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Commen t a r y

Skeletal muscle consists of large multinucleated fibers 
that rapidly contract in response to action potentials 
generated in their surface membrane. The fiber’s con
tractile apparatus is activated by Ca2+ ions that are re
leased into the cytoplasm from an extensive intracellular 
storage compartment, the sarcoplasmic reticulum (SR), 
in response to the action potential. Ca2+ concentra
tion changes in the cytoplasm during the excitation–
contraction (EC) coupling process have been recorded 
for several decades, but only in recent years have me
thods been developed to monitor Ca2+ in the SR. In this 
issue of the Journal, Robin and Allard make use of this 
approach to study the functional basis of changes in 
the filling state of the SR during longlasting mem
brane depolarizations.

Voltage-controlled Ca2+ release in muscle fibers
The efflux of Ca2+ from the SR is mediated by ryanodine 
receptors (RyRs), members of a family of giant intra
cellular channel proteins. The subtype 1 (RyR1) forms 
regular arrays in specialized zones of the SR membrane 
that communicate with the transverse tubules (TTs), 
narrow invaginations of the surface membrane, which 
conduct the surface action potential into the center of 
the fiber (Manno et al., 2013). The TT–SR junction is 
the basis of a unique voltage control mechanism for the 
rapid opening and closing of the RyR1 in response to ac
tion potential depolarization and repolarization (Melzer 
et al., 1995; Dulhunty, 2006; Baylor and Hollingworth, 
2012). Whereas “standard” voltageactivated channels 
contain both of their essential functional elements, i.e., 
a voltage sensor and an ionconducting pore, within  
a single protein, the RyR1 protein has no comparable 
voltagesensitive region. The SR membrane does not 
seem to develop a substantial voltage, either at rest or 
during Ca2+ release (Fink and Veigel, 1996). Instead, it 
relies on the voltage of the TT membrane and the voltage 
sensitivity of a separate protein located in this mem
brane, the dihydropyridine receptor (DHPR; an Ltype 
Ca2+ channel, CaV1.1), which is mechanically connected 
to the RyR1. The DHPR itself is not a very effective Ca2+ 
channel. Its poreopening reaction is much slower than 
the coupling reaction that bridges the junctional gap 
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and gates the RyR1. Moreover, opening the DHPR pore 
requires stronger depolarization than does the coupling 
reaction, and the Ca2+ inward current it passes is far 
smaller than the Ca2+ release flux from the SR (Ursu et al., 
2005). In fact, in some fish (higher teleosts), the DHPR 
does not pass Ca2+ at all (Schredelseker et al., 2010).

The TT voltage controls the gate of the RyR1 but— 
being generated in a separate membrane—has no direct 
influence on the driving force for the efflux of Ca2+ from 
the SR, which is provided by the steep transmembrane 
Ca2+ concentration gradient between the SR lumen and 
the cytoplasmic space. The resting gradient is estab
lished by the constant action of adenosine triphosphate 
(ATP)driven Ca2+ pumps (SERCA) and supported by 
Ca2+ buffers in the SR lumen, of which calsequestrin is 
the most important (Murphy et al., 2009). Calseques
trin’s high capacity (up to 80 Ca2+ per molecule) enables 
storage of large amounts of Ca2+ in the SR and further 
stabilizes the concentration gradient during Ca2+ release. 
The affinity of calsequestrin for Ca2+ appears to decrease 
when the free Ca2+ concentration in the SR starts to fall, 
and it may even act as a funnel that guides Ca2+ ions to 
the releasing sites (Royer and Ríos, 2009). Moreover, 
calsequestrin probably also acts as a Ca2+ sensor that 
modulates RyR permeability depending on the Ca2+
loading state of the SR (Beard et al., 2009).

Voltage-dependent inactivation of EC coupling
Loss of the normal resting membrane potential may 
occur in extensively stressed muscle fibers. If not counter
acted by protective mechanisms, this condition would 
lead to maintained activation of Ca2+ entry from the 
extracellular space and Ca2+ release from the SR, and to 
dramatically increased ATP consumption. Longlasting 
depolarization leads to the spontaneous relaxation of 
force, a phenomenon first analyzed by Hodgkin and 
Horowicz (1960) in frog muscle using potassiuminduced 
contractures. They suggested that depolarization “liber
ates an activator which is used up in generating tension.” 
Later, this spontaneous relaxation process was linked  
to the immobilization of a transverse tubular charge 
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concentration in the SR (0.5 mM). The advantages and 
disadvantages of the two methods have recently been 
summarized by Manno et al. (2013). Robin and Allard 
(2013) used the first method in their experiments and the 
indicator Fluo5N (Kabbara and Allen, 2001; Ziman et al., 
2010) to record intraSR Ca2+ concentration changes. 
They combined this with an electrophysiological tech
nique termed “silicon clamp” (Pouvreau et al., 2007), 
which allows single electrode voltage clamping of large 
muscle cells using conventional whole cell patch clamp 
circuitry. The notorious problems of spaceclamping 
muscle fibers are avoided by electrically isolating a small 
region of the cell by covering the rest of it with a silicon 
grease. The micropipette used for voltage clamping di
alyses the intracellular space with an artificial solution 
to dilute the indicator present in the cytoplasm. In this 
study, the pipette solution also contained a very high 
concentration of the Ca2+ chelator EGTA (50 mM). This 
ensures that any residual cytoplasmic Fluo5N produces 
negligible fluorescent Ca2+ transients during depolar
ization and, therefore, permits the specific recording  
of free Ca2+ concentration changes within the SR. Con
ditions remain remarkably stable for considerable peri
ods of time in this configuration and thus permit the 
repeated fluorimetric recording of Ca2+ concentration 
changes within the SR during the longlasting prepulse 
protocols that are necessary to determine the steady
state voltage dependence of Ca2+ release availability. 
Under comparable conditions, Robin and Allard (2013) 
also recorded cytoplasmic Ca2+ transients using Fura2. 
Inspecting the decay of a cytoplasmic Ca2+ transient that 
occurs during maintained depolarization does not allow 
one to determine whether it results from inactivation of 
the release pathway or SR Ca2+ depletion. When looking 
at the Ca2+ level within the SR, however, the distinction 
is possible: depletion will cause a decrease, whereas in
activation will lead to the opposite. Exploiting these 
properties, the study came to the interesting conclusion 
that the slow decline in Ca2+ transients recorded with 
cytoplasmic indicators during longlasting depolarization 
is largely caused by depletion. Inactivation gets started 
only at lower (more depolarized) membrane potential 
and follows with a delay.

