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Optimal population size to detect quantitative trait loci in Korean 
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Objective: A genomic region associated with a particular phenotype is called quantitative 
trait loci (QTL). To detect the optimal F2 population size associated with QTLs in native 
chicken, we performed a simulation study on F2 population derived from crosses between 
two different breeds. 
Methods: A total of 15 males and 150 females were randomly selected from the last gener­
ation of each F1 population which was composed of different breed to create two different 
F2 populations. The progenies produced from these selected individuals were simulated for 
six more generations. Their marker genotypes were simulated with a density of 50K at three 
different heritability levels for the traits such as 0.1, 0.3, and 0.5. Our study compared 100, 
500, 1,000 reference population (RP) groups to each other with three different heritability 
levels. And a total of 35 QTLs were used, and their locations were randomly created.
Results: With a RP size of 100, no QTL was detected to satisfy Bonferroni value at three 
different heritability levels. In a RP size of 500, two QTLs were detected when the heri­
tability was 0.5. With a RP size of 1,000, 0.1 heritability was detected only one QTL, and 0.5 
heritability detected five QTLs. To sum up, RP size and heritability play a key role in detecting 
QTLs in a QTL study. The larger RP size and greater heritability value, the higher the pro­
bability of detection of QTLs. 
Conclusion: Our study suggests that the use of a large RP and heritability can improve 
QTL detection in an F2 chicken population.

Keywords: Chicken; Heritability; Quantitative Trait Loci (QTL) Detection;  
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INTRODUCTION 

The application of genomics in agriculture focuses on identifying genes responsible for 
economically important traits in plants and animals. Some of these traits are characterized 
by wide variability in the expression of genes at certain loci, i.e., quantitative trait loci (QTL). 
A genomic region associated with a particular phenotype is called QTL. Classification of 
the chromosomal regions containing QTLs could be useful in marker-assisted selection 
to increase breeding efficiency [1]. Also, the combination of a molecular linkage map with 
powerful statistical approaches enables the genetic partition of complex traits. Chicken 
has particular advantages in such analysis due to its short life cycle and many offspring 
[2]. However, several factors could influence detection of QTLs, such as genotyping errors, 
training population size, phenotypic data replication levels, and various environmental 
effects. The evaluation of some of them is either difficult or time consuming in practice. 
As an alternative, simulation experiments are generally performed for the evaluation of 
such factors [3].
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  A simulation study allows the testing of several theories, 
permitting an unravelling of the multifaceted evolutionary 
patterns that are otherwise difficult to understand. For ex­
ample, the elucidation of the history of human migration 
provides significant insight into the present patterns of DNA 
variation in humans [3-5]. Simulation studies of beef cattle 
and other livestock have provided information on their po­
tential for genomic evaluation. Studies have included the 
prediction of total genetic value [6], genomic prediction of 
simulated multi-breed and purebred cattle [7], genomic selec­
tion accuracy in simulated populations [8], and a comparison 
between single- and two-step genomic best linear unbiased 
prediction methods in simulated beef cattle [9,10]. The chicken 
60K single-nucleotide polymorphism (SNP) panel currently 
provides a level of genome coverage and map resolution that 
are unavailable from microsatellite markers. The high density 
SNP panel also has the potential to achieve improved accuracy 
in determining QTL locations. An F2 population is useful 
for detecting QTLs because it is a cross between two popula­
tions differing phenotypically in a trait [2]. Ledur et al [11] 
showed that designed populations, such as F2 populations 
for use in genome-wide association studies (GWAS), had 
advantages over random populations in terms of reducing 
the false discovery rate and improving mapping accuracy. 
Several experiments have been conducted based on this de­
sign in different livestock species. The design is especially 
useful in pigs and chickens because of their shorter genera­
tion interval and higher prolificacy than other species. The 
objective of this study was to investigate the optimal size of 
an F2 population in QTL detection through simulation using 
QMSim software.

