DOI: 10.2903/j.efsa.2024.8841

SCIENTIFIC REPORT

Scientific support for preparing an EU position in the 55th Session of the Codex Committee on Pesticide Residues (CCPR)

EFSA (European Food Safety Authority)

Correspondence: pesticides.mrl@efsa.europa.eu

Abstract

The European Commission asked EFSA to provide support in the framework of Article 43 of Regulation (EC) No 396/2005 for the preparation of the EU position for 55th Session of the Codex Committee on Pesticide Residues (CCPR). In the current report, EFSA provided comments and recommendations on the Codex maximum residue level (MRL) proposals derived by the Joint Meeting on Pesticide Residues (JMPR) that will be discussed in the upcoming CCPR meeting. The current report should serve as the basis for deriving the EU position for the CCPR meeting.

K E Y W O R D S

55th CCPR meeting, consumer risk assessment, MRL setting, residue definitions, toxicological evaluation

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. © 2024 European Food Safety Authority. *EFSA Journal* published by Wiley-VCH GmbH on behalf of European Food Safety Authority.

CONTENTS

Ab	stract			1	
Su	mmar	у		8	
1.	Intro	oduction	٦	9	
	1.1.	Backg	round	9	
	1.2.	Terms	of Reference	9	
2.					
3.	Gen	eral con	sideration items/comments on Chapter 'General considerations' of JMPR reports	12	
	3.1.	Devel	opments in dietary exposure methodology for pesticide residues in foods	12	
	3.2.	Devel	opment of guidance on the assessment and interpretation of nonlinear toxicokinetics	12	
	3.3.	The ne	eed for sponsors to provide accurate chemical structures and related information on metabolites	13	
	3.4.	· ··· j ·· ··· ··· ··· ··· ··· ··· ··· ··· ··			
	3.5.				
	3.6.	. Why is a residue definition sometimes not agreed when there is an ADI/ARfD?			
	3.7.	Enhan	cement of process	14	
	3.8.	Strate	gy and timing for JMPR re-evaluation of dithiocarbamates	14	
4.	Resp	oonses t	o specific concerns raised by the Codex Committee on Pesticide Residues (ccpr)	14	
	4.1.	Indox	acarb (216)	14	
	4.2.	Mefen	ıtrifluconazole (320)	15	
	4.3.	Metala	axyl (138)	16	
	4.4.	Phosm	net (103)	16	
5.	Com	nments	on JMPR report Chapter 5 (individual substances assessed)	17	
	5.1.	Pyreth	nrins (63) R	17	
		5.1.1.	Background information	17	
		5.1.2.	Toxicological reference values	17	
		5.1.3.	Residue definitions	18	
		5.1.4.	Analytical methods	18	
		5.1.5.	Codex MRL proposals	18	
		5.1.6.	Consumer risk assessment	18	
		5.1.7.	Conclusions	19	
		5.2.	Carbendazim (72) R/T	19	
		5.2.1.	Background information	19	
		5.2.3.	Residue definitions	20	
		5.2.4.	Analytical methods	20	
		5.2.5.	Codex MRL proposals	20	
		5.2.6.	Consumer risk assessment	20	
		5.2.7.	Conclusions	21	
		5.3.	Thiophanate-methyl (77) R/T	21	
		5.3.1.	Background information	21	
		5.3.2.	Toxicological reference values	22	
		5.3.3.	Residue definitions	22	
		5.3.4.	Analytical methods	23	
		5.3.5.	Codex MRL proposals	24	
		5.3.6.	Consumer risk assessment		
		5.3.7.	Conclusions		
		5.4.	Carbofuran (96) R/T	27	
		5.4.1.	Background information	27	
		5.4.2.	Toxicological reference values	27	

Т

5.4.3.	Residue definitions	
5.4.4.	Analytical methods	
5.4.5.	Codex MRL proposals	29
5.4.6.	Consumer risk assessment	
5.4.7.	Conclusions	
5.5.	Iprodione (111) R/T	
5.5.1.	Background information	
5.5.2.	Toxicological reference values	
5.5.3.	Residue definitions	
5.5.4.	Analytical methods	
5.5.5.	Codex MRL proposals	
5.5.6.	Consumer risk assessment	
5.5.7.	Conclusions	
5.6.	Zeta-cypermethrin (118) R	
5.6.1.	Background information	
5.6.2.	Toxicological reference values	
5.6.3.	Residue definitions	
5.6.4.	Analytical methods	
5.6.5.	Codex MRL proposals	
5.6.6.	Consumer risk assessment	
5.6.7.	Conclusions	40
5.7.	Permethrin (120) R/T	
5.7.1.	Background information	
5.7.2.	Toxicological reference values	
5.7.3.	Residue definitions	
5.7.4.	Analytical methods	
5.7.5.	Codex MRL proposals	
5.7.6.	Consumer risk assessment	
5.7.7.	Conclusions	
5.8.	Diflubenzuron (130) R	
5.8.1.	Background information	
5.8.2.	Toxicological reference values	
5.8.3.	Residue definitions	
5.8.4.	Analytical methods	
5.8.5.	Codex MRL proposals	
5.8.6.	Consumer risk assessment	
5.8.7.	Conclusions	
5.9.	Deltamethrin (135) R	46
5.9.1.	Background information	46
5.9.2.	Toxicological reference values	
5.9.3.	Residue definitions	
5.9.4.	Analytical methods	
5.9.5.	Codex MRL proposals	
5.9.6.	Consumer risk assessment	
5.9.7.	Conclusions	
5.10.	Prochloraz (142) R/T	
5.10.1.		
	Toxicological reference values	
	Residue definitions	

	Analytical methods	
5.10.5.	Codex MRL proposals	
5.10.6.	Consumer risk assessment	
5.10.7.	Conclusions	
5.11.	Carbosulfan (145) R/T	
5.11.1.	Background information	
5.11.2.	Toxicological reference values	53
5.11.3.	Residue definitions	55
5.11.4.	Analytical methods	
5.11.5.	Codex MRL proposals	
5.11.6.	Consumer risk assessment	57
5.11.7.	Conclusions	
5.12.	Propiconazole (160) R	
5.12.1.	Background information	
5.12.2.	Toxicological reference values	59
5.12.3.	Residue definitions	60
5.12.4.	Analytical methods	61
5.12.5.	Codex MRL proposals	61
5.12.6.	Consumer risk assessment	63
5.12.7.	Conclusions	64
5.13.	Boscalid (221) R	64
5.13.1.	Background information	64
5.13.2.	Toxicological reference values	64
5.13.3.	Residue definitions	65
5.13.4.	Analytical methods	65
5.13.5.	Codex MRL proposals	66
5.13.6.	Consumer risk assessment	66
5.13.7.	Conclusions	66
5.14.	Difenoconazole (224) R	67
5.14.1.	Background information	67
5.14.2.	Toxicological reference values	67
5.14.3.	Residue definitions	68
5.14.4.	Analytical methods	68
5.14.5.	Codex MRL proposals	69
5.14.6.	Consumer risk assessment	71
5.14.7.	Conclusions	72
5.15.	Clothianidin (238) R	72
5.15.1.	Background information	72
	Toxicological reference values	
5.15.3.	Residue definitions	73
	Analytical methods	
5.15.5.	Codex MRL proposals	
	Consumer risk assessment	
5.15.7.	Conclusions	
5.16.	Fluopyram (243) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
5.16.4.	Analytical methods	

Т

	Codex MRL proposals	
	Consumer risk assessment	
5.16.7.	Conclusions	
5.17.	Thiamethoxam (245) R	
5.17.1.	Background information	
	Toxicological reference values	
5.17.3.	Residue definitions	
	Analytical methods	
5.17.5.	Codex MRL proposals	
5.17.6.	Consumer risk assessment	
5.17.7.	Conclusions	
5.18.	Acetamiprid (246) R	
5.18.1.	Background information	88
5.18.2.	Toxicological reference values	89
5.18.3.	Residue definitions	
5.18.4.	Analytical methods	90
5.18.5.	Codex MRL proposals	90
5.18.6.	Consumer risk assessment	90
5.18.7.	Conclusions	91
5.19.	Emamectin (247) T	91
5.19.1.	Background information	91
5.19.2.	Toxicological reference values	92
5.19.3.	Residue definitions	92
5.19.4.	Analytical methods	
5.19.5.	Codex MRL proposals	
5.19.6.	Consumer risk assessment	
5.19.7.	Conclusions	
5.20.	Dinotefuran (255) R	94
5.20.1.	Background information	94
	Toxicological reference values	
	Residue definitions	
	Analytical methods	
5.20.5.	Codex MRL proposals	95
	Consumer risk assessment	
	Conclusions	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Analytical methods	
	Codex MRL proposals	
	Consumer risk assessment	
	Conclusions	
5.22.	Imazapyr (267) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Analytical methods	
	Codex MRL proposals	
	Consumer risk assessment	

5.22.7.	Conclusions	105
5.23.	Cyflumetofen (273) R	106
5.23.1.	Background information	106
5.23.2.	Toxicological reference values	106
5.23.3.	Residue definitions	107
5.23.4.	Analytical methods	108
5.23.5.	Codex MRL proposals	108
5.23.6.	Consumer risk assessment	109
5.23.7.	Conclusions	109
5.24.	Oxathiapiprolin (291) R	110
5.24.1.	Background information	110
5.24.2.	Toxicological reference values	110
5.24.3.	Residue definitions	111
5.24.4.	Analytical methods	111
5.24.5.	Codex MRL proposals	112
5.24.6.	Consumer risk assessment	113
5.24.7.	Conclusions	114
5.25.	Tetraniliprole (324) R	114
5.25.1.	Background information	114
5.25.2.	Toxicological reference values	115
5.25.3.	Residue definitions	115
5.25.4.	Analytical methods	115
5.25.5.	Codex MRL proposals	116
5.25.7.	Conclusions	116
5.26.	Isoflucypram (330) R/T	117
5.26.1.	Background information	117
5.26.2.	Toxicological reference values	117
5.26.3.	Residue definitions	118
5.26.4.	Analytical methods	119
5.26.5.	Codex MRL proposals	120
5.26.6.	Consumer risk assessment	121
5.26.7.	Conclusions	122
5.27.	1,4-Dimethylnaphthalene (331) R/T	122
5.27.1.	Background information	122
5.27.2.	Toxicological reference values	123
5.27.3.	Residue definitions	123
5.27.4.	Analytical methods	125
	Codex MRL proposals	
5.27.7.	Conclusions	128
5.28.	Florylpicoxamid (332) R/T	128
5.28.1.	Background information	128
	Toxicological reference values	
	Residue definitions	
5.28.4.	Analytical methods	129
	Codex MRL proposals	
	Consumer risk assessment	
5.28.7.	Conclusions	
5.29.	Fluazinam (333) R/T	
5.29.1.	Background information	134

Т

5 29 2	Toxicological reference values	135
	Residue definitions	
	Analytical methods	
	Codex MRL proposals	
	Consumer risk assessment	
	Conclusions	
5.30.	Isocycloseram (334) R/T	
5.30.1.	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Conclusions	
5.31.	Isotianil (335) R/T	
5.31.1.	Background information	
	Toxicological reference values	
	Residue definitions	
	Analytical methods	
	Codex MRL proposals	
	Consumer risk assessment	
	Conclusions	
5.32.	Mepiquat-chloride (336) R/T	
5.32.1.	Background information	
5.32.2.	Toxicological reference values	
5.32.3.	Residue definitions	
5.32.4.	Analytical methods	
5.32.5.	Codex MRL proposals	
	Consumer risk assessment	
5.32.7.	Conclusions	
5.33. Tricycl	azole (337) R/T	
	Background information	
5.33.2.	Toxicological reference values	
	Residue definitions	
	Analytical methods	
	Codex MRL proposals	
	Consumer risk assessment	
	Conclusions	
Abbreviations		
	st	
	۲	
	n-EFSA content	
Appendix A		
The second se		

SUMMARY

For the preparation of the 55th session of the Codex Committee on Pesticide Residues (CCPR meeting), the European Commission asked EFSA to provide comments on the individual active substances (a.s.) assessed in the 2023 Joint FAO/ WHO Meeting on Pesticide Residues (JMPR), in particular on the recommended toxicological reference values and the proposed maximum residue levels (MRLs) at steps 3 and 6 of the Codex procedure.

In 2023, JMPR assessed 33 a.s.: 7 of them were assessed in the framework of the periodic review, 7 a.s. were assessed for the first time by JMPR; and the remaining a.s. were assessed in view of setting new Codex maximum residue limits (CXLs) for new uses or other new information. For additional three a.s. (indoxacarb, mefentrifluconazole and phosmet), JMPR replied to specific concerns raised by the delegations, which were submitted by means of concern forms.

EFSA assessed the Codex MRL proposals as requested in the Terms of Reference and performed dietary risk assessments to support risk managers to derive a position for the upcoming CCPR meeting.

In addition, EFSA commented on the topics presented in the JMPR report in the chapter 'General considerations' and provided comments on the follow-up assessments of JMPR on pesticides for which specific concerns on the toxicological or residue assessments were raised in the previous CCPR meetings.

It is highlighted that the EFSA comments were derived on the basis of the information provided in the JMPR reports. Since EFSA does not have access to the original studies and more detailed information on the JMPR evaluations, the EFSA comments are restricted to the specific questions specified in the Terms of Reference and the concise information provided in the 2023 JMPR report. Hence, the comments on Codex MRL proposals reported in this report might have to be reconsidered in a more detailed assessment when needed. The comments presented in this report have to be seen in the context of the currently applicable guidance documents and the MRL legislation applicable at the time of commenting.

1 | INTRODUCTION

In accordance with Articles 5(3) and 13(e) of the European Union (EU) General Food Law (Regulation (EC) No 178/2002),¹ Codex maximum residue limits (CXLs) established by Codex Alimentarius Commission are international standards that have to be taken into consideration in the development of EU standards for pesticide residues in food, to promote consistency between such international and EU technical standards while ensuring that the high level of protection adopted in the EU is maintained.

Codex MRL proposals are derived by the Joint Meeting on Pesticide Residues (JMPR), the scientific body responsible for the assessment of data provided by parties requesting the establishment of CXLs. The most recent JMPR evaluations for Codex MRL proposals are summarised in the 2023 JMPR Report. In total, JMPR assessed 33 a.s.: 7 of them were assessed in the framework of the periodic review, 7 a.s. were assessed for the first time by JMPR; and the remaining a.s. were assessed in view of setting new CXLs for new uses or other new information. For additional three a.s. (indoxacarb, mefentrifluconazole and phosmet), JMPR replied to specific concerns raised by the delegations, which were submitted by means of concern forms.² The Codex MRL proposals and the other recommendations of JMPR will be presented in the next CCPR meeting for discussion and advancement in line with the Codex procedures.

1.1 | Background

On 13 December 2023, the European Commission requested EFSA to give advice and comments on the recommendations of the 2023 Joint FAO/WHO Meeting on Pesticides Residues (JMPR) and on the proposed Codex maximum residue levels (MRLs) in order to support the Commission in its preparation of the EU coordinated positions for the 55th session of the Codex Committee on Pesticide Residues (CCPR55) in 2024. This should cover the substances evaluated in the 2023 JMPR report except piperonyl butoxide³ and, where appropriate, other proposed Codex MRLs that were retained in the step procedure in previous years and may not have been covered by the 2023 JMPR reports but by (an) earlier JMPR report(s).

Additionally, the European Commission requested EFSA to give its comments to the general chapters of the 2023 JMPR report, where relevant for risk assessment, as well as comments on the other relevant documents for discussion in CCPR55, e.g. as regards the JMPR priority list.

EFSA has created one question EFSA-Q-2023-00897 that will cover the following a.s. requested by the mandate: 1,4-dimethylnaphthalene, acetamiprid, boscalid, carbendazim, carbofuran, carbosulfan, clothianidin, cyantraniliprole, cyflumetofen, deltamethrin, difenoconazole, diflubenzuron, dinotefuran, emamectin, florylpicoxamid, fluazinam, fluopyram, imazapyr, iprodione, isocycloseram, isoflucypram, isotianil, mepiquat-chloride, oxathiapiprolin, permethrin, prochloraz, propiconazole, pyrethrins, tetraniliprole, thiamethoxam, thiophanate-methyl, tricyclazole, zeta-cypermethrin, indoxacarb, mefentrifluconazole and phosmet.

The draft scientific report of EFSA was submitted for commenting to the EU Member State (MS) experts and European Commission on 19 March 2024. All the comments received were addressed either directly in the final EFSA scientific report or though discussion during the Council Working Party meetings for the preparation of the 55th Session of the Codex Committee on Pesticide Residues. The Member States consultation report (EFSA, 2024f) is a supporting document to this report, which is made publicly available. Furthermore, the exposure calculations for all crops reported in the framework of this review were performed using the EFSA Pesticide Residues Intake Model (PRIMo). A screenshot of the report sheet of the PRIMo is presented in Appendix A.

1.2 | Terms of Reference

The requested advice and comments on the recommendations of the 2023 Joint FAO/WHO Meeting on Pesticides Residues (JMPR), and, where appropriate, on other proposed Codex MRLs, retained in the step procedure and reviewed by JMPR in previous years (see Annex), should contain the following information:

- Background information on all active substances under discussion regarding the status of the active substance at EU level (approval status of the active substance, availability of EFSA conclusions and availability of EFSA reasoned opinions on MRL applications or MRL review).
- 2. In case new toxicological reference values are proposed by JMPR, a comparison of the proposed reference values with agreed EU reference values and an evaluation of the reasons for possible differences.

²For metalaxyl, the concern form submitted by the Republic of Korea has been withdrawn.

¹Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. OJ L 31, 1.2.2002, p. 1–24.

³Since piperonyl butoxide is not an active substance according to the EU definitions, it is not covered by Regulation (EC) No 396/2005.

- 3. As regards the proposed draft Codex MRLs for discussion in CCPR55, EFSA should provide any relevant comment on the proposed MRLs and specifically address the following questions:
 - a. Whether the residue definitions derived by JMPR are comparable with the existing EU residue definitions;
 - b. Whether analytical methods are available to enforce the proposed draft Codex MRLs; to this end EFSA can consider consulting the European Reference Laboratories (EURLs), when necessary;
 - c. Whether the proposed draft Codex MRLs are comparable with the existing EU MRLs;
 - d. Whether the proposed draft Codex MRLs are sufficiently supported by data;
 - e. Whether the proposed draft Codex MRLs are appropriate in terms of the data that have been used to establish them and in terms of the method used for their calculation;
 - f. Whether the proposed draft Codex MRLs are safe for European consumers with regard to chronic and, where relevant, acute exposure.
- 4. For existing CXLs that were previously implemented in EU legislation and that were revoked in CCPR55, EFSA should identify fall-back MRLs, unless a new Codex MRL proposal was derived for the respective pesticide/crop combination, provided that the new proposal is sufficiently supported by data and does not pose a risk to European consumers. If no fall-back MRL can be identified, this should be taken into account in the EFSA recommendations.

The EFSA draft scientific report addressing point 1 to 3 of the Terms of Reference (ToR) should be delivered by 18th of March 2024. The EFSA report addressing point 4 (assessment of fall-back MRLs for revoked CXLs) may be presented in form of a separate output, which should be published by the 31st of January 2025.

The requested comments to the general chapters of the 2023 JMPR report relevant for risk assessment as well as comments on the JMPR priority list can be provided as contribution to the EU coordinated positions when these are discussed with the Member States and do not need to be covered by the scientific report.

2 | ASSESSMENT

EFSA agreed with the European Commission to respond to this request with a scientific report. On 19 March 2024, EFSA submitted the compilation of the comments on the substances covering the ToRs 1 to 3 for commenting to MSs and European Commission.

A second draft report addressing the MS comments was completed on 25 April 2024; this document was then further discussed in the second Council Working Party held on 16 May 2024.

