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SUMMARY
Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional

MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-

1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal

airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway

lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage

cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a ‘‘9 + 2’’ microtu-

bule arrangement and dynein arms capable of beating and generating flow formucociliary transport. Thismethod is expected to be useful

for future studies on human airway disease modeling and regenerative medicine.
INTRODUCTION

Proximal airway epithelial cells (PAECs) play a pivotal

role in the host defense in the respiratory tract via muco-

ciliary clearance organized by multi-ciliated airway cells

(MCACs) and secretory cells. An abnormal function of

MCACs is associated with various lung diseases such as

primary ciliary dyskinesia (PCD) (Rossman et al., 1980)

and cystic fibrosis (CF) (Zhang et al., 2009). It has been

reported that PAECs could be generated from human

pluripotent stem cells (hPSCs) involving human embry-

onic stem cells (hESCs) and induced pluripotent stem

cells (hiPSCs) (Mou et al., 2012; Wong et al., 2012; Huang

et al., 2014; Firth et al., 2014). The ciliary movement of

hPSC-derived MCACs has not yet been reported,

although that of murine embryonic stem cell-derived

MCACs has been reported (Nishimura et al., 2006;

Shojaie et al., 2015). In our previous study, we identified

carboxypeptidase M (CPM) as a surface marker of

NKX2-1+ ‘‘ventralized’’ anterior foregut endoderm

cells (VAFECs) and demonstrated the potency of CPM+

VAFECs to differentiate into alveolar type II cells (Gotoh

et al., 2014). We hypothesized that PAECs could also be

induced from CPM+ VAFECs, as all lung epithelial lineage

cells have been reported to be differentiated from NKX2-

1+ VAFECs (Kimura et al., 1996). We herein report a

method of directed differentiation of hPSCs into MCACs

and pulmonary neuroendocrine cells (PNECs) and func-

tional analyses of the ciliary movement of hPSC-derived

MCACs.
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RESULTS

Generation of SOX2+NKX2-1+ PAEPC Spheroids from

CPM+ VAFECs in Three-Dimensional Culture

Because proximal airways develop as 3D branching struc-

tures in vivo, we adopted 3D differentiation from CPM+

VAFECs to proximal airway epithelial progenitor cells

(PAEPCs) (Figure 1A). Undifferentiated hPSCs consisting

of H9 hESCs (Thomson et al., 1998), 201B7 (Takahashi

et al., 2007), 585A1, and 604A1 hiPSCs (Okita et al.,

2013), were stepwise differentiated into NKX2-1+FOXA2+

VAFECs as previously reported (Gotoh et al., 2014), with

the exception of the dose of BMP4 used in Step 3. We

identified the minimal and sufficient dose of BMP4 to be

20 ng/ml for each hPSC line (Figure 1B). Interestingly,

NKX2-1 was downregulated in the presence of Noggin,

which inactivates BMP signaling according to a quantita-

tive RT-PCR (qRT-PCR) analysis. On day 14, CPM+ VAFECs

were isolated and3Dculturewas started in a similarmanner

as demonstrated in a tracheosphere assay using primary

cells (Rock et al., 2009; Supplemental Experimental Proce-

dures). In the hope of generating MCACs at the last step,

the optimal medium conditions for proliferating spheroids

and inducing FOXJ1, a representative marker of MCACs,

were screened by combining FGF10, CHIR99021 (a WNT

agonist), KGF, andDAPT (a g-secretase inhibitor that blocks

the Notch pathway), which have been considered to be

important (Mou et al., 2012; Huang et al., 2014; Firth

et al., 2014) (Figure S1A). The growth of the spheroids and

NKX2-1, SOX2, and FOXJ1 levels were compared on day
s
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Figure 1. Generation of PAEPC Spheroids
from CPM+ VAFECs in 3D Culture
(A) Stepwise differentiation to PAEPC
spheroids from hPSCs.
(B) qRT-PCR of NKX2-1 expression in each
hPSC line on day 14, according to the dose
of BMP4. The concentrations of BMP4 for
each condition in Step 3 are shown in the
columns. Each value was normalized to
b-ACTIN. The gene expression level of the
fetal lungs was set at 1. Error bars represent
the mean ± SEM (n = 3 independent exper-
iments). Each condition was compared with
condition b for each hPSC line; *p < 0.05.
N/A, not applicable.
(C) CPM+ VAFEC-derived spheroids (201B7
hiPSCs) on days 18, 21, and 28.
(D) CIF imaging shows 201B7 hiPSC-derived
PAEPC spheroids coexpressing SOX2 and
NKX2-1 on day 28.
Scale bars, 100 mm. See also Figure S1 and
Tables S1 and S2.
28 (Figures S1B and S1C), and the medium condition of