MATERIALS AND METHODS 

Simulation of F2 population, population structure, and 
simulation parameters
The number of QTLs was examined in two different F2 pop­
ulations. A total of six chicken populations were simulated, 
including Line 1 and Line 2, which performed as a typical 
sire and dam population, respectively. The crossing of males 
of Line 1 and females of Line 2 produced the F1a population, 
whereas mating of males of Line 2 and females of Line 1 pro­
duced F1b population. Similarly, the males of F1a and females 
of F1b produced the F2a population, and the females of F1a 
and males of F1b created the F2b population in this study. 
However, we did not include the effect of mating system in 
this study.
  The QMSim software package [12] was used for simula­
tion of phenotypic and genotypic datasets of the populations. 
These simulated datasets mimicked the actual population 
structures and extent of linkage disequilibrium (LD) existing 
in the Korean native chicken population [13]. Table 1 sum­

marizes the parameters for simulation. A 50K marker-density 
panel was simulated to generate bi-allelic markers distributed 
across 18 autosomal chromosomes of different lengths. In 
the beginning, a historical population (HP) was simulated, 
which had a constant size of 10,000 individuals across 1,000 
generations. Then, the size was gradually reduced to 8,000 
individuals in the subsequent 1,050 generations to create an 
initial LD and mutation-drift equilibrium. The number of 
individuals produced for each sex was equal (equal probability 
of being male or female), and the mating performed among 
parents was random. For simulating two different pure lines 
(Lines 1 and 2), 60 males and 600 females were selected from 
the last generation of the HP. As Line 1 acted as a sire popu­
lation, individuals selected from this population were based 
on a higher true breeding value (TBV). Oppositely, Line 2 
being the dam population, the selection of individuals from 
Line 2 was based on a lower TBV. The mating design in each 
population was based on positive assortative mating. A total 
of 660 selected individuals was used as the effective popula­
tion size, Ne was simulated across 20 generations, with each 
dam producing 10 offspring per generation in all simula­
tions. A total of 330 individuals (30 males and 300 females) 
were chosen from the last generation of HP and bred for five 
generations to create two different F1 populations (F1a and 
F1b). Finally, 15 males and 150 females were randomly chosen 
from the last generation of each F1 population and randomly 
bred for six more generations to create two different F2 pop­
ulations (F2a and F2b), following a similar mating design as 
described earlier. The replacement ratio for both sires and 
dams was 100%. Traits with a phenotypic variance of 1 and 
heritability levels of 0.1, 0.3, and 0.5 were used in the simula­
tion. Three reference populations (RP) consisting of 100, 500, 
and 1,000 individuals were created through a random selec­
tion of individuals from generations 5 and 6 of F2 population. 
  Our simulated genome comprised 18 pairs of chromo­
somes, with a length identical to the actual Korean native 
chicken genome length of 2,729.4 cM [13]. A marker density 
of 50K was selected to ensure sufficient density for segregat­
ing bi-allelic loci. The effect of markers on traits was neutral 
and the effect of QTL was considered to explain 100% of the 
genetic variance. The whole-genome consisted of 35 QTLs, 
where these segregated QTLs consist of 2 to 4 alleles per 
loci (randomly distributed), with a minor allelic frequency 
greater than 0.01. The additive genetic effect of the QTL 
was sampled from a gamma distribution, with a parametric 
shape equal to 0.4. The rate of missing marker genotype 
and marker genotyping error was 0.05 and 0.005, respec­
tively. A recurrent mutation rate of 10–5 was used for markers 
and QTLs throughout the simulation to obtain a mutation-
drift equilibrium in the population. Phenotypes were generated 
by adding random residuals to the QTL effects.
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Statistical model for quantitative trait loci detection
The F2 population was chosen as the RP as their parents 
were produced by crossing two different families. In GWAS, 
all markers are required to be in LD, with causal variants in 
close proximities. All SNPs were coded as AA = 0, AB = 1, 
and BB = 2, respectively [14]. The statistical model was as 
follows:

  y = μ+CGi+b1SNPk+A1+eijk

where y is the phenotype of individuals; μ is the overall mean, 

CGi is the vector of fixed contemporary group effect for gener­
ation by sex; b1 is the fixed/random effect of marker genotype; 
SNPk is the recoded marker genotype (0, 1, and 2); A1 is the 
vector of the random polygenic effect with 
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  To map QTLs, a modified Bonferroni-type multiple testing 
correction threshold was used [15] to restrict the experiment-
wise error rate to 0.05 [16].