The comments provided by MSs during the commenting period were addressed either directly in the final EFSA scientific report or through discussion during the Council Working Party meetings for the preparation of the 55th Session of the CCPR.

ToR 4 will be addressed in a separate report.

In Chapter 3 of the current report, EFSA provided comments on the discussion points presented in the JMPR report under 'General Considerations.

In Chapter 4 of the report, EFSA assessed the responses provided by JMPR on specific concerns raised by the CCPR, requesting a re-evaluation by JMPR.

Chapter 5 of the current report presents the assessments in response to point 1 to 3 of the ToR. Background information on the a.s. assessed by JMPR (point 1 of the ToR) was retrieved from the database on pesticides.⁴ The EFSA data management system and in-house databases on previous EFSA assessments were used as sources of information to prepare the compilation on previous EFSA assessments.⁵

In order to address the second point of the ToRs on the toxicological reference values (TRVs), EFSA compared the assessments performed by JMPR with the assessments performed at EU level in the framework of the peer review under Regulation (EC) No 1107/2009⁶ or in other relevant EU assessments (e.g. MRL applications). The following sources of information were used: EFSA conclusions available for the a.s. under consideration, Review Reports prepared by the European Commission, Draft Assessment Reports (DARs), Renewal Assessment Reports (RARs) prepared by the Rapporteur Member States (RMSs), EFSA reasoned opinions and other sources of information if available.

For deriving the comments on the third point in the ToRs (comments on the Codex MRL proposals), EFSA used the following approach to address point 3(a) to 3(f):

⁴https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en.

⁵Reference date for background information and other EU information (e.g. toxicological reference values, residue definitions, EU MRLs, etc): 31 March 2024.

⁶Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

Ad 3(a): EFSA compared the enforcement residue definition derived by JMPR with the residue definition established in the EU legislation (Regulation (EC) No 396/2005)⁷ or the legislation under preparation. The EU residue definitions for risk assessment were retrieved from the EFSA conclusions, EFSA reasoned opinions on the MRL review under Article 12 of Regulation 396/2005 and the reports prepared by the European Commission in the framework of the peer review of a.s. or MS evaluations in Draft Assessment Reports.

Ad 3(b): EFSA, supported by experts of the EU reference laboratories (EURLs) checked information reported on the analytical methods that could be used for MRL enforcement for the commodities for which Codex MRL proposals were derived by 2023 JMPR. The source of information was the most recent JMPR report, but for a.s. that were already assessed in previous years, EURLs/EFSA looked up information in previous JMPR reports. As the level of detail on validation data is rather limited in the JMPR report, a detailed evaluation of the method validation data as usually performed in EU assessments (e.g. MRL applications) could not be performed.

Ad 3(c): The comparison of the EU MRLs and the Codex MRL proposals is presented in tabular form. Codex MRL proposals that are higher than the existing EU MRLs are printed in bold. In line with the presentation of MRLs in the EU legislation, limit of quantification (LOQ) MRLs are labelled with an asterisk ('*') after the value. The comparison of Codex MRL proposals with existing EU MRLs is performed for commodities listed in Part A of the EU food classification (Annex I of Regulation (EC) No 396/2005), but not for products that are listed in Part B.

Ad 3(d): For assessing whether the draft Codex MRL proposals for plant products are sufficiently supported by data, EFSA focused on the availability of residue trials and metabolism studies. If the data used to derive the Codex MRL proposal were in accordance with the number of trials specified in the FAO manual (FAO, 2016) and the agreed policy of JMPR, the Codex MRL proposals are considered to be sufficiently supported by data and the MRL proposals are flagged as 'the proposed Codex MRL is acceptable'. Details on independence of residue trials, storage stability, analytical method validation and other details, which would be assessed in detail in the framework of EU MRL applications, are not reported in the JMPR reports. Hence, comments on these aspects of the dossier are not within the scope of the current assessment.

For animal products, EFSA verified the plausibility of the Codex MRL proposals, based on the information provided in the JMPR reports on the results of dietary burden calculations and feeding studies. If the Codex MRL proposals for animal products passed the plausibility check, they are considered appropriate. A verification of the dietary burden calculation for all global regions (Europe, USA/Canada, Australia and Japan) cannot be performed in the framework of the current mandate, because comprehensive information on all authorised uses for feed commodities other than the commodities assessed by JMPR is not available to EFSA. In addition, the EU tool used for calculating the dietary burden does not comprise livestock diets from non-EU regions.

Ad 3(e): In order to assess the overall appropriateness of Codex MRL proposals as requested in the ToR, EFSA derived a conclusion on the availability of representative residue trials compliant with the residue definitions (considering also the extrapolation and scaling rules) and verified the MRL calculations (based on the OECD calculator; OECD, 2011). In addition, relevant points for risk management consideration were reported. The Codex MRL proposals are reported as acceptable/ appropriate, if no obvious deficiencies were identified based on the information presented in the JMPR reports. If serious deficiencies are noted or if the Codex MRL proposals lead to chronic and/or acute public health concerns, the Codex MRL proposals are reported as not acceptable. In case, relevant points not directly related to the scientific assessment were identified which require further risk management considerations, EFSA recommends further discussions to decide whether the Codex MRL proposals are acceptable.

Ad 3(f): For the assessment of the safety of the draft Codex MRL proposals, EFSA used the revision 3.1 of the EFSA Pesticide Residues Intake Model (PRIMo) (EFSA 2018e, 2019f). For assessing the short-term (acute) consumer risk, EFSA applied the standard EU methodology, including the agreed EU variability factors. For the assessment of the long-term (chronic) consumer risk, EFSA calculated the exposure resulting from the existing EU MRLs, taking into account the most recent information on supervised trials median residues (STMRs) and including the STMR values derived by JMPR for commodities where the proposed Codex MRLs are higher than the existing EU MRLs. For a.s. where the MRL review has not yet been completed, less refined calculations were performed: for commodities where the EU MRL is higher than the proposed Codex MRL, the EU MRL was used as input values for the risk assessment instead of the STMR value. The contribution of the individual crops under consideration in the CCPR meeting was calculated separately.

For pesticides where the EU and JMPR residue definitions for risk assessment are not comparable, EFSA calculated indicative risk assessment scenarios. The assumptions and uncertainties of these scenarios are described individually. The exposure assessments are usually compared with the EU TRVs, unless it is specifically mentioned that the JMPR values were used. The used approaches are considered to be sufficiently conservative for a risk assessment screening.

Finally, it should be mentioned that due to the different data requirements, scientific and procedural guidelines and policies used at EU level and by JMPR, the assessment of residue data sets submitted in support of an EU MRL application and Codex MRL request may result in different recommendations at EU level and by JMPR.

⁷Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC (1). OJ L 70, 16.3.2005, p. 1–16.

It is noted that comments were derived on the basis of the JMPR reports summarising the recommendations of the 2023 JMPR meeting, which was published on 28 February 2024 and republished on 8 March 2024, adding information that was missing in the first version of the report. Due to the limited details reported in the JMPR report, the EFSA assessment might need to be revised, if more information on the data assessed by JMPR becomes available.

It is highlighted that the comments presented in this report have been prepared considering the currently applicable guidance documents (guidance documents used by JMPR and accepted by the EU as well as EU guidance documents) and the MRL legislation valid at the time of commenting. Thus, the comments may not be valid any more or may have to be modified, if the legal or scientific framework changes.

The comments for the a.s. under consideration reflect information available in JMPR reports, EFSA conclusions/Reasoned opinions and other sources referenced approved until March 2024. Due to the timelines agreed with the requestor, EFSA could not use the JMPR evaluations and other documents published at a later stage. Thus, the conclusions reached in this report should be considered as preliminary and might have to be reconsidered if more detailed information becomes available.

3 | GENERAL CONSIDERATION ITEMS/COMMENTS ON CHAPTER 'GENERAL CONSIDERATIONS' OF JMPR REPORTS

3.1 Developments in dietary exposure methodology for pesticide residues in foods

In Chapter 2.1 of the JMPR report, JMPR reported that the meeting agreed on the transition from international estimated daily intake (IEDI; mean food consumption data derived from food balance sheets) to global estimate of chronic dietary exposure (GECDE)-mean, which, according to JMPR, reasonably reflects the mean estimated dietary exposure of the general population and the mean dietary exposure of specific population groups that may have a higher exposure than the general population (JMPR 2023).

The consumption data used in GECDE are derived from food surveys, for which data are available for the country-cohort combinations (i.e. general population, all adults, female adults, children, adolescents, infants and toddlers).

JMPR also agreed to investigate the implementation and modification options for the GECDE-high for the assessment of dietary exposure for chronic and shorter-than-lifetime assessment with the aim of a transition to adoption. In addition, JMPR committed to investigate the degree of conservatism of IEDI and GECDE (mean and high).

EFSA noted that for the comparison presented in the 2022 report, the results obtained with IEDI and GECDE differed significantly. Also, within a cohort the results differed significantly (e.g. difenoconazole) which could give an indication that the surveys do not contain all the relevant food commodities that contribute to the dietary exposure.

EFSA recommends informing the CCPR meeting that work has been initiated at EU level on the modification of the methodology used for long-term exposure. In the new revision of EFSA PRIMo (rev. 4), calculations are performed using mean consumption of the food commodities included in the diet, averaging the consumption for the duration of the food survey. With this type of calculation, for each relevant population subgroup (country/cohort) the distribution of the exposure estimates is derived. For risk management decisions, PRIMo 4 calculations will present the mean exposure of the relevant subgroups (country/cohort) and higher percentiles (e.g. P95). A decision has not yet been taken, which percentile will be the basis for risk management decisions.

An impact assessment, comparing the level of conservatism of calculations with the current PRIMo methodology (using the point estimate of the mean consumption of the pertinent food commodity of the relevant subgroup of the population, normalised by body weight (bw)) and the new PRIMo version is ongoing.

In future, further modifications of the chronic risk assessment methodology are expected at EU level, since an alignment of the methodology across different food domains is envisaged. Recommendations of the alignment were elaborated in a report of EMA/EFSA.⁸

3.2 | Development of guidance on the assessment and interpretation of nonlinear toxicokinetics

In Chapter 2.2 of the JMPR report, JMPR informed that an electronic working group (EWG) started with the development of a guidance document on the assessment and interpretation on nonlinear toxicokinetics. The guidance document should be completed by the next JMPR meeting held in September 2024. Stakeholders were invited to submit relevant studies illustrating reasons for nonlinear toxicokinetics.

EFSA welcomes the development of the guidance document on the assessment and interpretation of nonlinear toxicokinetics, as being prepared by the dedicated EWG of JMPR.

EFSA is of the opinion that toxicokinetic data is helpful in the interpretation of available toxicity studies and that it can support in the design of toxicity studies. EFSA notes that at EU level, hazard classification is an important element to decide on the approval of an a.s. According to ECHA – the EU agency responsible for classification and labelling – the kinetically

derived maximum dose (KMD) approach is not suitable/not appropriate to fulfil the legislative needs for classification and labelling; instead, the maximum tolerated dose (MTD approach; with inclusion of the non-linear kinetics as complementary information) would be the most appropriate methodology to derive selection of the high dose level for toxicological studies.

More detailed information on the content of the guidance would be desirable, including information whether the (draft) guidance will be open for commenting.

3.3 | The need for sponsors to provide accurate chemical structures and related information on metabolites

In Chapter 2.3 of the JMPR report, JMPR stressed the importance of submission of correct chemical structures of metabolites, as this information is used to perform in silico analysis to predict genotoxicity.

EFSA supports the views of JMPR: for a reliable hazard assessment, the knowledge of the identity of the compound is an indispensable pre-requisite.

3.4 Resolving inconsistent assessment of common metabolites

In Chapter 2.4 of the JMPR report, JMPR informed on the difficulties to identify common metabolites identified in the assessment of different pyrazole-based pesticides, and the consequences for the assessment by JMPR, leading to inconsistencies.

For overcoming the problems, EFSA recommends that sponsors/manufacturer of pesticides are requested to consult metabolism databases, such as the MetaPath,⁹ for identification of metabolites that could be also derived from other a.s.

JMPR is also invited to consult the MetaPath database to identify common metabolites for a.s. assessed by JMPR. The powerful search functions are expected to support JMPR's assessment and help increasing the overall efficiency of the assessment process.

In addition, sponsors/manufacturers should be encouraged by JMPR to update the MetaPath database with information related to metabolism studies for the a.s. assessed by JMPR.

3.5 On the rolling submission of data

In Chapter 2.5 of the JMPR report, JMPR noted that submission of incomplete dossiers and multiple updates of submissions (rolling submission of data) causes confusion, disruption and delay in the evaluation of JMPR.

EFSA supports the view of JMPR that a comprehensive, state-of-knowledge assessment requires the timely submission of all relevant information. Incomplete dossiers are leading to inefficiencies, which should be avoided, considering the high workload of JMPR.

In 2023, two a.s. were concerned for the rolling submission of dossiers: i.e. permethrin being assessed under the periodic review programme, and fluazinam.

It is highlighted that for permethrin, the last periodic review took place in 1987. Most of the MRLs have been established more than 30 years ago. On 2 April 2022, the manufacturer confirmed preparedness for periodic review of permethrin in 2023.

For a.s. scheduled for periodic reviews, sponsors should have sufficient time to generate the necessary studies. An incomplete dossier, or late submission of key studies should not be a possibility to extend the validity of outdated CXLs.

Fluazinam was evaluated by JMPR in 2018; however, the toxicological assessment could not be completed because of missing critical information and therefore no Codex MRLs could be established so far.

Overall, in the interest of efficiency of use of JMPR resources, it needs to be avoided that the submission of incomplete dossiers leads to delays in the review of CXLs and/or the process of setting new CXLs. It is therefore suggested to develop an efficient procedure for cases where sponsors of substances scheduled for the periodic review programme do not submit incomplete dossiers, precluding that existing CXLs are maintained in the Codex system and avoiding that the compounds are scheduled at each Meeting, which is binding capacities at JMPR level.

3.6 Why is a residue definition sometimes not agreed when there is an ADI/ARfD?

In Chapter 2.6 of the JMPR report, JMPR explained in which cases residue definitions cannot be finalised, although the information is sufficient to derive TRVs for the parent compound; in particular, JMPR noted plant and/or livestock metabolites not identified in animals used in toxicity studies or metabolites occurring in significant amounts, which are not identified.

The clarifications are supported and no further comments are required from EFSA's view.

3.7 Enhancement of process

JMPR discussed with the chair of the EWG on the Enhancement of CCPR and JMPR Operational Procedures proposals prepared for the CCPR54 and presented in Appendix XVI of the 2023 CCPR report.

Based on the feedback of JMPR, the EWG will present its recommendations for discussion in the CCPR meeting (CCPR55) under agenda item 11.

3.8 Strategy and timing for JMPR re-evaluation of dithiocarbamates

In view of the upcoming periodic review of a.s. belonging to the class of dithiocarbamates, JMPR listed a number of questions which should be answered by the sponsors in advance, to allow a better planning of the task.

EFSA proposes to inform JMPR on the recent MRL review of dithiocarbamates at EU level (EFSA, 2023c).

4 | RESPONSES TO SPECIFIC CONCERNS RAISED BY THE CODEX COMMITTEE ON PESTICIDE RESIDUES (CCPR)

4.1 | Indoxacarb (216)

JMPR assessed the information provided by the EU in the concern form submitted at the CCPR54: The EU requested a prioritisation of the re-evaluation of toxicology and residues of indoxacarb and all its CXLs and TRVs derived by JMPR, in view of the acute and chronic risks identified by the EU, taking into account that the latest JMPR assessment was performed 18 years ago.

JMPR, however, did not see a reason to propose a re-prioritisation of the periodic review of indoxacarb. The EU was invited to explain in more detail the basis for the conclusion that lead to a lower acceptable daily intake (ADI)/acute reference dose (ARfD).

In the following, EFSA presents the rationale behind the EU decision taken in 2018 to lower the ADI and the ARfD:

During the peer review by EFSA (2018c), the EU replaced the previous ADI of 0.006 mg/kg bw per day by a **new ADI of** 0.005 mg/kg bw per day, based on the no observed adverse effect level (NOAEL) of 0.5 mg/kg bw per day for maternal toxicity in a developmental toxicity study in rats, and applying an uncertainty factor (UF) of 100. The ADI at Codex level is set at 0.01 mg/kg bw per day.

The previous EU ARfD of 0.125 mg/kg bw (based on an acute rat neurotoxicity study) was replaced by a **new ARfD of** 0.005 mg/kg bw, based on the same point of departure as the ADI and applying an UF of 100. The JMPR ARfD is set at the level of 0.1 mg/kg bw.

The MS experts discussed indoxacarb during the pesticides peer review meeting 162 in September 2017 and derived an overall NOAEL for maternal toxicity at 0.5 mg/kg bw per day from a developmental toxicity study in rats (study from 2004, the same study was reported in both the JMPR and the EU revised RAR (France, 2017, p. 235)). It is acknowledged that in the EU peer review reports, two pilot studies and three main studies in rats, the latest one dated 2005, presented a higher maternal NOAEL at 2 mg/kg bw per day.

The 2004 study was performed according to Good Laboratory Practice (GLP) and followed the OECD TG 414 (1981) without deviations. Indoxacarb was administered by oral gavage to female rats on gestation days (GD) 6 to 20 (22 rats/dose group) at dose levels of 0, 0.5, 1.0, 2.0 and 3.5 mg/kg bw/day. In this study, maternal body weight gains were statistically significantly reduced during GD 6–8 at the dose levels of 1 mg/kg bw per day and above by more than 60% compared to control animals (France, 2017, Table B.6.6.2–14 of the RAR: –62%, –67% and –67% of control animals at 1, 2 and 3.5 mg/kg bw per day, respectively). The animals recovered during the study period, and the body weight gain during GD 6–21 (corrected for gravid uterine weight) was reduced by more than 10% at 1 and 2 mg/kg bw per day, and statistically significantly reduced at 3.5 mg/kg bw per day by 27.7% compared to control animals. These findings were considered as acute adverse effects, relevant to derive the ARfD and ADI (since this represents the lowest NOAEL of the data set).

The JMPR monograph mentions maternal toxicity based on the same adverse effects, but concluded that the maternal NOAEL is 2 mg/kg bw per day.

The EU also highlighted in the concern form that the JMPR residue definition for animal products (risk assessment) covers a metabolite IN-JT333 for which it is unclear whether the TRV derived for the parent can be applied. According to JMPR, it is not genotoxic and based on the available information, it seems to be more toxic than the parent.

In its response to the concern form, JMPR acknowledged that the toxicity could not be addressed. In order to demonstrate that the metabolite is unlikely to lead to an intake concern, a conservative intake calculation was performed which should demonstrate that the exposure will not exceed the threshold of toxicological concern (TTC) for non-genotoxic compounds (Cramer class III). To underpin its argumentation that the metabolite IN-JT333 is of no concern, JMPR also referred to the EFSA conclusion (EFSA, 2018c) where it was stated that residues of IN-JT333 are 'unlikely to be above the limit of quantitation [...]'. However, it should be clarified that the sentence was taken out of the context: this conclusion was derived for the limited number of representative uses evaluated in the renewal process. EFSA also highlighted that 'for any future use leading to an increase of the dietary burden calculation, the validity of these feeding studies should be reconsidered and additional data might be needed to address the toxicity and the magnitude of all compounds included in the residue definitions for risk assessment set for poultry and ruminants matrices'.

EFSA notes that the use of TTC approach is normally not accepted in the EU, but acknowledges that at JMPR level, it became a tool that is regularly applied to address metabolites for which insufficient toxicological data are available to perform a full hazard characterisation. Following the explanations of JMPR, formally, it would be appropriate to revise the JMPR residue definition, excluding the metabolite IN-JT333, since the TRVs derived for the parent substance is not applicable. Overall, EFSA recommends to submit further clarifications to JMPR, as the EU concerns were not addressed by JMPR.

