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Abstract
Recent research activities have provided new insights in vitamin D metabolism in various conditions. Furthermore, sub-
stantial progress has been made in the analysis of vitamin D metabolites and related biomarkers, such as vitamin D binding 
protein. Liquid chromatography tandem mass spectrometric (LC–MS/MS) methods are capable of accurately measuring 
multiple vitamin D metabolites in parallel. Nevertheless, only 25(OH)D and the biologically active form 1,25(OH)2D are 
routinely measured in clinical practice. While 25(OH)D remains the analyte of choice for the diagnosis of vitamin D defi-
ciency, 1,25(OH)2D is only recommended in a few conditions with a dysregulated D metabolism. 24,25(OH)2D, free and 
bioavailable 25(OH)D, and the vitamin D metabolite ratio (VMR) have shown promising results, but technical pitfalls in 
their quantification, limited clinical data and the lack of reference values, impede their use in clinical practice. LC–MS/MS 
is the preferred method for the measurement of all vitamin D related analytes as it offers high sensitivity and specificity. In 
particular, 25(OH)D and 24,25(OH)2D can accurately be measured with this technology. When interpreted together, they 
seem to provide a functional measure of vitamin D metabolism beyond the analysis of 25(OH)D alone. The determination 
of VDBP, free and bioavailable 25(OH)D is compromised by unresolved analytical issues, lacking reference intervals and 
insufficient clinical data. Therefore, future research activities should focus on analytical standardization and exploration of 
their clinical value. This review provides an overview on established and new vitamin D related biomarkers including their 
pathophysiological role, preanalytical and analytical aspects, expected values, indications and influencing conditions.
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Introduction

Vitamin D deficiency has developed into a global health 
issue that affects males and females of all age groups. The 
lack of sun exposure and a limited availability of vita-
min D from natural food sources are the main causes of 
vitamin D deficiency in modern societies. Other risk fac-
tors that can cause or exacerbate vitamin D deficiency are 
dark skin pigmentation, pregnancy, chronic inflammatory 
bowel disease with malabsorption, obesity, and advanced 
age [1]. Acknowledging the global dimension of vitamin 
D deficiency has sparked an exponential rise in vitamin D 
testing [2–4] and research activities that have resulted in 
new insights in vitamin D metabolism in various condi-
tions [5–10]. Today, it is well established that vitamin D 

has pleiotropic effects that go far beyond calcium and phos-
phate metabolism [6]. For example, vitamin D modulates 
innate and adaptive immunity, cell growth and differentia-
tion, cardiovascular function and hormonal actions [6, 11]. 
Furthermore, vitamin D deficiency has been linked to a 
broad range of clinical conditions including cardiovascu-
lar disease, malignancies, autoimmune diseases, neuropsy-
chiatric diseases and endocrinopathies [6, 11]. Substantial 
progress has also been made in the analysis of vitamin D 
metabolites and related biomarkers, such as vitamin D bind-
ing protein (VDBP). Mass spectrometric methods are capa-
ble of measuring multiple vitamin D metabolites in parallel 
[12–14]. Recently, Jenkinson et al. have developed a method 
that can measure 13 different vitamin D metabolites, includ-
ing 25(OH)D, 24,25(OH)2D and 1,25(OH)2D [13]. While 
this method is rather complex, the parallel measurement of 
25(OH)D and 24,25(OH)2D can easily be performed with 
liquid-chromatography tandem mass spectrometry using 
standard instrumentation. Several groups have suggested 
that the parallel measurement of these two metabolites 
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provides valuable information beyond 25(OH)D alone 
[15–18]. This development has recently been recognized 
by DEQAS, an external quality assessment program for 
vitamin D. However, clinical guidelines still unanimously 
recommend assessing vitamin D status by the measurement 
of 25(OH)D. Furthermore, 1,25(OH)2D is only indicated in 
a very few clinical conditions, such as severe chronic kid-
ney disease, hereditary phosphate-losing disorders, onco-
genic osteomalacia, pseudovitamin D-deficiency rickets, 
vitamin D-resistant rickets, as well as chronic granuloma 
forming disorders such as sarcoidosis and some lymphomas 
[19, 20]. However, recent evidence from experimental and 
clinical studies merits a closer look into the utility and the 
analytical standards of traditional and emerging biomark-
ers of vitamin D metabolism. The aim of this review is to 
provide structured information on 25(OH)D, 1,25(OH)2D, 
24,25(OH)2D, VDBP and the derived parameters vitamin D 
metabolite ratio (VMR), free (free-25(OH)D) and bioavail-
able (bio-25(OH)D) 25(OH)D. Particular focus will be put 
on the clinical utility, preanalytical, analytical and postana-
lytical aspects, and interfering factors.

Vitamin D Metabolism

Vitamin D is not a single compound, but refers to a group of 
over 50 metabolites, which are derived from cholesterol via a 
complex cascade of enzymatic and non-enzymatic reactions 
[19]. Chemically, they are secosteroids that are characterized 
by a broken bond in one of the steroid rings. The individ-
ual metabolites vary greatly in their plasma concentrations 
and biological activities [21]. Cholecalciferol (vitaminD3) 
and ergocalciferol (vitamin D2) are the two main forms of 
vitamin D. The difference between the two is an additional 
double bond between carbons 22 and 23 and a methyl group 
on carbon 24 in the side chain of vitamin D2 [22]. Vitamin 
D3 is primarily synthesised in human skin under the effect 
of sunlight. In contrast, vitamin D2 is exclusively obtained 
from exogenous sources. Many food items, such as fatty fish, 
liver oil, and egg yolk, contain vitamin D2 and D3 so that the 
diet contributes 10–20% to the vitamin D supply of humans 
[23–25]. Higher amounts of vitamin D can be obtained from 
fortified foods, such as milk and margarine, or vitamin sup-
plements [26].

Circulating vitamin D2 and D3 are activated by two 
hydroxylation reactions that occur in the liver and the kid-
neys. The hepatic cytochromes P450 CYP2R1 (microsomal) 
and CYP27A1 (mitochondrial) hydroxylate vitamin D2 and 
D3 at carbon 25 resulting in the production of 25(OH)D, 
the most abundant vitamin D metabolite in blood, which is 
still inactive. Renal CYP27B1 attaches the second hydroxy-
group in position 1 forming active 1,25-(OH)2D [27]. In 
addition to the kidneys, CYP27B1 is also expressed in many 

other cell types so that 1,25-(OH)2D can be produced by 
most extra-renal tissues, where it has primarily autocrine or 
paracrine function. However, this extra-renal 1,25-(OH)2D 
synthesis contributes little to the circulating concentration 
of this metabolite [28]. Vitamin D degradation is predomi-
nantly driven by CYP24A1, which metabolises 25(OH)D to 
24,25-dihydroxy-vitamin D [24,25(OH2D)] and 1,25(OH)2D 
to 1,24,25-trihydroxy-vitamin D [1,24,25(OH)3D][27]. In 
the circulation, all vitamin D metabolites are bound to vita-
min D binding protein (DBP), albumin and lipoproteins.

The C3 hydroxyl group of 25(OH)D2 and 25(OH)D3 
can be converted to beta orientation resulting in the for-
mation of 3-epi-25(OH)D3, 3-epi-25(OH)D2. It is believed 
that this irreversible modification is catalysed by the 
enzyme 3-epimerase (C-3 epimerisation pathway), which 
also epimerizes 1α,25(OH)2D3 and 1 α,25(OH)2D2. Simi-
lar to the non-epimerized metabolites, also 3-epi-25(OH)
D3, and 3-epi-25(OH)D2 can be further hydroxylized by 
1α-hydroxylase forming 3-epi-1 α,25(OH)2D3 and 3-epi-1 
α,25(OH)2D2. So far, 3-epimerase has been identified in the 
endoplasmatic reticulum of liver, bone and skin [29, 30]. 
In serum from adult humans, the concentration of 3-epi-
25(OH)D3 varies between 1 and 25% [31]. Children appear 
to have markedly higher proportion of 3-epi-25(OH)D3 
reaching up to 60% [32]. With the methods that are com-
monly used in medical laboratories, the concentrations of 
all other 3-epimers are too low to be detected. In a study 
from Shah et al. the mean concentrations of 3-epi-25(OH)
D3, and 3-epi-25(OH)D2 were 6.1 nmol/L and 1.1 nmol/L, 
respectively. The role of vitamin D 3-epimers in health and 
disease is still a matter of debate as most of our knowledge 
is derived from in vitro studies. Apparently, 3-epi-25(OH)D 
has low affinity for VDBP (36–46% compared with 25(OH)
D) and VDR (2–3%), which explains at least partly the low 
serum concentration. At present it is believed that 3-epi-
25(OH)D does not adequately reflect vitamin D status and 
thus its separate measurement is not recommended. Existing 
knowledge indicates that 1 α,25(OH)2D3 harbours a lower 
biological activity and has a markedly lower affinity to the 
VDR than 1α,25(OH)2D3. Also, its ability to stimulate intes-
tinal calcium absorption is significantly reduced [33–35]. 
PTH suppression, however, was detected at similar rates as 
1,25(OH)2D3 (reviewed in [32]).