These findings are compatible with the discrepancy 
between steadystate availability curves of Ca2+ release 
and Ltype Ca2+ current we have observed in our own 
experiments (Ursu et al., 2004; Andronache et al., 2009). 
We noticed a markedly elevated free cytoplasmic Ca2+ con
centration in a voltage range whose center was 20 mV 
more positive than the threshold for release activation. 
We viewed this steady increase in basal Ca2+ concentra
tion as resulting from a window Ca2+ release (Ursu et al., 
2004; Andronache et al., 2009) in analogy to the window 
current known from “conventional” voltagedependent 
channels. Window currents arise from the overlap be
tween activation and availability curves at voltages where 

movement (Chandler et al., 1976) and attributed to an 
inactivation process. During strong depolarization the 
transition from the activatable to the inactivated state 
takes seconds to develop, and it takes minutes to fully 
recover from inactivation after repolarization. This in
activation is enhanced by Ltype Ca2+ channel antago
nists (Berwe et al., 1987; Feldmeyer et al., 1990). Indeed, 
like other voltagedependent channels, the DHPR en
ters an inactivated state during longlasting membrane 
depolarization (Cota et al., 1984). Inactivation can be 
studied by recording the Ltype Ca2+ current or the gat
ing charge movement produced by the DHPR. Like its 
voltagedependent activation, inactivation of the DHPR 
is communicated to the RyR1 and leads to its closure.

Availability curves, i.e., the graded sigmoidal depen
dence of fractional force or Ca2+ release activation on 
steadystate voltage, belong to the standard repertoire 
in the characterization of the EC coupling mechanism. 
It is generally assumed that these curves demonstrate 
the voltage dependence of the inactivation mechanism 
of the voltage sensor. Yet, in experiments in which Ltype 
Ca2+ current and Ca2+ release are measured in parallel, 
Ca2+ release availability reaches its halfmaximal value at 
more negative holding potentials compared with the 
availability of the Ca2+ inward current produced by the 
DHPR (Andronache et al., 2009). One explanation would 
be that the voltage control of RyR1 inactivation and the 
inactivation of the Ltype channel permeation pathway 
are mediated by different states of the DHPR. A compa
rable situation is found in the activation process in which 
different states of the DHPR, attained at different volt
ages, appear to control Ca2+ release and Ca2+ entry, re
spectively (García et al., 1994; Dietze et al., 2000). In this 
issue, Robin and Allard (2013) challenge the view that 
DHPR inactivation is the dominant cause of the decline in 
Ca2+ release during longlasting depolarization. Instead, 
they suggest that Ca2+ depletion in the SR lumen shapes 
the “steadystate availability curve” of Ca2+ release.

Monitoring Ca2+ in the storage compartment
It is obvious that the large voltageactivated flux of Ca2+ 
from the SR may also appreciably alter its own driving 
force. However, separating RyR gating from SR depletion 
is difficult. Until recently, indirect methods were used 
to estimate the Ca2+ content of the SR and its changes 
during various Ca2+ release paradigms (Pape et al., 1995; 
Posterino and Lamb, 2003). Within the last couple of 
years, progress has been made in imaging intraSR cal
cium using fluorescent probes (Rudolf et al., 2006; Ziman 
et al., 2010; Sztretye et al., 2011; Robin and Allard, 2012). 
Two different methods have been established. One uses 
the permeable acetoxymethyl ester form of a synthetic 
fluorimetric dye loaded into the SR lumen. The other 
uses proteinbased Ca2+ sensors that can specifically 
be targeted to the SR. The indicators should be of low 
affinity to avoid saturation by the high resting free Ca2+ 
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rectangular pulses that were considerably longer than 
an action potential produced clear evidence of inactiva
tion, i.e., a recovery of SR Ca2+ after an initial decline 
during the course of stimulation. According to current 
knowledge, it is unlikely that muscle fatigue can be attrib
uted to a single cellular event; instead, it includes con
tributions from action potential changes, alterations in 
the contractile apparatus, and Ca2+ release (Allen et al., 
2008). Therefore, the authors’ conclusion that SR deple
tion may predominantly contribute to fatigue should be 
considered with a bit of caution. Their method required 
intracellular conditions that are quite far from physio
logical. ATP turnover was probably far lower than under 
normal conditions in working muscle during high fre
quency stimulation, and the very high concentration of 
the Ca2+ chelator in the cytoplasm likely favored SR de
pletion. It seems worthwhile to further investigate this 
question using less invasive methods. Here, proteinbased 
Ca2+ indicators that can be used even in intact muscle 
(Rudolf et al., 2006) could show their full potential.
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