4.2 | Mefentrifluconazole (320)

In 2022, the JMPR proposed maximum residue levels for mefentrifluconazole in various commodities, including leafy greens (subgroup) at 30 mg/kg. However, the acute dietary exposure assessment showed that residues in 'Leafy greens, Subgroup of' exceeded the ARfD of 0.3 mg/kg bw.

JMPR received a concern from the Delegation of the United States, requesting that head lettuce is evaluated separately from the other leafy vegetables, as the residue data available for head lettuce was considerably lower than that for other types of leafy greens. The JMPR Secretariat agreed to review the USA concern form at the 2023 JMPR meeting and CCPR agreed to retain Codex MRL proposal of 30 mg/kg for leafy greens (subgroup) at step 4.

In 2023, JMPR withdrew its previous recommendation of 30 mg/kg for leafy greens (subgroup), and derived new proposals for head lettuce, leaf lettuce and spinach, noting that for leaf lettuce and spinach the ARfD was exceeded; the new MRL proposals of JMPR are presented in Table 1.

Commodity	Codex MRL proposal	EU MRL/voted	Comment
Leafy greens, Subgroup of ^a	30 (W)	0.01* (chard, chervil, lettuce, lamb's lettuce, purslane, endives, spinach)	The previous Codex MRL proposal for the whole group is replaced by individual MRL proposals for lettuce head, leaf lettuce and spinach In CCPR 2023, the EU expressed opposition to the proposed Codex MRL for leafy greens, subgroup, due to short-term intake concerns
Head lettuce	5	0.01*	 cGAP: USA, 3×0.146 kg a.s./ha, 7-day RTI, 0-day PHI Number of trials: 8 trials on head lettuce (with wrapper leaves), the highest residue (HR) is 2.2 mg/kg Sufficiently supported by data: Yes Specific comments: At EU level, head forming lettuce varieties and leafy lettuces are covered by one MRL (set for code 251020). As the proposed Codex MRL for leaf lettuce poses a risk to EU consumers (see below), the MRL proposal for head lettuce could be a fall-back option Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Leaf lettuce ^a	15	0.01*	cGAP: USA, 3×0.146 kg a.s./ha, 7-day RTI, 0-day PHI Number of trials: 7 (leaf lettuce, HR is 8.3 mg/kg) Sufficiently supported by data: Yes Specific comments: At EU level, head forming lettuce varieties and leafy lettuces are covered by one MRL (set for code 251020). The proposed Codex MRL poses a short-term risk for the consumer (identified in JMPR and EFSA calculation, see section consumer risk assessment) Conclusion: The proposed Codex MRL is not acceptable because a potentially risk to the consumers was identified Follow-up action: None
Spinach ^a	30	0.01*/ 7	cGAP: USA, 3 × 0.146 kg a.s./ha, 7-day RTI, 0-day PHI Number of trials: 8, HR is 18 mg/kg Sufficiently supported by data: Yes Specific comments: The proposed Codex MRL poses a short-term risk for the consumer (identified in JMPR and EFSA calculation, see section consumer risk assessment) Conclusion: The proposed Codex MRL is not acceptable because a potentially risk to the consumers was identified Follow-up action: None
General comments General comment: In the JMPR report, no information is provided on the magnitude of TDMs (triazo metabolites). Hence, the EU risk assessment for the TDMs could not be updated for the uses asse			

TABLE 1 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended. *Indicates that the input value is proposed at the limit of guantification.

^aOn the basis of the information provided to the JMPR it was concluded that the estimated acute dietary exposure.

In Table 2, the updated risk assessment is presented.

TABLE 2 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
 RA assumptions: The risk assessment was performed with the EU ARfD An indicative short-term dietary risk assessment (PRIMo rev. 3.1) was performed for lettuce and spinach The risk assessment is indicative, because information on the residue concentrations related to the TDMs is not available The calculations are therefore affected by additional, non-standard uncertainties 	 RA assumptions: The risk assessment was performed with the EU ADI An indicative long-term dietary risk assessment was performed using PRIMo rev. 3.1 (normal mode calculation). The input values of the most recent long-term risk assessment (EFSA, 2023j) were updated, including the STMR values derived by JMPR for the crops under consideration. In addition, the recently derived Codex MRLs (CCPR, 2023) not yet implemented in the EU legislation were included in the exposure calculations The calculations are affected by additional, non-standard uncertainties, since the risk assessment could be performed only for parent mefentrifluconazole, but not for TDMs 	Specific comments: –	
Results: The calculated short-term exposure exceeded the ARfD for: Spinaches: 271% of ARfD Lettuce: 211% of ARfD (calculation with the HR of 8.3 mg/kg derived for leafy lettuces); 56% of ARfD (calculation with HR of 2.2 mg/kg derived for head lettuce) Processed products: Spinach, frozen, boiled: 167% of ARfD (no refinements with PF)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 33% of the ADI Among the crops under consideration, spinach was identified as the main contributor, accounting for up to 17% of the ADI	Results: Long-term exposure: Max 20% of the JMPR ADI Short-term exposure exceedances of the ARfD were indicated by JMPR also for: leafy lettuce: 170% of ARfD Spinach: 140% of ARfD No exceedance of the ARfD for head lettuce (result was not reported) JMPR did not report the results of the GECDE calculations	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; HR, highest residue; MRL, maximum residue level; PF, processing factor; RA, risk assessment; STMR, supervised trials median residue; TDM, triazole derivative metabolite.

In Table 3, the assessment of mefentrifluconazole is summarised, considering the assessment of the a.s. in the context of the CCPR54 meeting (EFSA, 2023f).

TABLE 3 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RD for enforcement are identical for plant commodities; for RA, in the EU additional RDs are set for the triazole derivative metabolites (TDMs)
Analytical methods	Sufficiently validated analytical methods are available for the commodities under assessment
Codex MRL proposals	The Codex MRL proposals are sufficiently supported by data
Dietary risk assessment	An acute intake concern was identified by EFSA and by JMPR for leafy lettuce and for spinach. The proposed Codex MRL for head lettuce did not lead to an intake concern. No chronic intake concerns identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; RA, risk assessment; TRV, toxicological reference value.

4.3 | Metalaxyl (138)

The concern form submitted by the Republic of Korea was withdrawn. No further comments required.

4.4 | Phosmet (103)

Following the submission of a concern form by the EU, JMPR concluded that phosmet needs to be scheduled for periodic review, as the last review took place more than 20 years ago. This conclusion is highly supported.

5 | COMMENTS ON JMPR REPORT CHAPTER 5 (INDIVIDUAL SUBSTANCES ASSESSED)

In the following sections, the a.s. assessed by JMPR in the most recent assessment are presented (FAO and WHO, 2024). The terms in brackets after the name of the a.s. in the header of the sections refer to the code number used by JMPR; the second parenthesis provides information whether the substance was assessed for toxicological properties (T) and/or for residues (R). The substances are sorted according to the codex number (Tables 4–213).

When references are made to previous JMPR reports/evaluations, the year of the JMPR assessment is reported (e.g. JMPR 2019). The respective reports can be retrieved on the JMPR website.¹⁰

5.1 | Pyrethrins (63) R

5.1.1 | Background information

TABLE 4Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	IT	
Approval status	Approved. Renewal process ongoing	Commission Directive 2008/127/EC ¹¹ Renewal Assessment Report (RAR) submitted, EFSA peer review on ED clock-stop
EFSA conclusion available	Yes, see comments	 EFSA (2013a) EFSA (2015j) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for pyrethrins in light of confirmatory data) EFSA (2017f) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for pyrethrins in light of confirmatory data) EFSA peer review ongoing (additional data requested)
MRL review performed	No, see comments	MRL review on hold, awaiting the outcome of the renewal process
EU MRL applications or other EU assessments	No	
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2023a)
Endocrine effects of a.s.	Assessment ongoing	Deadline for completion: March 2026
Other relevant information	Until 2020, pyrethrins were ap	pproved as biocide ¹²
	attention on the risk to op	ons for pyrethrins were modified, requesting national authorities to pay particular verators and workers and the risk to non-target organisms. The applicant were rmatory information among others as regards the residue definition

5.1.2 | Toxicological reference values

 TABLE 5
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.04 mg/kg bw per day	JMPR (1999, 2005)	0.04 mg/kg bw per day	EFSA (2013) (study and UF)	Yes
ARfD	0.2 mg/kg bw	JMPR (1999)	0.2 mg/kg bw	EFSA (2013) (study and UF)	Yes

Conclusion/comments a.s.

At EU level, the renewal process of the approval is ongoing. The TRV might therefore change

(Continues)

¹⁰https://www.fao.org/pest-and-pesticide-management/guidelines-standards/faowho-joint-meeting-on-pesticide-residues-jmpr/reports/en/.

¹¹Commission Directive 2008/127/EC of 18 December 2008 amending Council Directive 91/414/EEC to include several active substances. OJ L 344, 20.12.2008, p. 89–111. ¹²Commission Implementing Decision (EU) 2020/1036 of 15 July 2020 on the non-approval of certain active substances in biocidal products pursuant to Regulation (EU) No 528/2012 of the European Parliament and of the Council. OJ L 227, 16.7.2020, p. 68–71.

TABLE 5 (Continued)

	JMPR evaluation		EU evaluatio	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
Comments on metabolites	Compounds included in JMPR RD for RA: – pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2				
		included in EU RD for RA: 1 and 2, cinerins 1 and 2, a	nd jasmolins 1 and 2		
	In the framework of the approval in 2013 (EFSA, 2013a), data requirements were identified on pyrethrolone metabolites and on toxicological relevance of hydroxychrysanthemic acid metabolites As the renewal process is ongoing, a change of the residue definition for risk assessment may be decided				

Abbreviations: bw, body weight; UF, uncertainty factor.

5.1.3 | Residue definitions

TABLE 6 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Total pyrethrins, calculated as the sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2, determined after calibration with World Standard pyrethrum extract	Reg. 396/2005: Pyrethrins Peer review (EFSA, 2013a): Pyrethrins (sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2) (provisional)	Yes
	Animal products	Total pyrethrins, calculated as the sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2, determined after calibration with World Standard pyrethrum extract The residue is fat soluble	Reg. 396/2005: Pyrethrins Peer review (EFSA, 2013a): Pyrethrins (sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2) (provisional, pending finalisation of plant residue definitions) The residue is not fat soluble	Yes
RD-RA	Plant products	Total pyrethrins, calculated as the sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2, determined after calibration with World Standard pyrethrum extract	Peer review (EFSA, 2013a): Pyrethrins (sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2) (provisional)	Yes
	Animal products	Total pyrethrins, calculated as the sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2, determined after calibration with World Standard pyrethrum extract	Peer review (EFSA, 2013a): Pyrethrins (sum of pyrethrins 1 and 2, cinerins 1 and 2, and jasmolins 1 and 2) (provisional, pending finalisation of plant residue definitions)	Yes
Conclusion, comments	-			

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.1.4 | Analytical methods

Not relevant, no Codex MRL proposals derived by JMPR.

5.1.5 | Codex MRL proposals

JMPR assessed uses in citrus, blackberries, strawberries, cabbage, leafy vegetables, tomatoes, tree nuts, coffee, herbs and spices (seeds). However, as the residue trials were insufficient and/or did not match the critical GAP, no CXL proposals were derived by JMPR.

5.1.6 | Consumer risk assessment

Not relevant, no CXL proposals were derived by JMPR.

EFSA noted an error in the JMPR report, in the section dietary risk assessment for pyrethrins, JMPR reported erroneously that the assessment was performed for 'permethrins'. JMPR should be invited to reflect on a corrigendum.

5.1.7 | Conclusions

TABLE 7Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (EFSA peer review currently on clock-stop)
Toxicological assessment	EU TRV available. As the renewal process is ongoing, the TRV might change in the EU
Residue definitions	EU and Codex RDs are identical. However, the EU RD might change following the renewal process
Analytical methods	Not relevant, no residue evaluation was performed
Codex MRL proposals	No new Codex MRL proposals under discussion
Dietary risk assessment	Not relevant, no residue evaluation was performed
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.2 | Carbendazim (72) R/T

5.2.1 | Background information

TABLE 8 Background information.

		Comments, references	
JMPR assessment	JMPR meeting September 2023		
Type of JMPR evaluation	Periodic review	JMPR noted that insufficient toxicological information was submitted to allow a re-evaluation of the a.s. MRL proposals derived in the assessment of carbendazim	
RMS	DE		
Approval status	Not approved	Commission Directive 2011/58/EU ¹³ No application to renew the approval was submitted	
EFSA conclusion available	Yes, see comments	EFSA (2010b)	
MRL review performed	Yes, see comments	EFSA (2014i)	
EU MRL applications or other EU assessments	Yes, see comments	 EFSA (2024d) Assessment of reliability of the studies used to derive the TRVs EFSA (2024b) (Art. 43 assessment on the toxicological properties and maximum residue levels) EFSA (2021d) (Art. 43 assessment) 	
Classification of a.s. (cut-off criteria)	Yes, see comments	Mutagen cat. 1B; Toxic for reproduction cat. 1B ATP17 ¹⁴ ECHA (2019c)	
Endocrine effects of a.s.	No, see comments	Carbendazim is not an endocrine disruptor in humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009, ¹⁵ as amended by Commission Regulation (EU) 2018/605 ¹⁶ (EFSA, 2024b)	
Other relevant information	Carbendazim is used as a biocide Carbendazim is a metabolite of thiophanate-methyl and of benomyl, both compounds are also used as pesticides, but are not approved in the EU. A.s. is also listed in PIC Regulation ¹⁷		

Abbreviations: a.s., active substance; MRL, maximum residue level.

¹³Commission Directive 2011/58/EU of 10 May 2011 amending Council Directive 91/414/EEC to renew the inclusion of carbendazim as active substance.

¹⁴Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

¹⁵Regulation (EC) No 1107/2009 of 21 October 2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

¹⁶Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

¹⁷Regulation (EU) No 649/2012 of the European Parliament and of the Council of 4 July 2012 concerning the export and import of hazardous chemicals (recast). OJ L 201, 27.7.2012, p. 60–106.

5.2.2 | Toxicological reference values

TABLE 9 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	See comments	JMPR (2023)	0.02 mg/kg bw per day	Commission Directive 2006/135/EC, confirmed in 2021	Not applicable
ARfD	See comments	JMPR (2023)	0.02 mg/kg bw	Commission Directive 2006/135/EC, confirmed in 2021	Not applicable
Conclusion/comments a.s.	5. JMPR (2023) concluded that insufficient toxicological information was submitted to allow a re-eval this substance to confirm or amend the reference values established in 1995 (ADI) and 2005 (AF this basis, the WHO Core Assessment Group withdraws the current ADI and ARfD values. For ass carbendazim (metabolite of thiophanate-methyl), TTC (Cramer class III) was considered applica thiophanate-methyl))5 (ARfD). On or assessing the
The EU ADI and ARfD of 0.02 mg/kg bw per day were based on the development. (NOAEL of 10 mg/kg bw per day), and applying a safety factor of 500. There is between the reference values and the NOEL for the induction of aneuploidy i confirmed by (EFSA, 2021d) In 2024, it was agreed to maintain previous ADI and ARfD of carbendazim (EFSA,				factor of 500. There is a margin of suction of aneuploidy in vivo. These	safety of 2500 TRVs have been
Comments on metabolites		led in JMPR RD for JMPR did not conf	RA: irm the previous Code	ex residue definitions	
	Metabolites incluc	led in EU RD for RA	see section thiophar	nate-methyl	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; NOEL, no observed effect level; RA, risk assessment; RD, residue definition; TTC, threshold of toxicological concern.

5.2.3 | Residue definitions

TABLE 10 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	See comments below	See section thiophanate-methyl	Not applicable	
	Animal products	See comments below	See section thiophanate-methyl	Not applicable	
RD-RA	Plant products	See comments below	See section thiophanate-methyl	Not applicable	
	Animal products	See comments below	See section thiophanate-methyl	Not applicable	
Conclusion, comments	The previous residue definitions (i.e. sum of benomyl, carbendazim and thiophanate-methyl, expressed as carbendazim) were not confirmed by JMPR For the use of thiophanate-methyl, JMPR proposed residue definitions which are reported in the chapter on thiophanate-methyl				

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.2.4 | Analytical methods

Not relevant, no Codex MRL proposals derived by JMPR for carbendazim.

5.2.5 | Codex MRL proposals

Recommendations for Codex MRLs are reported in Section 5.3 on thiophanate-methyl.

5.2.6 | Consumer risk assessment

See Section 5.3 on thiophanate-methyl.

5.2.7 | Conclusions

TABLE 11Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position	
Background information	A.s. no longer approved in the EU (approval expired on 30 November 2014, as an application for renewal was not submitted). Carbendazim is a metabolite of thiophanate-methyl (see thiophanate-methyl)	
Toxicological assessment	JMPR could not re-evaluate the toxicological profile of carbendazim, due to insufficient information submitted. EU TRV have been confirmed recently	
Residue definitions	JMPR did not derive residue definitions; the previous Codex residue definitions were revoked	
Analytical methods	No information available in JMPR report	
Codex MRL proposals	See thiophanate-methyl	
Dietary risk assessment	See thiophanate-methyl	
Final conclusion	EU position to be discussed/decided by risk managers	

Abbreviations: a.s., active substance; TRV, toxicological reference value.

5.3 | Thiophanate-methyl (77) R/T

5.3.1 | Background information

TABLE 12 Background information.

		Comments, references	
JMPR assessment	JMPR meeting September 2023		
Type of JMPR evaluation	Periodic review		
RMS	SE		
Approval status	Not approved	Commission Implementing Regulation (EU) 2020/149 ¹⁸ Expiration of approval: 19/10/2020. The application for renewal was withdrawn	
EFSA conclusion available	Yes, see comments	EFSA (2018b)	
MRL review performed	Yes, see comments	EFSA (2014i)	
EU MRL applications or other EU assessments	Yes, see comments	 EFSA (2024b) (Art. 43 assessment on the toxicological properties and maximum residue levels) EFSA (2021d) (Art. 43 assessment) EFSA (2009b) (Art. 43 assessment) 	
Classification of a.s. (cut-off criteria)	No, see comments	Thiophanate-methyl does not fall under cut-off criteria. ATP17 ¹⁹ ECHA (<mark>2019a</mark>)	
Endocrine effects of a.s.	Yes, see comments	Thiophanate-methyl meets the criteria for endocrine disrupting properties for the thyroid (T)-modality in humans, as laid down in point 3.6.5 of Annex II to Regulation (EC) No 1107/200, ²⁰ as amended by Commission Regulation (EU) 2018/605 ²¹ (EFSA, 2024b)	
Other relevant information Thiophanate-methyl is subject to PIC regulation Carbendazim is a metabolite of thiophanate-methyl, which is also used as an a.s.; details on carbendazim a reported in the chapter on carbendazim			

Abbreviations: a.s., active substance; MRL, maximum residue level.

¹⁸Commission Implementing Regulation (EU) 2020/149 of 15 October 2020 concerning the non-renewal of approval of the active substance thiophanate-methyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 342, 16.10.2020, p. 5–7.