25(OH)D

Role of the Marker

The inactive prohormone 25(OH)D represents the main 
reservoir and transport form of vitamin D. The gen-
eration of 25(OH)D from pro-vitamin D3 is catalyzed by 
CYP27A, a 25-hydroxylase encoded by the CYP2R1 gene 



Vitamin D Metabolites: Analytical Challenges and Clinical Relevance﻿	

1 3

[36]. As the most abundant vitamin D metabolite in blood, 
25(OH)D includes the two forms 25(OH) D2 and 25(OH)
D3 [37]. Hydroxylation of 25(OH)D in position 1 is medi-
ated by CYP27B1 and results in the formation of active 
1,25(OH)2D. However, this alpha-hydroxylation occurs 
on demand, primarily in the kidneys, under the control 
of parathyroid hormone (PTH). Consequently, the serum 
concentration of 1,25(OH)2D is kept within the reference 
range over a wide concentration range of 25(OH)D and does 
not reflect vitamin D stores. In fact, individuals with a low 
serum 25(OH)D concentration often have a high-normal or 
raised 1,25(OH)2D concentration due to a compensatory 
induction of CYP27B1. Therefore, current guidelines unani-
mously recommend 25(OH)D as the preferred indicator of 
the body’s vitamin D stores.

People with dark skin have 30–40% lower 25(OH)D 
serum concentrations than Caucasians but comparable or 
higher bone mineral density (BMD) and lower fracture risk 
[38]. Furthermore, lower serum 25(OH)D concentrations 
in blacks are not associated with higher PTH concentra-
tions, lower BMD or increased fracture risk [39–42]. This 
conundrum is at least partly explained by a high preva-
lence (> 90%) of the GC1F haplotype of VDBP (rs7041-T/
rs4588-C) in blacks, whereas the GC1S haplotype of VDBP 
(rs7041-G/rs4588-C) is dominant in Caucasians [43]. While 
carriers of the GC1F and the GC1S haplotypes show compa-
rable VDBP concentrations [43] they differ in their affinity 
for most vitamin D species, which contributes to the differ-
ent 25(OH)D concentrations. However, the availability of 
free vitamin D for metabolism is not affected. Berg et al. 
have shown that blacks and whites with comparable serum 
PTH concentrations also have a comparable VMR despite 
substantially lower 25(OH)D levels [44]. Other factors 
that contribute to lower 25(OH)D concentrations in blacks 
include adiposity and skin pigmentation. A recent report 
from an international expert panel stated that no one factor 
alone could fully explain the vitamin D paradox in Black 
Americans. In addition, blacks have no skeletal benefits from 
high doses of vitamin D supplementation [45].

Pre‑analytical Considerations

The concentration of 25(OH)D can be assessed in both, 
serum and plasma, with similar results [46]. A low biologi-
cal variability [47, 48] in combination with rather high con-
centrations in the nM range and a long in vitro half-life make 
25(OH)D a robust biomarker that can reliably be measured 
by clinical laboratories [14, 19, 20]. A recent study from 
Denmark has shown that the in vivo half life depends on 
the individual 25(OH)D concentration and the vitamin D 
receptor (VDR) gene polymorphism rs2228570 [49]. In 
individuals with a 25(OH)D start concentration between 68 
and 213 nmol/L, mean half-life was 89 days, whereas lower 

concentrations were associated with a half-life between 149 
and 199 days. The longer half-live at lower 25(OH)D con-
centrations may be caused by storage mobilisation, changed 
catabolism or increased intestinal absorption. In addition, 
the VDR gene polymorphism rs2228570 may explain up 
to 88% of the observed variation with the genotype GG 
having a 120 days shorter half-life than the genotype AA/
AG. Stability studies have shown that 25(OH)D is stable 
in whole blood for up to 24 h when kept at room tempera-
ture (RT) [50]. Also, storage of serum for up to 72 h at RT 
or refrigerated at 6 °C has negligible effects on 25(OH)D. 
Good short term stability of serum 25(OH)D at RT has also 
been reported by Zelzer S et al. [17]. Long-term stability at 
− 20 °C and − 80 °C is generally good. In an own study, 
we were able to demonstrate that changes do not exceed 
15% after 2 months [17]. Recently, Cavalier et al. reported 
only minor changes of 25(OH)D after 5 years of storage at 
− 80 °C, which are most likely the result of sample con-
centration rather than degradation [51]. Long-term storage 
appears to have the least effect on 25(OH)D measured by 
LC–MS/MS, whereas samples from renal and pregnant 
patients may show substantial differences when analysed by 
immunoassay. Importantly, freezing and thawing of plasma 
and serum samples does not affect the 25(OH)D concentra-
tion [52]. Also, centrifugation temperature has no substantial 
effect on the 25(OH)D concentration [53, 54]. Importantly, 
serum and plasma samples for the measurement of 25(OH)
D should always be stored in the dark. While short term 
UV-irradiation has little impact on the 25(OH)D concen-
tration, prolonged sun exposure reduces 25(OH)D by more 
than 50% [54].

Analytical Considerations

25(OH)D is a challenging analyte due to its strong bind-
ing to VDBP and other carriers, the need of measuring 
25(OH)D2 and 25(OH)D3 in an equimolar fashion, the 
coexistence of multiple chemically related molecules that 
may cross-react, and common matrix effects, such as het-
erophilic antibodies or changes in protein composition [19, 
20]. Medical laboratories employ different methods for 
the measurement of 25(OH)D in serum and plasma with 
automated immunoassays, ELISAs and LC–MS/MS being 
the most frequently used. Radioimmunoassays (RIA) and 
high-performance liquid chromatography (HPLC) have 
been widely used in the past, but due to a broad range of 
alternatives they play a marginal role in today’s practice. 
From an analytical point of view, the available methods 
can be divided in those with and without complete removal 
of proteins and lipids by strong organic solvents prior to 
analysis. The first group includes LC–MS/MS, HPLC and, 
RIAs whereas the second group comprises automated 
immunoassays. As automated immunoassay-analysers 
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cannot use such organic solvents, they employ alternative 
strategies to release 25(OH)D from its carriers. However, 
they have an inferior dissociation efficacy. The strategies 
that are used by immunoassay manufacturers to separate 
25(OH)D from its carriers are optimized for the expected 
matrix composition. In  situations where the matrix is 
altered, such as in pregnant women, patients with chronic 
kidney disease or individuals with a polymorphic variant 
of VDBP, these approaches may be less efficient and thus 
introduce analytical bias. In contrast, the organic solvents 
used in LC–MS/MS are strong enough to precipitate all 
proteins and detach all vitamin D metabolites from their 
carriers [55, 56]. Consequently, automated immunoassays 
are characterized by a variable analytical performance. In 
external quality assurance programs, the means of com-
monly used automated immunoassays show differences of 
up to 20 nmol/L in the clinically relevant range. Standardi-
zation of the 25(OH)D measurement has been a major step 
forward. With the help of the standard reference materials 
(SRM) 972 and 972a, developed by the National Insti-
tute of Standardization (NIST), and validated reference 
measurement procedures (RMP) from the University of 
Gent [57] and the Centre of Disease Control [58] it is 
possible to accurately determine the 25(OH)D concen-
tration in serum and plasma samples. As these RMPs 
are not suitable for clinical laboratories, the Vitamin D 
Standardization and Certification Program (VDSCP) has 
been developed with the aim to align the results of dif-
ferent methods to this reference system [59]. Today, 38 
methods are listed at the CDC homepage as being VDSCP 
certified (https://​www.​cdc.​gov/​labst​andar​ds/​vdscp_​parti​
cipan​ts.​html). However, the main weakness of VDSCP is 
that certification depends on the mean bias obtained on 
a standard set of samples, regardless of the scatter that 
these samples produce around the target values. In other 
words, a wide scatter can produce a similar mean bias 
than a narrow scatter, as long as the individual values are 
distributed equally around the target values. Therefore, 
Wise et al. have proposed the percentage of samples with 
a bias ≤ 10% as a better criterion for accuracy [60]. While 
the different standardization efforts have clearly improved 
the comparability of 25(OH)D results obtained with auto-
mated immunoassays, external quality assurance programs 
still show unsatisfactory variability. Numerous laborato-
ries have acknowledged the intrinsic variability of auto-
mated immunoassays and switched to LC–MS/MS with 
electrospray ionisation [61] as the gold standard for the 
quantification of 25(OH)D. This technology is suitable for 
the analysis of serum, heparin and EDTA samples [62]. It 
can accurately measure 25(OH)D2 and 25(OH)D3. Cur-
rently, 20% of all participants of the DEQAS program use 
LC–MS/MS for the measurement of 25(OH)D. This group 
is consistently well aligned to the target values and copes 

