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ABSTRACT: N6-methyladenosine (m6A) has emerged as the
most abundant mRNA modification that regulates gene expression
in many physiological processes. m6A modification in RNA
controls cellular proliferation and pluripotency and has been
implicated in the progression of multiple disease states, including
cancer. RNA m6A methylation is controlled by a multiprotein
“writer” complex including the enzymatic factor methyltransferase-
like protein 3 (METTL3) that regulates methylation and two
“eraser” proteins, RNA demethylase ALKBH5 (ALKBH5) and fat mass- and obesity-associated protein (FTO), that demethylate
m6A in transcripts. FTO can also demethylate N6,2′-O-dimethyladenosine (m6Am), which is found adjacent to the m

7G cap structure
in mRNA. FTO has recently gained interest as a potential cancer target, and small molecule FTO inhibitors such as meclofenamic
acid have been shown to prevent tumor progression in both acute myeloid leukemia and glioblastoma in vivo models. However,
current FTO inhibitors are unsuitable for clinical applications due to either poor target selectivity or poor pharmacokinetics. In this
work, we describe the structure-based design, synthesis, and biochemical evaluation of a new class of FTO inhibitors. Rational design
of 20 small molecules with low micromolar IC50’s and specificity toward FTO over ALKBH5 identified two competitive inhibitors
FTO-02 and FTO-04. Importantly, FTO-04 prevented neurosphere formation in patient-derived glioblastoma stem cells (GSCs)
without inhibiting the growth of healthy neural stem cell-derived neurospheres. Finally, FTO-04 increased m6A and m6Am levels in
GSCs consistent with FTO inhibition. These results support FTO-04 as a potential new lead for treatment of glioblastoma.

■ INTRODUCTION
The role of mRNA modifications in regulation of gene
expression, stem-cell maintenance, and differentiation has
gained significant interest upon transcriptome-wide mapping
of the most abundant internal modification, N6-methyladeno-
sine (m6A), which was identified in over 25% of all mRNAs.1−3

m6A methylation is considered a reversible modification, where
addition of the methyl group is controlled by a multiprotein
“writer” complex requiring a heterodimer comprised of
METTL3 and METTL14 proteins and supported by WTAP,
KIAA1429, and RBM15.4−7 Demethylation is controlled
primarily by two “eraser” Fe(II)- and 2-oxoglutarate-dependent
dioxygenases, RNA demethylase ALKBH5 (ALKBH5) and fat
mass- and obesity-associated protein (FTO).8−16 FTO has also
been shown to demethylate N6,2′-O-dimethyladenosine
(m6Am) modified RNA transcripts.15,17−20 An additional host
of “reader” proteins is composed primarily of the YTH-domain
containing family that binds m6A-containing mRNAs and
triggers a variety of downstream fates, including RNA
degradation, stabilization, and translation.3,21−28

While the role of m6A modification in stem cell differ-
entiation is well-known, the role of this modification in
dedifferentiation and tumor progression is still emerging. Geula
et al. have shown that pluripotent stem cells depleted in m6A
modifications show resistance to differentiation, suggesting
that alterations in m6A can alter differentiation pathways.2 As

such pathways are known to be directly linked to the
acquisition of stem-like cell properties in solid and
hematological tumors, it is suspected that m6A dysregulation
may play a role in the generation of tumor-initiating cells and
cancer progression.29 Several studies have shown that
dysregulation of any part of the adenosine-m6A equilibrium
is associated with poor prognosis and tumorigenesis in a wide
variety of cancers, including acute myeloid leukemia
(AML).30−40 Recent studies have started to illuminate the
role of RNA methylation dynamics in regulating the outcomes
of cancer immunotherapies41−44 Su et al. have shown that FTO
regulates MYC/CEBPA expression, and inhibition of FTO by
the α-ketoglutarate mimic R-2-hydroxyglutarate reduces
proliferation and viability of leukemia cells both in vitro and
in vivo.36 Recently, a new derivative of meclofenamic acid
(MA) called FB23-2 was also shown to suppress proliferation
and promote differentiation in AML cells and prolong survival
in AML mouse models.38
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The m6A methylation machinery has also been identified as
a potential therapeutic target in glioblastoma. ALKBH5 has
been shown to be an oncogene for glioblastoma, where shRNA
knockdown of ALKBH5 in patient-derived glioblastoma stem
cells (GSCs) decreased tumor cell proliferation and tumori-
genesis by reducing the expression of FOXM1.33 Depletion of
m6A by knockdown of either METTL3 or METTL14 leads to
growth and self-renewal in GSCs both in vitro and in vivo.35

