, and digital
imaging and communications in medicine (DICOM) headers of these four datasets with descriptive
metadata, in order to be more compliant with findable, accessible, interoperable, and reusable (FAIR)
data management principles.
Acquisition and validation methods: Overall survival time intervals were updated using a national
citizens registry after internal ethics board approval. Spatial offsets of the primary gross tumor vol-
ume (GTV) regions of interest (ROIs) associated with the Lung1 CT series were improved on the
TCIA. GTV radiomics features were extracted using the open-source Ontology-Guided Radiomics
Analysis Workflow (O-RAW). We reshaped the output of O-RAW to map features and extraction set-
tings to the latest version of Radiomics Ontology, so as to be consistent with the Image Biomarker
Standardization Initiative (IBSI). Digital imaging and communications in medicine metadata was
extracted using a research version of Semantic DICOM (SOHARD, GmbH, Fuerth; Germany). Sub-
jects’ clinical data were described with metadata using the Radiation Oncology Ontology. All of the
above were published in Resource Descriptor Format (RDF), that is, triples. Example SPARQL
queries are shared with the reader to use on the online triples archive, which are intended to illustrate
how to exploit this data submission.
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Data format: The accumulated RDF data are publicly accessible through a SPARQL endpoint
where the triples are archived. The endpoint is remotely queried through a graph database web appli-
cation at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, such that we can
efficiently cross-reference clinical, DICOM, and radiomics data within a single query, while being
agnostic to the original data format and coding system. The federated queries work in the same way
even if the RDF data were partitioned across multiple servers and dispersed physical locations.
Potential applications: The public availability of these data resources is intended to support radio-
mics features replication, repeatability, and reproducibility studies by the academic community. The
example SPARQL queries may be freely used and modified by readers depending on their research
question. Data interoperability and reusability are supported by referencing existing public ontolo-
gies. The RDF data are readily findable and accessible through the aforementioned link. Scripts used
to create the RDF are made available at a code repository linked to this submission: https://gitlab.c
om/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata. © 2020 The Authors.
Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists
in Medicine. [https://doi.org/10.1002/mp.14322]
[Correction added on September 3, 2020, after first online publication: The referenced URL have
been corrected.]
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1. INTRODUCTION

Clinical radiological imaging, such as computed tomography
(CT), is a mainstay modality for diagnosis, screening, inter-
vention planning, and follow-up for cancer patients world-
wide.1 Radiomics refers to high-throughput automated
characterization of the tumor phenotype by analyzing quanti-
tative features derived from a radiological image.2 Aerts et al.
showed that CT radiomics features by themselves could con-
tain information that is potentially prognostic of overall sur-
vival in nonsmall cell lung (NSCLC) and head-and-neck
(HN) cancer.3 The radiomics hypothesis is that computation-
ally derived features extract more information than can be
processed by an unaided human eye, and therefore offers up
new image biomarkers to speed up the research of personal-
ized medicine. Radiomics has the potential to be a highly
cost-effective option for retrospective observational clinical
studies, since it can process routinely collected clinical radio-
logical images residing in institutional archives. There remain
significant challenges in regards to developing generalizable
models that are based on reproducible and repeatable radio-
mics signatures.4–7 Recent studies have suggested that har-
monization of radiomics features across multiple institutions
and different scanner parameters may be needed to realize its
full potential.8–11

Computed tomography images for some frequently cited
studies,3,12 in the digital imaging and communications in
medicine (DICOM) format, have been made available via
The Cancer Imaging Archive (TCIA).12–16 The DICOM stan-
dard incorporates metadata about image acquisition settings
and it extends to regions of interest (ROIs) delineations (i.e.,
radiotherapy structure set, or RTSTRUCT), but many nonra-
diology researchers remain unfamiliar with this conjoined
data-metadata format. Pixel data only formats such as Neu-
roimaging Informatics Technology Initiative (NIfTI) and
Nearly Raw Raster Data (NRRD) may be more intuitive for
direct computation, but these have been stripped of imaging

metadata. Imaging metadata is the essential context to under-
stand why radiomics features from different scanners may or
may not be reproducible.17–20 Software libraries are available
that easily change from DICOM to NIfTI/NRRD,21 but in
keeping with FAIR (Findable, Accessible, Interoperable, and
Reusable) data stewardship principles,22 the imaging meta-
data needs to be preserved in such a way that links to the
source images and postacquisition analyses will be retained.