3 mMCHIR99021 and 100 ng/ml FGF10 was chosen. Under

all conditions, SOX9was only slightly detected by qRT-PCR

(Figure S1C). In Step 4, the spheroids grew larger and some

of them began to fuse by day 28 (Figure 1C). Importantly,

confocal immunofluorescence (CIF) imaging studies

showed that nearly all the cells forming spheroids were

SOX2+NKX2-1+ cells (Figure 1D), whereas SOX9 was not

detected (data not shown), indicating that these cells were

of PAEC lineage (Que et al., 2009).

Derivation of PAECs from PAEPC Spheroids

At the end of Step 4, no MCACs were observed, which

prompted us to hypothesize that there might be another

step for inducing MCACs. Therefore, we switched the me-

dium to Step 5mediumbased on PneumaCult-ALImedium
Stem
(P-ALI) (Stemcell Technologies), a medium for primary

bronchial epithelial cells (Figure 2A). On day 42, clusters

of MCACs were observed by H&E staining (Figure 2B).

CIF imaging revealed acetylated tubulin (Ac-Tub)+FOXJ1+

cells and closely aligned Ac-Tub+ cells and MUC5AC+ cells,

as observed in the fetal human lung (FHL), while secreted

MUC5AC markedly accumulated in the closed lumen of

the hPSC-derived spheroids (Figure 2C). A small number

of SCGB1A1+cells (club cells), KRT5+cells (basal cells) and

chromogranin A (CHGA)+ and synaptophysin (SYP)+cells

(PNECs) were also found (Figure 2D). Nearly all the hPSC-

derived PAECs expressed NKX2-1 (Figures 2D and S2A),

consistent with the previous reports (Bilodeau et al.,

2014) and CIF imaging of the FHL (Figure S2A). By triple

immunostaining, each representative marker of MCACs,

club cells and basal cells was expressed in the different cells
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Figure 2. Derivation of PAECs from PAEPC
Spheroids
(A) A schematic illustration of the induc-
tion of PAECs from hPSC-derived PAEPC
spheroids.
(B) H&E staining of PAEC spheroids (201B7
hiPSCs) on day 42 shows spheroids (left)
and clusters of MCACs in a magnified view
(right).
(C) Double immunostaining of PAEC spher-
oids (201B7 hiPSCs) on day 42. Fetal human
lung was shown as a positive control. Adult
human thyroid (AHT) was shown as a nega-
tive control for Ac-Tub and FOXJ1, whereas
fetal human liver (FHLiv) was shown as
a negative control for Ac-Tub, FOXJ1,
MUC5AC, SYP, and CHGA. The white circle
indicates MUC5AC+ cells.
(D) Double immunostaining of induced
PAEC spheroids (201B7 hiPSCs) on day
42. SCGB1A1, KRT5, CHGA, and SYP were
detected in NKX2-1+ cells.
(E) Triple immunostaining of PAEC spheroids
(201B7 hiPSCs) on day 42. FOXJ1, SCGB1A1,
and KRT5 were detected in the different
cells.
Scale bars, 50 mm. See also Figure S2 and
Table S2.
(Figure 2E). FOXJ1+ cells did not overlapwith theCHGA+ or

SYP+ cells as in the FHL (Figure 2C). PGP9.5, another PNEC

marker (Linnoila, 2006), was confirmed to be expressed in

both CHGA+ and SYP+ cells (Figures S2B and S2C).