Reduction of m6A levels in vivo were further correlated with
poor survival outcomes in GSC-grafted mice, while increased
m6A levels via overexpression of METTL3 impaired tumor
proliferation in multiple GSC lines in vitro.35 Furthermore,
treatment of orthotopically transplanted GSC tumors with the
small molecule FTO inhibitor MA prevented tumor pro-
gression in vivo, supporting the role of m6A methylation
pathways in GSC growth and self-renewal.35 Conversely,
Visvanathan et al. showed that silencing of METTL3 impaired
neurosphere formation in GSCs and sensitized neurospheres to
γ-irradiation via downregulation of SOX2-mediated DNA
repair; the authors further demonstrate that knockdown of
METTL3 prolonged lifespan in an intracranial orthotopic
mouse model.45 While the role of m6A methylation in
glioblastoma is still unclear, these studies illustrate the
emerging interest in the m6A methylation machinery and
FTO specifically as potential targets for cancer chemotherapy.
However, most existing small molecule inhibitors of FTO show
poor pharmacokinetic profiles or inadequate selectivity toward
FTO and are considered unsuitable for clinical study.
Therefore, it is important to identify novel chemical scaffolds

for targeting FTO that may offer advantages over existing
selectivity and physicochemical properties.

■ RESULTS AND DISCUSSION
Structure-Based Design and Synthesis of Pyrimidine-

Based FTO Inhibitors. In order to identify chemically
distinct inhibitors of FTO, we used a combination of
structure-based drug design and molecular docking with the
Schrödinger software suite to target the MA binding site of
FTO. As MA has previously been shown to preferentially
inhibit FTO over ALKBH5, we rationalized that targeting this
site would be more likely to identify unique inhibitors that also
maintained selectivity against ALKBH5.46 An X-ray crystal
structure of the MA-FTO complex (PDB ID: 4QKN) was first
prepared using the Prime module, and the docking grid was
defined as a 5 × 5 × 5 Å cube centered on MA (Figure 1A and
B).46 Docking was performed using Glide XP.47−49 Scaffold
hopping of the benzoic acid region identified a pyrimidine
scaffold as a promising replacement, and fragment growth was
directed toward an unoccupied binding pocket containing
residues Glu234, Tyr106, Tyr108, and Arg322. Interactions
with these four residues were considered highly favorable.
Additional contacts with the nucleotide recognition lid (β3i
and β4i, including Val83−Pro93) were considered favorable, as
this flexible loop is unique to FTO among homologous α-
ketoglutarate dependent dioxygenases and the selectivity of
MA toward FTO over ALKBH2, -3, and -5 has been attributed
to interactions with this region.46 Representative docking poses
for two inhibitors (FTO-02 and FTO-18) are shown in Figure

Figure 1. Molecular docking targeting the meclofenamic acid binding site of FTO. (A) X-ray crystal structure of human FTO in complex with
meclofenamic acid (MA; PDB ID: 4QKN). The docking site for in silico screening is shown in green spheres. (B) Surface representation of human
FTO in complex with MA in green (PDB ID: 4QKN). (C) Predicted binding mode of FTO-02 at the MA binding site. A water mediated hydrogen
bond is expected between the pyrimidine ring of FTO-02 and the backbone of Glu 234. A π−π stacking interaction is observed with His 231. (D)
Predicted binding pose of FTO-18 at the MA binding site of FTO. A benzene ring of FTO-18 is observed to form π−π stacking interactions with
His 231 and Tyr 108, and the pyrimidine ring of FTO-18 is expected to form a hydrogen bond to Arg 322. Tyr 295 and Arg 316 are predicted to
form a bifurcated hydrogen bond to the hydroxyl group of FTO-18.
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1C and D. Docking poses for FTO-1−20 are in the Supporting
Information (Figures S1−S20). Hits showing promising
docking scores (absolute value ≥7) were also analyzed by
QikProp to assess their physicochemical properties. As existing
FTO inhibitors fail to progress to clinical applications due to
poor pharmacokinetic profiles, it was important to filter our
screen for compounds with more favorable physicochemical
properties. Priority was placed on compounds with high
predicted membrane permeability (>500 nm/s), a clogP
between 1 and 4, and a low molecular weight (<350 g/mol).
These criteria were selected due to multiple studies indicating
that compounds with low molecular weight and moderate
lipophilicity are more likely to show favorable adsorption and
clearance rates and less toxicity due to target promiscuity. As
such, controlling the physicochemical properties of inhibitors
during the initial screening stages should select for better leads
for future optimization and development. On the basis of these
criteria, the top 20 inhibitors were selected for synthesis (Table
S1). These parameters were also calculated for MA, FB23-2,
and its precursor FB23 (Table S2). Of these, only FB23-2 was
found to have a clogP value in between 1 and 4 (3.46) and all
three are predicted to have limited membrane permeability. In
Huang et al., FB23 was shown to have limited cellular efficacy