A similar argument holds for patients’ clinical metadata
and extracted radiomics features. Publishing tables of values
as open access data does not by itself comply with FAIR prin-
ciples, because there may be no metadata that richly describe
what the data fields are, what its contents signify, and how it
relates to other data. The point of FAIR principles is not only
humans should grasp enough context about the data to use it
meaningfully, but that the data must be made amenable for
machine algorithms to automatically search and process, even
on a massive global scale.

Consider an example specific to radiomics. For a given
feature, it is essential to describe how this feature is uniquely
defined, which radiomics software (and version) was used to
extract it, and what (if any) digital image preprocessing had
been applied prior to extraction. Semantic ontologies23 were
developed in order to add descriptive metadata and hierarchi-
cal relationships on top of the data. Ontologies make explicit
the formal meaning of concepts within its proscribed domain
and the essential relationships between its set of concepts.
The present work reuses the Radiation Oncology Ontology
(ROO),24 Semantic DICOM ontology (SeDI),25 and the
radiomics ontology (RO).26 These ontologies themselves
reuse existing terminologies and thesauri, such as the image
biomarker standardization initiative (IBSI),27 National Cancer
Institute Thesaurus (NCIT),28 the units of measurement
ontology (UO),29 and the DICOM data dictionary,30 to iden-
tify its concepts.

Other advantages of ontologies include knowledge repre-
sentation and the support for automated logical inferencing.
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A hierarchical structure is abstracted as directed acyclic
graphs, wherein concepts and relationships are represented as
vertices and edges of the graph, respectively. Any graph,
regardless of complexity, can be written out in full as a series
of machine-readable sentences consisting of strictly three
pieces; subject (start vertex) — predicate (edge) — object
(end vertex). Such “triples” are the basis of the resource
descriptor format (RDF) that is a type of universal data stor-
age format on the World Wide Web. Machine-based data
mining and inferencing tasks are thus feasible in a highly effi-
cient manner, being simplified to a “pattern matching” prob-
lem.

The objective of this open data submission is to stimulate
studies into repeatability, reproducibility, replication, and
reusability of radiomics features from multiple datasets. The
core collection being made publicly available here consists of
(a) improvements to the four clinical imaging datasets
described in the seminal radiomics publication by Aerts et al.,3

(b) extracted radiomics features described in line with IBSI
recommendations,27,31 and (c) updates to the subject clinical
data associated with the aforementioned image collections.

2. ACQUISITION AND VALIDATION METHODS

2.A. Description of the dataset

The metadata published in this submission links to four
image collections, available under a Creative Commons
license (Attribution-NonCommercial Unported; CC BY-NC
3.012), in DICOM format on TCIA and has been previously
investigated by Aerts et al.3. These collections are described
in detail elsewhere; a brief recapitulation is given in Table I.

In each of these collections, primary Gross Tumor Vol-
umes (GTVs) had been delineated by experienced radiation
oncologists; ROIs are included in the TCIA collections as
RTSTRUCT and SEGMENTATION objects. In the original
TCIA submission, some ROIs were vertically displaced due
to the how treatment couch offsets were being reported by
legacy radiotherapy treatment planning software – these have
now been corrected.

Clinical data have been extracted from patients’ electronic
medical records and, where applicable, survival intervals from
commencement of radiotherapy treatment till date of death or
loss to follow-up were updated using a national registry after
internal review board approval. The clinical data have been
made available with the imaging collections on TCIA.

2.B. Data format and usage notes

The workflow of the conversion of clinical data, DICOM
metadata, and radiomics features to RDF triples is repre-
sented in Fig. 1.