¹⁹Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

²⁰Regulation (EC) No 1107/2009 of 21 October 2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

²¹Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.3.2 | Toxicological reference values

TABLE 13 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.09 mg/kg bw per day	JMPR (2023)	0.02 mg/kg bw per day	EFSA (2021)	No	
ARfD	1 mg/kg bw	JMPR (2023)	0.02 mg/kg bw	EFSA (2021)	No	
Conclusion/comments a.s.	 In 2017, JMPR derived the ADI based on a NOAEL of 8.8 mg/kg bw per day based on reduction in body weight gain and clinical chemistry, urine analysis and histopathological changes in the kidney, thyroid, liver and adrenals in a 2-year study in rats, using a safety factor of 100 The ARfD was based on a NOAEL of 125 mg/kg bw for transient reductions in body weight gains (including body weight losses) and feed consumption in an acute neurotoxicity study in rats, using a safety factor of 100. The ADI and ARfD were confirmed by JMPR (2023) 					
	The EU ADI and ARfD are based on a NOAEL of 2 mg/kg bw per day for maternal and development the rabbit and applying an uncertainty factor of 100. These TRVs were confirmed in the recent taking into consideration the endocrine disrupting properties of the a.s. through the T-modali Uncertainties remained with regard to the androgen (A) and steroidogenesis (S)-modalities (fu to be generated to allow a conclusion), however no additional UF was considered necessary to uncertainties based on the lack of adversity in the available data set for the in vivo endpoints t expected to be sensitive to perturbations of these modalities (EFSA, 2021d, 2024b)					
Comments on metabolites	Metabolites included in JMPR RD for RA: – sodium 2-(methoxycarbonylamino)-1 <i>H</i> -benzimidazol-5-yl (5-OH-carbendazim (MBC)) (free and conjugated)					
	 In 2017, JMPR concluded that the toxicities of 5-OH-MBC and 5-OH-MBC-S are covered by that of thiophanate-methyl, as they were major rat metabolites of the parent: 5-OH-MBC-S was found in rats at more than 40% of the absorbed dose in a toxicokinetic study with thiophanate-methyl and at 21–43% of the absorbed dose in a toxicokinetic study with carbendazim. 5-OH-MBC is an intermediate in the metabolic pathway leading to the formation of 5-OH-MBC-S 					
	Metabolites included in EU RD for RA: – Carbendazim (MBC) See section on carbendazim (ADI 0.02 mg/kg bw per day, ARfD: 0.02 mg/kg bw)					
	 2-AB FH-432 No toxicological data available on either of the two metabolites 					
	 DX-105 Oral LD₅₀ > 5000 mg/kg bw, insufficient information to conclude on consumer exposure risk assessment for the metabolite 					
	The toxicological assessment of the metabolites is still pending					

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LD₅₀, lethal dose, median; NOAEL, no observed adverse effect level; TRV, toxicological reference value.

5.3.3 | Residue definitions

TABLE 14 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Sum of thiophanate-methyl and carbendazim, expressed as sum of thiophanate-methyl	 Reg. 396/2005: RD 1: Thiophanate-methyl RD 2: Carbendazim and benomyl (sum of benomyl and carbendazim expressed as carbendazim) In April 2024, vote in PAFF to implement the RD derived in an Art. 43 assessment (EFSA, 2024b), Art. 43 assessment (EFSA, 2021d) and Peer review (EFSA, 2018b): RD 1: Thiophanate-methyl RD 2: Carbendazim RD 3: Benomyl 	No
	Animal products	Sum of thiophanate-methyl, carbendazim and sodium 2-(methoxycarbonyl amino)-1 <i>H</i> -benzimidazol- 5-yl (5-OH-MBC) (free and conjugated), expressed as thiophanate-methyl The residue is not fat soluble	 Reg. 396/2005: Carbendazim and thiophanate-methyl, expressed as carbendazim In April 2024, vote in PAFF to implement the RD derived in Art. 43 assessment (EFSA, 2024b), Art. 43 assessment (EFSA, 2021d): RD 1: Thiophanate-methyl RD 2: Sum of carbendazim and 5-hydroxy-carbendazim, expressed as carbendazim and (separate RDs) 	No

TABLE 14 (Continued)

	,			
	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			RD 3: Benomyl Peer Review (EFSA, <mark>2018b)</mark> : could not be established (data gap)	
			MRL review (EFSA, 2014i): Thiophanate-methyl	
			The residue is not fat soluble	
RD-RA	Plant products	Thiophanate-methyl	 Art. 43 assessment (EFSA, 2024b), 1. Thiophanate-methyl 2. Carbendazim 3. 2-AB, FH-432, DX-105, final expression of the RD pending tox assessment of the metabolites 	No
			Art. 43 assessment (EFSA, 2021d), Peer review (EFSA, 2018b) and MRL review (EFSA, 2014i): Thiophanate-methyl	
	Animal products	Thiophanate-methyl	 Art. 43 assessment (EFSA, 2024b), Art. 43 assessment (EFSA, 2021d): RD 1: Thiophanate-methyl (<u>Cattle and swine tissues, milk</u>) RD 2: Sum of carbendazim and 5-hydroxy carbendazim, expressed as carbendazim (<u>Cattle and swine tissues</u>) RD 3: Sum of carbendazim, 5-hydroxy carbendazim and 4-hydroxy-carbendazim, expressed as carbendazim (<u>milk</u>) 	No
			Peer review (EFSA, <mark>2018b</mark>) and MRL review (EFSA, <mark>2014i</mark>): Thiophanate-methyl	
Conclusion, comments	thiophanat	e-methyl and carbendazim (or thiophanate-methyl only	risk assessment in the EU and JMPR are different, because the JMPR con (and 5-OH-MBC for animal commodities) whereas in the EU a separate r for plants and as carbendazim and thiophanate-methyl, expressed as c	esidue definitio
	 RD-RA 1: thi RD-RA 2: cat 	ophanate-methyl; rbendazim;), three different RD for RA were proposed for plant commodities: 5, final expression of the RD pending tox assessment of the metabolites	
	identified a	as thiophanate-methyl and it	(EFSA, 2024b) where the main components of the total radioactive resident and the total radioactive resident actions and new MPIs (main actions and new MPIs (main)) and the total radioactive resident actions and new MPIs (main) actions and the total radioactive resident actions actions and the total radioactive resident actions actions and the total radioactive resident actions acti	

In PAFF meeting in April 2024, new residue definitions and new MRLs were agreed, establishing separate MRLs (most of them at the LOQ) for thiophanate methyl and carbendazim

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.3.4 | Analytical methods

TABLE 15Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark	
Thiophanate-methyl				
Plant commodities: High oil content	Yes	0.05	Extraction with acidic methanol, clean-up by liquid–liquid partition, LC-UV (soybean seed, peanut nutmeat) EURL data show successful validation of thiophanate-methyl in high oil content commodities of plant origin (peanut and almond) with an LOQ of 0.01 mg/kg (peanut) and 0.002 mg/kg (almond) using QuOil and LC-MS/MS	
Carbendazim				
Plant commodities: High oil content	Yes	0.05	Extraction with acidic methanol, clean-up by liquid–liquid partition, LC-UV (soybean seed, peanut nutmeat) EURL data shows successful validation of carbendazim in high oil content commodities of plant origin (plant oil) with an LOQ of 0.001 mg/kg using QuOil and LC–MS/MS	
Conclusion	 The EU residue definitions for MRL enforcement for the relevant matrix group are not fully comparable with the JMPR residue definition The current EU MRL for the commodity under discussion (i.e. almonds) is higher than the Codex MRL proposal Sufficiently analytical methods for the enforcement of the EU MRL for high oil content matrices for the JMPR residue definition are available 			

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LC-UV, liquid chromatography with ultraviolet detection; LOQ, limit of quantification; MRL, maximum residue level.

5.3.5 | Codex MRL proposals

TABLE 16 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal ^a	Existing EU MRL/new MRLs ^b	Comment
Almond	0.15*	0.2*/0.01*	 cGAP: USA, per-application of 1.18 kg a.s./ha (2.35 kg a.s./ha per year) with application between pink bud and petal fall Number of trials: 5 Sufficiently supported by data: Yes Specific comments: The carbendazim (MBC) residue values in almond were (n = 5): <0.05 (5) mg/kg. The total residue values in almond were (n = 5, as thiophanate-methyl (TM)): <0.14 (5) mg/kg TM eq The JMPR agreed that the applications were close to harvest and that no residue (below LOQ) in the trials was expected. Therefore, the JMPR decided to estimate a maximum residue level for almond at the LOQ of 0.15* mg/kg Conclusion: It is recommended to discuss with Member States (MS) whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs Follow-up action: None
Apricot	2 (B)(W)	2/0.01*	The existing CXL is proposed for withdrawal
Asparagus	0.2 (C) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Banana	0.2 (B) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Barley	0.5 (C) (W)	0.3/0.01*	The existing CXL is proposed for withdrawal
Barley, hay and/or straw	2 (C) (W)	_	The existing CXL is proposed for withdrawal
Beans (dry)	0.5 (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Berries and other small fruits, except grapes	1 (B, T) (W)	3 (wine grapes); 0.1* (table grapes and other small fruits)/0.01* (all)	The existing CXL is proposed for withdrawal
Brussels sprouts	0.5 (B) (W)	1/0.01*	The existing CXL is proposed for withdrawal
Carrot	0.2 (B) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Cattle meat	0.05* (B) (W)	– Muscle: 0.05*/0.01*	The existing CXL is proposed for withdrawal
Cherries (subgroup)	10 (T) (W)	0.3/0.01*	The existing CXL is proposed for withdrawal
Chicken fat	0.05 (B) (W)	0.05*/0.01*	The existing CXL is proposed for withdrawal
Coffee beans	0.1 (C) (W)	0.1*/0.05*	The existing CXL is proposed for withdrawal
Common bean (pods and/or immature seeds)	0.5 (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Cucumber	0.05* (B, C) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Edible offal (mammalian)	0.05* (B) (W)	0.05*/0.01*	The existing CXL is proposed for withdrawal
Eggs	0.05* (B) (W)	0.05*/0.01*	The existing CXL is proposed for withdrawal
Garden pea, shelled (succulent seeds)	0.02 (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Gherkin	0.05* (B, C) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Grapes	3 (B, T) (W)	0.1* (table grapes) 3 (wine grapes)/0.01*	The existing CXL is proposed for withdrawal
Lettuce, head	5 (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Mango	5 (C) (W)	1/0.01*	The existing CXL is proposed for withdrawal
Milks	0.05* (B) (W)	0.05*/0.01*	The existing CXL is proposed for withdrawal
Nectarine	2 (B) (W)	2/0.01*	The existing CXL is proposed for withdrawal
Oranges, sweet, sour (including orange-like hybrids)(subgroup)	1 (B) (W)	6/0.01*	The existing CXL is proposed for withdrawal

TABLE 16 (Continued)

Commodity	Codex MRL proposal ^a	Existing EU MRL/new MRLs ^b	Comment
Peach	2 (B) (W)	2/0.01*	The existing CXL is proposed for withdrawal
Peanut	0.1* (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Peanut fodder	3 (T) (W)	-	The existing CXL is proposed for withdrawal
Peppers chilli	2 (T) (W)	0.1*	The existing CXL is proposed for withdrawal
Peppers chilli, dried	20 (C) (W)	-	The existing CXL is proposed for withdrawal
Pineapple	5 (B) (W)	0.1*	The existing CXL is proposed for withdrawal
Plums (including fresh prunes) (subgroup)	0.5 (B) (W)	0.3	The existing CXL is proposed for withdrawal
Pome fruits (group)	3 (B, C, T) (W)	0.5 (apples, pears and quinces)	The existing CXL is proposed for withdrawal
		2 (medlars and loquats/Japanese medlars)	
		0.1* (azaroles/ Mediterranean medlars and Kaki/Japanese persimmons)/0.01*	
Poultry meat	0.05* (B) (W)	– Muscle: 0.05*/0.01*	The existing CXL is proposed for withdrawal
Rape seed	0.05* (C) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Rice, hay and/or straw	15 (C) (W)	-	The existing CXL is proposed for withdrawal
Rice, husked	2* (B) (W)	-	The existing CXL is proposed for withdrawal
Rye	0.1 (C, T) (W)	0.05/0.01*	The existing CXL is proposed for withdrawal
Soya bean (dry)	0.5 (T) (W)	0.3/0.01*	The existing CXL is proposed for withdrawal
Soya bean, hay and/or straw	0.1 (C) (W)	-	The existing CXL is proposed for withdrawal
Spices, fruits and berries	0.1(W)	0.1*/0.05*	The existing CXL is proposed for withdrawal
Spices, roots and rhizomes	0.1(W)	0.1*/0.05*	The existing CXL is proposed for withdrawal
Spices, seeds	5 (W)	0.1*/0.05*	The existing CXL is proposed for withdrawal
Squash, summer	0.5 (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Sugar beet	0.1* (T) (W)	0.1*/0.01*	The existing CXL is proposed for withdrawal
Tomato	0.5 (B, C) (W)	1/0.01*	The existing CXL is proposed for withdrawal
Tree nuts (group)	0.1* (B) (W)	0.2*/0.01*	The existing CXL is proposed for withdrawal
Wheat	0.05* (B, T) (W)	0.05/0.01*	The existing CXL is proposed for withdrawal
'Wheat, hay and/or straw'	1 (Risk a) (W)	-	The existing CXL is proposed for withdrawal
General comments	residue), expre		nsidered the sum of TM (thiophanate-methyl) and MBC (total ustment of molecular weight (a factor of 1.79 for MBC to TM;
			than the current EU MRL, but is higher than the new MRL Ls are proposed for withdrawal

Abbreviations: cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; LOQ, limit of quantification; MRL, maximum residue level; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

^aLetters in upper case indicate the source(s) of the data on which the MRL is based (B: benomyl; C: carbendazim; T: thiophanate-methyl). ^bNew MRLs for thiophanate-methyl voted in PAFF meeting of April 2024.

5.3.6 | Consumer risk assessment

 TABLE 17
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
 RA assumptions: The risk assessment was performed with the EU ARfD A short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the Codex MRL proposal for almonds Since carbendazim and thiophanate methyl share a similar toxicological effect, EFSA proposed to perform the risk assessment of carbendazim and thiophanate methyl separately and then to sum the results from the two single assessments to obtain their combined exposures. This approach allows to evaluate the overall toxicological burden taking into account the combined exposure to carbendazim and thiophanate-methyl The calculations are indicative, because the RD for RA derived by JMPR is different from the EU RD for RA Therefore, the calculations are affected by additional, non-standard uncertainties 	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3. The input values of the most recent long-term risk assessment (EFSA, 2024b) were used, taking into account the STMR for almonds derived by JMPR and the recently lowered EU MRLs (voted in PAFF meeting held in April 2024) Since carbendazim and thiophanate methyl share a similar toxicological effect, EFSA proposed to perform the risk assessment of carbendazim and thiophanate methyl separately and then to sum the results from the two single assessments to obtain their combined exposures. This approach allows to evaluate the overall toxicological burden taking into account the combined exposure to carbendazim and thiophanate-methyl The calculations are indicative, because the RD for RA derived by JMPR is different from the EU RD for RA Therefore, the calculations are affected by additional, non-standard uncertainties 	 Specific comments: The JMPR agreed that the following compounds could be individually assessed using the threshold of toxicological concern for Cramer Class III compounds of 1.5 µg/kg bw per day, applying the threshold for both the chronic and acute exposure estimates: carbendazim, 5-OH-MBC (free and conjugated), 4-OH-MBC, 4-OH-2-AB, 5-OH-2-AB and 4-OH-FH-432 Based on the relative amounts of those metabolites in food and feed commodities, the JMPR noted that assessments for carbendazim and 5-OH-MBC (free and conjugated) will address exposures for the remaining metabolites listed above The estimated long-term and acute exposures of carbendazim were 0.00167 µg/kg bw per day and 0.2 µg/kg bw per day, respectively. 5-OH-MBC (free and conjugated) is only present in animal commodities. Since the JMPR estimated a livestock dietary burden of 0 ppm, no dietary exposure to 5-OH-MBC (free and conjugated) is expected The estimated exposures are below the threshold of toxicological concern for Cramer Class III compounds. The JMPR concluded that based on the exposures to carbendazim and 5-OH-MBC (free and conjugated), exposures to carbendazim, 5-OH-MBC (free and conjugated), 4-OH-MBC, 4-OH-2-AB, 5-OH-2-AB and 4-OH-FH-432 are unlikely to present a dietary exposure concern from the use evaluated by the current JMPR The JMPR also noted that should further uses be considered in the future, this conclusion may need to be re-evaluated
Results:	Results:	Results:
No short-term consumer health risk was	No long-term consumer health risk was	Long-term exposure:
identified	identified	Max 0% of the JMPR ADI (all diets)
Thiophanate-methyl:	Thiophanate-methyl:	GECDE mean: 0% (all diets)
Almonds: 2% of ARfD	0.1% ADI (IE adult)	GECDE max: Max. 0% (all diets)
Carbendazim:	Carbendazim:	Short-term exposure:
0.7% of ARfD	1% ADI (NL toddler)	Result for almonds: 0% of ARfD (all diets)
Combined:	Combined:	

Combined: 2.7% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; MRL, maximum residue level; RA: risk assessment.

1% ADI (NL toddler)

5.3.7 | Conclusions

TABLE 18	Summary of the assessment.
----------	----------------------------

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired in 19/10/2020, as application for renewal was withdrawn)
Toxicological assessment	EU TRV available for thiophanate-methyl. The toxicological assessment of carbendazim, a metabolite of thiophanate, is currently ongoing
Residue definitions	EU and Codex RDs are not fully compatible
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. However, further risk management discussions required
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.4 | Carbofuran (96) R/T

5.4.1 | Background information

 TABLE 19
 Background information.

		Comments, references	
JMPR assessment	JMPR meeting September 2023		
Type of JMPR evaluation	Periodic review	JMPR was informed that carbofuran was no longer supported. Therefore, JMPR recommended withdrawal of all CXLs for carbofuran. Revised/ new Codex MRL proposals resulting from the use of carbosulfan are presented/discussed under carbosulfan (Section 5.11)	
RMS	BE		
Approval status	Not approved	Commission Decision 2007/416/EC ²²	
EFSA conclusion available	Yes, see comments	EFSA (2009c) (peer review on carbofuran) EFSA (2009f) (peer review on carbosulfan)	
MRL review performed	Yes, see comments	EFSA (2014a) (combined MRL review for carbofuran, carbosulfan, benfuracarb and furathiocarb under Art. 43)	
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2014a) (Art. 43 assessment)	
Classification of a.s. (cut-off criteria)	No, see comments	Carbofuran does not fall under cut-off criteria CLP00 ²³ (not assessed by ECHA)	
Endocrine effects of a.s.	Not assessed	-	
Other relevant information	Carbofuran is subject to PIC Regulation and is listed in the Rotterdam convention. ²⁴ Carbofuran is also a metabolite of carbosulfan (see also carbosulfan, Section 5.11)		

Abbreviations: CXL, Codex maximum residue limit; MRL, maximum residue level.

5.4.2 | Toxicological reference values

TABLE 20 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	0.001 mg/kg bw per day	JMPR (2023)	0.00015 mg/kg bw per day	EFSA (2009)	No
ARfD	0.001 mg/kg bw	JMPR (2023)	0.00015 mg/kg bw	EFSA (2009)	No
Conclusion/comments a.s.	 JMPR: The ADI and ARfD of 0.001 mg/kg bw are based on the overall NOAEL of 0.03 mg/kg bw per day for inhibition of brain acetylcholinesterase activity in rat pups aged 11 days (postnatal day 11) from acute neurotoxicity studies in rats and using a safety factor of 25. A safety factor of 25 was applied by the JMPR because the acute toxic effects of carbofuran are dependent on C_{max} rather than area under the curve of concentration-time (AUC) and data indicated that the sensitivity of humans and laboratory animals (rats, dogs) to inhibition of acetylcholinesterase activity by carbofuran are similar. The TRV only apply to sources of carbofuran that have a purity of 99.8% or greater EU: The ADI and ARfD are based on the LOAEL of 0.03 mg/kg bw for a significant inhibition of the brain AChE (of 20%) in pups from the acute neurotoxicity studies, and applying an uncertainty factor of 200 The use of a supplementary assessment factor of 2 was supported by a benchmark dose approach for a 10% decrease of brain AChE, resulting in an overall uncertainty factor of 200 				
	According to the assessment of the RMS, carbofuran itself could be considered a weak mutagen in some, but strains of <i>Salmonella Typhimurium</i> , with indications of chromosomal aberrations and micronucleus format exposed mice, according to some published papers. However, guideline studies on these endpoints cond with TGAI relevant for the EU-dossier showed negative outcomes for in vivo clastogenicity. The possibility in vivo gene mutation activity cannot be excluded, although the outdated in vivo germ cell mutation activity common be excluded, although the outdated in vivo germ cell mutation activity there are still some data gaps regarding this endpoint, although it is r that the TGAI carbofuran lacks carcinogenicity, on the basis of data of 4 guideline studies (2 on rats, 2 on r		eus formation in oints conducted possibility of itation activity in ough it is noted		

²²2007/416/EC: Commission Decision of 13 June 2007 concerning the non-inclusion of carbofuran in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance. OJ L 156, 16.6.2007, p. 30–31.