due to poor cellular uptake.38 FB23-2 was designed to
overcome this limitation, and the cellular concentration of
FB23-2 was found to be ∼3−10× greater than that of FB23 in
MONOMAC6 and NB4 cells, although still limited.38

Similarly, our predicted permeability models estimate the
rate of passive diffusion for FB23-2 to be ∼2.5× greater than
that of FB23. Of the 20 compounds selected for synthesis, 15
were predicted to have improved permeability relative to MA,
FB23, and FB23-2 while still adhering to the ideal lipophilicity
range (Tables S1 and S2).
Compounds were synthesized via Suzuki−Miyaura cross-

coupling, affording all compounds on a milligram scale in
moderate yields (52−75%, Scheme 1 in Figure 2A, general
procedure A). Substituted pyrimidine boronic acids were
coupled with a variety of commercially available aryl bromides
by tetrakis(triphenylphosphine)palladium in tetrahydrofuran
and ethanol. While most compounds were synthesized without
the use of protecting groups, the amino group of the amino-
benzothiazole ring in FTO-04 was protected with a
tertbutyloxycarbonyl (Boc) group prior to coupling (SI,
procedure B). The Boc group was then removed under acidic
conditions to obtain FTO-04 (SI, procedure C). After

Figure 2. FTO Inhibitors are selective and competitive. (A) Synthesis of FTO inhibitors by Suzuki coupling. (B) Sigmoidal dose−response curves
for FTO-02. Inhibition against FTO is shown in blue, and inhibition of ALKBH5 is shown in red. (C) Sigmoidal dose−response curves for FTO-
04. Inhibition against FTO is shown in blue, and inhibition of ALKBH5 is shown in red. (D) Sigmoidal dose−response curves for FTO-12.
Inhibition against FTO is shown in blue, and inhibition of ALKBH5 is shown in red. (E) Double reciprocal plot for FTO-02. FTO-02 inhibits FTO
by a competitive mechanism. (F) Double reciprocal plot for FTO-04. FTO-04 inhibits FTO by a competitive mechanism.
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purification by silica gel column chromatography, a total of 20
potential FTO inhibitors were obtained.
FTO-02 and FTO-04 Are Potent and Selective