best with interferences from other vitamin D metabolites 
and matrix effects.

All LC–MS/MS methods require a more or less complex 
pre-analytical sample preparation that cleans the sample and 
extracts vitamin D metabolites through protein precipita-
tion, liquid–liquid extraction and sometimes derivatisation 
[40]. Regardless of the pre-analytical sample preparation, 
thoroughly validated LC–MS/MS methods are consistently 
capable of producing accurate results [17, 62]. For exam-
ple, Zhang et al. validated a highly specific LC–MS/MS 
method for the simultaneous quantification of 25(OH)D2 
and 25(OH)D3 in serum and plasma [62]. Using a combina-
tion of methanol precipitation and liquid–liquid extraction 
by heptane, they were able to obtain a 72% recovery with 
a coefficient of variation (CV) < 7.05%. The results were 
well aligned to the Vitamin D External Quality Assessment 
Scheme (DEQAS) LC–MS/MS method mean values, but 
about 9% higher than the commonly used DiaSorin Lias-
son assay. However, it should be mentioned that LC–MS/
MS methods for the measurement of 25(OH)D also have 
disadvantages, such as a (semi)manual sample preparation, 
and the need of expensive instrumentation and experienced 
staff. In addition, they are not yet suitable for high through-
put. Nevertheless, first fully automated solutions are already 
available.

From the analytical point of view, 3-epi-25(OH)D3 co-
elutes and has identical mass as 25(OH)D3, and they can 
only be separated by high resolution chromatography [63]. 
Considering the ongoing controversy about the biological 
relevance of vitamin D 3-epimers in health and disease the 
separate measurement of 3-epi-25(OH)D3 is not recom-
mended. In addition, most 25(OH)D automated immuno-
assays do not cross-react with 3-epi-25(OH)D so that they 
do not represent a relevant issue in clinical practice. Only 
in children, the higher 3-epi-25(OH)D concentrations may 
eventually result in a misclassification of vitamin D status, 
when measured with one of the few 25(OH)D methods that 
are interfered by C3-epimers, such as protein-binding assay.

Reference Values

Typically, clinical laboratories provide their results with a 
reference range that comprises the values between the 2.5th 
and the 97.5th percentile of a healthy reference cohort. For 
several reasons, 25(OH)D results should not be interpreted 
on the basis of such a reference range. The circulating 
25(OH)D concentration is subject to pronounced seasonal 
variation of 20–30% with the highest values in summer and 
autumn [64]. In 74,235 serum samples from Northern Italy 
that were collected over a two-year period and analysed by 
a validated LC–MS/MS method, the 2.5th and 97.5th per-
centile spanned a rather wide range from 12 to 159 nmol/L. 
Amongst 2000 healthy Austrian blood donors the traditional 
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reference interval was 28.5–136 nmol/L (unpublished data). 
However, within the traditional reference interval of 25(OH)
D, higher concentrations of this metabolite were associated 
with improved blood biomarker concentrations of calcium 
homeostasis and bone turnover. In addition, within the refer-
ence range, higher 25(OH)D concentrations are also associ-
ated with a lower risk of bone fractures [65–67]. Valcour 
et al. have shown that PTH continuously decreases with 
increasing concentrations of 25(OH)D and that there is no 
threshold above which this relationship plateaus [68]. The 
same applies to other conditions, such as stroke, cardiovas-
cular disease, diabetes mellitus and autoimmune disease 
[69–73]. Considering that the risk for numerous clinical 
conditions substantially varies across the reference inter-
val, clinical cut-offs are recommended for the interpretation 
of serum 25(OH)D results. Several scientific societies have 
developed practice guidelines that propose 25(OH)D cut-offs 
on the basis of clinical risk [74]. Most guidelines distin-
guish between sufficiency, insufficiency and deficiency [37, 
75, 76]. Some guidelines also provide cut-offs from severe 
deficiency to toxicity as summarised in Table 1 [74, 77–82]. 
These cut-offs apply to bone health, osteoporosis, fracture 
risk and general health. The First International conference 
on Controversies in Vitamin D established that levels of 
25(OH)D below 12 ng/mL (30 nmol/L) were associated with 
an increased risk of rickets and osteomalacia, while concen-
trations between 50 and 125 nmol/L are sufficient to main-
tain bone health [83]. However, commonly used 25(OH)D 
cut-off values apply primarily to Caucasians and Asians. 
People with dark skin have 30–40% lower 25(OH)D serum 
concentrations than Caucasians but comparable or higher 
bone mineral density (BMD) and lower fracture risk [38].

Indications

Measurement of serum 25(OH)D is recommended for the 
diagnosis of vitamin D deficiency [37, 78, 81]. Individuals 
at increased risk of vitamin D deficiency are those with fra-
gility fractures, chronic kidney disease, malabsorption, and 
abnormalities of calcium and phosphate metabolism [84]. 
Determining serum 25(OH)D is also useful for the differen-
tial diagnosis of rickets, osteomalacia, and the monitoring 
of vitamin D supplementation. Finally, 25(OH)D should be 
determined in patients with suspected hypervitaminosis D 

and intoxication. When considering measuring vitamin D in 
the context of various non-bone related disease, it should be 
kept in mind that reverse causality and residual confounding 
cannot be excluded. Rather than being an actionable causal 
factor for chronic diseases, vitamin D deficiency could sim-
ply be the result of an underlying condition that alters vita-
min D metabolism, or a lifestyle that is associated with poor 
health and micronutrient deficiencies. Therefore, the value 
of measuring 25(OH)D for the assessment and management 
of non-bone-related diseases is a matter of ongoing debate 
and not yet recommended.

Influence of 25(OH)D in Pathological Conditions

Most 25(OH)D in serum is bound to VDBP (85%) and 
albumin (15%) [85]. Variations in the serum concentrations 
of these carriers lead to corresponding changes of 25(OH)
D. The hepatic 25-hydroxylation of vitamin D was long 
believed to be unregulated [36]. However, recent studies sug-
gest that both age and metabolism can modulate CYP27A 
activity. Aged humans and animals are characterized by a 
lower expression of CYP2R1 than their young counterparts 
and thus they are less responsive to vitamin D supplementa-
tion [86]. As vitamin D can be sequestered in adipose tissue 
[87], it is not surprising that nutrition and body composition 
also modulate CYP2R activity [87, 88].

Pregnancy causes a small increase in 25(OH)D which is 
at least partly driven by an increase in VDBP [89]. However, 
not all studies found a significant changes of serum 25(OH)
D in pregnant women [90, 91]. Figueiredo et al. showed 
that the serum 25(OH)D concentration during pregnancy is 
influenced by seasonal effects [92]. Women starting preg-
nancy during winter showed rising 25(OH)D concentrations, 
whereas women who fell pregnant in summer exhibited no 
increase. Interestingly, the placenta possesses the princi-
pal enzymes of vitamin D metabolism including CYP2R1, 
CYP27B1 and CYP24A1 and may thus be involved in the 
regulation of circulating 25(OH)D levels [93]. Maternal 
25(OH)D can crosses the placenta and is the exclusive 
vitamin D source of the foetus reaching cord blood levels 
between 75 and100% of the maternal value [94].