²³Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.
 ²⁴https://www.pic.int/TheConvention/Chemicals/AnnexIIIChemicals/tabid/1132/language/en-US/Default.aspx.

TABLE 20 (Continued)

	JMPR evaluation	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
	carbofuran, show metabolite. Sinc	The EU-dossier, supported by some open public literature, indicates a positive in vitro genotoxicity of 3-hydroxy carbofuran, showing thus some similarity with carbofuran itself. No in vivo studies were available for this metabolite. Since 3-OH-carbofuran is the main metabolite of carbofuran in mammalian cells, a similar toxicological profile as the parent seems plausible, and is it considered toxicologically relevant			ole for this similar
Comments on metabolites	See comments on carbosulfan (Section 5.11.2)				

Abbeviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LOAEL, lowest observed adverse effect level; NOAEL, no observed adverse effect level; RD, residue definition; RA: risk assessment.

5.4.3 | Residue definitions

TABLE 21	Comparison of the residue definitions derived by JMPR and at EU level.
----------	--

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	The previous RD for carbofuran will be replaced by the new residue definitions reported in Section 5.11.3 for carbosulfan	Reg. 396/2005: Carbofuran (sum of carbofuran (including any carbofuran generated from carbosulfan, benfuracarb or furathiocarb) and 3-OH carbofuran expressed as carbofuran	See Section 5.11.3
			Peer review (EFSA, 2009f): (1) Carbosulfan to be monitored separately from (2) carbamate structured metabolites; however, no precise definition can currently be proposed due to outstanding data and information (preferably the same as for risk assessment pending information on the efficiency of the analytical method and the establishment of a conversion factor for 3-keto-carbofuran)	
	Animal products		Reg. 396/2005: 3-OH-carbofuran (free and conjugated) expressed as carbofuran	See Section 5.11.3
			Peer review (EFSA, 2009f): No precise definition can currently be proposed due to outstanding data and information (preferably the same as for risk assessment pending information on the efficiency of the analytical method and the establishment of a conversion factor for 3-keto-carbofuran)	
			The residue is not fat soluble	
RD-RA	Plant products		Peer review (EFSA, 2009f): Carbofuran plus 3-hydroxy carbofuran plus 3 keto carbofuran and their conjugates expressed as carbofuran (uses with soil application)	See Section 5.11.3
	Animal products		Peer review (EFSA, 2009f): 3-hydroxy carbofuran and 3-keto carbofuran, free and conjugated expressed as carbofuran	See Section 5.11.3
Conclusion, comments	See the assessm	nent on carbosulfan for more details.		

comments

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.4.4 | Analytical methods

See analytical methods in Section 5.11.4 (carbosulfan).

5.4.5 | Codex MRL proposals

TABLE 22 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Oranges, Sweet, Sour (subgroup)	0.5 (W)	0.01*	The existing CXL is proposed for withdrawal
Alfalfa fodder	10 (W)	-	The existing CXL is proposed for withdrawal
Alfalfa forage (green)	10 (W)	-	The existing CXL is proposed for withdrawal
Banana	0.01* (W)	0.01*	The existing CXL is proposed for withdrawal
Cantaloupe	0.2 (W)	0.01*	The existing CXL is proposed for withdrawal
Cattle fat	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Citrus pulp, Dry ^a	2 (W)	-	The existing CXL is proposed for withdrawal
Coffee beans	1 (W)	0.05*	The existing CXL is proposed for withdrawal
Cotton seed	0.1 (W)	0.1	The existing CXL is proposed for withdrawal
Cucumber	0.3 (W)	0.002*	The existing CXL is proposed for withdrawal
Edible offal of cattle, goats, horses, pigs and sheep	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Goat fat	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Horse fat	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Maize forage	0.5 (W)	-	The existing CXL is proposed for withdrawal
Maize	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Mandarin	0.5 (W)	0.01*	The existing CXL is proposed for withdrawal
Meat of cattle, goats, horses, pigs and sheep	0.05* (W)	– Muscle: 0.01*	The existing CXL is proposed for withdrawal
Milks	0.05* (W)	0.001*	The existing CXL is proposed for withdrawal
Pig fat	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Potato	0.2 (W)	0.001*	The existing CXL is proposed for withdrawal
Rape seed	0.05* (W)	0.02*	The existing CXL is proposed for withdrawal
Rice straw and fodder, dry	1 (W)	-	The existing CXL is proposed for withdrawal
Rice, husked	0.1 (W)	0.01*	The existing CXL is proposed for withdrawal
Sheep fat	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Sorghum	0.1* (W)	0.01*	The existing CXL is proposed for withdrawal
Sorghum forage (green)	2 (W)		The existing CXL is proposed for withdrawal
Sorghum straw and fodder, dry	0.5 (W)	-	The existing CXL is proposed for withdrawal
Spices, roots and rhizomes	0.1 (W)	0.05*	The existing CXL is proposed for withdrawal
Squash, summer	0.3 (W)	0.002*	The existing CXL is proposed for withdrawal
Sugar beet leaves or tops	0.07 (W)	-	The existing CXL is proposed for withdrawal
Sugar beet	0.2 (W)	0.01*	The existing CXL is proposed for withdrawal
Sugar cane	0.1* (W)	0.01*	The existing CXL is proposed for withdrawal
Sunflower seed	0.1* (W)	0.02*	The existing CXL is proposed for withdrawal
Sweet corn (corn-on-the-cob)	0.1 (W)	0.002*	The existing CXL is proposed for withdrawal
General comments		arbosulfan will also cover o	arbofuran as the new residue definition for MRL arbofuran. Codex MRL proposals are reported under

carbosulfan (Section 5.11.5)

Abbreviations: CXL, Codex maximum residue limit; MRL, maximum residue level; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

^aArising from the use of carbosulfan.

5.4.6 | Consumer risk assessment

See consumer risk assessment reported under carbosulfan in Section 5.11.6.

5.4.7 | Conclusions

TABLE 23Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU, EU assessments available
Toxicological assessment	EU TRV available. Divergent conclusions on toxicological profile of parent and metabolites from EU and JMPR assessments
Residue definitions	See carbosulfan
Analytical methods	See carbosulfan
Codex MRL proposals	See carbosulfan
Dietary risk assessment	See carbosulfan
Final conclusion	See carbosulfan

Abbreviations: a.s., active substance; TRV, toxicological reference value.

5.5 | Iprodione (111) R/T

5.5.1 | Background information

TABLE 24Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Periodic review	
RMS	FR	
Approval status	Not approved	Commission Implementing Regulation (EU) 2017/2091 ²⁵
EFSA conclusion available	Yes, see comments	EFSA (2016f)
MRL review performed	Yes, see comments	EFSA (2013e)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2018q) (Art. 43 assessment)
Classification of a.s. (cut-off criteria)	No, see comments	Iprodione does not fall under cut-off criteria CLP00 ²⁶ (CLP00 not assessed by ECHA) No RAC Opinion available (application withdrawn in 2018) Note: Pesticides peer review suggested that Carc Cat 1B and Repro 2 may be appropriate for iprodione
Endocrine effects of a.s.	Yes, see comments	Iprodione was considered an endocrine disruptor in humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009 ²⁷ (interim criteria) (EFSA, 2016f) No assessment performed according to ED criteria defined in Commission Regulation (EU) 2018/605 ²⁸
Other relevant information	Iprodione is subject to PIC Regulation In 2019, following the decision on non- the LOQ ²⁹	-renewal of the approval, the EU lowered all existing MRLs to

Abbreviations: LOQ, limit of quantification; MRL, maximum residue level; RAC, Committee for Risk Assessment.

²⁹Commission Regulation (EU) 2019/38 of 10 January 2019 amending Annexes II and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for iprodione in or on certain products. OJ L 9, 11.1.2019, p. 94–105.

²⁵Commission Implementing Regulation (EU) 2017/2091 of 14 November 2017 concerning the non-renewal of approval of the active substance iprodione, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 297, 15.11.2017, p. 25–27.

²⁶Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

²⁷Regulation (EC) No 1107/2009 of 21 October 2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

²⁸Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

31 of 223

5.5.2 | Toxicological reference values

TABLE 25 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evalu	ation	EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.06 mg/kg bw per day	JMPR (2023)	0.02 mg/kg bw per day	Reg. (EU) 2017/2091	No
ARfD	0.6 mg/kg bw	JMPR (2023)	0.06 mg/kg bw	Reg. (EU) 2017/2091	No
Conclusion/comments a.s.	toxicity a The ARfD is k consump	nd carcinogenicity s based on a NOAEL of tion between gesta	study in rats, using an u f 60 mg/kg bw, based u tional day (GD) 6 and G	g/kg bw per day in the two- incertainty factor of 100 ipon body weight loss and i iD 12, at 200 mg/kg bw per in uncertainty factor of 100	educed food
	The EU ADI was derived from the LOAEL of 6 mg/kg bw per day for testicular histopathology and adrenal effects in the zona glomerulosa and reticularis, which is also the LOAEL for carcinogenicity (Leydig cell adenomas) in the 2-year rat study, applying an uncertainty factor (UF) of 300 The EU ARfD was based on the LOAEL of 20 mg/kg bw per day for increased incidence of umbilical hernia observed in the developmental toxicity study in rabbits, applying an UF of 300 For both (ADI and ARfD) an additional UF of 3 to the standard UF of 100 was applied, considering the use of a LOAEL (EFSA, 2016f):				
Comments on metabolites	 Metabolites included in JMPR RD for RA: 3-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine-1-carboxamide (RP 32490) N-(3,5-dichloro-4-hydroxyphenyl)-2-carbamoylacetamide (RP 36114) The TRVs of the parent also apply to RP 32490 and RP 36114, expressed as iprodione; both metabolites were considered not genotoxic as they are covered by the parent (major rat metabolites) In addition, RP 36115 (not included in the RD of JMPR) is covered by the ADI 				
	identified			olites no indications of gen st Cramer Class III TTC:	otoxicity were
	– 3,5-dichlo – 3,5-dichlo Metabolite 3 0.0005 m		moiety) (RP 32596) (M610F007) RP 32596) is unlikely to d an ARfD of 0.0075 mg	be genotoxic. For this meta J/kg bw were proposed at E	
	 RP 32490 (3-(3,5-Dichlorophenyl)-2,4-dioxoimidazolidine-1-carboxamide) TRVs of parent apply for this metabolite (EFSA, 2016f) 				
	product ic TRVs set for p	lentified in standard parent do not apply cleus (MN) test and e	hydrolysis studies) (EFSA, <mark>2016f</mark>). Since the	oxoimidazolidine-1-carboxa ere are genotoxicity concerr MN test), toxicological refe	ns (positive in vitro
		no conclusion could al metabolites, i.e.	be reached on genoto	xic potential or toxicologica	l profile of
	According to	EFSA (<mark>2016f</mark>), TRVs o	of parent apply also for	RP 36114 (not included in E	U RD)
	-	or four metabolites om the JMPR assessr		25040 and RP 31767), the E	U assessment

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LOAEL, lowest observed adverse effect level; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition; TTC, threshold of toxicological concern.

5.5.3 | Residue definitions

TABLE 26 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Iprodione	Reg. 396/2005 (implementing MRL review): Iprodione	Yes
			Peer review (EFSA, 2016f): Iprodione	
	Animal products	Not concluded	Reg. 396/2005 (implementing MRL review): Sum of iprodione and all metabolites containing the 3,5-dichloroaniline moiety, expressed as iprodione	Not applicable
			Peer review (EFSA, 2016f): RP32490 (Reg. No. 5079628)	
			The residue is not fat soluble	
RD-RA	Plant products	Iprodione	 Peer review (EFSA, 2016f): 1. Sum of iprodione, RP 30228 and RP 32490 expressed as iprodione and separately (RD is provisional, pending further data on the toxicological relevance of metabolites of iprodione, in particular data on the genotoxic potential of metabolites (in particular on RP30228) and of any potential common effects of 3,5-dichloroaniline with iprodione, RP 30228 and RP 32490) 2. Sum of 3,5-dichloroaniline and its conjugates expressed as 3,5-dichloroanilin 	No
			MRL review (EFSA, 2013e): Iprodione (tentative)	
	Animal products	lprodione +3-(3,5- dichlorophenyl)-2,4- dioxoimidazolidine- 1-carboxamide (RP32490) + <i>N</i> - (3,5-dichloro-4- hydroxyphenyl)-2- carbamoylacetamide	Peer review (EFSA, 2016f): Residue definition is inconclusive (it is pending the submission of further data on toxicological relevance of metabolites, on the behaviour in livestock of 3,5-dichloroaniline and submission of new feeding studies investigating residues of iprodione in ruminants and poultry performed according to OECD guidelines).	Not applicable
		(RP36114), expressed as iprodione	MRL review (EFSA, 2013e): Sum of iprodione and all metabolites containing the 3,5-dichloroaniline moiety, expressed as iprodione	
Conclusion, comments	soil), rice (foliar with quantitativ between 25 and residue definitio EFSA noted that in o not be a good n Animal products: commodities. H animal commod toxicological ass	use), peanuts (foliar). The plant me e differences. JMPR considered i 198% of TRR in all raw and proce on for risk assessment was consic carrot roots, iprodione accounter narker compound JMPR concluded that iprodione a owever, as suitable analytical me dities could not be derived. For ri sessment, JMPR proposed to incl	rries (foliar and soil use), peaches (foliar) lettuce (foliar) wh netabolism studies revealed qualitative similarities in the c prodione being a sufficient marker for MRL enforcement, ssed commodities. The inclusion of additional plant metal dered not necessary d for less than 10% of TRR, and therefore for root crops, the and RP32490 represent suitable markers for enforcement in ethods are not available, a residue definition for enforcement sk assessment, considering the results of metabolism stud lude the two major metabolites found in all bovine and po pund in milk (RP36114) in the residue definition	rops investigated, occurring polites in the e parent would n animal ent purpose in ies and of the

iprodione was found to be almost stable at conditions simulating pasteurisation, but degraded notably at conditions representative of baking, brewing, boiling and sterilisation under formation of RP 30228, RP 37176 and 3,5-dichloroaniline

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TRR, total radioactive residues.

5.5.4 | Analytical methods

 TABLE 27
 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content	Yes	0.02	Extraction with acetonitrile/water/hexane partition, HPLC-UV

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High oil content	See remarks	0.01–0.1	In the JMPR assessments, validation data are not reported in detail: The report of 1994 speaks about a GLC-EC method that works for 'most crop and animal samples', without specifying the matrices for which sufficient validation data were available Validation data are available on a method published by the EURL-FV (Parrilla Vázquez et al., 2016)
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The current EU MRLs for food commodities belonging to the three matrix groups listed above are lower than the Codex MRL proposal under discussion Validated analytical methods for the enforcement of the MRLs for the relevant matrices are partially available		

Abbreviations: GLC-EC, gas–liquid chromatography with electron-capture detection; HPLC-UV, high performance liquid chromatographic method coupled with ultraviolet detector; LOQ, limit of quantification; MRL, maximum residue level.

5.5.5 | Codex MRL proposals

TABLE 27 (Continued)

TABLE 28 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Almond	0.3	0.01*	cGAP: USA, 4×0.560 kg/ha, RTI depending on the growth stage, last application up to 5 weeks after petal fall Number of trials: 6 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Almond hulls	50 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Barley	2 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Bean, hay and/or straw (<i>Phaseolus</i> spp.)	20 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Beans (<i>Phaseolus</i> spp.)–dry	0.1 (W)	0.01*	The existing CXL is proposed for withdrawal; JMPR received 6 residue trials for the US GAP. But as the storage stability in high protein crops was not demonstrated, JMPR did not derive a new Codex MRL proposal and decided to withdraw the previous recommendation
Beans with pods (<i>Phaseolus</i> spp.)– immature pods and succulent seeds	1.5	0.01*	 cGAP: USA, 2×1.1 kg/ha, 5-day RTI, last application at full bloom (BBCH 65) Number of trials: 5 trials in snap beans Sufficiently supported by data: Yes Specific comments: Considering the early application (at bloom), the high residues found in the harvested crop are surprising. Details of the trials should be checked. JMPR mentioned one additional trial in lima beans, but apparently, this trial was not considered for deriving the STMR Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: To check details in JMPR evaluation
Blackberries	30 (W)	0.01*	The existing CXL is proposed for withdrawal
Broccoli ^a	40	0.01*	cGAP: USA, 2 × 1.1 kg/ha, 1st application after thinning (2–4 leaf stage), 0-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: See consumer risk assessment Conclusion: The proposed Codex MRL is not acceptable because acute intake concerns were identified by JMPR and at EU level Follow-up action: None
Cane berries, subgroup of	50	0.01* Blackberries, raspberries, dewberries	cGAP: USA, 4×1.1 kg/ha, 14-day RTI, 0-day PHI Number of trials: 13 (9 on raspberries and 4 on blackberries) Sufficiently supported by data: Yes Specific comments: The STMRs of the two data sets differed by less than aa factor of 5, but as the Mann–Whitney test showed that they two data sets belong to a different population, JMPR used the trials on blackberries only. It is also noted that the US tolerance for cane berries is 25 mg/kg Conclusion: The proposed Codex MRL is not acceptable because an acute intake concern was identified in the EU risk assessment for blackberries and raspberries Follow-up action: None

TABLE 28 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Carrot	10 (Po) (W)	0.01*	The existing CXL is proposed for withdrawal. An insufficient number of trials was submitted for the cGAP notified to JMPR
Cherries, subgroup of	0.3	0.01*	cGAP: USA, 2×1.1 kg/ha, 1st application at full bloom, 2nd application at petal fal Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Common bean (pods and/or immature seeds)	2 (W)	0.01*	The existing CXL is proposed for withdrawal
Cucumber	2 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Grapes	10 (W)	0.01*	The existing CXL is proposed for withdrawal. An insufficient number of trials was submitted for the cGAP notified to JMPR
Kiwifruit	5 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Lettuce, head	10 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Lettuce, leaf	25 (W)	0.01*	The existing CXL is proposed for withdrawal. An insufficient number of trials was submitted for the cGAP notified to JMPR
Onion, bulb	0.15	0.01*	 cGAP: USA, 4×0.842 kg/ha, 14-day RTI, 7-day PHI Number of trials: 6 (4 trials matching the US GAP +2 overdosed trials (4×1.1 kg/ha with residues below the LOQ) Sufficiently supported by data: No Specific comments: The number of trials matching the GAP was insufficient. To complement the data set, overdosed trials were used (in these trials, residues were below the LOQ) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Peaches (including Nectarines and Apricots), Subgroup of	0.05*	0.01* Peaches, apricots	 cGAP: USA, 2×1.1 kg/ha, 1st application at full bloom, 2nd application at petal fa Number of trials: 7 Sufficiently supported by data: Yes Specific comments: The trials were performed with three instead of two applications. Considering the timing of the last application (not later than las petal fall) and residues were all below the LOQ of 0.05 mg/kg, JMPR accepted the trials Conclusion: It is recommended to discuss with MS whether the proposed Codes MRL is acceptable, considering that the trials do not fully reflect the GAP Follow-up action: None
Peaches	10 (W)	0.01*	The existing CXL is proposed for withdrawal; replaced by the new MRL proposal 0.05* mg/kg
Pome fruits (group)	5 (Po) (W)	0.01*	The existing CXL is proposed for withdrawal as for the cGAP (Chile, 2×67 g/hL (fol use up to petal fall), followed by a 2-min post-harvest immersion at 100 g ai (hl with a PHI of 3 days) an insufficient number of residue trials were available
Potato	0.05*	0.01*	 cGAP: USA, 4×1.1 kg/ha, 14-day RTI, 0-day PHI Number of trials: 14 Sufficiently supported by data: Yes Specific comments: Residues of parent iprodione were all below the LOQ; the results for the residue definition parent plus RP32490 showed that the metabolite can occur in significant amounts: in two trials the metabolite accounted for 0.11 mg/kg and 0.26 mg/kg, which gives an indication that the parent compound is not a sufficient marker for root and tuber vegetables. Se also comments residue definitions and comments on potato culls Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, in view of the substantial amount of residues of metabolite RP32490 Follow-up action: To check details in JMPR evaluation
Potato culls	0.15	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose. However, it is noted that the MRL proposal for potato culls (which are by definition whole unpeeled potato not suited for fresh market or processing and which have the same Codex code as potatoes) it is unclear why a different MRL and STMR was derived than for potatoes for human consumption
Potato flakes/ granules	0.05*	-	JMPR derived a processing factor of 0.29. Currently, no EU MRLs are established f processed products
Rape seed	0.5 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided

TABLE 28(Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Raspberries, red, black	30 (W)	0.01*	The existing CXL is proposed for withdrawal
Rice, husked	10 (W)	0.01*	The existing CXL is proposed for withdrawal
Spices, roots and rhizomes	0.1 (W)	0.05*	The existing CXL is proposed for withdrawal. No GAP information provided
Spices, seeds	0.05 * (W)	0.05*	The existing CXL is proposed for withdrawal. No GAP information provided
Strawberry	10 (W)	0.01*	The existing CXL is proposed for withdrawal. An insufficient number of trials was submitted for the cGAP notified to JMPR
Sugar beet	0.1 * (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Sunflower seed	0.5 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Tomato	5 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Witloof chicory (sprouts)	1 (W)	0.01*	The existing CXL is proposed for withdrawal. No GAP information provided
Potato chips	_	-	JMPR derived a processing factor of 0.45. Currently, no EU MRLs are established for processed products
Bean, forage (<i>Phaseolus</i> spp.)	n.a.	 Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose 	
General comments	EFSA noted that in Annex 1 of the JMPR report, the HR and STMR values were interchanged. JMPR should be informed, to consider publishing a corrigendum. The risk assessment (presented in Annex 3 and 4 to the JMPR report) was performed with the correct values		
	It is also noted that JMPR did not calculate the dietary burden for livestock, although potatoes could serve as animal feed. JMPR highlighted that MRLs for animal products could not be estimated because no enforcement residue definition could be derived, lacking a suitable analytical methods for MRL enforcement		

Abbreviations: BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; dw, dry weight; GAP, Good Agricultural Practice; MRL, maximum residue level; n.a., not applicable; PHI, pre-harvest interval; Po, the recommendation accommodates post-harvest treatment of the commodity; RTI, re-treatment interval; STMR, supervised trials median residue; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

^aOn the basis of the information provided to the JMPR it was concluded that the estimated acute dietary exposure to residues of iprodione for the consumption of broccoli may present a public health concern.

5.5.6 | Consumer risk assessment

TABLE 29 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The indicative risk assessment for iprodione was performed with the EU ARfD	RA assumptions: The indicative risk assessment for iprodione was performed with the EU ADI	Specific comments: –
 The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. almonds, apricots, cherries, peaches, blackberries, dewberries, raspberries, potatoes, onions, broccoli, beans with pods) A risk assessment for the second residue definition derived at EU level (i.e. sum of 	An indicative long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculations were performed with the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. almonds, apricots, cherries, peaches, blackberries, dewberries, raspberries, potatoes, onions, broccoli, beans with pods). For the remaining commodities, the existing EU MRLs were used as input values	
3,5-dichloroaniline and its conjugates expressed as 3,5-dichloroaniline) could not be performed, as in the JMPR assessment, no data are available for this residue definition The calculations are indicative, because the EU	A risk assessment for the second residue definition derived at EU level (i.e. sum of 3,5-dichloroaniline and its conjugates expressed as 3,5-dichloroaniline) could not be performed, as in the JMPR assessment, no data are available for this residue definition	
residue definitions for risk assessment differ from the JMPR residue definition. In addition, it needs to be highlighted that based on the available information, the genotoxic potential of one metabolite could not be excluded Therefore, the calculations are affected by additional, non-standard uncertainties	The calculations are indicative, because the EU residue definitions for risk assessment differ from the JMPR residue definition. In addition, it needs to be highlighted that based on the available information, the genotoxic potential of one metabolite could not be excluded Therefore, the calculations are affected by additional, non- standard uncertainties	
		(Continues)

TABLE 29 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: Iprodione The calculated short-term exposure exceeded the ARfD for several crops under assessment (indicative calculation) Broccoli: 1664% of ARfD Blackberries: 404% of ARfD Raspberries: 348% of ARfD	Results: Iprodione No long-term consumer health risk was identified (indicative calculation) The overall chronic exposure accounted for 49% of the ADI Among the crops under consideration, broccoli was identified as the main contributor, accounting for up to 27% of the ADI	Results: Long-term exposure: Max 3% of the JMPR ADI. GECDE mean: Max. 190% (infants and toddler) GECDE max: Max. 1000% (infants and toddler) Short-term exposure:
Sum of 3,5-dichloroaniline and its conjugates expressed as 3,5-dichloroaniline Calculations could not be performed	Sum of 3,5-dichloroaniline and its conjugates expressed as 3,5-dichloroaniline Calculations could not be performed	Highest result for broccoli: 190% of ARfD For the remaining commodities, the acute exposure was found below the ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.5.7 | Conclusions

TABLE 30Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired on 5 December 2017. A.s. was not renewed)
Toxicological assessment	EU TRVs available for the parent compound. However, genotoxic potential and/or toxicological properties for some metabolites/degradation product cannot be concluded, based on available information
Residue definitions	For plant commodities, the EU and Codex RD for enforcement are identical; for RA, the EU RDs are more comprehensive for plant products. For animal products, the residue definitions are not comparable. EFSA noted that for root crops, the parent compound is not a good marker substance
Analytical methods	Sufficiently validated analytical methods are available for high water and high acid matrices; limited validation data available in JMPR assessments for high oil content matrices
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	Acute risk assessment identified intake concerns of iprodione residues in broccoli, blackberries and raspberries. For the remaining commodities, the risk assessment is indicative, affected by a high level of uncertainty. In an indicative chronic risk assessment performed for iprodione, no intake concern was identified. However, the chronic risk assessment is also affected by additional, non-standard uncertainties due to numerous data gaps and lack of availability of data for the second EU residue definition for plant products
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.6 | Zeta-cypermethrin (118) R

5.6.1 | Background information

TABLE 31 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	See comments	BE and AT for first approval and renewal (application withdrawn)/ toxicological re-assessment for MRL review, respectively
Approval status	Not approved	Expiration of approval: 01/12/2020; The application for renewal was withdrawn
EFSA conclusion available	Yes, see comments	EFSA (2009a)
MRL review performed	Yes, see comments	EFSA (2023b)
EU MRL applications or other EU assessments	Yes, see comments	 EFSA (2023d) (Statement on the review of residue definitions for pyrethroid common metabolites) EFSA PPR Panel (2022b) (Scientific opinion on toxicity of pyrethroid common metabolites)

TABLE 31	(Continued)
----------	-------------

		Comments, references
Classification of a.s. (cut-off criteria)	No, see comments	Cypermethrins: A.s. does not meet cut-off criteria (independently of its stereoisomers ratio) ECHA (2019e); ATP17 ³⁰
Endocrine effects of a.s.	No conclusion derived	EFSA (2023b)
Other relevant information	-	

5.6.2 | Toxicological reference values

 TABLE 32
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.02 mg/kg bw per day	JMPR (2006)	0.0015 mg/kg bw per day	EFSA (2023)	No
ARfD	0.04 mg/kg bw	JMPR (2006)	0.0015 mg/kg bw	EFSA (2023)	No
Conclusion/comments a.s.	 The JMPR derived group TRVs for cypermethrins, including alpha-cypermethrin and zeta-cypermethrin In the EU, TRVs were set of each separate a.s In the EU, in 2023, the previous ADI of 0.04 mg/kg bw per day and the previous ARfD of 0.125 mg/kg bw have been replaced by new TRV The new ADI is based on a DNT study with zeta-cypermethrin, supported by rat, 2-year (cypermethrin), applying a UF of 100 and 250, respectively. 				25 mg/kg bw have
	The ARfD is based on a DNT study with zeta-cypermethrin and a UF of 100 (EFSA, 2023b)				
Comments on metabolites	 Metabolites included in JMPR RD for RA: not relevant Metabolites identified in the EU being relevant for risk assessment (RD for RA): 3-phenoxybenzoic acid (3-PBA) 3-(4'-hydroxyphenoxy)benzoic acid (4-OH-PBA) A separate residue definition for risk assessment covering the group of related metabolites bearing the 3-phenoxybenzoyl moiety, notably the major metabolites 3-PBA, 4-OH-PBA including their conjugated forms and PBAld, was proposed but is not yet implemented and is still provisional (EFSA, 2023d) Regarding the common metabolites to several pyrethroid substances, 3-phenoxybenzoic acid (3-PBA) and 3-(4'-hydroxyphenoxy)benzoic acid (4-OH-PBA), they do not raise a concern with respect to genotoxicity For the metabolite PBAld, the hazard characterisation is not yet completed pending the availability of aneugenicity data on this compound 				
	For 3-PBA and 4-OH-PBA metabolites, an ADI of 0.1 mg/kg bw per day and an ARfD of 1 mg/kg bw were derived as per the Opinion of the EFSA Scientific Panel on Plant Protection Products and their Residues (EFSA PPR Panel, 2022b)				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition; UF, uncertainty factor.

5.6.3 | Residue definitions

 TABLE 33
 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cypermethrins (sum of isomers)	Reg. 396/2005: Cypermethrin (cypermethrin including other mixtures of constituent isomers (sum of isomers))	Yes
			MRL review (EFSA, 2023b) and Peer review (EFSA, 2009a): Cypermethrin including other mixtures of constituent isomers (sum of isomers)	
	Animal products	Cypermethrins (sum of isomers)	Reg. 396/2005: Cypermethrin (cypermethrin including other mixtures of constituent isomers (sum of isomers))	Yes
		The residue is fat soluble	MRL review (EFSA, 2023b) and Peer review (EFSA, 2009a): Cypermethrin including other mixtures of constituent isomers (sum of isomers)	
			The residue is fat soluble	
				(Continues)

(Continues)

³⁰Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

TABLE 33 (Continued)

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD-RA	Plant products	Cypermethrins (sum of isomers)	 MRL review (EFSA, 2023b): Cypermethrin including other mixtures of constituent isomers (sum of isomers) A formal decision on the establishment of a separate residue definition for common metabolites of pyrethroids is still pending (assessed in EFSA (2023d)) 	Yes
			Peer review (EFSA, 2009a): Cypermethrin including other mixtures of constituent isomers (sum of isomers)	
	Animal products	Cypermethrins (sum of isomers)	 MRL review (EFSA, 2023b): Cypermethrin including other mixtures of constituent isomers (sum of isomers) A formal decision on the establishment of a separate residue definition for common metabolites of pyrethroids is still pending (assessed in EFSA (2023d)) Peer review (EFSA, 2009a): Cypermethrin including other 	Yes
			mixtures of constituent isomers (sum of isomers)	
Conclusion, comments	The EU residue definition	definitions for MRL enforcer	ment and for risk assessment are identical/comparable with the JN	PR residue

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.6.4 | Analytical methods

TABLE 34 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content	Yes	0.01	Extraction by DFG S19; determination by GC-ECD or –MS. Validation data for cypermethrin and zeta-cypermethrin in high water content and high acid content commodities available but the details are not reported in the JMPR report
			EURL validation data show successful validation of cypermethrin in high water content and high acid content commodities (LOQ of 0.005 mg/kg). The stated LOQs for cypermethrin are supposed applicable for all the other a.s. of the 'Cypermethrin family' containing other constituent isomer ratios
High oil content	Yes	0.05	Extraction by liquid–liquid extraction using hexane and acetonitrile, followed by clean-up using SPE; determination by GC-ECD. Seeds: Extraction using hexane and acetone, followed by clean-up using solvent partitioning GPC; determination by GC-ECD
			EURL validation data show successful validation of cypermethrin in high oil content commodities (LOQ of 0.05 mg/kg). The stated LOQs for cypermethrin are supposed applicable for all the other a.s. of the 'Cypermethrin family' containing other constituent isomer ratios
Conclusion The JMPR received four methods of analysis used in the supervised trials (Method P-3559, Method P-3451, Method RAN-231M and Method RAN-0193M). Additional information on a multiresidue method suitable for enforcement which had been evaluated by the 2009 JMPR (Method DFG S19) was also provided			
	commodities with hig P-3451 (GC-ECD) in ave	h acid content inc ocado with an LO	wing methods for zeta-cypermethrin: Method P-3559 (GC-ECD) in cluding blackberry and blueberry with an LOQ of 0.05 mg/kg; Method Q of 0.035 mg/kg, Method RAN-0193M (GC-ECD) in commodities with high d spring onion with an LOQ of 0.05 mg/kg
	Sufficiently analytical me	thods for the enfo	prcement of the MRLs for these matrices are available
	determine zeta cyperi	methrin. Alpha-cy biased as any the	hromatographic separation techniques, it is not possible to selectively permethrin may be quantified but, when GC methods are used, rmal transformation of other isomers to any of the two alpha-

Abbreviations: GC-ECD, gas chromatography with electron capture detector; GC–MS, gas chromatography with mass spectrometry; GPC, Gel Permeation Chromatography; LOQ, limit of quantification; MRL, maximum residue level; SPE, solid-phase extraction.

5.6.5 | Codex MRL proposals

Commodity	Codex MRL proposal	Existing EU MRL/ proposed new MRLs ^a	Comment	
Avocado	0.5	0.05*/-	cGAP: USA, Foliar, 6 × 56 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, the proposal is not acceptable since an exceedance of the EU ARfD for this crop cannot be excluded (see risk assessment results) Follow-up action: None	
Subgroup of bulb onions	0.05*	0.1/0.09 or LOQ (garlic, onion, shallots)	cGAP: USA, Foliar, 5 × 56 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: Overdosed trials performed with 5 applications at 112 g a.s./ha (2N rate). In three trials, storage periods were longer than 20 months and not considered for the Codex MRL proposal. From the valid trials (<i>n</i> = 12), the residue data were always below the LOQ: 12 × < 0.05 mg/ kg. The JMPR noted that onion is the representative commodity for the Codex subgroup of bulb onions and the GAP covers all commodities in this subgroup. Therefore, the JMPR estimated an MRL for the subgroup of bulb onions. This extrapolation would be acceptable in the EU Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None	
Subgroup of bush berries	1.5	0.05*/– (blueberries, currants, gooseberries, rose hips)	cGAP: USA, Foliar, 5 × 56 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 6 Sufficiently supported by data: Yes Specific comments: Trials performed on blueberries. JMPR noted that blueberry is a representative commodity for the Codex subgroup of bush berries and the GAP covers all commodities in this subgroup. Therefore, the JMPR estimated an MRL for the subgroup of bush berries Conclusion: The proposed Codex MRL is not acceptable since an exceedance of the EU ARfD for these crops cannot be excluded (see risk assessment results) Follow-up action: None	
General comments	In the Art 12 review of cypermethrins (EFSA, 2023b), EFSA proposed the following MRL for bulb onions (garlic, onions, shallots): 0.09 mg/kg or LOQ (risk manager consideration is needed)			
		ment decision has not yet b dos, blueberries, currants, g	een taken ooseberries and rose hips were not reported in the Art 12	

TABLE 35 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Abbreviations: ARfD, acute reference dose; cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification. ^aEFSA (2023b).

5.6.6 | Consumer risk assessment

 TABLE 36
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The risk assessment was performed with the EU ARfD for zeta-cypermethrin The short-term dietary risk assessment (PRIMo	The risk assessment was performed with the EU ADI for zeta- cypermethrin. Considering only the Codex MRL proposals derived by JMPR in 2023	
rev. 3.1) was performed for the commodities,	In addition, a combined long-term dietary risk assessment	
for which the Codex MRL proposal is higher than the existing/proposed new EU MRL (i.e. avocado, blueberries, gooseberries, currants and rose hips). The short-term exposure calculations were also performed for onions, shallots and garlic, using an HR of 0.05 mg/kg, considering that the EU MRLs might be lowered to the LOQ following the recent EU assessment	was performed using PRIMo rev. 3.1. For this scenario, the input values of the most recent long-term risk assessment (EFSA, 2023b) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. avocado, blueberries, gooseberries, currants and rose hips; for onions, shallots and garlic, the input values reflecting the proposed EU MRL of 0.09 mg/kg was used in the calculation, as the EU MRL might be lowered to the LOQ)	
assessment	calculation, as the E0 Mile might be lowered to the E0Q	Continues

TABLE 36 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
	The calculation is based on the median residue levels derived for raw agricultural commodities	
	Residues in crops that were leading to exceedance of the ARfD in the EFSA assessment of 2023 were removed from the calculation	
	All input values refer to the residues in the raw agricultural commodities except for citrus fruits and cucurbits with inedible peel, for which residues in the pulp were considered	
	For the combined risk assessment, the exposure is compared with the TRVs derived for alpha cypermethrin. For each commodity, the most critical input value was selected for the exposure calculation	
	This approach is based on the assumption that the three active substances are not used together on the same crop. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation	
Results: The calculated short-term exposure exceeded the ARfD for several crops under assessment	Results: The calculated long-term exposure exceeded the ADI (combined risk assessment)	Results: Long-term exposure: Max 20% of the JMPR ADI (children)
Zeta-cypermethrin Avocados: 806% of ARfD Currants: 279% of ARfD Blueberries: 211% of ARfD Gooseberries: 208% of ARfD Onions: 76% of ARfD	Zeta-cypermethrin The chronic exposure related to the proposed Codex MRLs accounted for 16% of the ADI (NL toddler) Among the crops under consideration, currants were identified as the main contributor, accounting for up to 9% of the ADI	GECDE mean: Max. 70% (infants and toddler) GECDE max: Max. 250% (infants and toddler) Short-term exposure:
Garlic: 12% of ARfD Shallots: 9% of ARfD Rose hips: 78% of ARfD	Combined risk assessment The overall chronic exposure accounted for 110% of the ADI (NL toddler)	Highest result for currants: 30% of ARfD (children)
Processed commodities: Currants (juice): 762% of ARfD Rose hips/jam: 81% of ARfD Shallots/boiled: 54% of ARfD Onions/boiled: 31% of ARfD	Among the crops under consideration, currants were identified as the main contributor, accounting for up to 9% of the ADI	

quantification; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue; TRV, toxicological reference value.