Competitive Inhibitors of FTO. In order to determine
their efficacy as FTO inhibitors, the compounds were screened
by a fluorescence enzymatic inhibition assay developed
previously by the Jaffrey lab.50 Briefly, a nonfluorescent
methylated RNA substrate termed “m6A7-Broccoli” is
incubated with FTO in the presence of 2-oxoglutarate (300
μM), (NH4)2Fe(SO4)2·6H2O (300 μM), and L-ascorbate (2
mM) for 2 h at RT in reaction buffer (50 mM NaHEPES, pH
6). Read buffer (250 mM NaHEPES, pH 9, 1 M KCl, 40 mM
MgCl2) containing the small molecule 3,5-difluoro-4-hydrox-
ybenzylidene imidazolinone (DFHBI-1T, 2.2 μM) was added
to the reaction mixture, and DFHBI-1T binds preferentially to
demethylated Broccoli to produce a fluorescent signal after
incubation for 2 h at RT. MA was used as a positive control,
and the observed IC50 was in agreement with literature values
(IC50 = 12.5 ± 1.8 μM, Figure S21).46,50 The enzymatic
activity of FTO was tested at six concentrations of each
inhibitor ranging from 0 to 40 μM in triplicate. As a negative
control, the assays were repeated with demethylated Broccoli
to ensure that any change in fluorescence was not due to
interference with the Broccoli-DHBI-1T complex (Figure
S22); no compounds were observed to significantly alter the
fluorescence signal at concentrations up to 40 μM. To ensure
that DMSO did not interfere with the fluorescence signal or
enzyme activity, the activity was determined for FTO under
concentrations of DMSO ranging from 0 to 10% (Figure S23).
DMSO was found to interfere with enzyme activity at
concentrations >1%; all inhibitor concentrations were
restricted to a final concentration of 0.2% DMSO. Compounds
FTO-02 and FTO-04 were also screened against FTO without
the presence of cofactor 2-oxoglutarate; under these
conditions, no fluorescence was observed (Figure S24). Two
compounds, FTO-03 and FTO-15, showed significant
precipitation in assay buffer, and the dose response could
not be determined. All other compounds showed IC50’s in the
micromolar range, with six compounds showing IC50’s below
15 μM and seven showing IC50’s above 40 μM (Table 1, Table
S1). Of the four pyrimidine scaffolds tested, 2-methoxypyr-
imidine appeared to be the most potent against FTO, as all
compounds with this moiety had an IC50 below 15 μM.
Compounds with the unsubstituted pyrimidine scaffold varied
in IC50 from 13 to 41 μM, and both the 2-aminopyrimidine
and the pyrimidine-2-aminoethanol scaffolds showed little
inhibitory potency. Of the aryl bromides, the 6-methoxynaph-
thalene and the (2-methoxyphenyl)methanol scaffolds both
consistently showed potency toward FTO, where all
compounds containing these scaffolds had IC50’s below 20
μM (Table 1, Table S1). The potency of other aryl bromide
scaffolds varied widely and appeared dependent on the
corresponding pyrimidine scaffold. In general, compounds
containing either the 2-methoxypyrimidine or the 6-methox-
ynaphthalene were the most potent inhibitors of FTO; the two
most potent inhibitors, FTO-02 and FTO-04 (IC50 = 2.2 and
3.4 μM respectively), were found to inhibit FTO approx-
imately 4× more potently than MA (IC50 = 12.5 μM) with
comparable potency to FB23-2 (reported IC50 = 2.6 μM).38

The top two inhibitors were also screened against FTO
using an ELISA-based inhibition assay as an orthogonal assay
control. Biotinylated m6A-RNA was incubated with FTO for 2
h at RT in reaction buffer (50 mM NaHEPES pH 6, 300 μM

2-oxoglutarate, 300 μM (NH4)2Fe(SO4)2·6H2O, and 2 mM L-
ascorbate) with 0−40 μM FTO-02 or FTO-04. The reaction
mixture was then incubated with neutravidin coated 96-well
plates overnight at 4 °C, washed and blocked, incubated with
m6A-specific antibody for 1 h at RT, washed and blocked, and
incubated with horseradish peroxidase-conjugated secondary
antibody for 1 h at RT. After extensive washing, the wells were
treated with 3,3′,5,5′-tetramethylbenzidine (TMB) for 30 min
at RT, and the absorbance was measured at 390 nm.
Absorbance was normalized to control wells for each
concentration of inhibitor without cofactor 2-oxoglutarate to
control for nonspecific antibody binding, and the data were fit
to a sigmoidal dose−response curve in GraphPad Prism 6.
These assays reported IC50 values consistent with those
observed in the Broccoli assays (1.48 ± 0.7 μM FTO-02, 2.79
± 1.3 μM FTO-04, Figure S25).
All compounds which did not show precipitation were also