2.B.1. Clinical metadata as RDF

Clinical tables (in CSV format) from TCIA were imported
as standard relational databases (e.g., in PostGreSQL)32 and

then converted into RDF triples using a serializing scripting
language such as R2RML.33 R2RML allows the expression
of an arbitrary relational database as an equivalent graph data
object using a suitable target ontology (in this case, the
ROO) which can be controlled by specifying a mapping file.
The values of, and relationships between, the clinical data
concepts were mapped onto a graph structure. A visual repre-
sentation of an example ROO graph has been given by Tra-
verso et al.24 The graph was exported as RDF triples and
archived on a publicly query-able SPARQL endpoint. The
mapping files used for the RDF triples acquisition in this par-
ticular data submission are made available for the reader on a
public https://gitlab.com/UM-CDS/FAIR-compliant_clinical_
radiomics_and_DICOM_metadata. [Correction added on
September 3, 2020, after first online publication: The refer-
enced URL have been corrected.]

2.B.2. DICOM metadata as RDF

The DICOM headers present in the abovementioned TCIA
image collections were processed into graph objects using
SeDI as the target ontology. A research-only version of the
Semantic DICOM conversion service of SOHARD GmbH
(Fuerth, Germany) was used to automatically extract the
headers from DICOM files and subsequently export these as
RDF triples to the same aforementioned SPARQL endpoint.
This semantic representation of imaging metadata supports
cross-referenced queries of DICOM tags against radiomics
features for use in repeatability and reproducibility studies.34

2.B.3. Radiomics metadata as RDF

The radiomics feature values of the primary GTV in the
abovementioned image collections were extracted using the
Ontology-Guided Radiomics Analysis Workflow (O-RAW),35

a PyRadiomics36 — based FAIR-ification tool. Acquisition of
the radiomics RDF triples required a two-stage process. The
results of a radiomics extraction software application (in our
case O-RAW, but the same holds for other software) must first
be transferred into a set of inter-related tables needed for the
IBSI. For this submission, we prepared a python script to fill
these tables more efficiently; this is provided as an example
for the reader on the repository https://gitlab.com/UM-CDS/
FAIR-compliant_clinical_radiomics_and_DICOM_metadata.
[Correction added on September 3, 2020, after first online
publication: The referenced URL have been corrected.]
Details of radiomics ontology development and its integration
with the IBSI exceed the scope of this data article, but will be
covered in detail in a separate publication.37 Radiomics RDF
triples were saved to the same aforementioned SPARQL end-
point.

2.C. SPARQL public endpoint

The SPARQL query language is used to interrogate the
clinical, DICOM, and radiomics triples that are archived in
RDF as a publicly accessible internet resource referred to by
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the Universal Resource Locator (URL), http://sparql.cancerda
ta.org/. The RDF triples are maintained in a persistent online
graph database through a Blazegraph38 software application,
which also supplies a user interface through which remote
SPARQL queries may be entered. A public query may be
executed as follows: after accessing the above URL, the
Namespaces tab is selected and Nat_Com_Collections_final
database is set to use. Queries may then be typed by hand or
copy-pasted in the Query tab.

2.D. Example SPARQL queries

The first hypothetical example we consider is a researcher
who wishes to get the data for a univariate model for overall
survival in the Lung1 collection, such as Welch et al.,39 using
a single radiomics feature that is known by its IBSI text label
“Fmorph.vol.” We have setup the example query in Box 1. In
brief, a SPARQL query consists of:

i Shorthand prefixes for namespaces referring to data,
schema, syntax, and ontologies that are needed;

ii SELECT and FILTER commands that allow us to shape
the contents to be returned; and,

iii a sequence of pattern matching rules that allow us to link
patients to radiomics features and overall survival outcome.

The contents of Box 1 may be copied and pasted into the
query window of Blazegraph (http://sparql.cancerdata.org/
#query). Note that a patient study identifier links both the
radiomics and clinical triples, such that we can query into
both domains and cross-reference them within a single
SPARQL query. The result of this example query that is lim-
ited (for display purposes) to ten subjects can be seen in
Fig. 22.

As another purely radiomics-based example, we may
examine if distinct radiomics intensity discretization algo-
rithms had been used during the extraction of a radiomics
feature. If one were to execute the example query in Box 2,
it would be seen that the specific radiomics feature labeled
as RO:Y1RO40 had been computed with 12 unique feature
extraction settings, but only three discretization settings
were used, all of which employed a fixed bin size (FBS)
method.