5.6.7 | Conclusions

TABLE 37Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired on 1 December 2020, as the application for renewal was withdrawn)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs are identical
Analytical methods	Sufficiently validated analytical methods are available. The details on the method validation are not reported in the JMPR report
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	Acute intake concerns were identified for several commodities; chronic intake concerns were identified. In a refined chronic exposure assessment, the exposure was below the ADI. Details see above
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.7 | Permethrin (120) R/T

5.7.1 | Background information

TABLE 38Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Periodic review	JMPR could not finalise the periodic review
RMS	No RMS assigned	
Approval status	Not approved	Commission Decision 2001/2/EC ³¹
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2016e) (certain products of animal origin)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria CLP00 ³² (not assessed by ECHA)
Endocrine effects of a.s.	Not assessed	_
Other relevant information	Permethrin is authorised for use in veter to PIC Regulation	inary medicine, it is used as a biocide and it is subject

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.7.2 | Toxicological reference values

TABLE 39 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	_	See comments below	0.05 mg/kg bw per day	Biocide assessment (ECHA, 2014a)	Not applicable
ARfD	-	See comments below	0.5 mg/kg bw	ECHA (2014a)	Not applicable
Conclusion/comments a.s.	 JMPR could not conclude on toxicological reference values for permethrin Previous ADI: 0.05 mg/kg bw per day was derived by JMPR in 1987 and was confirmed in 1999 Previous ARfD: 1.5 mg/kg bw (FAO and WHO, 2002a) In 2000, JECFA at its 54th meeting was unable to establish an ADI for the 80:20 <i>cis:trans</i> isomeric mixture proposed for use as a veterinary drug because of the lack of information on toxicity In the EU, in 2014, the ADI derived by JMPR has been taken over under the biocide legislation for the technical-grade permethrin with <i>cis:trans</i> (ratios of 25:75 to 40:60) (based on the NOAEL of 5 mg/kg bw per day derived from a chronic rat study assessed by WHO/FAO JMPR) The toxicological assessment for the use of permethrin as veterinary medicinal products could not be 			isomeric mixture lation for the AEL of 5 mg/kg bw	
Comments on metabolites	retrieved Metabolites included in JMPR RD for RA: JMPR could not conclude on the residue definitions for risk assessment. The toxicological assessment of metabolites relevant for dietary risk assessment will be continued when the compound is next schedule for toxicological re-evaluation Metabolites included in EU RD for RA: not relevant				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition.

³¹2001/2/EC: Commission Decision of 27 December 2000 concerning the non-inclusion of permethrin in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance (notified under document number C(2000) 4140). OJ L 332, 28.12.2000, p. 114–115.
 ³²Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

5.7.3 | Residue definitions

TABLE 40 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Permethrin (sum of <i>cis</i> - and <i>trans</i> -isomers)	Reg. 396/2005: Permethrin (sum of isomers) No EU peer review and no MRL review	Yes
	Animal products	Permethrin (sum of <i>cis</i> - and <i>trans</i> -isomers)	Reg. 396/2005: Permethrin (sum of isomers)	Yes
		Fat solubility not specified	No EU peer review and no MRL review	
			The residue is fat soluble	
RD-RA	Plant products	– (See conclusion below)	No EU peer review and no MRL review	Not applicable
	Animal products	– (See conclusion below)	No EU peer review and no MRL review	Not applicable
Conclusion, comments	JMPR did not derive residue definitions for risk assessment, since the WHO core assessment group could not conclude on toxicological reference values for permethrin. The assessment was postponed For MRL enforcement, JMPR considered that permethrin (sum of isomers) was a suitable marker for MRL compliance in plant and animal products			

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.7.4 | Analytical methods

TABLE 41 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark	
Plant commodities:	No details	Not reported	QuEChERS method, extraction with acetonitrile, SPE column clean-up and LC-MS/MS analysis	
Animal products	No details	Not reported	QuEChERS method, extraction with acetonitrile or acetonitrile/water, dispersive SPE clean-up and LC-MS/ MS analysis	
Conclusion	 JMPR reported a number of analytical methods to determine permethrin (parent compound) and some metabolites (DCVA, 3-PBAlc in plant and animal matrices, as well as 3-PBA in animal matrices) For MRL enforcement, JMPR considered suitable analytical methods are available to analyse the parent compound in plant and animal matrices. However, details on validation data, such as LOQs achievable for the different matrices, are not reported 			

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method); SPE, solid-phase extraction.

5.7.5 | Codex MRL proposals

The periodic review could not be completed, due to incomplete dossier submission.

It is acknowledged that for a comprehensive periodic review it is necessary to have a complete dossier, covering the toxicological studies on the a.s. and its relevant metabolites, to take a decision on the TRVs. In addition, the information on the supported GAPs need to be provided, accompanied by the relevant residue data such as trials.

In its assessment, JMPR did not report, for which crops GAP information and residue trials were submitted.

EFSA is of the opinion that a decision on the revocation of CXLs for commodities no longer supported could be taken before the toxicological assessment is completed. Hence, in order to avoid unnecessary delays in revocation of CXLs that are no longer supported, it would be desirable to identify the unsupported commodities at an early stage and take a decision on the revocation as soon as possible, considering that the existing CXLs have been derived mostly more than 30 years ago. The submission of incomplete dossiers submitted to JMPR for a.s. scheduled for periodic review should not be misused to maintain CXLs for commodities in the Codex system, for which supporting data are not available.

5.7.6 | Consumer risk assessment

Not relevant, no CXL proposals were derived by JMPR.

43 of 223

5.7.7 | Conclusions

TABLE 42Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU; no EU assessment available
Toxicological assessment	No EU TRV available. JMPR could not conclude on TRV
Residue definitions	JMPR could not conclude on residue definitions for risk assessment. For MRL enforcement, the EU and the Codex RD are the comparable, covering the <i>cis</i> - and <i>trans</i> -isomers of permethrin
Analytical methods	According to JMPR assessment, validated analytical methods are available. However, details on method validation are not reported
Codex MRL proposals	Due to lack of key studies, JMPR postponed the assessment The existing CXLs (most of them derived before 1990) have not been withdrawn
Dietary risk assessment	Due to lack of key studies, JMPR postponed the assessment.
Final conclusion	EU position to be discussed/decided by risk managers. EFSA also recommends discussion whether a revocation of CXLs for commodities that are no longer supported should be considered, although the toxicological assessment is not yet completed

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.8 | Diflubenzuron (130) R

5.8.1 | Background information

 TABLE 43
 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	SE	
Approval status	Not approved	Commission Implementing Regulation (EU) 2022/801 ³³ Expiration of approval: 31/12/2020; The application for renewal was withdrawn
EFSA conclusion available	Yes, see comments	EFSA (2009d) (peer review for the approval) EFSA (2012c) (peer review of confirmatory data submitted) EFSA (2015e) (peer review of the metabolite PCA)
MRL review performed	Yes, see comments	EFSA (2020e) (Statement; no MRL review required)
EU MRL applications or other EU assessments	No	-
Classification of a.s. (cut-off criteria)	Not assessed	 Note: under the biocide assessment as PT18, the classification proposed by the RMS does not include cut-off criteria (ECHA, 2012b)
Endocrine effects of a.s.	Not assessed	 Note: under the biocide assessment at PT18, the RMS considers the a.s. not deemed to be an ED (ECHA, 2012b)
Other relevant information	Diflubenzuron is used as a k	piocide

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.8.2 | Toxicological reference values

TABLE 44	Comparison of toxicolog	cal reference values (TRVs)	derived by JMPR and at EU level.
----------	-------------------------	-----------------------------	----------------------------------

	JMPR evaluation		EU evaluation		— TRV
	Value	Comments	Value	Comments	comparable
ADI	0.02 mg/kg bw per day	JMPR (2001)	0.1 mg/kg bw per day	Reg. (EU) 2017/855	No
ARfD	Unnecessary	JMPR (2001)	Unnecessary	Reg. (EU) 2017/855	Yes

³³Commission Implementing Regulation (EU) 2022/801 of 20 May 2022 amending Implementing Regulation (EU) No 540/2011 to update the list of active substances approved or deemed to have been approved under Regulation (EC) No 1107/2009 of the European Parliament and of the Council. OJ L 143, 23.5.2022, p. 7–10.

TABLE 44 (Continued)

	JMPR evaluation	1	EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
Conclusion/comments a.s.	_				
Comments on metabolites	Metabolites inclu	ded in JMPR RD for RA: –			
	Metabolites included in EU RD for RA: – 4–chlorophenylurea (CPU) CPU toxicity is covered by the TRVs of the parent				
	 4-chloroaniline (PCA) PCA is an in vivo genotoxic carcinogenic agent; accordingly, no TRVs can be derived since a threshold cannot be assumed. A benchmark dose (BMD) analysis was performed in view of determining a margin of exposure (MoE): BMDL₁₀=0.56 mg/kg bw (rat adrenal gland pheochromocytomas endpoint, log-probit model) BMDL₅=0.16 mg/kg bw (rat adrenal gland pheochromocytomas endpoint, log-probit model) 				
	the new EFSA guidance (EFS observed in a – model average – MA-BMD ₅ = 1.4 The reasons for th was selected a average BMDI model, which Overall, the cu	tool (Bayesian Benchman A Scientific Committee, J study from the National BMDL ₁₀ (MA-BMDL ₁₀) = 2 mg PCA/kg bw per day. The difference with the pre- as a Point of Departure, w L. Furthermore, the previ- is not supported anymo-	k Dose Model 2022) on the ac Toxicology Pro 2.4 mg PCA/kg evious BMDL co whereas curren ously selected re as part of th	ported by EFSA, the analysis was p ling v 0.0.0.9077) and following the drenal gland pheochromocytomas ogram (NTP) (1989). This resulted in bw per day. alculations is that previously the lo tly, the recommended approach is lowest BMDLs were obtained fror e candidate models to be used for e more reliable Points of Departur	e latest EFSA s in male rats : west BMDL s to use a model n the 'logProbit' BMD analysis.
	 4-chloroacetar No conclusion con 		ue to insufficie	nt information available (EFSA, <mark>20</mark>	15e)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition.

5.8.3 | Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Diflubenzuron	Reg. 396/2005: Diflubenzuron	Yes	
			Peer review (EFSA, 2015e): Diflubenzuron (for fruit crops after foliar application)		
	Animal products	Diflubenzuron	Reg. 396/2005: Sum of diflubenzuron and	No	
		The residue is fat soluble	4-chlorophenylurea expressed as diflubenzuron Peer review (EFSA, 2015e): Diflubenzuron and 4-chlorophenylurea (CPU) expressed as diflubenzuron		
			The residue is fat soluble		
RD-RA	Plant products	Diflubenzuron	Peer review (EFSA, 2015e): <u>Fruit crops (foliar application):</u> (1) Diflubenzuron (2) PCA	No	
	Animal products	Diflubenzuron	Peer review (EFSA, 2015e): (1) Diflubenzuron and 4-chlorophenylurea (CPU), expressed as diflubenzuron	No	
			(2) PCA and provisionally PCAA, expressed as PCA (pending full assessment of toxicological properties of PCAA)		
Conclusion, comments	full assessment of toxicological properties of PCAA) At EU level, metabolism studies were available for fruits and mushrooms; JMPR had studies available for maize, soybean, apple, cabbage, cotton, orange, mushrooms, rice, wheat and beans, which were assessed in its previous assessments (JMPR 2002, 2011). For the current assessment, no new metabolism studies were reported It would be desirable that JMPR in its assessment discusses the relevance of the metabolism studies and the appropriateness of the current residue definitions for the new uses assessed For the commodity under discussion in this CCPR meeting (i.e. tea), the EU and Codex enforcement and risk assessment residue definitions are identical. However, in the EU, an additional residue definition was established, encompassing 4-chloroaniline (PCA) a genotoxic carcinogen metabolite (EFSA). At EU level no metabolism studies are available for leafy crops to cover the Codex MRL proposal for tea				

TABLE 45 Comparison of the residue definitions derived by JMPR and at EU level.

TABLE 45 (Continued)

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
residues ur diflubenzu 58% of the Tea is primarily formation tea infusion 100°C), EFS neutral or s The transfer of	nder conditions simulating pas ron occurred under sterilisatio applied radioactivity (AR), and r consumed as an infusion prep of PCA during fermentation/dr ns. In standard hydrolysis studi A is of the opinion that the ava lightly acidic pH)	teurisation, boiling/brewing/baking a n conditions (pH of 6, temperature 12 I the detection of 4-chlorophenylurea bared from fermented/dried tea leave ying is not available. The pH of tea in tes, the formation of PCA was not obs allable data do not allow to exclude th	able to investigate the degradation of and sterilisation. Significant degradation of 20°C), leading to the formation of PCA up to a (CPU) at 6%, a precursor of PCA es with boiling water. Information on the fusions is neutral/slightly acidic; for green served under boiling conditions (pH 5, he presence of PCA in tea infusion (100°C, ssed by JMPR. In this study, the possible

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.8.4 | Analytical methods

TABLE 46 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark	
Plant commodities: Difficult matrices	Yes	0.01 mg/kg for green and black tea, 0.004 mg/kg for fresh leaves, 0.0002 mg/L for tea infusions	 Extraction with acidified (1% formic acid) acetonitrile and distilled water, LC–MS/MS According to the JMPR report 2023, the analytical method was used for the following commodities: – fresh tea leaves, green and black tea and their infusions. EURL-FV has validation data in black tea, using QuEChERS with CaCl₂ and PSA in the dSPE step with LOQ of 0.05 mg/kg 	
Conclusion	The current EU MRL for th	ion for MRL enforcement for the relevant matrix group is identical with the JMPR residue definition r the commodity under discussion (tea) is lower than the Codex MRL proposal under discussion analytical methods for the enforcement of the MRLs for tea are available		

Abbreviations: dSPE, dispersive solid-phase extraction; LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.8.5 | Codex MRL proposals

TABLE 47 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Black, green tea infusions	_	-	JMPR derived a processing factor (dilution factor) of 0.004
Tea, black, green, dried and fermented (subgroup)	40	0.05*	cGAP: China, 1 × 13 g a.s./hL, 5-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: In total, 8 trials (green tea and black tea) were available both, from the same data set (<i>Camellia sinensis</i>). JMPR used the highest values from each trial to estimate a maximum residue level for green and black tea. The HR of 23.5 mg/kg was derived from the data set on black tea Conclusion: The proposed Codex MRL is sufficiently supported by data. However, see comments on dietary risk assessment Follow-up action: None
Concept commonts			

General comments

Abbreviations: ARfD, acute reference dose; cGAP, critical Good Agricultural Practice; HR, highest residue; MRL, maximum residue level; PHI, pre-harvest interval. *Indicates that the input value is proposed at the limit of quantification.

5.8.6 | Consumer risk assessment

TABLE 48 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant for parent	RA assumptions: The risk assessment was performed with the EU ADI	Specific comments: –
diflubenzuron since no ARfD was allocated	A long-term dietary risk assessment was performed for diflubenzuron, using PRIMo rev. 3.1, including STMR values derived by JMPR for tea, black, green, dried and fermented For the remaining commodities, the exposure calculations were performed with the existing EU MRLs (all set at the LOQ)	
	The risk assessment is therefore affected by additional, non- standard uncertainties as the formation of the genotoxic degradation product PCA under conditions representative for the preparation of tea infusion cannot be excluded	
Results: Not relevant	Results: The overall chronic exposure accounted for 2% of the ADI Tea was identified as the main contributor, accounting for up to 1% of the ADI	Results: Long-term exposure: Max 20% of the JMPR ADI GECDE mean: Max. 60% (infants and toddler) GECDE max: Max. 120% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.8.7 | Conclusions

TABLE 49Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position	
Background information	A.s. no longer approved in the EU (approval expired on 31 December 2020, as the application for renewal was withdrawn)	
Toxicological assessment	EU TRV available for the parent compound	
Residue definitions	For the commodity under discussion (tea), the EU and Codex RD for enforcement are identical; for RA, EU RDs are more comprehensive	
Analytical methods	Sufficiently validated analytical methods are available for MRL enforcement	
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data	
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). The chronic exposure calculation for diflubenzuron was well below the ADI. However, based on the available information, the formation of the genotoxic degradation product PCA in tea infusions cannot be fully ruled out	
Final conclusion	EU position to be discussed/decided by risk managers	

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.9 | Deltamethrin (135) R

5.9.1 | Background information

 TABLE 50
 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	AT	
Approval status	Approved, process of renewal of the approval ongoing	Commission Directive 2003/5/EC ³⁴ Renewal Assessment Report (RAR) submitted, EFSA peer review on ED clock-stop

³⁴Commission Directive 2003/5/EC of 10 January 2003 amending Council Directive 91/414/EEC to include deltamethrin as active substance. OJ L 8, 14.1.2003, p. 7–9.

TABLE 50 (Continued)		
		Comments, references
EFSA conclusion available	No	EFSA peer review ongoing (additional data requested)
MRL review performed	Yes, see comments	EFSA (2015h)
EU MRL applications or other EU assessments	Yes, see comments	 Art. 10 in cherries (additional data requested) EFSA (2022g) (maize/corn) EFSA (2022c) (import tolerance in mangoes and papayas) EFSA (2022b) (Art. 12 confirmatory data and MRLs modification in tomatoes and okra/lady's fingers) EFSA (2020d) (carobs/Saint John's breads) EFSA (2018f) (kale) EFSA (2017a) (celery, Florence fennel and rhubarb)
Classification of a.s. (cut-off criteria)	No, see comments	Deltamethrin does not fall under cut-off criteria ATP01 ³⁵
Endocrine effects of a.s.	Assessment ongoing	-
Other relevant information	Deltamethrin is authorised for use	e in veterinary medicine. It is also used as a biocide

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.9.2 | Toxicological reference values

TABLE 51	Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.
----------	--

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2000)	0.01 mg/kg bw per day	Commission Directive 2003/5/EC	Yes
ARfD	0.05 mg/kg bw	JMPR (2000)	0.01 mg/kg bw	Commission Directive 2003/5/EC	No
Conclusion/comments a.s.	The RMS highlighted that the EU TRV may be revised in the framework of the ongoing process of renewal of the approval. The discussions in an expert meeting took place in June 2023, but since the a.s. is currently on clock-stop due to ED assessment, the new TRV are not yet published/adopted				
Comments on metabolites	Metabolites included in JMPR RD for RA: – • alpha- <i>R</i> -isomer • <i>trans</i> -isomer No toxicological information available Metabolites included in EU RD for RA: • alpha- <i>R</i> -isomer • <i>trans</i> -isomer No toxicological information available				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.9.3 | Residue definitions

TABLE 52 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Sum of the deltamethrin and its trans- and alpha- <i>R</i> -isomers	Reg. 396/2005: Deltamethrin (cis-deltamethrin) MRL review (EFSA, 2015h): Deltamethrin (tentative)	No
	Animal products	Sum of the deltamethrin and its <i>trans</i> - and alpha- <i>R</i> -isomers The residue is fat soluble	Reg. 396/2005: Deltamethrin (cis-deltamethrin) MRL review (EFSA, 2015h): Deltamethrin (tentative) The residue is fat soluble	No

(Continues)

³⁵Commission Regulation (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 235, 5.9.2009, p. 1–439.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD-RA	Plant products	Sum of the deltamethrin and its trans- and alpha-R-isomers	MRL review (EFSA, 2015h): Sum of deltamethrin and its alpha- <i>R</i> -isomer and <i>trans</i> -isomer (tentative)	Yes		
	Animal products	Sum of the deltamethrin and its trans- and alpha-R-isomers	MRL review (EFSA, 2015h): Sum of deltamethrin and its alpha- <i>R</i> isomer and <i>trans</i> -isomer (tentative)	Yes		
comments	 The RMS noted that an additional residue definition for risk assessment might be established in future for all pyrethroid pesticides, which covers the common metabolites: Sum of PBA, PBA(OH) (including their conjugates) and PBAld, using the specific health-based guidance values derived for these compounds (EFSA PPR Panel, 2022b) In addition, it was noted that the alpha-<i>R</i>-isomer is most probably an artefact and therefore could be taken out of the residue definition 					
	 All three mentioned isomers of deltamethrin are diastereomers and can be determined using common multi-residue methods and instruments, involving conventional chromatographic separation. Using GC techniques, the isomers in question are typically chromatographically well separated, but according to the EURL experience, thermally promoted interconversion of isomers occurs, leading to uncertainties and bias in the quantification of the individual isomers. Still, due to the similar detection responses of the isomers, the uncertainty of the summed residue is typically acceptable. In addition, with GC methods may not be sufficiently specific to distinguish between deltamethrin and tralomethrin (see also comments on analytical methods). Using LC the problems related to thermal isomerization are circumvented It should be noted that neither conventional GC nor conventional LC are capable of separating enantiomeric pairs. The current RD-wordings (of both EU and JMPR) refer to single isomers disregarding the inability of conventional methods to distinguish between the above stated isomers and their respective enantiomers (this is rather a formal aspect) 					

Abbreviations: GC, gas chromatography; LC, liquid chromatography; MRL, maximum residue level; RD-RA, residue definition for risk assessment; RD enf, residue definition for enforcement practice.

