
SAGE-Hindawi Access to Research
Molecular Biology International
Volume 2011, Article ID 428486, 10 pages
doi:10.4061/2011/428486

Review Article

Identification and Characterization of Genes Involved in
Leishmania Pathogenesis: The Potential for Drug Target Selection

Robert Duncan, Sreenivas Gannavaram, Ranadhir Dey, Alain Debrabant,
Ines Lakhal-Naouar, and Hira L. Nakhasi

Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research,
FDA, Bethesda, MD 20852, USA

Correspondence should be addressed to Hira L. Nakhasi, hira.nakhasi@fda.hhs.gov

Received 7 February 2011; Revised 26 March 2011; Accepted 28 April 2011

Academic Editor: Kwang Poo Chang

Copyright © 2011 Robert Duncan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal
the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed
or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic
disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is
examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could
point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for
some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic
reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce
virulence as evidence for potential drug targets is presented.

1. Introduction

Leishmania is the causative agent of leishmaniasis, a spec-
trum of diseases affecting more than 12 million people
worldwide. The two major clinical forms of leishmaniasis,
cutaneous and visceral, are the result of infection by different
species of the parasite. Visceral leishmaniasis (VL), which
causes splenomegaly and hepatomegaly, is fatal if not treated
and is caused by L. donovani and L. infantum (also designated
L. chagasi in the new world). More than 90% of the visceral
cases in the world are reported from Bangladesh, India,
Nepal, Sudan, and Brazil [1]. Cutaneous leishmaniasis (CL)
causes lesions which are mostly self-healing and are caused
by L. major, L. tropica or L. aethiopica, in the old world and
by L. mexicana or the L. braziliensis complex in the new
world [2]. Both environmental risk factors such as massive
displacement of populations, urbanization, deforestation,
and new irrigation plans and individual risk factors such
as HIV, malnutrition, and genetic susceptibility make leish-
maniasis an important public health problem [1]. Though

the most significant public health effects of leishmaniasis are
concentrated in developing countries, occasional cases occur
in developed countries as well. In the European countries
around the Mediterranean basin and throughout the Middle
East, as well as Latin America, there are large populations
that must still consider the risk of leishmaniasis. In some
of these countries, dogs represent an important reservoir for
the parasite. In the USA, even though leishmaniasis is not
endemic, infections can be found in pockets of the country
especially in the southwest [3]. In addition, Leishmania
infection was found in dogs in the northeastern part of
the USA [4]. Increasing immigration, tourism, and military
activity in Leishmania endemic areas has led to leishmaniasis
becoming an increasing threat in nonendemic areas of the
world. This was underscored by the recent US military
deployments to Leishmania endemic areas such as Iraq and
Afghanistan, which have resulted in infected US soldiers
[5]. In addition, there have been several documented cases
of parasite transmission by blood transfusion worldwide
forcing the deferral of exposed individuals from blood
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donation [6]. Studies in animal models, such as hamsters
and dogs, show that Leishmania not only survives blood-
banking storage conditions, but also retains its infectivity
[7, 8]. Therefore, Leishmania has a potential to impact blood
safety in developed as well as developing countries.

In the Leishmania life cycle, the motile promastigote form
that resides in the alimentary canal of the sandfly vector is
transmitted to a mammalian host during a blood meal. Host
macrophages ingest the parasites, which must differentiate
into the nonmotile, amastigote, form to persist in the
macrophage’s lysosomal compartment [9]. These two life
stages have been adapted to in vitro culture for many Leish-
mania species [10, 11] allowing manipulation of the genome
and assessment of the altered phenotypes in vitro [12, 13].

The only available cure for visceral leishmaniasis is drug
treatment. Though most cutaneous leishmaniases are self-
healing, drug treatment is employed to relieve the painful
sores, avoid scarring and other complications. However,
currently available drugs for leishmaniasis are far from satis-
factory because they are toxic, expensive or lose effectiveness
due to the development of drug resistance after prolonged
use [14–16]. Vaccination is not a viable option either, because
there are as yet no effective vaccines for leishmaniasis. Recent
technological advances in the understanding of the patho-
genesis of leishmaniasis beg the question how these advances
could be translated into either development of better drug or
vaccination strategies that could eradicate this disease.