In our final example, we bring elements of the previous
examples together into a single SPARQL query that cross-ref-
erences DICOM, radiomics, and clinical follow-up. In the
example provided in Box 3, we index the imaging modality
(CT) with its Series Instance UID and Slice Thickness to the
subset of morphological (ROI-dependent) radiomics features
that were computed for the Lung1 dataset, along with the cor-
responding survival time and survival status.

FIG. 1. Representation of the conversion of the clinical data, digital imaging, and communications in medicine headers and radiomics features to resource
descriptor format (RDF). The procedures are outlined in the text in sections 2B2, 2B3, and 2B4. The RDF triples can be queried from a publicly accessible end-
point using the SPARQL language. [Color figure can be viewed at wileyonlinelibrary.com]
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3. DISCUSSION

3.A. Advantage of using ontologies and storing
data on the World Wide Web

Patients’ data and specifically demographics or clinical
details play a crucial role in prediction modeling studies.
Transparent and reproducible radiomics research requires
availability of data and metadata associated with a particular
study. In the case of prediction modeling, these tend to be
source images and the clinical outcomes, for example, sur-
vival status and survival time interval.

One of the ways to render data FAIR and easily available
to be queried remotely over well-established World Wide

Web technology is to archive them as RDF data on a persis-
tent online SPARQL endpoint. This requires existing domain
ontologies in order to unambiguously define concepts, and
relationships between concepts, by mapping them to stan-
dardized terminology. The use of publicly defined ontologies
and machine-readable lexicons overcome the potential barri-
ers of human language understanding and unknown data
encodings. The ontologies further apply some level of knowl-
edge representation that follows in the tracks of human logic
and inferencing, such that we can use machine-based queries
to discover and process data, without having to first develop
extensive knowledge of the relational database structure of
the original data. Lastly, we were able to exploit the

Box 1 Example of a SPARQL query for matching a radiomics feature called “Fmorph.vol” in the IBSI terminology to the
overall survival status and survival time of the patients in the LUNG1 collection. Purely for illustrative purposes, we limited the
rows of output to 10. The result of the query is shown in Fig. 2.

prefix rr: <h�p://www.w3.org/ns/r2rml#> 
prefix ex: <h�p://example.com/ns#> 
prefix sty: <h�p://purl.bioontology.org/ontology/STY/> 
prefix rdf: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#> 
prefix xsd: <h�p://www.w3.org/2001/XMLSchema#> 
prefix ncit: <h�p://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> 
prefix roo: <h�p://www.cancerdata.org/roo/> 
prefix rdfs: <h�p://www.w3.org/2000/01/rdf-schema#> 
prefix uo: <h�p://purl.obolibrary.org/obo/UO_> 
prefix ro: <h�p://www.radiomics.org/RO/> 
 
SELECT ?pa�entID ?Fmorph_vol ?Funits ?deathStatus ?�me ?Tunits 
WHERE { 
  ?pa�ent a ncit:C16960.   #locate objects that are pa�ents (unique ID is C16960 in the NCIT 
  ?pa�ent roo:P100042 ?pa�entID.  #match pa�ents to a literal value which will be a research study ID 
  ?pa�ent ro:P00088  ?featureObj. #match the pa�ents to the corresponding objects in the radiomics 
domain 
   
  ?featureObj roo:100042 ?Fmorph_vol; roo:100027 ?Funits FILTER contains(str(?featureObj), "Fmorph.vol"). 
     #return only features called "Fmorph.vol" according to IBSI terminology 
     #retrieve a metadata label indica�ng if the feature has any associated physical units 
   
  ?pa�ent roo:P100254 ?death.   #locate pa�ents that has a clinical "finding" for death by any 
cause 
  ?death roo:P100042 ?deathStatus.  #retrieve the literal value for the clinical finding as a death 
status 
  ?pa�ent roo:has ?survivaldayssinceRT. #retrieve the overall survival �me object 
  ?survivaldayssinceRT rdf:type ncit:C125201; roo:P100042 ?�me; roo:P100027 ?Tunits. 
     #obtain the value of the survival �me interval 
     #retrieve a metadata label indica�ng the �me interval physical units 
   
  FILTER regex(?pa�entID, "^LUNG1"). 