DAPT Leads to the Efficient Induction of MCACs and

Increases PNECs

Because FOXJ1 is reportedly expressed before multi-cilio-

genesis in vitro and in vivo (You et al., 2004; Rawlins

et al., 2007), SNTN, which specifically marks MCACs

(Kubo et al., 2008), was adopted to detect the suitable

conditions for multi-ciliogenesis. SNTN was significantly

increased on day 42 (Figure 3A, condition b), compared

with day 28 (Figure 3A, condition a) in all hPSC lines (p <

0.05) (Figure 3B). In addition, each PAECmarker ofMCACs
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(Figures 3B and S3B), club cells (Figures 3C and S3C),

PNECs (Figures 3D and S3D), basal cells (Figure S3E), and

mucus-producing cells (Figures 3E and S3F) increased after

starting 3D culture (Figure S3A, condition a, b or both)

compared with before 3D culture (days 6 and 14), while

AQP5 and SFTPC (alveolar type I and II cells, respectively)

were almost negative (Figure S3G). SFTPB only slightly

increased in accordance with an elevation of club cell

markers (Figures 3C, S3C, and S3G, protocols a and b).

PAX6 (neuronal cells) and PAX8 (thyroid cells) were also

negative (data not shown). Next, the 3D protocol (Fig-

ure S3A, protocol a) was compared with the two-dimen-

sional protocol (Figure S3A, protocol f) between days 14

and 28, resulting in an increase of some PAECmarkers (Fig-

ures S3C, S3D, and S3F, protocols a and f). Because the cells
s



Figure 3. Directed Induction of MCACs
and PNECs by Adding DAPT
(A) A schematic illustration of each protocol
for induction of PAECs, according to CPM-
based sorting and the addition of DAPT.
(B–E) qRT-PCR of representative PAEC
markers: FOXJ1, DNAH5, and SNTN for MCACs
(B), SCGB1A1 and SCGB3A2 for club cells (C),
CGRP, CHGA, and SYP for PNECs (D), and
MUC5AC and SPDEF for mucus-producing
cells (E). Each value was normalized to
b-ACTIN. The gene expression of the fetal
trachea sample was set at 1. Error bars
represent the mean ± SEM (n = 3 indepen-
dent experiments; *p < 0.05).
(F) The induction efficiency of MCACs and
PNECs calculated by counting the number
of FOXJ1+, CHGA+, and SYP+ cells (Supple-
mental Experimental Procedures). Error bars
represent the mean ± SEM (n = 3 indepen-
dent experiments). Protocol c was compared
with protocol b for each hPSC line; *p <
0.05, **p < 0.01.
(G) H&E staining of DAPT-induced 3D
spheroids (201B7 hiPSCs) on day 56 (upper
panel) showed consecutively aligned MCACs
in a magnified view (lower panel).
(H) Double and triple immunostaining
of MCAC markers in DAPT-induced PAEC
spheroids (201B7 hiPSCs) on day 56.
Magnified views were shown in lower panels.
(I) Double immunostaining of CHGA or SYP
(PNEC markers) with FOXJ1 in DAPT-induced
PAEC spheroids (201B7 hiPSCs) on day 56.
None of the markers was expressed in FOXJ1+

cells.
Scale bars, 25 mm. See also Figure S3 and
Tables S1 and S2.
spontaneously detached in 3D culture after day 28, three

3D protocols after the induction of VAFECs (Figure S3A,

protocols b, c, and e) were compared with the four air-

liquid interface (ALI) protocols (Figure S3A, protocols g–j),

which involved two protocols modified from previous

reports (Figure S3A, protocols i and j) (Wong et al., 2012;

Firth et al., 2014; Supplemental Experimental Procedures).

DAPTwas added to themedia from days 28 to 42 (Figures

3A and S3A, protocol c and d) to increase hPSC-derived

FOXJ1+ cells (Figure 3F). On day 42, the 3D protocols for

CPM+ cells (Figures 3A and S3A, protocols b and c) appeared

to induce higher gene expressions of MCAC and club cell

markers than the 3D protocol for CPM� cells (Figures 3A

and S3A, protocol d) and ALI protocols (Figure S3A, proto-

cols g–j), while the 3D protocol for CPM� cells (Figures 3A
Stem
and S3A protocol d) appeared to induce KRT5 (a marker of

both airway and esophageal basal cells), but not NKX2-1

(Figure S3E). Importantly, SNTN increased only in the 3D

protocols for CPM+ cells (Figures 3A and S3A, protocols b

and c). Therefore, we concluded that the 3D protocols for

CPM+ cells were beneficial for the induction of PAECs.