Anti-epileptic drugs, such as phenobarbital, carbamaz-
epine, phenytoin and valproate, are known to accelerate 
vitamin D catabolism and thus lower the serum 25(OH)D 

Table 1   Vitamin D guidelines 
for different regions

*All values are reported as nmol/L

Global* Europe* USA* Brazil* Japan* Australia* Gulf Region*

Toxicity  > 250  > 500  > 150
Sufficiency 50–250 50–225  > 75 75–250  > 75  ≥ 50  > 75
Insufficiency 30–75 50–75 50–75 50–74 50–75 30–49 50–75
Deficiency  < 50–25  < 50  < 50  < 50  < 50  < 29  < 50
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concentration [82]. Binding of these drugs to the pregnane 
X receptor increases 25(OH)D catabolism by an induction 
of CYP3A4 and CYP24A1. The preganane X receptor is a 
nuclear receptor that shares homologies with the VDR. In 
order to mitigate the risk of vitamin D deficiency, reduced 
BMD and increased fracture risk, patients on long-term 
treatment with anti-epileptic drugs should receive a pro-
phylactic vitamin D supplementation and have their serum 
25(OH)D concentration monitored.

Patients with CKD at stages 3 and 4 usually present 
deficiency of vitamin D, a marker of poor prognosis [95]. 
Similarly, 60–80% of pre-dialysis children with CKD also 
have low levels of 25(OH)D [96]. In addition to low serum 
25(OH)D levels, CKD patients are also characterized by 
elevated phosphate and FGF-23 concentrations. The adverse 
impact of CKD on calcium and phosphate metabolism is 
associated with secondary hyperparathyroidism. However, 
the management of vitamin D status in nephrology is still a 
matter of ongoing debate. In any case, CKD patients with 
25(OH)D deficiency should always be treated, regardless 
of PTH [95]. Vitamin D deficiency in Stages 1 to 3a fol-
low general population recommendations. Later stages are 
treated with calcitriol or vitamin D analogues, depending on 
patient characteristics [97].

Obese and bariatric surgery patients frequently present 
with vitamin D deficiency. Fat soluble vitamin D can be 
sequestered in adipose tissue resulting in reduced circulat-
ing 25(OH)D concentrations. Instead, bariatric surgery com-
promises the absorption of dietary vitamin D [98, 99]. To 
prevent adverse skeletal effects, vitamin D deficiency should 
be diagnosed and corrected prior to bariatric surgery [100]. 
However, it may be difficult to normalize 25(OH)D and PTH 
in these patients.

Vitamin D levels have also been investigated in cancer 
and cardiovascular disease (CVD). Observational studies 
identified an increased CVD mortality only in vitamin D 
deficient subjects, but not individuals with normal 25(OH)
D serum concentrations. Large randomized intervention 
studies, such as the VITAL study (25,000 individuals aged 
50 years or older treated with 2000 IU/day of vitamin D and 
1 g/day of omega-3 fatty acid for over 5 years) [101] and the 
VIDA study (5000 individuals over 50 years of age treated 
with an initial dose of 200,000 IU and then 100,000 IU/
month of vitamin D for 3.3 years) [102] failed to show any 
beneficial effect of vitamin D supplementation on the inci-
dence of invasive cancer or the appearance of CVD. The 
lacking effect of vitamin D supplementation on CVD and 
cancer incidence is further supported by meta-analyses that 
pooled randomised clinical trials (reviewed in [103]). How-
ever, in line with the observational studies mentioned before, 
a reduced risk was found in vitamin D deficient subjects. 
Although existing intervention studies failed to show reduc-
tions in CVD and cancer risk, the results may be biased due 

to some pitfalls, such as the lack of appropriate controls 
that are completely naive to oral vitamin D intake via the 
food or de-novo synthesis by the skin [103]. Based on exist-
ing observational and intervention studies, measurement 
of serum 25(OH) is primarily useful to identify vitamin D 
deficient individuals, where supplementation appears to have 
beneficial effects on CVD and cancer risk. It should be kept 
in mind that the interpretation of 25(OH)D results in CVD 
and cancer patients could be complicated by residual con-
founding and reverse causality, as vitamin D insufficiency 
could be the result of poor health and disease specific altera-
tions of vitamin D metabolism [104]. Therefore, the quan-
tification of additional vitamin D metabolites could aid the 
assessment of vitamin D status in these patients.

Due to its immune-modulatory function, vitamin D has 
also been investigated in COVID-19 patients. Observational 
studies have shown that individuals with vitamin D defi-
ciency have an increased risk to develop severe COVID-19 
(as reviewed in [105]). However, a retrospective study by 
Mangge et al. failed to find any association between 25(OH)
D3, 25(OH)D2, 24,25(OH)2D3 and 25,26(OH)2D3) and clini-
cal outcome measures, such as recovery rate, death or the 
need of respiratory support [106]. In the absence of COVID-
19-specific prevention studies, some information can be 
derived from vitamin D supplementation studies that meas-
ured the incidence of other infectious respiratory diseases, 
especially in children. Again, while these studies did not 
show significant effects in individuals with adequate 25(OH)
D concentrations, those with vitamin D deficiency benefit-
ted from vitamin D supplementation. As these studies used 
primarily historical 25(OH)D analyses, their results may be 
biased. Based on the limited evidence available, the role of 
vitamin D in SARS-CoV2-infected patients remains con-
troversial. However, there is some support for a correction 
of vitamin D deficiency in SARS-CoV2-infected patients to 
prevent severe disease and adverse outcome.

Measurement of 1,25(OH)2D

Role of the Marker

1,25(OH)2D is the active form of vitamin D that is produced 
through 1α-hydroxylation of 25(OH)D. This hydroxyla-
tion step is catalysed by CYP27B1 (1α-hydroxylase) and 
occurs mainly in the kidneys. Consequently, the circulat-
ing 1,25(OH)2D concentration primarily reflects renal 
production. Meanwhile, it is well established that many 
other cells and tissues, such as monocytes, macrophages, 
dendritic cells, osteoblasts, and keratinocytes, also express 
1α-hydroxylase and thus are cable of producing 1,25(OH)2D 
locally [107]. However, 1,25(OH)2D that is produced by 
extra-renal tissues has mainly auto- and paracrine functions 
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and adds little to the serum level [108, 109]. The biological 
activity of 1,25(OH)2D is mediated by binding to the VDR 
[5], a nuclear receptor that binds specific DNA sequences 
located at different genomic regions (vitamin D response 
elements), to subsequently modulate the expression of the 
respective target genes [110].

With concentrations in the lower pmol/L range, 
1,25(OH)2D circulates at much lower levels than 25(OH)
D. The half-life of 1,25(OH)2D is only 4–6 h, which makes 
serum levels rather volatile. Both metabolites have similar 
physical and chemical properties [111–113], but unlike 
25(OH)D, 1,25(OH)2D does not reflect the storage levels of 
vitamin D in the body [114]. Supplementation of vitamin D 
increases serum 25(OH)D, but has no measurable effect on 
serum 1,25(OH)2D [115, 116]. Some studies suggest that 
there is no relationship between both metabolites [117, 118]. 
In fact, it appears that 1,25(OH)2D is produced on demand 
depending on the cellular need, whereas 25(OH)D reflects 
the stores that are available for utilization.

The main role of 1,25(OH)2D is regulating blood calcium 
levels through intestinal absorption, renal reabsorption and 
release from bone stores [119]. When the calcium intake 
is low, PTH increases the synthesis of 1,25(OH)2D, which 
subsequently activates the transport of calcium from the 
intestinal lumen to the blood by upregulating TRPV6 and 
other genes, such as S100G, ATP2B1, and CLDN2, in the 
intestine [120]. When calcium intake increases, PTH secre-
tion is reduced leading to a decrease in 1,25(OH)2D and acti-
vation of a paracellular route, a non-saturable and passive 
transport through the intercellular space between adjacent 
cells, which is also modulated by 1,25(OH)2D (reviewed in 
[121]). Therefore, 1,25(OH)2D is a key regulator of bone 
mineralisation [122]. The release of calcium from bone is 
accompanied by an increased secretion of fibroblast growth 
factor 23 (FGF23) by osteocytes, which, upon binding to 
Klotho, inhibits 1-alpha hydroxylase and ultimately reduces 
the renal synthesis of 1,25(OH)2D [123].