screened in the same manner against ALKBH5 to determine if
there was any specificity toward FTO (Table 1, Table S1). Of
the 18 compounds tested, nine displayed poor activity toward
ALKBH5 (IC50 ≥ 40 μM), and five of these showed no
measurable inhibition at the highest concentration measured
(FTO-01, FTO-05, FTO-07, FTO-12, and FTO-18). This
selectivity against ALKBH5 is comparable to that observed for
MA and FB23-2, which were reported to show little to no
inhibition of FTO at 50 μM.38 Importantly, the two most
potent inhibitors FTO-02 and FTO-04 (FTO IC50 = 2.2 and
3.4 μM, respectively) both reported significant selectivity over
ALKBH5 (ALKBH5 IC50 = 85.5 and 39.4 μM respectively),
with FTO-02 showing ∼40× greater potency toward the target
FTO. Compounds FTO-05, FTO-06, FTO-12, and FTO-20
showed a preference for FTO over ALKBH5 of 5-fold or
higher (Table 1, Figure 2B−D). Four compounds, FTO-08,
FTO-10, FTO-11, and FTO-19, were considered equivalent
inhibitors toward both demethylases. Interestingly, two

Table 1. Selective Inhibitors of FTO
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compounds, FTO-09 and FTO-13, showed a distinct
preference toward ALKBH5 over FTO, where FTO-09 was
almost 10 times more potent toward ALKBH5 (IC50 = 5.2 vs
>40 μM). Both FTO-09 and FTO-13 feature the 2-
aminopyrimidine ring previously identified as a poor inhibitor
of FTO. In general, three of the five compounds which
reported IC50’s against ALKBH5 below 40 μM contained the
2-aminopyrimidine ring, suggesting this scaffold preferentially
inhibits ALKBH5 over FTO.
Of the six selective inhibitors shown in Table 1, five are

predicted to form hydrophobic contacts with residues of the
nucleotide recognition lid, specifically residues Val83, Ile85,
Leu90, Thr92, Pro93, and Val94. While it has been suggested
that the selective inhibition of MA against FTO over ALKBH2,
-3, and -5 can be attributed to contacts with this loop, it is
unclear if these contacts also control the selectivity of FTO-02,
-04, -05, -06, -12, and -20 without crystal structures. As
ALKBH2, -3, and -5 do not contain this loop, it is likely that
inhibitors selective against ALKBH5 will also be selective
against ALKBH2 and -3. However, as the fluorescent inhibition
assay is not amenable to the DNA demethylating enzymes
ALKBH2 and -3, off-target inhibition of these enzymes cannot
be ruled out.

The mechanism of inhibition was established for the two
most potent and highly selective inhibitors, FTO-02 and FTO-
04, using steady-state inhibition kinetics. The reaction velocity
was determined for FTO in the presence of 0, 0.5, 1, 10, and
40 μM of inhibitor with a range of 10 substrate concentrations
between 0 and 10 μM. A plot of the reaction velocity versus
substrate concentration shows that vmax is reached when
substrate concentrations exceed 5 μM, for all concentrations of
FTO-02 and FTO-04 (Figure S26A,B). The double-reciprocal
plots show that all concentrations of FTO-02 and FTO-04
converge on a common y-intercept, indicating vmax is
independent of the concentration of either inhibitor,
supporting a competitive mechanism of inhibition (Figure
2E,F). This mechanism is consistent with the initial in silico
modeling targeted toward the MA binding site and the
competitive mechanism previously reported for MA.46

FTO-04 Impairs Self-Renewal in GSC-Derived Neuro-
spheres. Recent studies have indicated that the m6A
methylation machinery mediates tumorigenesis and self-
renewal in glioblastoma stem cells. Depletion of m6A
methylation promotes tumor growth both in vitro and in
vivo, while knockdown of the demethylase ALKBH5 was found
to impede tumorigenesis and prolong life span in GSC-derived
tumor bearing mice.33 Additionally, the small molecule FTO

Figure 3. FTO inhibitors impair the self-renewal of GSC neurospheres. (A) Bright field images of neurospheres after 2 days treatment with 30 μM
FTO inhibitors in TS576 glioblastoma cells. (B) Size of neurospheres as quantified by ImageJ. Box and whisker plots show 10−90th percentile. N >
50 neurospheres per group. **p < 0.01, ****p < 0.0001, by Student’s t test.