Many investigators in the field have pointed to the
importance of the publically available DNA sequence for
Trypanosomatid genomes as a pathway to new drug discovery
[17, 18]. However, for the visceral genome sequenced, L.
infantum, there are 8387 genes annotated, of which 5,342
are “hypothetical” and only 3,288 have been assigned gene
ontology terms. Thus the majority of the building blocks of
this parasite are uncharacterized. A similar situation exists
for the cutaneous species, L. major, with 5,396 hypothetical
genes out of 9,388 annotated. Clearly to make advances
in the development of new drugs, parasite components
that are required for survival need to be identified and
characterized to the point where rational drug design can
target inactivation of these molecules or their activities. The
annotated genome information is essential in the process
of identifying and characterizing parasite proteins and the
genes that encode them. Therefore, further characterization
of such genes is needed to focus on the following important
questions, for example: (a) how essential is a protein encoded
by such genes for survival of the parasite, (b) what functional
role does it play in the parasite’s physiology, (c) how
does it fit into biochemical pathways that are crucial for
parasite pathogenesis, (d) are there life cycle stage-specific
expression patterns, in particular, is the protein required in
the amastigote stage that will be subject to the drug impact in
treated patients, (e) how divergent is the parasite protein or
activity from similar human proteins to avoid toxicity of any
proposed drug, and (f) have the activities of similar proteins
been inhibited with compounds that suggest drug treatment
is feasible?

This paper focuses on our efforts to identify and char-
acterize Leishmania donovani genes and the proteins they

encode for their role in pathogenesis. A brief survey of those
proteins and their novel attributes can reveal the value of this
approach for finding new drug targets and illustrate specific
characteristics that could suggest a target is “druggable.” We
are indeed cognizant of the efforts by other investigators
in this field, but have not attempted to cover those studies
because of the limited scope of the paper. The search for such
proteins and activities in these human pathogens requires
a broad perspective on the physiology of the parasite. We
present below a survey that spans diverse pathways with
potential for therapeutic disruption. Any pathway that is to
be targeted by drugs given to the mammalian host must
be essential in the amastigote life cycle stage found in
the patient. We review some examples of newly described
proteins and their pathways that are differentially expressed
or required in this intracellular stage in the first section.
A pathway nearly ubiquitous in living cells already has
been targeted by anticancer drugs, the ubiquitin system.
Section two reviews new findings in ubiquitin and ubiquitin-
like modifiers in Leishmania and how disruption of those
pathways could reduce the viability of the parasite. The
existence of a programmed cell death pathway has been well
documented in protozoan parasites. We review some of the
components of this pathway and evidence that suggests they
could be targeted for drug therapy in Section three. At the
very inception of synthesis of many secreted virulence factors
is the endoplasmic reticulum quality control system. How
disruptions in this pathway reduce virulence as evidence for
a potential drug target is presented in Section four.

2. Targeting Proteins Uniquely Required
for Survival in the Mammalian-Infecting,
Amastigote, Life Cycle Stage

In search of functions that may be unique to amastigotes,
we noted that the shift of metabolism from promastigotes to
amastigotes leads to the expression of a spectrum of genes
that could be targets to control Leishmania pathogenesis.
Whereas promastigotes utilize glucose as their primary
energy source, intracellular amastigotes depend primarily on
amino acids and fatty acids as their carbon source [19, 20].
Increased mitochondrial activity may play a crucial role
in the survival of amastigotes inside host cells [20, 21].
The mitochondrion harnesses the energy from numerous
substrates through the electron transport chain. Electron
transport depends on multiprotein complexes I, II, III,
and IV embedded in the inner mitochondrial membrane
ultimately passing the electron to oxygen. This oxygen
consumption is referred to as respiration. The proton
gradient produced by electron transport drives the F1/F0