In addition to the regulation of calcium homeostasis, 
1,25(OH)2D also supports bone formation by increasing 
the osteoblastic expression of alkaline phosphatase, osteoc-
alcin and ostepontin [124]. Furthermore, it stimulates bone 
resorption by increasing osteoclastogenesis and osteoclast 
activity [125]. 1,25(OH)2D is also involved in the regula-
tion of cell proliferation, differentiation and apoptosis [126]. 
Experimental evidence from 1α-hydrolase knockout mice 
suggests that low levels of 1,25(OH)2D increase age-related 
bone loss by activating senescence pathways, like p16/p19 
[127]. An adequate supply with 1,25(OH)2D could thus pre-
serve bone health by activating an anti-ageing mechanism 
[128].

In addition to its role in bone, 1,25(OH)2D also attenu-
ates the inflammatory response of monocytes and mac-
rophages and increases the expression of anti-inflammatory 

compounds like IL-10. In contrast, the secretion of pro-
inflammatory cytokines like IL-1b, IL-6, TNFα, RANKL 
and COX2 is reduced by 1,25(OH)2D [129]. These immu-
nomodulatory effects may explain the 1,25(OH)2D-mediated 
risk reduction of autoimmune diseases like multiple scle-
rosis [130]. Blood pressure, insulin secretion and insulin 
sensitivity are also modified by calcitriol [131–133]. These 
associations could, at least partially, be due to the regula-
tory role of 1,25(OH)2D in calcium homeostasis. Also, the 
renin-angiotensin axis is influenced by 1,25(OH)2D, which 
may explain the association with hypertension (reviewed in 
[134]).

Recent evidence suggests that 1,25(OH)2D is also linked 
to the gut microbiome. High serum concentrations of 
1,25(OH)2D, but not 25(OH)D, are strongly correlated with 
alpha and beta diversity, especially with butyrate-producing 
bacteria, like Firmicutes. Based on these results, it has been 
hypothesized that butyrate-producing bacteria could stimu-
late the local production of 1,25(OH)2D by dendritic cells 
in the colon [135]. In this context, a previous animal model 
lacking VDR and CYP27B1 also showed impaired levels of 
1,25(OH)2D and reduced number of Firmicutes [136].

Pre‑analytical Considerations

1,25(OH)2D has similar physical and chemical properties as 
25(OH)D; however, it is more hydrophilic, has shorter half-
life (around 6 h), and it is found in blood at very low concen-
trations (in the range of picomol/L) [137]. Altogether, it pre-
sents similar challenges as 25(OH)D for analytical detection, 
but requires a substantially higher sensitivity [46]. Because 
of these characteristics, results are more volatile.

Analytical Considerations

Measurement of 1,25(OH)2D in serum or plasma is con-
siderably more challenging than 25(OH)D due to is very 
low concentration. In addition, a standard reference material 
and a reference measurement procedure are lacking. The 
first assay for the measurement of 1,25(OH)2D was a radio-
receptor binding assay, where 1,25(OH)2D in the sample 
displaced tritiated hormone from a cytosol-chromatin recep-
tor preparation isolated from chick small intestine [138]. 
With this assay, Brumbaugh et al. were able to determine 
a human plasma concentration of 60 pg/ml in patients with 
renal disease. In the following years competitive protein 
binding assays [139], RIAs [140], enzyme immune assays 
(EIAs) [141], HPLC [142–144], gas chromatography-
mass spectrometry (GC–MS) [145] and LC–MS/MS [146] 
methods were developed. A comprehensive overview of 
available methods and their characteristics is provided by 
several review articles [147, 148]. Until recently, commer-
cial RIAs were widely used to determine 1,25(OH)2D in 
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clinical laboratories. With the development of fully auto-
mated immunoassays [141, 149] this picture has changed. 
In 2017, 75% of the participants in the DEQAS program 
used automated immunoassays, 15% manual immunoassays 
and 9% LC–MS/MS. However, the comparability of auto-
mated immunoassays with LC–MS/MS methods is not ideal 
[150]. Even within the individual method groups substantial 
variability exists. In this context, different calibration pro-
cedures are a common source of variability [151]. LC–MS/
MS methods adopt different strategies to cope with the very 
low analyte concentration. Vitamin D metabolite profil-
ing, and in particular measurement of 1,25(OH)2D, typi-
cally requires a dual column system, where the first column 
serves for analyte enrichment and the second one for sepa-
ration. Other methods include a preanalytical immunopuri-
fication step [149, 152, 153] whereas others do not [154]. 
The antibody used for immunopurification is supposed to 
enrich the target analyte 1α-25-dihydroxyvitamin D and 
thus reduces interferences from isobaric compounds, such 
as 1β-25-dihydroxyvitamin D [84]. Another way to improve 
analytical sensitivity is the derivatization of 1,25(OH)2D 
[46]. PTAD (4-phenyl-1,2,4-triazoline-3,5-dione) is the most 
frequently used derivatization agent for this purpose. Also 
the ionization mode impacts the analytical performance of 
LC–MS/MS methods [63]. While derivatization methods 
typically use electrospray ionization (ESI), atmospheric-
pressure chemical ionisation (APCI) is a valid alternative 
that achieves good results without the need of derivatiza-
tion [63]. However, in the absence of standardization it is 
not possible to conclude that one method is more accurate 
than another.

Reference Values

In contrast to 25(OH)D, where results are interpreted on the 
basis of clinical cut-offs, method specific reference intervals 
are recommended for 1,25(OH)2D. In healthy adults, the ref-
erence interval for the IDS RIA is 43–168 pmol/L, whereas 
the automated IDS iSYS immunoassay has a reference inter-
val of 63–228 pmol/L [141]. A different reference interval 
of 59 -159 pmol/L has been reported for LC–MS/MS. How-
ever, these methods typically measure only 1,25(OH)2D3. 
For a separate quantitation of 1,25(OH)2D2 most methods 
are not sensitive enough as the circulating level has been 
reported to be < 17 pmol/L [155]. In addition, immunoassays 
may be interfered by chemically related vitamin D metabo-
lites that cross-react.

Blood levels of 1,25(OH)2D in children are higher than in 
adults. The following paediatric reference intervals have been 
established by Higgins et al. on the CALIPER cohort using 

the DiaSorin Liason XL method: 77—471 pmol/L between 0 
and 1 year, 113–363 pmol/L between 1 and 3 years, and 108 
– 246 pmol/L for children older than 3 years. The CALIPER 
cohort includes 377 Canadian children and adolescents [156]. 
For other methods, paediatric reference intervals have not been 
reported.

Indications

To date, the clinical utility of 1,25(OH)2D is insufficiently 
understood, which limits its clinical use. Serum levels of 
1,25(OH)2D have little or no relationship to vitamin D stores 
but rather are regulated by PTH. Measurement of 1,25(OH)2D 
is helpful in the investigation of patients with unexplained 
hypercalcaemia, sarcoidosis, granulomatous disorders, 
pseudo-vitamin D deficiency, rickets, tumour-induced osteo-
malacia, hyperparatiroidism, and CYP24A1 deficiency [20]. 
Moreover, measurement of this vitamin D metabolite can be 
helpful to differentiate between FGF23-dependent and –inde-
pendent phosphopenic rickets [157]. Levels of 1,25(OH)2D 
are usually low in CKD, but its measurement has only been 
recommended when patients present severe and progressive 
hyperparathyroidism [158].