#purely for the example, we only consider the pa�ents in the LUNG1 collec�on 
} 
LIMIT 10 #purely for the example, we have limited the number of rows of output to 10 
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intrinsically federated pattern matching nature of SPARQL
queries to show how to efficiently cross-reference data from
across the clinical, DICOM header, and radiomics domains.

3.B. Potential applications

By making this data available on the SPARQL endpoint,
we offer a version of the combined DICOM data, clinical
information, and radiomics features in a manner that is in clo-
ser alignment with FAIR data principles. In this way, we hope
to facilitate the investigation of radiomics reproducibility
research across different institutions, each of which may
speak different human languages, use different imaging pro-
tocols, and extract radiomics features in subtly different ways.
The queries demonstrated here work in the same way even if
these RDF data had been partitioned over multiple databases,
irrespective of its geographical location.

As has been shown in other publications, the proposed
methodology here can be used prospectively for exchanging
radiomics prediction models for training or validation, in
accordance with a paradigm known as distributed (or equiva-
lently, federated) machine learning.41–43

We have provided examples of SPARQL queries, primar-
ily as a form of guidance notes on how to use this data sub-
mission. We would encourage the academic community to
adjust them according to their own questions and potentially
utilize this methodology for multicenter studies. Radiomics
researchers that derive immediate benefit from this open
resource could be data scientists and medical physicists with
some database query experience. Publishing this as a seman-
tic web resource allows real-time queries and answers about
the data. This follows an overall trend toward a growing
amount of linked open data with on-demand access. Online
SPARQL tutorials are available.44–46 We anticipate that the
aforementioned audience could build user-friendly search
interfaces on top of this resource, so as to make it more easily
used by others with less programming experience.

The reusability of the datasets is strongly supported by the
usage of publicly available ontologies, such that the reader is

able to look up the ontologies online to search for concepts
of interest to them. We have also shared mapping files and
RDF conversion scripts on a public code repository, that can
also be reused in future.

3.C. Limitations of the present submission

One of the major and potentially time-consuming tasks on
the way to publishing the RDF data is the mapping of data
fields and data values. We have tried to streamline the process
in the current submission by preparing mapping files as tem-
plates and, wherever possible, using scripting to control seri-
alization applications such as R2RML. However, it is
acknowledged that there is no single universally “correct”
mapping to a given target ontology. It is likely that persons
working independently could apply the same ontologies but
produce quite different (and potentially incompatible) knowl-
edge representations. In the analogy of graphs, there is no
single unique graph to represent a given dataset; it is possible
to derive many different such graphs that are still logically
plausible. In semantic data circles, this is well-known as the
“open-world” paradigm that is commonly expressed as “any-
one can say anything about anything.”

The solution of such a problem is not up to any one piece
of investigation nor any one data scientist. As with all con-
ventions and normative standards in healthcare, convergence
gradually emerges over time through numerous cycles of
usage, refinement, and dissemination. Our methodology and
RDF database are therefore not static, so it is intended to be
improved and refined together with developing methodology
over time.

3.D. Possibilities for future development

The question of comparing and then reconciling different
data graphs is an ongoing and active line of research in data
science. These so-called shape expressions do not fall within
the present scope of submission, but could lead to promising
opportunities for improvement. This potentially makes it

FIG. 2.. The result of ten patients’ cases of the example query given in Box 1. We can see the research study IDs of patients from the public The Cancer Imaging
Archive collections, the value of a radiomics feature, the value of the survival time, and the vital status of each patient. Additionally, we have displayed the units
of the radiomics feature (if any, in this case it is cubic millimeters) and the survival time (days). [Color figure can be viewed at wileyonlinelibrary.com]
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possible to query data graphs independently of the norms
assumed by its publisher.

There is also strong research activity toward stricter stan-
dardization of data collection and top-down imposition of
knowledge representation. Unlike the approach used in this
work, where we the first had the data and then cast it toward a
target ontology, the top-down approach requires data ele-
ments and a data structure to be rigidly defined first of all
before the data are collected. This would be very useful for

mapping prospective data, but it is less clear how such rigid
standards should be applied to legacy data and retrospective
studies.