ATPase (complex V) in a coupled process termed oxidative
phosphorylation. Active respiration is required for survival
of both promastigote and amastigote forms of Leishmania
[22, 23]. Investigations of the individual complexes of the
respiratory chain suggest NADH dehydrogenase (complex I)
is not found in its classical form in trypanosomatids [24].
However, evidence for succinate dehydrogenase (complex
II), cytochrome c reductase (complex III), and cytochrome c
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oxidase (complex IV) has been demonstrated for both
Leishmania and Trypanosoma [24, 25]. Recent studies suggest
that Leishmania cytochrome c oxidase is a potential target
for the oral drug, Miltefosine [26, 27]. The trypanosomatid
cytochrome c oxidase (COX) complex (complex IV) is a
multicomponent complex composed of more than 14 sub-
units [28, 29]. It has three mitochondrially encoded subunits,
and all the others are nuclear encoded subunits. Most of the
nuclear encoded components have no apparent homologue
outside the Trypanosomatids [28, 30] thus fulfilling one of
the criteria of a drug target. Some of the nuclear encoded
subunits are essential for proper function of complex IV [31]
including the recently described MIX protein [32, 33].

Recently, we characterized a gene encoding a 27 kDa
mitochondrial membrane protein (Ldp27), a subunit of the
active COX complex, specific to amastigotes and metacyclics,
the infectious stages in Leishmania [34]. We also demon-
strated that Ldp27 is necessary for the high level of COX
activity in amastigotes and that Ldp27 gene deleted parasites
(Ldp27−/−) show significantly less COX activity and reduced
ATP synthesis in intracellular amastigotes compared to wild
type. Moreover, the Ldp27−/− parasites are less virulent both
in human macrophages and in BALB/c mice.

A functional role for Ldp27 is also suggested by the lower
level of COX activity in the wild-type procyclic promastigote
stage that does not express Ldp27. It has been established that
the respiratory chain is active in Leishmania promastigotes
[24], and the inhibition of promastigote proliferation by
cyanide indicates the requirement for an active COX in this
stage [23]. In our recent study, COX activity was also detected
in the promastigote form, although significantly less than
in the amastigote form. Thus Ldp27 may play a role in
increasing the enzymatic activity of the COX complex, but
not in the abundance or assembly of at least some of its
components.

The utility of the electron transport chain as a target of
antiparasitic drugs is illustrated by the ability of atovaquone
to block growth of Plasmodium [35], and inhibition of
the cytochrome c oxidase complex in particular is the
mode of action of the antimalarials artesunate [36] and
artemisinin [37]. Further study will be required to determine
what specific function allows Ldp27 to substantially increase
COX activity potentially through evaluation of the effect
of mutating key amino acid residues. However, from the
investigation so far, this protein is essential in the amastigote
stage, is demonstrated to be in a critical biochemical pathway
that is already known to be an effective drug target, and is a
unique parasite protein suggesting specific inhibitors will not
affect mammalian COX activity. These features illustrate how
careful characterization of parasite proteins can set the stage
for rational drug design.

In our efforts to identify genes that are differentially
expressed in the virulent amastigote stage of the parasite,
we identified a Leishmania homologue of the mammalian
argininosuccinate synthase (ASS) gene first identified in a
screen for genes altered in expression when amastigote cells
undergo mitotic arrest. The ASS gene was also shown to be
more abundantly expressed in the amastigotes than in the
promastigote forms by Northern and Western blot analyses

[38]. Thus this protein presents as an available target in the
human infection for drug intervention.