Next, we extended the culture period to day 56 (Fig-

ure S3A, protocol e), which increased FOXJ1, DNAH5, and

SNTN. H&E staining andCIF imaging revealed thatMCACs

comprised a major part of the epithelia (Figures 3G and

3H). The rate of hPSC-derived FOXJ1+ cells was quantified

on day 56 and compared with that on day 42, resulting

in an increase in the ratio of FOXJ1+ cells to the total num-

ber of cells up to 85.65 ± 1.59% (p = 0.043), 85.82 ± 3.35%

(p = 0.030), 72.7 ± 6.6% (p = 0.105), and 87.06 ± 0.43%
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(p = 0.011) in each hPSC line of 201B7, 585A1 and 604A1

hiPSCs, and H9 hESCs, respectively (n = 3 independent ex-

periments). SNTN was localized at the tips of multiple cilia

on day 56 (Figure 3H), which is consistent with the qRT-

PCR results (Figures 3B and S3B). Moreover, hPSC-derived

CHGA+ cells and SYP+ cells on day 42 (Figure 3A, protocols

b and c) increased by adding DAPT (Figure 3F), consistent

with the qRT-PCR results (Figures 3D and S3D, protocols

b and c). Both the CHGA+ and SYP+ cells were localized

to the aligning epithelium sparing FOXJ1+ cells (Figure 3I).

In all the comparisons, the vehicle control (DMSO) was

added to the media under the counterpart conditions in

order to exclude the effects by DMSO solvent of DAPT.

DAPT Suppresses the Notch Pathway in hPSC-Derived

PNECs and Induces Functional Motile Cilia in hPSC-

Derived MCACs

To elucidate the role of the Notch pathway in DAPT-

induced differentiation of PNECs, NOTCH1 intracellular

domain (N1ICD), HES1, and PGP9.5 were triply immuno-

stained on day 42, and N1ICD+HES1+ cells were detected

among the small number of non-PNECs (Figure S4A). By

qRT-PCR, DLL1 was significantly upregulated by DAPT in

the H9 hESC line (p = 0.002), but not significantly in

201B7, 585A1, and 604A1 hiPSC lines (p = 0.114, 0.128,

and 0.215, respectively).HES1was significantly suppressed

by DAPT in the H9 hESC line (p = 0.013), but not signifi-

cantly in 201B7, 585A1, and 604A1 hiPSC lines (p =

0.063, 0.225, and 0.44, respectively). NOTCH1-3 on day

42 were unaffected, compatible with DAPT-mediated sup-

pression of the Notch pathway (Figure S4B).

Next, the morphology of hPSC-derived MCACs was

examined using electron microscopy, demonstrating mul-

tiple cilia originating from individual basal bodies on the

apical surface of columnar epithelial cells (Figures 4A and

S4C) and a ‘‘9+2’’ structure consisting of nine doublet and

a central pair of singlet microtubules with dynein arms

(Figure 4A, rightmost panel), which are specific features

of motile cilia (Gibbons and Rowe, 1965).

On lightmicroscopy, beating cilia were easily observed in

the lumen of the spheroids and recorded by a high-speed

camera (Movie S1, left panel). Metachronal wave-like

beating of the cilia (Machemer, 1972) was observed in

some MCACs (Figure S4D). In order to quantify the muco-

ciliary flow over the MCACs, we established a protocol of

passaging hPSC-derived MCACs in PAEC spheroids to ALI

condition (Figure 4B, 3D-ALI protocol) due to the difficulty

in measuring the flow rate inside the 3D spheroids. On day

56 of the 3D-ALI protocol, ciliary beating was observed on

the apical side ofMCACs (Movie S1, right panel). SNTNwas

localized at the tips of multiple cilia (Figure 4C), and CFTR

was detected in the apical surface of MCACs (Figure S4E)

and FOXJ1, DNAH5, SNTN, and CFTR levels appeared to
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be slightly, but not significantly, lower in the 3D-ALI proto-

col than in the 3D protocol (Figure 4D).