Research is currently in progress toward a modular mapping
process, where mappings for generic information that is com-
mon for many disease types (e.g., patient demographics) can be
rigidly defined and reused often. At the opposite end, highly
study-specific mappings may need to be more dynamic or per-
formed on an ad hoc basis. Modular and piece-wise reusable

Box 2 Example of a SPARQL query for examining the different intensity discretization algorithm (i.e., histogram binning) for
textural radiomics feature for a single arbitrarily selected subject in the Head–Neck1 collection.

prefix rr: <h�p://www.w3.org/ns/r2rml#>
prefix ex: <h�p://example.com/ns#>
prefix map: <h�p://mapping.local/>
prefix rdf: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix xsd: <h�p://www.w3.org/2001/XMLSchema#>
prefix ncit: <h�p://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
prefix roo: <h�p://www.cancerdata.org/roo/>
prefix rdfs: <h�p://www.w3.org/2000/01/rdf-schema#>
prefix ro: <h�p://www.radiomics.org/RO/>

SELECT DISTINCT ?paramspace ?discre�sa�onparam ?discre�sa�onAlgorithm
WHERE{

?pa�ent a ncit:C16960.
?pa�ent roo:P100042 ?pa�entID.
?pa�ent ro:P00088 ?featureObj.

?featureObj rdf:type ro:Y1RO.
#the Radiomics Ontology defines "ro:Y1RO" as a grey-level size zone matrix textural feature, specifically grey-

level nonuniformity normalized
# i.e. 

h�ps://bioportal.bioontology.org/ontologies/RO/?p=classes&concep�d=h�p%3A%2F%2Fwww.radiomics.org%2
FRO%2FY1RO

#the same feature is called Fszm.glnu.norm according to the IBSI terminology.

?featureObj ro:P00578 ?paramspace. #obtain the feature parameter space
?paramspace ro:P00009 ?discre�sa�onparam. #for each feature parameter space, what intensity discre�za�on 

algorithm was used
?discre�sa�onparam ro:P0295212521 ?discre�sa�onAlgorithm.

#for a given discre�za�on se�ngs, what type of algorithm was used 

FILTER regex(?pa�entID, "^HN1067"). #purely for this example, we arbitrarily selected one 
subject to examine
}
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Box 3 Example of a SPARQL query for directly cross-referencing DICOM headers, radiomics features, and survival outcome
into a single query. The result of the query is shown in Fig. 3.

prefix rr: <h�p://www.w3.org/ns/r2rml#>
prefix ex: <h�p://example.com/ns#>
prefix sty: <h�p://purl.bioontology.org/ontology/STY/>
prefix rdf: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix xsd: <h�p://www.w3.org/2001/XMLSchema#>
prefix ncit: <h�p://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
prefix roo: <h�p://www.cancerdata.org/roo/>
prefix rdfs: <h�p://www.w3.org/2000/01/rdf-schema#>
prefix ro: <h�p://www.radiomics.org/RO/>
PREFIX sedi: <h�p://seman�c-dicom.org/dcm#>
PREFIX seq: <h�p://seman�c-dicom.org/seq#>
prefix owl: <h�p://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?pa�entID ?seriesUID ?modality ?sliceThickness ?featureObj ?Fvalue ?�me  ?deathStatus
WHERE {

?pa�ent rdf:type ncit:C16960.
?pa�ent roo:P100042 ?pa�entID FILTER regex(?pa�entID, "^LUNG1-").
?pa�entSedi sedi:ATT00100020 ?pa�entID. #the pa�ent research ID is used to link across to the DICOM 

headers

# Get DICOM study (linked to this pa�ent)
?pa�entSedi sedi:hasStudy ?study.
?study sedi:ATT0020000D ?studyUID.
OPTIONAL { ?study sedi:ATT00081030 ?studyDesc. }

# Get the DICOM series (linked to this study)
?study sedi:containsSeries ?series.
?series sedi:ATT0020000E ?seriesUID;

sedi:ATT00080060 ?modality FILTER regex(?modality, "^CT$").
OPTIONAL { ?series sedi:ATT0008103E ?seriesDesc. }

# Get the radiomics features defined as grey-level size zone matrix non-uniformity normalized
#(linked to this pa�ent)
?pa�ent ro:P00088 ?featureObj.