Influence of 1,25(OH)2D in Pathological Conditions

Low serum levels of 1,25(OH)2D are observed in CKD and 
hypoparathyroidism [159]. In contrast, elevated serum con-
centrations occur in patients with sarcoidosis and tuberculosis. 
Antimycotic drugs, such as ketoconazole reduce the circulat-
ing 1,25(OH)2D concentration and have successfully been 
used to treat tuberculosis-associated hypercalcaemia [160, 
161]. Pregnancy increases the serum 1,25(OH)2D concentra-
tion due to an induction of renal 1α-hydroxylase activity [162]. 
In addition, 1α-hydroxylase and the VDR are both expressed in 
the placenta. However, the function of placental 1,25(OH)2D 
synthesis is poorly understood. Serum 1,25(OH)2D levels are 
also higher in African individuals of all age-groups [163, 164], 
which may be due to increased PTH levels in this population 
[165]. However, the differences in the metabolism of vitamin, 
calcium and phosphate are insufficiently understood. Muta-
tions of genes involved in 1,25(OH)2D metabolism also influ-
ence circulating 1,25(OH)2D levels (reviewed in [121]). These 
mutations cause rare hereditary metabolic bone conditions, 
like hereditary vitamin D-resistant rickets (VDR), vitamin-
D-dependent rickets type 1A (CYP27B1), type 1B (CYP2R1) 
or idiopathic infantile hypercalcemia (CYP24A1). Mutations 
of the cell surface metalloproteinase PHEX cause X-linked 
hypophosphataemia (XLH), which is characterized by low-
normal 1,25(OH)2D concentrations [166].
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Measurement of 24,25(OH)2D 
and Calculation of the 24,25(OH)2D/25(OH)
D Ratio

Clinical Utility

24,25(OH)2D is the principal catabolite of 25(OH)D that 
is formed through the action of CYP24A1 when sufficient 
amounts of 25(OH)D are available. Under physiologi-
cal conditions the serum concentration of 24,25(OH)2D 
ranges at approximately 10% of the 25(OH)D concentra-
tion. Normally, 25(OH)D and 24,25(OH)2 are highly cor-
related [167, 168]. Therefore, the isolated measurement of 
24,25(OH)2 does not provide superior information when 
compared to 25(OH)D. However, the simultaneous deter-
mination of both metabolites has been found useful to 
identify patients with reduced CYP24A1 activity. Affected 
individuals are characterized by a reduced ratio between 
24,25(OH)2D and 25(OH)D [17]. This ratio is also known 
as vitamin D metabolite ratio (VMR). CYP24A1 loss-of-
function mutations cause infantile hypercalcemia (IIH) 
and represent a genetic risk factor for serious adverse 
effects in response to vitamin D supplementation [169]. 
In hypercalcaemic patients, the parallel measurement of 
both vitamin D metabolites and calculation of the VMR 
allows distinguishing CYP24A1 deficiency from other 
causes of hypercalcaemia, such as vitamin D intoxica-
tion, granulomatous disease, Williams-Beuren syndrome 
or mutations of the SLC34A1 gene [18, 170]. Therefore, 
24,25(OH)2D and 25(OH)D can be helpful in guiding 
genetic testing in patients with inherited hypercalcaemia.

In addition to the rather rare conditions mentioned 
before, Cavalier et al. have proposed the simultaneous 
quantitation of 24,25(OH)2D and 25(OH)D as a dynamic 
measure of vitamin D metabolism that aids the identifica-
tion of individuals with functional vitamin D deficiency 
[15]. In a cohort of 1200 infants, children, adolescent 
and young adults, the vast majority of individuals with 
low 25(OH)D had 24,25(OH)2D concentrations below the 
lower level of quantitation. With increasing 25(OH)D lev-
els, the percentage of individuals such a low 24,25(OH)2D 
concentration decreased and was negligible when serum 
25(OH)D exceeded 21 ng/ml (52,5 nmol/L). Based on 
these results, the authors concluded that this cut-off cor-
responds to biochemical vitamin D sufficiency. However, 
Cavallier et al. have also shown that different individuals 
with the same 25(OH)D concentration can have detectable 
or undetectable 24,25(OH)2D levels, suggesting that they 
are not equally vitamin D sufficient. This observation 
questions the use of a fixed 25(OH)D cut-off and suggests 
that an individual evaluation of the vitamin D status based 

on a simultaneous analysis of 24,25(OH)2D and 25(OH)
D might be more appropriate. Also, in black individuals, 
the parallel determination of both metabolites does better 
reflect the individual vitamin D status than the measure-
ment of 25(OH)D alone. On average, blacks have a 40% 
lower 25(OH)D serum concentration, which is at least 
partially due to ethnic differences in the prevalence of 
common genetic VDBP polymorphisms [38]. Recent evi-
dence from a cohort study of elderly community-dwelling 
individuals has shown that the VMR was associated with 
the risk of hip fracture whereas 25(OH)D was not [171]. 
In addition, higher 24,25(OH)2D, but not VMR, was asso-
ciated with a higher bone mineral density (BMD). The 
management of renal patients may also benefit from the 
measurement of 24,25(OH)2D. In addition to a decreased 
production of 1,25(OH)2D, also vitamin D catabolism is 
impaired in patients with chronic kidney disease [172]. 
The Seattle Kidney Study has shown that patients with 
a 24,25(OH)2D serum concentration below the cohort 
median of 2.4 ng/ml had a significantly lower eGFR and 
an increased risk of mortality. Moreover, the inverse cor-
relation of 24,25(OH)2D with PTH was stronger than that 
of 25(OH)D or 1,25(OH)2D.

Last, but not least, the VMR has also been proposed as 
an interesting tool to guide vitamin D supplementation at 
an individual level [173]. However, in existing vitamin D 
supplementation studies, neither 24,25(OH)2D nor VMR 
predicted the increase in serum 25(OH)D better than the 
baseline 25(OH) concentration [118, 174, 175]. In addi-
tion, neither 24,25(OH)2D nor VMR predicted the bio-
logical effect of vitamin D supplementation on bone and 
mineral metabolism better than 25(OH)D [176]. However, 
as most participants had detectable 24,25(OH)2D in serum, 
it cannot be excluded that they were vitamin D sufficient, 
which may have limited the diagnostic potential of this 
analyte. So far, no study compared the response of vitamin 
D supplementation in individuals with and without meas-
ureable concentrations of 24,25(OH)2D, but comparable 
serum 25(OH)D concentrations.

Current guidelines do not yet recommend the measure-
ment of 24,25(OH)2D in clinical practice. However, exist-
ing studies suggest that this practice should be changed. 
The determination of 24,25(OH)2D and calculation of the 
VMR are helpful in the differential diagnosis of patients 
with hypercalcaemia and seem to improve risk prediction 
in conditions where vitamin D catabolism is impaired. 
In addition, the simultaneous measurement of 25(OH)D 
and 24,25(OH)2D may help to individualize the assess-
ment of patients’ vitamin D status. In contrast, neither 
24,25(OH)2D nor VMR can predict the response to vita-
min D supplementation better than 25(OH)D.
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Preanalytical Considerations

24,25(OH)2D and 25(OH)D share similar chemical proper-
ties. Both compounds are very stable in serum and can thus 
be kept for up to 2 months at temperatures between + 25 °C 
and − 80 °C [17, 177]. For long-term storage samples should 
be frozen. More than 2 freeze-and-thaw cycles should be 
avoided as the serum 24,25(OH)2D concentration decreases 
by more than 20%. So far, the effect of light exposure and 
sample matrix on the 24,25(OH)2D serum concentration has 
not been studied systematically. However, it is prudent to 
protect samples from light exposure. The influence of patient 
related preanalytical factors, such as food intake, menstrual 
cycle or sunlight exposure has not been studied systemati-
cally. However, it can be expected that in line with 25(OH)
D, vitamin D supplementation and sunlight exposure will 
increase the synthesis of 24,25(OH)2D.

Analytical Considerations

Measurement of 24,25(OH)2D is typically performed 
by LC–MS/MS. Although this technology is considered 
the gold standard for the measurement of vitamin D and 
its metabolites, an interlaboratory assay comparison by 
Wise et al. has shown substantial systemic differences of 
up to 36% [178]. In order to improve the comparability of 
24,25(OH)2D results, a standard reference material [179, 
180] and a reference method [181] have been developed. 
In addition, first EQA programs have included this analyte 
in their portfolio [182]. The efficacy of these measures has 
been demonstrated by a recent comparison study of two in-
house LC–MS/MS methods [16]. Both methods were prop-
erly validated and underwent regular proficiency testing. 
So far, immunoassays or other analytical methods for the 
measurement of this lowly concentrated analyte have yet 
not been developed.