The ciliary beating frequency (CBF) was calculated by

acquiring bright-field images of MCACs in the spheroids

and the 3D-ALI condition based on the concepts previously

described (Sisson et al., 2003) (Figure S4F; Supplemental

Experimental Procedures). The CBF of each hiPSC line

(201B7, 585A1, and 604A1)-derived MCACs showed 8.9 ±

0.27, 9.3 ± 0.34, and 6.5 ± 0.17 Hz in the spheroids on

day 42 and 10.9 ± 0.31, 10.5 ± 0.26, and 10.0 ± 0.17 Hz

in the 3D-ALI condition, respectively. A similar CBF

was calculated for normal human bronchial epithelial

cell (NHBEC)-derived MCACs in each condition (8.7 ±

0.30 Hz in the spheroids and 8.1 ± 0.33 Hz in the ALI con-

dition) (Figure 4E). To measure mucociliary transport, the

fluorescent beads placed on MCACs were traced (Movie

S2; Figure 4F; Supplemental Experimental Procedures).

The estimated flowvelocity of the beadswas approximately

7.4–10.1 mm/s in both hPSC- and NHBEC-derived MCACs.

However, the values appeared to be affected by the lack of

synchroneity of ciliary beating for generating a unidirec-

tional flow (Movie S2; Figure 4F). Therefore, we analyzed

the diffusion of the beads from their trajectories based on

the concepts in a previous report (Qian et al., 1991). We

defined the diffusion coefficient normalized to Brownian

motion as the mucociliary transport index (MTI) (Supple-

mental Experimental Procedures). Then, the MTIs in the

hPSC- and NHBEC-derived MCACs were calculated, and

all the hPSC-derived MCACs showed slightly smaller

MTIs compared with NHBEC-derived MCACs and signifi-

cantly greater MTIs compared with Brownian motion

(Figure 4G).
DISCUSSION

We established a method of 3D differentiation without

feeder cells to generate hPSC-derived PAEC spheroids via

isolated progenitor cells using CPM as a surface antigen,

which is reportedly a biomarker of lung diseases, such as

acute pneumonia and lung cancer (Dragovi�c et al., 1995).

It is noted that the inhibition of the Notch pathway

induced not only MCACs but also PNECs from hPSCs,

which is consistent with the studies of genetic murine

models (Tsao et al., 2009; Morimoto et al., 2012). PNECs

have been proposed to be the origin of small-cell lung can-

cer (Song et al., 2012), thus suggesting its future application

in cancer studies.

The ciliary function analyses of hPSC-derived MCACs,

as well as induction efficiency, are important aspects of

the present study. Previously, the functional analyses

of hPSC-derived PAECs mostly focused on CFTR (Wong

et al., 2012; Firth et al., 2014), and not on ciliary
s



Figure 4. Characterization of Motile Cilia
of hPSC-Derived MCACs
(A) Transmission electron microscopy of
DAPT-induced PAEC spheroids (201B7
hiPSCs) on day 56 (leftmost panel).
Multiple cilia were originated from basal
bodies (second left panel, arrowheads).
A cross-sectional image of multiple cilia
of induced MCACs (second right panel)
was magnified to show the ‘‘9+2’’ struc-
ture with dynein arms (rightmost panel,
circles).
(B) A schematic illustration of the prepara-
tion of hPSC-derived MCACs for ciliary func-
tion tests. In the ‘‘3D protocol,’’ MCACs were
differentiated until day 56 in spheroids. In
the ‘‘3D-ALI protocol,’’ PAECs were dissoci-
ated from 3D Matrigel blocks on day 42, fol-
lowed by replating and culturing under ALI
condition until day 56.
(C) Double immunostaining of Ac-Tub and
SNTN in 201B7 hiPSC-derived MCACs cultured
in the 3D-ALI protocol.
(D) qRT-PCR of FOXJ1, DNAH5, SNTN, and CFTR
expression in hPSC-derived MCACs cultured
in the 3D and 3D-ALI protocols (n = 3
independent experiments). Each value was
normalized to b-ACTIN. The gene expression
of the fetal trachea sample was set at 1. NS,
not significant.
(E) The CBF of MCACs in spheroids and 3D-ALI
condition in each hiPSC line in three inde-
pendent experiments (n = 198, 135, and 314
cells in the spheroids and n = 174, 236, and
519 cells in the 3D-ALI condition derived
from 201B7, 585A1, and 604A1 hiPSCs,
respectively). NHBEC-derived MCACs were
used as positive controls in each condition
in three independent experiments (n = 123
and 86 in the 3D and the ALI condition,