?featureObj ro:P00578 ?paramspace; roo:100042 ?Fvalue FILTER regex(str(?paramspace), 
"FeatureParameterSpace_1$").

?pa�ent roo:P100254 ?death.
?death roo:P100042 ?deathStatus.
?pa�ent roo:has ?survivaldayssinceRT.
?survivaldayssinceRT rdf:type ncit:C125201; roo:P100042 ?�me.

# Get image objects (image objects or RTStruct objects)
?series ?contains ?image.
FILTER (?contains IN (sedi:containsImage, sedi:containsStructureSet)).
?image sedi:ATT00080018 ?sopInstanceUID.

?image sedi:ATT00180050 ?sliceThickness.

# Addi�onal series info (not always available in every combina�on)
?equipmentObj sedi:isEquipmentOf ?series.
OPTIONAL { ?equipmentObj sedi:ATT00080070 ?manufacturer }
OPTIONAL { ?equipmentObj sedi:ATT00081090 ?model }    

} LIMIT 100
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mappings for closely related disease types may significantly
reduce the overall RDF preparation time, however, at time of
writing such a modular process was not yet ready.

4. CONCLUSIONS

We have updated and improved four imaging datasets on
TCIA. We converted and published clinical data, radiomics
features and DICOM headers as online RDF from these four
datasets using ontologies and standard web technology.
These RDF triples are stored in a public endpoint giving an

opportunity to the radiomics community to query these data-
sets using the SPARQL language. We have demonstrated the
realizability of this approach of making the combined data
available as FAIR data, in order to incentivize multicenter
research into reproducibility of radiomics features across
multiple datasets.
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FIG. 3. A partial snapshot of the example query given in Box 3. Given as a result of the query are: the subject research ID, the computed tomography series
instance unique identifier (UID), the imaging modality and the slice thickness. Each of these are associated with 13 distinct morphological feature concepts (in
column featureObj) and the numerical value of each radiomics feature (in column Fvalue). The digital imaging and communications in medicine and radiomics
data are cross-referenced to the vital status and survival time interval as per the example in Box 1. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Overall representation of the datasets previously investigated by Aerts et al3. The name of each dataset is accompanied with a URL of The Cancer Imag-
ing Archive collection and a brief summary of the dataset.

Collection Description

RIDER Lung CT (link) This collection was prepared by Zhao et al.12 to evaluate the differences of tumor volumetric measurements across “test–
retest” CT scans taken at an internal of about 15 min (e.g., a “coffee break”) with the same image acquisition settings. This
has been reused for radiomics repeatability and segmentation studies. The associated ROIs denoted GTVp_test_man and
GTVp_retest_man refer to manual delineations in the test and retest series, respectively. The ROIs denoted GTVp_test_auto
and GTVp_retest_autowere initially generated by a semiautomated segmentation algorithm32 in the test and retest series,
respectively, and manually edited

NSCLC-Radiomics-
Interobserver1 (link)

This collection consists of radiotherapy dosimetry planning CT scans of 22 NSCLC subjects treated by conventionally
fractionated external beam radiotherapy at a single Dutch center. The ROIs denoted were manually drawn by five experts
working independently. The same procedure was repeated after an initial delineation by the above mentioned semiautomatic
segmentation algorithm

NSCLC-Radiomics (link) This collection consists of radiotherapy dosimetry planning CT scans of 422 NSCLC subjects treated by conventionally
fractionated (chemo)-radiotherapy at a single Dutch center. The ROI called GTV-1 denotes the primary tumor

Head–Neck-Radiomics-HN1
(link)

This collection consists of radiotherapy dosimetry planning CT scans of 137 subjects with either laryngeal or oropharyngeal
cancer treated by conventionally fractionated (chemo)-radiotherapy at a single Dutch center. The ROI called GTV-1 denotes
the primary tumor
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