Reference Values

So far, two studies have determined references ranges for 
the serum concentration of 24,25(OH)2D and the VMR 
using validated LC–MS/MS methods [183, 184]. In 1996, 
Tang et  al. found an average 24,25(OH)2D serum con-
centration of 5.7 ± 3.4 nmol/L and calculated a reference 
interval (2.5th–97.5th percentile) of 1.1.-13.5 nmol/L in 
healthy young army recruits (504 females and 1492 males) 
with a mean age of 23 years [184]. The diagnostic cut-off 
for vitamin D sufficiency (serum 25(OH)D > 50 nmol/L) 
was > 4.2  nmol/L. Dirks et  al. established a serum 
24,25(OH)2D reference interval in 92 middle-aged adults 
that ranged from 0.4 to 8.9 nmol/L [183]. Both studies calcu-
lated the VMR as 25(OH)D/24,25(OH)2D and reported ref-
erence intervals of 10–33 [184] and 7–23 [183], respectively. 

In line with these results, an earlier study from Ketha et al. 
reported a VMR reference interval of 7–35, which was 
obtained in 91 adults with an age range of 28–86 years [185]. 
It should be mentioned that not all laboratories calculate 
the VMR in the same way, while some use the formula 
25(OH)D/24,25(OH)2D, others do it the other way round 
24,25(OH)2D/25(OH)D, which provides totally different fig-
ures. Moreover, the VMR is further limited by the fact the 
two vastly different numbers are divided by each other and 
thus small changes in 24,25(OH)2D result in a great change 
in VMR. Furthermore, imprecision of this ratio is affected 
by the imprecision of the two methods.

Measurement of Vitamin D Binding 
Protein (VDBP) and Calculation of Free 
and Bioavailable 25(OH)D

Role of the Marker

VDBP is a highly polymorphic protein with over 100 iso-
forms that is encoded by the VDBP gene on chromosome 
4q12-q13. Structurally, the protein is closely related to albu-
min and alpha-fetoprotein [85]. It is mainly produced in the 
liver, but animal studies suggest that it can also be expressed 
by other tissues, such as kidney, testis, and adipose tissue 
[186]. The expression of VDBP is regulated by estrogens, 
which show higher concentrations during pregnancy and 
upon oral contraception [85].

As mentioned above, VDBP binds approximately 85% 
and albumin 15% of all circulating vitamin D metabolites 
[85]. Less than 0.1% of all 25(OH)D in the plasma of nor-
mal individuals is free. Similar to other steroid hormones, 
it is believed that only the free fraction can enter the cells 
to bind the cytosolic VDR. The free hormone hypothesis is 
supported by the observation that lacking VDBP does not 
necessarily cause functional vitamin D deficiency despite 
very low serum concentrations of 25(OH)D and 1,25(OH)2D 
[187–189]. In addition to its transport function of vitamin 
D metabolites, VDBP has also other functions including the 
renal megalin/cubilin-mediated reuptake of 25(OH)D in the 
kidneys,the scavenging of actin after muscular damage, neu-
trophil recruitment, complement 5a-mediated chemotaxis, 
fatty acid binding and formation of VDBP-Macrophage 
Activating Factor V (DBP-MAF) [85, 187]. For example, 
significant amounts of actin are released from damaged cells 
in response to trauma, sepsis, liver trauma, acute lung injury, 
preeclampsia, surgery, and burns. Upon polymerization, 
filamentous F-actin in combination with coagulation factor 
Va can promote disseminated intravascular coagulation and 
multiorgan failure. Through binding to VDBP, actin is rap-
idly cleared by the liver, lungs and spleen, thus preventing 
polymerization.
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Based on the free hormone hypothesis [190] is has been 
proposed that free 25(OH)D might be a better marker than 
total 25(OH)D to reflect a patient’s current vitamin D status 
[38, 191]. For example, patients with liver cirrhosis have a 
100% higher median of free 25(OH)D than unaffected con-
trols, despite lower total 25(OH)D concentrations. Interest-
ingly, these patients develop osteoporosis rather than osteo-
malacia, as it would be expected for vitamin D deficient 
patients with a low total 25(OH)D concentration [192]. In 
contrast, pregnant women have lower free 25(OH)D con-
centrations than non-pregnant controls [193]. Due to exist-
ing inconsistencies, the applicability of the free hormone 
hypothesis to vitamin D is still a matter of ongoing debate 
[153]. In contrast to other steroid hormones, the active 
metabolite 1,25(OH)2D is feedback regulated and the con-
centration of free hormone is so low that it may be insuf-
ficient for passive diffusion across the cell membrane and 
effective receptor binding [153]. In addition, it cannot be 
excluded that the megalin-dependent uptake of the VDBP-
25(OH)D complex into cells is limited to the proximal renal 
tubule. For example, a vitamin D-dependent expression 
megalin and cubilin has been found in several other epithe-
lia including placenta, parathyroid glands, pneumocytes, and 
epididymal epithelial cells [93, 194–196].

Considering the much lower affinity of 25(OH)D to albu-
min (Ka = 7 × 108/M) than to VDBP (Ka = 6 × 105/M), it is 
believed that albumin-bound 25(OH)D can easily dissociate 
from the protein and is thus available for metabolism. This 
concept has led to the term bioavailable 25(OH)D, which 
refers to all the circulating 25(OH)D that is not tightly bound 
to VDBP [197]. Several studies have used bioavailable 
25(OH)D rather than free 25(OH)D [38, 198–200].

Free [201] and bioavailable [38] 25(OH)D are calculated 
from total 25(OH)D, albumin and VDBP:

For accuracy, the measurements of 25(OH)D and VDBP 
are best performed by LC–MS/MS. The polymorphic nature 
of VDBP results in numerous variants of the protein with 
Gc1f and Gc1s and Gc2 being most common. These variants 

Free 25(OH)D =
Total 25(OH)D

(

kAlbumin + kVDBP

)

Total 25(OH)D = free 25(OH)D + albumin-bond 25(OH)D

+ VDBP-bond 25(OH)D

kAlbumin = 6 × 10
5
/M

kVDBP = 7 × 10
8
/M

Bioavailable 25(OH)D =
(

kAlb × Alb + 1
)

× free 25(OH)D

are believed to differ in their affinity for 25(OH)D [202, 
203]. The lowest kVDBP has been reported for the 1f/1f vari-
ant with 3.6 × 108/M, whereas 2/2 has supposedly the high-
est kVDBP with 11.2 × 108/M. However, different affinities of 
VDBP variants to 25(OH)D are a matter of ongoing scien-
tific debate [85]. Nevertheless, VDBP haplotypes impact the 
concentrations of total 25(OH)D, free 25(OH)D, and VDBP. 
The 2/2 haplotype is associated with the lowest total and 
free 25(OH)D concentrations. The lowest free percentage 
was seen with the 1s/1s haplotype and the highest one with 
the 1f/1f haplotype. Furthermore, the different Gc alleles 
affect the response to vitamin D supplementation [204]. The 
clinical significance of these VDBP variants is insufficiently 
understood. Existing studies do not show differences in frac-
ture rate [44, 205]. However, significant associations with 
numerous chronic disease, such as type 1 and 2 diabetes, 
osteoporosis, chronic obstructive lung disease, inflammatory 
bowel disease, some malignancies and tuberculosis, have 
been reported [206, 207].

Preanalytical Considerations

VDBP is relatively stable. Storing serum for 48 h at room 
temperature or refrigerated introduces only a small positive 
bias of < 10% [43]. Also, up to 2 freeze–thaw-cycles have 
no major impact on VDBP. Regarding LC–MS/MS meth-
ods, autosampler stability is also acceptable with < 16% loss 
during 24 h in a 96-well plate. In order to minimize the 
impact of preanalytical factors, samples should be processed 
rapidly after collection. The distribution of VDBP variants 
differs substantially between black and white individuals, 
which has important analytical implications (see below) 
and impacts free 25(OH)D levels. Haemolysis and lipaemia 
have also been reported to interfere with the measurement 
[43]. In addition, free 25(OH)D is less stable than protein-
bound 25(OH)D and thus requires some precautions for 
direct measurement. Samples are light-sensitive and should 
be protected from UV-irradiation. Long term storage should 
be at − 70 °C [208]. To mitigate the impact of preanalytical 
factors on free 25(OH)D, measurement in fresh samples is 
preferred.