Figure 4. FTO-04 inhibits GSC neurospheres formation in multiple patient-derived stem cell lines without impairing hNSC neurosphere growth.
(A) Bright field images of neurospheres after 2 days of treatment with the FTO-04 inhibitor (20 μM) to normal human neural stem cells (hNSC)
and glioblastoma cell lines (TS576, GBM-GSC-23 and GBM-6). (B) Size of neurospheres as quantified by ImageJ. Box and whisker plots show
10−90th percentile. N > 50 neurospheres per group. **p < 0.01, ****p < 0.0001, by Student’s t test.
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inhibitor meclofenamic acid was observed to prolong lifespan
in intracranial GSC xenograft mice.35 However, other reports
suggest that depletion of m6A methylation can impair tumor
growth and sensitize GSC neurospheres to γ-irradiation and
prolong the lifespan in tumor-bearing mice.45 While the role of
m6A methylation in glioblastoma is still emerging, these data
suggest that targeting the m6A methylation machinery to alter
m6A levels could prove a promising strategy for treating
glioblastoma.
To understand the effects of our FTO inhibitors on the self-

renewal properties of GSCs, neurospheres cultured from the
patient-derived GSC line TS576 were treated with 30 μM of
FTO-04, FTO-10, FTO-11, or FTO-12 (Figure 3A,B; cell line
gifted from the Furnari lab).51,52 The GSCs were cultured in
sphere-forming assays for 24 h, then treated with either
inhibitors or DMSO control for 2 days. The size of the
neurospheres was calculated using ImageJ. The neurospheres
model was chosen over traditional monolayer cell screening
assays as it is known to better replicate the tumor
microenvironment.53−57 As dysregulation of m6A methylation
processes has been associated with hypoxia, the neurospheres
model was considered a more favorable model system.31,32,58

Changes in neurosphere size after treatment with FTO-04 was
also compared to lentiviral knockdown of FTO as a positive
control (Figure S27). Knockdown of FTO was found to
significantly reduce the size of neurospheres relative to
shControl, and the reduction in neurosphere size was
proportional to the knockdown efficiency (Figure S27B,C).
As observed in Figure 3A,B, all four inhibitors showed a
significant reduction in size of the neurospheres compared to
vehicle control. Furthermore, FTO-04 was also shown to
significantly decrease the size of neurospheres cultured from
patient-derived TS576, GSC-23, and GBM-6 GSC lines at 20
μM (Figure 4A,B; cell lines gifted from the Furnari lab).51,52

The assay was repeated for neurospheres derived from healthy
human neural stem cells (hNSCs), which showed no alteration
in neurosphere size after treatment with 20 μM FTO-04,
indicating that inhibition of self-renewal is specific to the GSC
lines at this dose (Figure 4A,B). Collectively, these data
indicate that FTO-04 can significantly impair the self-renewal
properties of GSCs to prevent neurospheres formation without
significantly impairing the growth of hNSC neurospheres.
Next, we sought to determine if FTO-04 was able to alter

m6A levels in purified mRNA from GSCs by m6A dot blot
assay. TS576 cells were treated with shControl or shFTO to
establish the relative change in m6A mRNA levels due to FTO
knockdown. As observed in Figure S28A, m6A levels remain
high under shFTO treatment relative to shControl. TS576 cells
were also treated with either DMSO or FTO-04 (Figure
S28B). As observed with FTO knockdown, m6A levels are
increased in cells treated with FTO-04 relative to DMSO
control. These results indicate that FTO-04 reduces the
neurosphere size of GSCs by altering m6A mRNA levels
consistent with the inhibition of FTO. However, it is important
to note that this assay does not distinguish between m6A and
m6Am transcripts; it is possible that the increase in m6A mRNA
levels is due at least in part to alterations of m6Am transcripts.