Mammalian ASS, 59.6% similar to Leishmania ASS, is
the limiting enzyme of the urea cycle that catalyses the ATP-
dependent condensation of citrulline and aspartate to form
argininosuccinate, immediate precursor of arginine, thus
leading to the production of urea in the liver and Nitric Oxide
(NO) in many other cells [39]. Though the high level of sim-
ilarity raises early concerns about drugs having a toxic effect
on the human cells as well as Leishmania, the subcellular
compartmentalization of the protein may lead to differential
sensitivity. The intracellular ASS location in mammals may
depend on its physiological function, and its gene regulation
differs greatly depending on the tissue [40]. Unlike the
mammalian homologue, the Leishmania ASS is isolated to a
glycosome-like vesicle, which might suggest a drug effect that
differs between Leishmania and humans. The glycosomal
localization is suggested by the glycosomal targeting signal
(amino acids Serine-Serine-Leucine) encoded at the C-
terminal of the amino acid sequence [41]. Further evidence
comes from IFA studies using parasites overexpressing ASS
with a native C terminus or ASS for which the SSL at the C-
terminus was blocked with an epitope tag. The native ASS
is localized in small punctate spots distributed throughout
the cell, but the protein with the C terminal tag remained
in the cytosol in the parasite and did not target to any
cytoplasmic vesicle [42]. The unique compartmentalization
in glycosomes has been suggested as a means to develop
Leishmania-specific inhibitors of other metabolic enzymes
as well [43]. An added advantage of characterization of
ASS as drug target is the availability of inhibitors already
used in other species that could be evaluated for anti-
Leishmania activity. Fumonisin B1, a fungal mycotoxin
altering sphingolipid metabolism through interruption of de
novo ceramide synthesis, inhibits in vitro argininosuccinate
synthase [44]. Saccharopine, another ASS inhibitor, is a
potent inhibitor of crude and purified preparations of
argininosuccinate synthase [45]. Though these inhibitors
may be toxic or nondiscriminating in their current form,
they could be a starting point to screen chemical derivatives
with improved properties. The criterion that ASS should
be an essential activity has not been fully demonstrated.
More characterization such as the demonstration that ASS is
essential for survival as an amastigote and the description of
subsequent steps in its metabolic pathway since the parasite
does not have the enzymes to convert argininosuccinate to
arginine will be needed; however the increased expression
in the amastigote stage, the important biochemical pathway,
the existence of specific inhibitors, and the divergence in
subcellular localization between the mammalian enzyme and
the Leishmania enzyme indicate a potential for ASS as a target
of therapeutic drugs to treat leishmaniasis.

3. The Ubiquitin Conjugation System as
Target for Chemotherapy

Covalent attachment of ubiquitin (Ub) to protein targets
has been recognized as an important step in the specific
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destruction of proteins in the proteasome [46]. On the other
hand, a broad range of physiological processes are regulated
by an expanding array of Ub-like modifiers (NEDD, SUMO,
Ufm1). The Ub/Ubl modifiers share a structural fold and are
probably evolved from prokaryotic sulphurtransferase sys-
tems [47]. Ubiquitin, a 76-amino-acid protein, is covalently
linked to lysine residues of substrate proteins in a multistep
process. Such ubiquitination is common in normal, as well as
pathological, cellular processes. The concept that ubiquitina-
tion is solely the process that targets proteins for degradation
by the proteasome has been rendered over simplistic by the
discovery of expanding functions regulated by ubiquitination
such as protein trafficking, the assembly of protein signaling
complexes, cellular remodeling through autophagy, and the
activation or inactivation of enzymes [47]. The attachment
of Ub to a substrate requires the consecutive action of three
enzymes. The first step involves the activation of Ub by the
formation of a thioester bond with the ubiquitin-activating
enzyme, E1. In the second step, E1 delivers the activated Ub
to the E2 ubiquitin-conjugating enzyme. Finally, E3 ligases
catalyse the transfer of Ub from E2 to a lysine residue in
the substrate protein. Ubiquitin contains seven acceptor
lysines that can be conjugated with ubiquitin, giving rise
to ubiquitin chains of different topologies, lengths, and
functional consequences [48].

Significant progress has been made not only in under-
standing the function and important regulatory roles of the
Ubl network but also the alterations of ubiquitination in
cellular processes pertinent in the development of various
human diseases including cancer [49]. This has led to
the development of chemical and/or peptide molecules
that inhibit components of the ubiquitination system [48],
Bortezomib, the proteasome inhibitor, being the well known
example [50]. Notably, E3 ligases that confer specificity of
conjugation to substrate proteins and the deubiquitinating
enzymes also have been extensively investigated as potential
drug targets [51, 52]. In comparison, studies on the ubiquitin
conjugation system as a source of potential drug targets in
parasitic protozoa are very limited [53].

Studies on Ub in trypanosomatid parasites such as
T. brucei and T. cruzi focused on revealing the Ub gene
structure, Ub-dependent protein degradation, and its role in
differentiation from the trypomastigote into an amastigote
[54, 55]. Studies in Plasmodium identified deubiquitinat-
ing/deNeddylating activities and sumoylation of telomere
associated protein PfSir2, a novel substrate protein for
SUMO [56, 57]. Recent studies have demonstrated the role
of ubiquitination in the degradation of transmembrane
surface proteins in trypanosomes, cell cycle regulation by
the single SUMO homologue in T. brucei, and interactions
with several nuclear proteins in the host cell by a protein
that possesses a ubiquitin ligase activity secreted by T. cruzi.
[58, 59]. Further studies elucidating structural mechanisms
of UCHL3, a hydrolase with uniquely dual specificities to Ub
and NEDD in Plasmodium, further emphasize the increasing
interest in parasitic Ub conjugation/deconjugation pathways
as potential drug targets [60].