Table 1. Population structure and simulation parameters

Parameter Value

Step 1: HG
Number of generations (size) – phase 1 1,000 (10,000)
Number of generations (size) – phase 2 1,050 (8,000)
Number of generations (size) – phase 3 20 (660)

Step 2: Pure-line generations
Number of founder males from the HG 60
Number of founder females from the HG 600
Number of generations 20

Step 3: Recent generations (F1 populations)
Number of founder males from pure line 30
Number of founder females from pure line 300
Number of generations 5

Step 4: Recent generations (F2 populations)
Number of founder males from F1 population 15
Number of founder females from F1 population 150
Number of generations 6
Number of offspring per dam 10
Ratio of males 50%
Mating system Selective
Replacement ratio for males 100%
Replacement ratio for females 100%
Selection TBV/positive assortative
Ratio of missing sires and dams 5%
Trait heritability 0.1, 0.3, or 0.5
Phenotypic variance 1.0

Genome 
Number of chromosomes 18
Total length 2,729.4 cM
Number of markers 33,802
Marker distribution Evenly spaced
Number of QTLs 35
QTL distribution Random
MAF for markers 0.1
MAF for QTL 0.1
Additive allelic effects for markers Neutral
Additive allelic effects for QTL Gamma distribution (shape =  0.40)
Rate of missing marker genotypes 0.05
Rate of missing QTL genotypes 0.00
Rate of marker genotyping error 0.005
Rate of recurrent mutation 0.00025
QTL mutation rate 2.5e-005

HG, historical generation; TBV, true breeding value; QTL, quantitative trait locus; MAF, minor allele frequency.
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RESULTS AND DISCUSSION 

To investigate the optimal size of an F2 population in QTL 
detection, QMSim software was used to simulate data sets 
derived under different scenarios (e.g., h2 = 0.1, 0.3, and 0.5; 
RP size = 100, 500, and 1,000), as shown in Figure 1, 2, and 

3. Across the RP sizes, we observed an overall increase in the 
number of significant QTLs across the different chromo­
somes. 
  With a RP size of 100, no QTL was detected to satisfy 
Bonferroni value at three different heritability levels. In a RP 
size of 500, two QTLs were detected when the heritability 

Figure 1. Manhattan plot of QTL detection profiles for an F2 chicken population showing the –log10 p-values across the 18 chromosomes with a 
heritability of 0.1 for RP sizes of 100, 500, and 1,000. Red triangles and dotted lines indicate possible locations of QTLs and the genome-wide sig-
nificant threshold, respectively. Note that GWAS based on 100 animals with 0.1 heritability should be as (a) RP of 100 with h2 of 0.1, (b) RP of 100 
with h2 of 0.3, (c) RP of 100 with h2 of 0.5. QTL, quantitative trait locus; RP, reference population; GWAS, genome-wide association studies. 

Figure 2. Manhattan plot of QTL detection profiles for an F2 chicken population showing the –log10 p-values across the 18 chromosomes with a 
heritability of 0.3 for RP sizes of 100, 500, and 1,000. Red triangles and dotted lines indicate possible locations of QTLs and the genome-wide sig-
nificant threshold, respectively. QTL, quantitative trait locus; RP, reference population.
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was 0.5. With a RP size of 1,000, 0.1 heritability was detected 
only one QTL, and 0.5 heritability shows that five QTLs were 
detected. To sum up, RP size and heritability are playing a 
key role to detect QTLs in the QTL study. This result implies 
that RP sizes should be increased in accordance with herita­
bility in an F2 chicken population. With a RP size of 1,000, 
many QTLs were detected at different h2 levels of traits, even 
at the h2 value of 0.1 (Figure 1). The results of this study imply 
that increasing the RP size and heritability level improved 
QTL detection in an F2 population. However, the optimal 
RP size for QTL detection should be at least 500 individuals 
across scenarios of traits with low to high heritability levels 
(h2 = 0.1, 0.3, and 0.5) to obtain more significant QTLs in an 
F2 chicken population. These results support an earlier study 
by Hocking [17], who detected QTLs for production traits 
in F2 crosses between 250 to 700 birds of two breeds. In 1992, 
the Korean government launched the nationwide Korean 
native chicken restoration project, which was mainly admin­
istered by the National Institute of Animal Science (NIAS) 
and focused on the development of meat-type native chick­
en lines [18]. As part of this project, Korean Ogye and White 
Leghorn cross populations were investigated for the deter­
mination of QTLs and eventually, the causative mutations 
for meat- and egg-related traits. The results of the present 
study can be used as an initial framework for designing and 
implementing QTL detection in an F2 chicken population, 
especially cross populations between the Korean Ogye and 
White Leghorn breeds. However, the population structure 

and genetic architecture of traits should also be considered 
to optimize the RP sizes for QTL detection in the chicken 
industry.

CONCLUSION

In general, a large RP size (1,000) had a positive effect on 
QTL detection compared with a RP size of 100 or 500. The 
RP size and heritability levels should be considered for QTL 
detection in an F2 chicken population.
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