FTO-04 Enhances m6A and m6Am Levels in GSCs. To
determine the effects of FTO inhibition on mRNA
modification in GSCs, we quantified m6A and m6Am levels
after the FTO silencing and FTO-04 treatment. To establish
the effects of FTO knockdown on methylated nucleosides,
GSCs were treated with either shControl, shFTO1, or
shFTO2. The polyadenylated capped RNAs were decapped
and digested to single nucleosides, then high-performance
liquid chromatography-tandem mass spectrometry (HPLC-
MS/MS/MS) was used to quantify the levels of m6A and m6Am
as described previously.59−61 As observed in Figure 5A, the

Figure 5. FTO-04 increases m6A and m6Am levels in GSCs consistent with FTO knockdown. (A) FTO knockdown increases both m6A and m6Am
levels relative to shControl. (B) Treatment of GSCs with FTO-04 increases both m6A and m6Am levels. *p < 0.05 unless otherwise noted, **p <
0.01, by Student’s t test.
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levels of m6Am after treatment with shControl are approx-
imately 1/10−1/15 that of m6A, consistent with previous
reports in untreated HeLa, HEK293T, and 3T3-L1 cell
lines.16,18 FTO knockdown with shFTO1 or shFTO2 resulted
in significant increases in levels of both m6A and m6Am. Both
shFTO1 and shFTO2 showed an approximately 1.5−2-fold
increase in m6A and m6Am levels (Figure 5 A). These results
indicate that FTO knockdown is able to alter the levels of both
m6A and m6Am in glioblastoma stem cells.
Next, to determine if FTO-04 was able to impede adenosine

demethylation in RNA transcripts consistent with FTO
knockdown results, we quantified the m6A and m6Am levels
in mRNA samples isolated from GSCs treated with either
FTO-04 or DMSO control. Polyadenylated decapped RNAs
were again isolated, digested, and quantified by HPLC-MS/
MS/MS. As shown in Figure 5B, the m6Am levels in cells
treated with the DMSO control remain ∼1/10−1/15 the levels
observed for m6A. Treatment with FTO-04 was found to
increase the levels of both m6A and m6Am modifications, with
m6Am modifications showing the largest fold-change relative to
DMSO control (∼3.2× increase, Figure 5B). Treatment with
FTO-04 increased m6A levels by ∼1.4×, similar to the increase
in m6A observed after FTO knockdown (∼1.5×). However,
the increase in m6Am levels was larger after FTO-04 treatment
(∼3.2×) than treatment with either shFTO1 (∼2×) or
shFTO2 (∼1.7×). These results indicate that FTO-04 is able
to alter the levels of both m6A and m6Am in a manner
consistent with FTO knockdown, suggesting that FTO is a
cellular target of FTO-04.

■ CONCLUSIONS

As interest in characterizing the role of m6A modification in
tumor progression and proliferation gains momentum, it will
be critical to identify small molecule inhibitors which can be
used as high quality chemical probes both in vitro and in vivo.
To that end, it is necessary to identify chemical scaffolds which
are not only potent and selective inhibitors but also that have
physicochemical properties that are favorable for future in vivo
proof of concept models and potential pharmacokinetic
development. Collectively, this work represents an important
step forward by combining structure-based drug design and a
high throughput in vitro inhibition assay system to identify a
new chemical class of FTO inhibitors with tightly defined
physicochemical properties. Many of these compounds were
found to inhibit FTO selectively over ALKBH5 with
micromolar potency and the most potent and selective
inhibitors FTO-02 and FTO-04 were found to inhibit FTO
through a competitive mechanism, consistent with the initial in
silico screening at the MA-binding site. Importantly, FTO-04
was found to inhibit neurosphere formation in cultures derived
from multiple GSC lines without significantly altering hNSC
neurosphere formation. A comparison of m6A mRNA levels in
GSCs after FTO knockdown or treatment with FTO-04
indicate that FTO-04 increases m6A mRNA levels in a manner
consistent with FTO inhibition. Quantification of m6A and
m6Am nucleosides in GSCs indicated that FTO knockdown is
able to significantly increase both m6A and m6Am levels.
Furthermore, treatment of GSCs with FTO-04 resulted in
increases of both m6A and m6Am levels consistent with FTO
knockdown, suggesting that FTO is a cellular target of FTO-
04. These data indicate that targeting the m6A methylation
machinery, and the demethylase FTO specifically, could prove

an effective mechanism for treating glioblastoma and identify
FTO-04 as a new lead for therapeutic development.

■ MATERIALS AND METHODS
Detailed procedures for in silico screening and docking of the FTO
inhibitors can be found in the SI. Protocols for protein expression and
purification, in vitro inhibition assays, and steady-state enzyme kinetics
can be found in the SI. Detailed synthetic procedures are presented in
the SI. All cell culture procedures can also be found in the SI.
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