Studies in our laboratory with Leishmania Ufm1, a
mitochondrial associated Ubl, revealed ways in which Ubl

conjugation in these human parasites could represent novel
protein drug targets [61]. The description of a Ubl (Ufm1),
E1 enzyme (Uba5), and E2 enzyme (Ufc1) shows remark-
able similarity of the Leishmania conjugation system to
mammalian systems. This similarity suggests that anticancer
drugs, for example, that target the ubiquitin pathway,
may provide a starting point for development of effective
antiparasitics. Yet, the sequence divergence of the Leishmania
components from their mammalian homologues and the
lack of similarity of Ufm1-conjugated target proteins to
mammalian conjugates suggest that drugs can be devel-
oped avoiding toxic side effects. The antiparasitic effect of
chemical disruption of this pathway is indicated by the
reduced survival of intracellular amastigotes in which Ufm-1
function has been disrupted by overexpression of dominant
negative mutant forms of Ufm1 or the E1 enzyme, Uba5
[61]. Identification of Ufm1-mediated protein modification
pathways in Leishmania, with its distinct subset of substrate
proteins associated with mitochondrial activities, may pro-
vide specific targets for novel drug therapies against this
human pathogen.

The diversity of functions regulated by the Ubls in
eukaryotic organisms in general and the fact that inhibitors
of the ubiquitin-proteasome pathway are either in clinical
use or are being studied for their potential as anticancer
drugs indicate the importance of this pathway as a drug
target. The ubiquitin-dependent proteolysis system (UPS)
is increasingly recognized as a viable therapeutic pathway
in the treatment of cancer after the successful treatment of
hematological malignancies with proteasome inhibitors [62].
Deubiquitinases, the key effectors of UPS and intracellular
signaling cascades, and Ub ligases because of their narrow
substrate specificity are emerging as important targets for
potential anticancer therapies. This effectiveness at stopping
uncontrolled cancer cell growth suggests that targeting the
ubiquitin pathways in human parasitic organisms may be
successful as well. Importantly, the finding that protozoan
parasites such as Leishmania interfere with the host protein
degradation system to promote their intracellular survival
[63] supports the concept that chemotherapy to reverse
this interference could help clear the infection. Therefore,
systematic studies of Ubl pathways in the human trypanoso-
matid parasites such as Leishmania could yield better under-
standing of the pathogenesis and lead to novel therapeutic
reagents.

4. The Programmed Cell Death
Pathway Presents Many Potential Targets for
Antileishmanial Drug Therapy

Programmed cell death, commonly manifested as apoptosis,
plays crucial roles in a multitude of physiological processes
starting from embryogenesis to maintenance of the immune
system. Evolutionarily, apoptosis emerged along with multi-
cellular organisms, primarily as a defense against viral infec-
tions. However, increasing experimental evidence is showing
that mechanistically similar processes also appear in many
single-celled organisms including trypanosomatid parasites.
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In trypanosomatids, features suggesting apoptosis have
been reported in response to a wide range of stimuli such
as heat shock, reactive oxygen species, antiparasitic drugs,
prostaglandins, and antimicrobial peptides. Many biochem-
ical events that accompany mammalian apoptosis such as
generation of reactive oxygen species, increase in cytosolic
Ca2+ levels, alterations in mitochondrial outer membrane
potential, exposure of phosphatidylserine in the outer leaflet
of the plasma membrane, release of cytochrome c and
nucleases that cleave genomic DNA have also been widely
documented in trypanosomatid parasites [64, 65].