Analytical Considerations

The measurement of VDBP is challenging and LC–MS/MS 
is the preferred method for this analyte due to superior sen-
sitivity and specificity [43]. For example, only LC–MS/MS 
can detect VDBP isoforms. However, LC–MS/MS analyses 
require experienced staff and expensive equipment, which 
are not widely available [208]. Immunoassays have been 
developed as easy-to-use alternative that allow a relatively 
high throughput. However, the use of immunoassays for 
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the quantitation of a highly polymorphic protein, such as 
VDBP, is problematic, especially when the target epitope(s) 
are located near the polymorphic region [43]. For exam-
ple, Henderson CM et al. have shown that assays with a 
monoclonal capture antibody may react differently with 
common variants, and thus deliver misleading results [43]. 
With a monoclonal immunoassay, blacks, which carry pre-
dominantly the Gc1f variant, have been reported to have 
substantially lower VDBP concentrations than whites [38, 
209]. When using a validated LC–MS/MS method that can 
distinguish between VDBP variants, no ethnic differences 
in VDBP concentration were found. Although polyclonal 
assays are less influenced by isoforms and other genetic 
variations, they still deliver largely discrepant results when 
compared to LC–MS/MS with a median bias of + 50% [210]. 
Such differences have great impact on the calculation of free 
and bioavailable 25(OH)D [209, 211]. Therefore, free and 
bioavailable 25(OH)D concentrations should be determined 
on the basis of accurate VDBP and total 25(OH)D results 
obtained with validated LC–MS/MS methods.

The direct quantification of free 25(OH)D constitutes 
an analytical challenge, due to its very low concentration 
(0.02% to 0.09% of total 25(OH)D concentration) [193]. 
Even sensitive LC–MS/MS systems are not sufficient to 
accurately measure such low concentrations. Therefore, 
most studies calculate the free 25(OH)D concentration 
from measurements of total 25(OH)D, VDBP and albumin. 
However, the result is strongly dependent on the accuracy 
of the methods used for total 25(OH)D and VDBP. A com-
parison of calculated free 25(OH)D results obtained with 
four different VDBP immunoassays has shown differences 
of up to 50%. Direct methods for the measurement of free 
25(OH)D have also been developed [212, 213]. Centrifugal 
ultrafiltration has been described in the 1980s and appears 
reasonably accurate [212]. However, this method is highly 
complex and expensive. A recently marketed ELISA from 
DiaSource showed good agreement with a dialysis-based 
reference method [213], but low concordance with indirect 
methods [211, 214]. Amongst 173 healthy women, Deming's 
regression showed a slope of 0.3 ± 0.03, and a correlation 
coefficient of 0.6 ± 0.06.

Expected Values

To date, reliable reference values for free 25(OH)D and 
VDBP have not yet been established, and several ranges 
have been proposed. Due to the lack of standardization, 
reference intervals have to be method-specific. In addi-
tion, differences between black and white individuals have 
been reported for some methods, but not for others. When 
measuring free 25(OH)D by direct immunoassay in 279 
healthy controls with a median age of 36.6 years, 95% of 
the results ranged between 0.5 and 8.1 pg/ml, with VDBP 

concentrations measured by a polyclonal immunodiffusion 
assay between 190.8 and 395.2 µg/ml [193]. Amongst 2085 
participants of the Healthy Aging in Neighbourhoods of 
Diversity across the Life Span cohort, blacks and whites 
showed mean ± standard error concentrations of 168 ± 3 µg/
ml and 337 ± 5  µg/ml, respectively [38]. Bioavailable 
25(OH)D-was 2.9 ± 0.1 ng/ml in blacks and 3.1 ± 0.1 ng/ml 
in whites. However, VDBP was measured by a monoclonal 
immunoassay that suffers from variable detection of different 
VDBP variants. In 173 healthy women, Peris et al. reported 
free 25(OH)D concentrations between 2 and 15 pg/ml using 
an indirect method whereas directly measured results ranged 
between 2 and 8 pg/ml [214]. Zeng et al. determined nor-
mal free 25(OH)D results on the basis of sufficient total 
25(OH)D concentrations and suggested a range between 
8.5 and 28.3 pg/ml (equivalent to 30 and 100 ng/ml of total 
25(OH)D [74]. In our opinion, this range is rather high. In 
healthy children, Lopez-Molina et al. calculated that directly 
measured free 25(OH)D results above 9.8 pmol/L (equal to 
3.9 pg/ml) correlate best with a total 25(OH)D concentra-
tion > 50 nmol/L [215].

Indications

Currently, routine measurement of VDBP, free and bioavail-
able 25(OH)D are not recommended due to unresolved ana-
lytical issues and the lack clinical evidence that supports an 
additional value beyond the measurement of total 25(OH)
D. Potential areas of interest for the use of these mark-
ers are patients with liver or renal disease, which cause a 
decreased synthesis or loss of VDBP. Moreover, determining 
free 25(OH)D could also be useful for pregnant women or 
women on hormone therapy, because estrogens can upregu-
late VDBP levels. In the same line, elderly people could 
also benefit from assessing this marker since VDBP levels 
can be altered in this group due to a multifactorial effect 
[216, 217]. However, future clinical studies have to clarify 
the potential value of VDBP, free and bioavailable 25(OH)
D in such patients.

Influence of VDBP in Pathological Conditions

Different variants of VDBP with different affinities for 
25(OH)D influence the measurement of VDBP as well as 
the determination of free 25(OH)D. As the distribution of 
VDBP variants changes between blacks and whites, ethnicity 
needs to be considered when assessing these markers [38]. 
Based on the method used, differences in VDBP and free 
25(OH)D have been found or not [38, 43, 211]. Changes in 
estrogen levels, such as in pregnancy, alter the expression of 
VDBP. Between the second and third trimester, VDBP levels 
increase up to two-fold. However, these variations are not 
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linked to changes in free 25(OH)D, which remains stable or 
slightly decreases [85, 218, 219].

Critically ill patients with organ dysfunction also show 
substantial variation in serum VDBP when compared with 
normal individuals [220, 221]. Liver diseases, especially at 
late stages, often cause impaired protein synthesis, result-
ing in decreasing levels of VDBP and albumin. In turn, free 
25(OH)D is increased in these patients compared to con-
trols [85]. These changes are most pronounced in cirrhotic 
patients. Renal disease also decreases VDBP levels, via pro-
teinuria and saturation of the maximal transport capacity of 
the megalin/cubilin system. Consistently, nephrotic patients 
present low total and free 25(OH)D levels [222]. However, 
in dialysis patients VDBP levels are comparable with healthy 
individuals [218]. Despite normal VDBP levels, immunoas-
says and LC–MS/MS methods vary in the quantitation of 
25(OH)D in dialysis patients. Potential differences may be 
due to increased urea concentrations that interfere with the 
release of 25(OH)D from VDBP, the binding equilibrium 
or the reagents of immunoassays. In contrast, LC–MS/MS 
methods are not affected from such interferences.

Conclusion

The existence of multiple vitamin D metabolites with dif-
ferent biological activities and their binding to VDBP and 
other carriers makes the assessment of vitamin D status a 
challenging task. Despite promising results for alternative 
markers, such as 24,25(OH)D, VMR, free and bioavailable 
25(OH)D, 25(OH)D remains the preferred analyte for this 
purpose. The assessment of 25(OH)D is recommended for 
patients with established metabolic bone disease or individu-
als with an increased risk of developing these conditions, 
and the monitoring of vitamin D supplementation. For non-
bone-related diseases, the determination of 25(OH)D is not 
recommended. Despite recent standardization, the accurate 
measurement of 25(OH)D remains a critical issue in clinical 
practice. Properly validated LC–MS/MS methods are pref-
erable due to their high sensitivity, specificity, and robust-
ness for interferences from matrix effects. 1,25(OH)2D, 
24,25(OH) 2D and the VMR provide functional information 
on vitamin D metabolism and are thus useful for the inves-
tigation of rare enzyme defects (24-hydroxylase deficiency) 
and some other diseases (e.g. sarcoidosis, tuberculosis). The 
determination of VDBP, free and bioavailable 25(OH)D is 
compromised by unresolved analytical issues, the lack of 
reference intervals and insufficient clinical evidence that 
justifies their use. Future research should address analytical 
standardization and explore the clinical value of novel mark-
ers of vitamin D metabolism.
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