respectively). The CBF in the spheroids was compared with that in the 3D-ALI condition for each hiPSC line; *p < 0.05.
(F) Stacked images of the fluorescent beads placed on 201B7 hiPSC-derived MCACs (left panel), and Brownian motion (right panel)
acquired for 14.2 s. Color spectrum reflected time course.
(G) The MTI of MCACs calculated from >100 trajectories of the fluorescent beads per sample in each hiPSC line in three independent
experiments (n = 109, 142, 174, and 147 trajectories in 201B7, 585A1, and 604A1 hiPSCs and NHBECs, respectively). The MTIs in hiPSC-
derived MCACs were compared with Brownian motion (n = 50) for each hiPSC line; **p < 0.01. Error bars in the qRT-PCR, CBF, and MTI
analyses represent the mean ± SEM.
Scale bars, 25 mm unless otherwise indicated. See also Figure S4; Movies S1 and S2; and Tables S1 and S2.
movement. In addition, the ciliary functionwas not shown

in hPSC-derived lung organoids due to immaturity (Dye

et al., 2015). In the ciliary function tests, the CBF of

hPSC-derived MCACs in spheroids appeared to be lower

than that in the 3D-ALI protocol (Figure 4E) for at least

two reasons. First, mucoid secretion was trapped in the

closed lumen and its increased viscosity might reduce the

CBF in the spheroids (Figure 2C and Movie S1, left). Sec-
Stem
ond, we had to mince the spheroids and place cover slips

on the samples during image acquisition, which may

have reduced the CBF in the hPSC-derived spheroids, while

we could directly observe the samples in the 3D-ALI proto-

col. The CBF of hPSC-derived MCACs in the 3D-ALI proto-

col was near the normal CBF of human MCACs, which

range from 10 to 14 Hz (Rutland et al., 1982). Next, to

quantify mucociliary transport, fluorescent beads were
Cell Reports j Vol. 6 j 18–25 j January 12, 2016 j ª2016 The Authors 23



tracked as previously demonstrated in resected murine tra-

chea (Kunimoto et al., 2012). Because synchronized ciliary

beating for generating a unidirectional flow appeared to be

incomplete in both hPSC- and NHBEC-derived MCACs

(Movies S1 and S2; Figure 4F), as was reported for

NHBEC-derived MCACs (Matsui et al., 1998), we further

focused on the diffusion of the beads, demonstrating the

potency of mucociliary clearance in hPSC-derived MCACs

(Figures 4F and 4G). The difference between MCACs

derived from hPSCs and NHBECs might be partly due to

the difference in maturity. In addition, the ideal balance

in the number of between MCACs and mucus-producing

cells for mucociliary clearance remains to be elucidated.

MUC5AC and SPDEF levels on day 56 were lower than on

day 42 (Figure S3F), which might be due to differentiation

(Chen et al., 2009) and/or apoptosis. In this respect, the

regulation of MUC5AC+ cells by modulating factors, such

as IL-13 (Atherton et al., 2003), remains to be a future sub-

ject. In conclusion, the findings of the present study are

thus considered to pave the way for future applications

toward modeling airway diseases, such as PCD and CF, or

developing methods of airway reconstruction such as an

artificial trachea.
EXPERIMENTAL PROCEDURES

Imaging for the CBF and MTI
To measure the CBF, movies of hPSC- and NHBEC-derived MCACs

were captured on a high-speed camera (FASTCAM MC2.1; Pho-

tron) connected to an upright microscope (Zeiss Axioplan; Carl

Zeiss) with363 objectives. TomeasureMTI, the flow of fluorescent

beads (Fluoresbrite, 0.5 mm; Polysciences) was recorded by anOrca-

ER CCD camera (Hamamatsu) connected to an upright fluorescent

microscope (BX51;Olympus) with a320 objective. See the Supple-

mental Experimental Procedures.

Ethics
The use of H9 hESCs was approved by the Ministry of Education,

Culture, Sports, Science, and Technology (MEXT) of Japan. For

the use of human samples, human ethics approval was obtained

from the Institutional Review Board and Ethics Committee of

Kyoto University Graduate School and Faculty of Medicine.

Statistical Analysis
At least three independent experiments were conducted in each

study. The values are expressed as the means ± SEM. A two-tailed

t test was performed to determine the statistical significance. p <

0.05 was considered to be significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, four figures, two tables, and two movies and can be

found with this article online at http://dx.doi.org/10.1016/j.

stemcr.2015.11.010.
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