In comparison to C. elegans and yeast, studies elucidating
molecular mechanisms of PCD in trypanosomatid parasites
are limited primarily because of the apparent absence of
homologues to key regulatory or effector molecules of
apoptosis in the trypanosomatid genomes that have been
described in mammalian or nematode apoptosis such as Bcl-
2 family members and caspases [66]. However, progress is
being made with regard to systematic identification and char-
acterization of proteases and/or nucleases with pro-apoptotic
activities in these organisms [67]. We provided evidence
that metacaspases (protease belonging to the caspase family)
could be involved in Leishmania PCD [67]. Metacaspases
have also been shown to be associated with cell cycle
progression in Leishmania [68] and associated with RAB11-
positive endosomes in Trypanosoma brucei [69] indicating
additional roles not related to the cell death pathway. Several
mammalian cell death regulators have additional functions
in healthy cells and are not simply “latent” death factors
waiting to kill cells [70]. A series of metacaspase inhibitors
have been evaluated as potential antiparasitic drugs [71].
Recently, we and others have shown the involvement of
mitochondrial nuclease endonuclease G in trypanosomatid
PCD [72, 73]. The absence of homologues of regulatory or
effector molecules of mammalian apoptosis indicates that the
apoptotic pathways in these parasitic organisms are probably
more austere/less complicated than in mammalian cells.

Although the impact of PCD pathways in regulating host-
pathogen interaction in terms of parasite cell densities on
the one hand and modulating host immune responses that
favor the parasite on the other continues to be unraveled,
the existence of conserved apoptotic cell death pathways
in trypanosomatid parasites can provide targets for iden-
tifying novel chemotherapies [74]. Recent pharmacological
studies elicited interest in several molecules with activities
that trigger apoptotic death in cancerous cells as potential
antiparasitic agents [75]. This is partly because of the
common biochemical pathways used by the cancer cells and
the parasites such as protein kinase pathways, DNA, and
polyamine metabolism and also immune evasion strategies
that underlie successful survival in the host.

Apoptotic death was observed in Leishmania treated with
known antileishmanial drugs such as antimonial compounds
[76] and antifungal compounds [64]. Antivirals, such as
HIV-1 protease inhibitor Nelfinavir, induced oxidant stress-
mediated apoptosis in Leishmania [77]. Cysteine cathepsin
inhibitors have been shown to induce cell death in Leish-
mania [78]. Importantly, recent studies that characterized
the action of novel drugs in Leishmania indicated that

these drugs interfere and/or impair mitochondrial activities
including an imbalance of antioxidant homeostasis [79–81].
There is indication that plant products such as yangambin
and diospyrin induce apoptosis like death in Leishmania [82,
83]. Tafenoquines, an antimalarial compound, also induces
apoptotic cell death in Leishmania by inhibiting mitochon-
drial cytochrome c reductase [84]. Fungal peptides with
antitumoral activities kill Leishmania through apoptosis-like
processes [85] involving depletion of ATP pools indicating
impaired mitochondrial functions. Interestingly, overexpres-
sion of ascorbate peroxidase, a mitochondrial enzyme that
scavenges reactive oxygen species in Leishmania, resulted in
reduced cell death induced either by chemical agents or by
reduced ATP generation [86].

Systematic characterization of programmed cell death
pathways in trypanosomatid parasites could lead to iden-
tification of novel drug targets as it is evident that the
human parasites utilize these pathways in unique ways for
promoting infection [87]. In addition, such studies will
be useful in defining the mechanism of action of novel
drugs that induce apoptosis in these parasites. Several studies
referenced above have shown apoptosis-like death in the
parasites when treated with pharmacological compounds
even though at present molecular mechanisms regulating
such apoptotic death in trypanosomatid parasites are far
from complete.

5. Leishmania Endoplasmic Reticulum
Quality Control Molecules Involved in
Secretion of Virulence Factors as Potential
Targets for Novel Antileishmanial Drugs

Leishmania secrete a significant number of proteins into
their environment that traffic through the secretory pathway
(e.g., secretory acid phosphatase, chitinase, or thiol-specific
antioxidant) [88–91]. Some of these secreted molecules have
been shown to be important virulence factors involved
in Leishmania pathogenesis. Although poorly studied, it is
believed that secreted proteins traffic in Leishmania via a typ-
ical eukaryotic secretion pathway in which proteins are first
folded in the ER and then transported via a Golgi apparatus
to the flagellar reservoir for secretion outside the cell [92].
Therefore, the processing of putative virulence factors in the
ER and their proper transport via the Golgi is essential for
the survival of Leishmania parasites in their hosts.

A number of homologues of proteins involved in the
quality control of glycoprotein folding of higher eukaryotes
have been described in trypanosomatid parasites. These
include calreticulin (CR), BiP, and protein disulfide iso-
merase (PDI) [93–95]. Our studies have focused on the
characterization of CR and PDI and their possible involve-
ment in the control of protein secretion in L. donovani.
L. donovani calreticulin (LdCR) possesses the hallmarks of
calreticulins, including its presence in the ER and conserva-
tion of protein structure suggesting conservation of function
as a chaperone molecule [12]. The role as chaperone is
indicated when altering the function of calreticulin affected
the secretion of secretory acid phosphatases and resulted in
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Potential drug targets

M

N

CV

Mitochondrial
(i) Cytochrome c oxidase (p27)
(ii) Ubiquitin-like pathway (Ufm1)

ER chaperones
(i) Calreticulin
(ii) PDI

Programmed cell death pathway
(i) Topoisomerase
(ii) Metacaspase

Amastigote-specific proteins
(i) Argininosuccinate
synthase

Figure 1: The potential drug targets discussed in this paper are listed, grouped according to the pathways and sites of action. N: nucleus, M:
mitochondrion, CV: cytoplasmic vesicle, ER: endoplasmic reticulum, and PDI: protein disulfide isomerase.

significant decrease in survivability of L. donovani in human
macrophages [12]. In addition, attempts to delete LdCR,
a single-copy gene, in L. donovani were unsuccessful, only
resulting in gene rearrangements [96]. Failure to generate a
null mutant in Leishmania coupled with the absence of cal-
nexin, a functional homolog of calreticulin, further suggests
that LdCR plays an essential function in this organism.

We have also shown that the L. donovani PDI (LdPDI)
is a 12 kDa protein with a single domain containing the-
CGHC-PDI signature [97]. That LdPDI has both oxidase
and isomerase activities and is localized in the ER of
Leishmania strongly suggests its role as an ER quality control
enzyme responsible for disulfide bond formation in nascent
polypeptides as described in higher eukaryotes [97]. The
essential nature of PDIs was reported recently in mammalian
cells by knocking down PDI in human breast cancer cells
using small interfering RNAs [98]. PDI transcript depletion
had a strong cytotoxic effect and triggered apoptosis in these
cells.

Evidence that LdPDI could be involved in the control
of protein secretion in the ER came from the analysis
of mutant Leishmania parasites overexpressing mutated
versions of this protein. Results showed that the secretion of
the Leishmania secretory acid phosphatases was significantly
reduced [12, 97].

The exact molecular mechanisms involved in altered
trafficking and secretion of SAcP proteins in the two Leish-
mania mutants remain unclear. The proposed hypothesis for
this effect is that the expression of either mutated/inactive
chaperone has a dominant negative effect on the interaction
of nascent glycoproteins with the native LdCR and LdPDI
and with other folding molecules in the ER.

As a drug target, disruption of LdCR or LdPDI function
using a small molecule inhibition approach could result in
a similar disruption of secretion. In that regard, a complete
inhibition of parasite growth was observed when Leishmania
major was incubated in vitro with 2 mM zinc bacitracin, a

known PDI inhibitor, and disease progression was attenuated
when zinc bacitracin was locally applied as an ointment on
the parasite inoculation site in BALB/c mice [99].

The findings that disruption of CR and PDI alter the
function of the secretory pathway, Leishmania parasites with
disrupted CR showed reduced survival in macrophages, and
the antiparasitic activity of a PDI inhibitor suggest that this
pathway is well worth further exploration as a source of drug
targets.

6. Conclusion

The crucial need to develop new affordable drugs to cure
leishmaniasis that can be delivered in a way that assures
patient compliance and avoids rapid evolution of resistance
on the part of this disfiguring and deadly parasite demands a
multifaceted approach. Research to identify and characterize
genes and the proteins they encode that are only known by
untested homology or merely as hypothetical takes its place
among others. High-throughput screening of off-the-shelf
drugs and combinatorial libraries, repurposing of drugs with
mechanisms that could suggest antiparasitic activity such as
anticancer drugs and in silico approaches taking advantage
of the annotated databases are all effective strategies in this
multifaceted approach. In this paper, we have highlighted the
important role that can be played by systematic molecular
and cell biological studies of previously unknown genes and
the proteins they encode to identify new drug targets and lay
the bases for rational drug design (Figure 1).

Acknowledgment

The authors would like to thank Dr. Sanjai Kumar and
Dr. Rana Nagarkatti for internal review of the paper and
CBER/FDA for their support of the studies.



Molecular Biology International 7

References

[1] P. Desjeux, “Leishmaniasis: current situation and new perspec-
tives,” Comparative Immunology, Microbiology and Infectious
Diseases, vol. 27, no. 5, pp. 305–318, 2004.

[2] B. L. Herwaldt, “Leishmaniasis,” Lancet, vol. 354, no. 9185, pp.
1191–1199, 1999.

[3] E. Handman, “Leishmaniasis: current status of vaccine devel-
opment,” Clinical Microbiology Reviews, vol. 14, no. 2, pp. 229–
243, 2001.

[4] A. A. Gaskin, P. Schantz, J. Jackson et al., “Visceral leishma-
niasis in a New York foxhound kennel,” Journal of Veterinary
Internal Medicine, vol. 16, no. 1, pp. 34–44, 2002.

[5] N. Aronson, R. Coleman, P. Coyne et al., “Cutaneous leish-
maniasis in U.S. military personnel—southwest/central Asia,
2002-2003,” Morbidity and Mortality Weekly Report, vol. 52,
no. 42, pp. 1009–1012, 2003.

[6] AABB, “Deferral for Risk of Leishmaniasis Exposure,” AABB
Bulletin 03-14, 2003.

[7] C. B. Palatnik-de-Sousa, E. Paraguai-de-Souza, E. M. Gomes,
F. C. Soares-Machado, K. G. Luz, and R. Borojevic, “Trans-
mission of visceral leishmaniasis by blood transfusion in
hamsters,” Brazilian Journal of Medical and Biological Research,
vol. 29, no. 10, pp. 1311–1315, 1996.

[8] U. Giger, D. A. Oakley, S. D. Owens, and P. Schantz, “Leish-
mania donovani transmission by packed RBC transfusion to
anemic dogs in the United States,” Transfusion, vol. 42, no. 3,
pp. 381–383, 2002.

[9] D. Molyneux and R. Killick-Kendrick, “Morphology, ultra-
structure and life cycles,” in The Leishmaniases in Biology and
Medicine, W. Peters and R. Killick-Kendrick, Eds., pp. 121–
176, Academic Press, London, UK, 1987.

[10] S. Goyard, H. Segawa, J. Gordon et al., “An in vitro system
for developmental and genetic studies of Leishmania donovani
phosphoglycans,” Molecular and Biochemical Parasitology, vol.
130, no. 1, pp. 31–42, 2003.

[11] A. Debrabant, M. B. Joshi, P. F. P. Pimenta, and D. M. Dwyer,
“Generation of Leishmania donovani axenic amastigotes: their
growth and biological characteristics,” International Journal
for Parasitology, vol. 34, no. 2, pp. 205–217, 2004.

[12] A. Debrabant, N. Lee, G. P. Pogue, D. M. Dwyer, and H.
L. Nakhasi, “Expression of calreticulin P-domain results in
impairment of secretory pathway in Leishmania donovani
and reduced parasite survival in macrophages,” International
Journal for Parasitology, vol. 32, no. 11, pp. 1423–1434, 2002.

[13] A. Selvapandiyan, A. Debrabant, R. Duncan et al., “Centrin
gene disruption impairs stage-specific basal body duplication
and cell cycle progression in Leishmania,” Journal of Biological
Chemistry, vol. 279, no. 24, pp. 25703–25710, 2004.

[14] S. L. Croft and G. H. Coombs, “Leishmaniasis—current
chemotherapy and recent advances in the search for novel
drugs,” Trends in Parasitology, vol. 19, no. 11, pp. 502–508,
2003.

[15] A. J. Davis, H. W. Murray, and E. Handman, “Drugs against
leishmaniasis: a synergy of technology and partnerships,”
Trends in Parasitology, vol. 20, no. 2, pp. 73–76, 2004.
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