5.9.4 | Analytical methods

TABLE 53 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Deltamethrin (cis-isomer)			
Plant commodities: High water content	Yes	0.02	Extraction with acetone followed by dichloromethane/petroleum ether mixture; clean-up by GPC; determination by GC-ECD. EURL data show successful validation in high water content commodities using GC–MS/ MS (LOQ of 0.005 mg/kg) On specificity of GC methods, see conclusion below
trans-isomer			
Plant commodities: High water content	Yes	0.02	Extraction with cyclohexane or hexane; clean-up by GPC; determination by GC-ECD. Based on EURL validation data and the experience gained for Deltamethrin (<i>cis</i> -isomer), an LOQ of 0.005 mg/kg is supposed achievable also for the <i>trans</i> -isomer. On specificity of GC methods, see conclusion below
α - <i>R</i> -isomer			
Plant commodities: High water content	No validation data reported	_	At JMPR level, recovery data on the alpha- <i>R</i> -isomer are available for milk, liver, beef and chicken muscle with an LOQ of 0.005 mg/kg, each, as well as for diverse food and feed products related to maize, wheat and rice, with an LOQ of 0.02 mg/kg (FAO and WHO, 2002b). The data do not meet the current criteria for validations in the EU (just two replicate experiments per level and matrix provided). Based on EURL validation data and the experience gained for deltamethrin (<i>cis</i> -isomer), an LOQ of 0.005 mg/kg is supposed achievable also for the alpha- <i>R</i> -isomer, however only in cases where the <i>cis</i> -isomer is absent or at very low levels (unlikely case). In the presence of <i>cis</i> -deltamethrin as transformation to alpha- <i>R</i> -deltamethrin takes place in the GC injector, affecting the quantification of the latter

49 of 223

TABLE 53 (Continued)	
Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. LOQ extraction efficiency) (mg/kg) Remark
Conclusion	 The EU residue definition for MRL enforcement for the relevant matrix group is not fully comparable with the JMPR residue definition The current EU MRL for food commodity under discussion (i.e. papaya) is lower than the Codex MRL proposal Sufficient analytical methods for the enforcement of the MRL for papaya are not available for all components included in JMPR's RD. Validation data for the <i>α</i>-<i>R</i>-isomer are missing in the requested commodity group (high water content) For the other two components entailed in the JMPR-RD (deltamethrin and its <i>trans</i>-isomer), adequate analytical methods for the enforcement of the MRL for papaya are available EURLs also highlighted that with GC methodologies, deltamethrin cannot be distinguished from tralomethrin, as tralomethrin quantitatively decomposes within the GC-Injector to deltamethrin via the elimination of Br₂ Using GC, there are some uncertainties created due to isomerisations taking place within the hot injector, but still, the quantification of the summed residue of all three isomers is less affected Using LC techniques, accurate analysis of the individual isomers is possible, provided that chromatographic separation is sufficient

Abbreviations: GC-ECD, gas chromatography with electron capture detector; GC–MS/MS, gas chromatography with tandem mass spectrometry; GPC, Gel Permeation Chromatography; LC, liquid chromatography; LOQ, limit of quantification; MRL, maximum residue level.

5.9.5 | Codex MRL proposals

TABLE 54 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Рарауа	0.2	0.01*	cGAP: Brazil, 3 × 12.5 g/ha, 14-day RTI, 1-day PHI Number of trials: 4 Sufficiently supported by data: Yes Specific comments: In the residue trials, the pulp and the peel were analysed separately. The results for the whole fruit was reconstituted from pulp and peel results Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
General comments	-		

Abbreviations: cGAP, critical Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval. *Indicates that the input value is proposed at the limit of quantification.

5.9.6 | Consumer risk assessment

TABLE 5	5	Summary of the consumer risk assessment
---------	---	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment was performed with the EU ARfD The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for papaya only	RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2022g) were updated, including the STMR values derived by JMPR for the papayas. In addition, the calculations were updated, taking into account the recently voted MRLs and the corresponding STMR values (PLAN/2023/326)	Specific comments: –
Results: No short-term consumer health risk was identified for the crops under assessment Papayas: 4.2% of ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 96% of the ADI The contribution of papayas accounted for less than 0.01% of the ADI	Results: Long-term exposure: Max 100% of the JMPR ADI. GECDE mean: Max. 520% (children and adolescents) GECDE max: Max. 1100% (children and adolescents) Short-term exposure: Highest result for papaya: 1% of ARfD

Abbreviations: ARfD, acute reference dose; ADI, acceptable daily intake; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.9.7 | Conclusions

TABLE 56Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (EFSA peer review currently on clock-stop)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RD for RA are identical; for RA, the JMPR RDs are more comprehensive
Analytical methods	Sufficient analytical methods for the enforcement of the MRL for papaya are not available for all components included in JMPR's RD. Validation data for the alpha- <i>R</i> -isomer are missing in the requested commodity group (high water content). However, the alpha- <i>R</i> isomer is most probably an artefact
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	Proposed Codex MRL is sufficiently supported by data and is unlikely to pose a risk for consumers

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.10 | Prochloraz (142) R/T

5.10.1 | Background information

TABLE 57 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Periodic review	Assessment of toxicology only. The residue evaluation of prochloraz was deferred to the 2024 JMPR meeting
RMS	IE	
Approval status	Not approved	Commission Implementing Regulation (EU) No 1143/2011 ³⁶ Expiration of approval: 31/12/2021; The application for renewal was withdrawn
EFSA conclusion available	Yes, see comments	EFSA (2011c) EFSA (2015i) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for prochloraz in light of confirmatory data)
MRL review performed	Yes, see comments	EFSA (2018m)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2023i) (Targeted risk assessment for prochloraz following the expiry of the EU approval)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria CLP00 ³⁷ (not reviewed by ECHA)
Endocrine effects of a.s.	Not assessed	-
Other relevant information	Prochloraz is subject to PIC Regul	ation

Abbreviations: a.s., active substance; MRL, maximum residue level.

³⁶Commission Implementing Regulation (EU) No 1143/2011 of 10 November 2011 approving the active substance prochloraz, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 and Commission Decision 2008/934/EC Text with EEA relevance. OJ L 293, 11.11.2011, p. 26–30.

³⁷Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

5.10.2 | Toxicological reference values

TABLE 58 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	0.02 mg/kg bw per day	JMPR (2023)	0.01 mg/kg bw per day	Reg. (EU) No 1143/2011	No
ARfD	0.2 mg/kg bw	JMPR (2023)	0.025 mg/kg bw	Reg. (EU) No 1143/2011	No
Conclusion/comments a.s.	 The JMPR established the ADI based on an overall NOAEL of 1.7 mg/kg bw per day for macroscopic and microscopic signs of liver toxicity in two 2-year studies in rats. The ADI is supported by an overall NOAEL of 2.5 mg/kg bw per day from 90-day and 1-year studies in dogs. The JMPR noted a margin of 1300 between the ADI and the LOAEL for hepatocellular adenomas and carcinomas in mice. The JMPR further noted that the previously set ADI of 0.01 mg/kg bw per day, now withdrawn, was based on increased alkaline phosphatase levels (ALP) and minimal histopathological effects in one 2-year dog study, these effects beil currently considered as isolated changes in dogs and not adverse The ARfD of JMPR is based on a NOAEL of 20 mg/kg bw for clinical signs, effects on motor activity and rearing counts, righting reflex and approach response, and reduced body temperature observed in an acute neurotoxicity study in rats. The previously set ARfD of 0.1 mg/kg bw, now withdrawn, was based on ALP changes in dogs in a 14-day study that are now considered isolated finding and not adverse An UF of 100 was applied to both the ADI and ARfD The EU ADI is based on an overall NOAEL of 2.5 mg/kg bw per day for increased liver weight, biochemical changes a histopathology observed in a 2-year dog study, applying an UF of 100 The EU ARfD is based on an overall NOAEL of 2.5 mg/kg bw per day taking into consideration effects seen in the 14-day (increased in AP activity after 3 days treatment) and 90-day (emesis and salivation) studies in dogs, and multigeneration reproduction toxicity study in rats (increased gestation length in two regulator studies and nipple retention reported in the open literature), and applying an UF of 100 				erall NOAEL of 300 between er noted d alkaline se effects being y and rearing an acute sed on ALP cal changes and ects seen in) studies in
Comments on metabolites	The current residue defir	nition for risk assessm ng the 2,4,6-trichlorp	ent at Codex level cove henol moiety, expresse		
	 These metabolites are considered not genotoxic and covered by the TRV of the parent BTS 44595 BTS 54906 BTS 44770 Not genotoxic or no genotoxicity alerts, JMPR recommended assessment according to TTC Cramer class III 				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LOAEL, lowest observed adverse effect level; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition; TTC, threshold of toxicological concern; UF, uncertainty factor.

5.10.3 | Residue definitions

TABLE 59 Comparison of the residue definitions derived by JMPR and at EU level.

RD enf Plant productsRD will be reviewed by 2024 JMPR Current RD: Sum of prochloraz and its metabolites containing the 2,4,6-trichlorphenol moiety, expressed as prochlorazReg. 396/2005: Prochloraz (sum of prochloraz, BTS 44595 (M201- 04) and BTS 44596 (M201-03), expressed as prochloraz)No (current RD: MRL review (EFSA, 2018m): Sum of prochloraz, BTS 44595 (M201- 04) and BTS 44596 (M201-o3), expressed as prochlorazPeer review (EFSA, 2011c): Sum of prochloraz, BTS 44595 and BTS 44596, expressed as prochloraz		Commodity group	JMPR evaluation	EU evaluation	RDs comparable
	RD enf	Plant products	Current RD: Sum of prochloraz and its metabolites containing the 2,4,6-trichlorphenol	prochloraz, BTS 44595 (M201- 04) and BTS 44596 (M201-03), expressed as prochloraz) MRL review (EFSA, 2018m): Sum of prochloraz, BTS 44595 (M201- 04) and BTS 44596 (M201-03), expressed as prochloraz Peer review (EFSA, 2011c): Sum of prochloraz, BTS 44595 and BTS	No (current RD)

TABLE 59 (Continued)

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
	Animal products	RD will be reviewed by 2024 JMPR. Current RD: Sum of prochloraz and its metabolites containing the 2,4,6-trichlorphenol moiety, expressed as prochloraz The residue is fat soluble	 Reg. 396/2005: Prochloraz (sum of prochloraz, BTS 44595 (M201-04) and BTS 44596 (M201-03), expressed as prochloraz) MRL review (EFSA, 2018m): Sum of prochloraz, BTS 44595 (M201-04) and BTS 44596 (M201-03), expressed as prochloraz Peer review (EFSA, 2011c): Sum of prochloraz, BTS 44595 and BTS 44596, expressed as prochloraz The residue is fat soluble 	No (current RD)
RD-RA	Plant products	RD will be reviewed by 2024 JMPR. Current RD: Sum of prochloraz and its metabolites containing the 2,4,6-trichlorphenol moiety, expressed as prochloraz	 MRL review (EFSA, 2018m): prochloraz and its metabolites containing the 2,4,6-trichlorophenol moiety Peer review (EFSA, 2011c): Sum of prochloraz and its metabolites containing the 2,4,6-TCP moiety, expressed as prochloraz 	Yes (current RD)
	Animal products	RD will be reviewed by 2024 JMPR. Current RD: Sum of prochloraz and its metabolites containing the 2,4,6-trichlorphenol moiety, expressed as prochloraz	MRL review (EFSA, 2018m): Sum of prochloraz and its metabolites containing the 2,4,6-trichlorophenol moiety, expressed as prochloraz Peer review (EFSA, 2011c): Sum of prochloraz and its metabolites containing the 2,4,6-TCP moiety, expressed as prochloraz	Yes (current RD)
Conclusion, comments	The Codex residue de	finitions will be reviewed by 2024 JMPR		

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; MRL: maximum residue level.

5.10.4 | Analytical methods

Not relevant, no Codex MRL proposals derived by JMPR.

5.10.5 | Codex MRL proposals

No CXL proposals were derived by JMPR.

5.10.6 | Consumer risk assessment

Not relevant, no CXL proposals were derived by JMPR.

5.10.7 | Conclusions

TABLE 60Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired on 31 December 2021; application for renewal was withdrawn)
Toxicological assessment	EU TRV available
Residue definitions	Review was deferred to 2024 JMPR
Analytical methods	Review was deferred to 2024 JMPR
Codex MRL proposals	Review was deferred to 2024 JMPR

TABLE 60	(Continued)
----------	-------------

Subsection of the assessment	Findings relevant for discussion of EU position
Dietary risk assessment	Review was deferred to 2024 JMPR
Final conclusion	To await outcome of assessment by 2024 JMPR

Abbreviations: a.s., active substance; TRV, toxicological reference value.

5.11 | Carbosulfan (145) R/T

5.11.1 | Background information

TABLE 61Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Periodic review	
RMS	BE	
Approval status	Not approved	Commission Decision (EC) 2007/415/EC ³⁸
EFSA conclusion available	Yes, see comments	EFSA (2009f)
MRL review performed	Yes, see comments	EFSA (2014a) (combined MRL review for carbofuran, carbosulfan, benfuracarb and furathiocarb under Art. 43)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2008c) (Art. 43 assessment)
Classification of a.s. (cut-off criteria)	No, see comments	Carbosulfan does not fall under cut-off criteria. ATP01 ³⁹
Endocrine effects of a.s.	Not assessed	-
Other relevant information	Carbosulfan is subject to PIC Regulation Carbosulfan is a precursor of carbofuran,	, which is also used as a.s. as such

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.11.2 | Toxicological reference values

 TABLE 62
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2023)	0.005 mg/kg bw per day	EFSA (2009)	No
ARfD	0.02 mg/kg bw	JMPR (2023)	0.005 mg/kg bw	EFSA (2009)	No
Conclusion/comments a.s.	0.02 mg/kg bwJMPR (2023)0.005 mg/kg bwEFSA (2009)NoJMPR based the ADI on an overall point of departure of 1.3 mg/kg bw per day derived from the NOAEL values of 1.2 mg/kg bw per day in the 13-week neurotoxicity study in rats, 1 mg/kg bw per day for toxicity in the 104-week study of toxicity and carcinogenicity in rats, and 1.3 mg mg/kg bw per day for parental and offspring toxicity in the three-generation reproductive toxicity study in rats. The NOAEL of 0.38 mg/kg bw per day in the 90-day rat study was not considered appropriate to derive the ADI because of the wide dose spacing, with the lowest observed adverse effect level (LOAEL) of 9.8 mg/kg bw per day. A safety factor of 100 was usedThe ARfD was based on the NOAEL of 0.5 mg/kg bw in the acute neurotoxicity study in rats. A safety factor of 25 wa considered appropriate because the acute toxic effects of carbofuran are dependent on C _{max} rather than the 				city in the 104-week ffspring toxicity day in the 90-day J, with the lowest ed fety factor of 25 was rather than the

(Continues)

³⁸2007/415/EC: Commission Decision of 13 June 2007 concerning the non-inclusion of carbosulfan in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance (notified under document number C(2007) 2463) (Text with EEA relevance). OJ L 156, 16.6.2007, p. 28–29.

³⁹Commission Regulation (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 235, 5.9.2009, p. 1–439.

TABLE 62 (Continued)

JMPR evaluation			EU evaluation		TRV		
	Value	Comments	Value	Comments	comparable		
Comments on metabolites	only apply to source JMPR should be asked to tests. In addition, JM	d an ARfD of 0.001 mg/kg k s of carbofuran that have a o specify the impurities pre PR should be asked for clar ast 99.8% can be applied to	purity of 99.8% or g esent in the batches v rification whether th	reater which gave positive result e proposed ADI/ARfD base	s in genotoxicity ed on carbofuran		
	genotoxic in in vitro 99.1%) (in conflict wi	n n JMPR 2023 for 3-hydroxy assays for gene mutation i th information assessed by varent based on acute toxic	n bacteria and mamı / EFSA in 2009); the n	malian cells and in vitro M	N test (purity		
	 3-hydroxy-7-phenol c Not genotoxic based on acute toxicology stu 3-keto-7-phenol carb 	QSAR analysis; no evidenc dies in rats	e of clinical signs co	nsistent with anticholinest	erase effects in the		
		QSAR analysis; NOAEL for bw per day, the highest do					
	JMPR concluded that the ADI and ARfD of the parent apply also to 3-hydroxy-carbofuran, 3-hydroxy-7-phenol- carbofuran and 3-keto-7-phenol-carbofuran, expressed as carbofuran.						
	As the TRVs for carbosulfan are higher than those for carbofuran and its metabolites, JMPR included relative potency factor of 10 and 20 in the residue definitions for chronic and acute risk assessment, respectively (see also Section on residue definition, 5.11.3)						
	 Metabolites included in EU RD for RA: Carbofuran The EU ADI and ARfD of 0.00015 mg/kg bw are based on the LOAEL of 0.03 mg/kg bw for a significant inhibition of the brain AChE (of 20%) in pups from the acute neurotoxicity studies, and applying an uncertainty factor of 200. The use of a supplementary assessment factor of 2 was supported by a benchmark dose approach for a 10% decrease of brain AChE, resulting in an overall uncertainty factor of 200 (EFSA, 2009f), see also Section 5.4.2 on carbofuran 						
	 3-hydroxy carbofuran This metabolite of carbofuran was addressed in the carbofuran dossier. 3-hydroxy carbofuran is genotoxic in vitro (positive results in an Ames test and in a TK locus in L5178Y mouse lymphoma cells assay) (in conflict with information in JMPR 2023); In 2009, it was concluded that the reference values of carbofuran could be applied to this metabolite (EFSA, 2009f) 						
	 3-keto carbofuran This metabolite of carbofuran was addressed in the carbofuran dossier. In 2009, it was concluded that the reference values of carbofuran could be applied to this metabolite (EFSA, 2009f) 						
	It is noted that, based on the information available in the EU carbofuran dossier, a similar genotoxicity profile was concluded between the parent and metabolite 3-hydroxy-carbofuran, i.e., positive for gene mutation in vitro both substances and carbofuran showing negative results in an in vivo study (sex-linked recessive lethal test i Drosophila melanogaster—OECD TG 477) (EFSA, 2009f)						
	 It is noted that according to current standards, the in vivo tests performed on the parent may not be sufficiently sensitive to dismiss the positive results obtained in vitro. The respective OECD test guidelines 477 have been deleted meanwhile. In view of the current approach on the assessment of genotoxicity, the RMS, BE, reviewed the information available in the EU carbofuran dossier and expressed agreement with the EFSA comments: 'While the now outdated SLRL (sex-linked recessive lethal test in <i>Drosophila melanogaster</i> – OECD TG 477) is the most sensitive assay within the <i>D. melanogaster</i> in-vivo model, it cannot be completely excluded that positive in-vitro findings in bacterial or mammalian cells should be tested in a more accurate in-vivo assay for the detection of gene mutations, e.g. the invivo comet or the transgenic assay. On the other hand, while some published articles indicated some genotoxicity in-vivo, the most relevant and recent guideline GLP studies in the EU-dossier did not indicate CA or MN induction' 						
Abbraviations: ADL accentable d	In addition, the RMS confirmed the positive results obtained with 3-OH carbofuran in bacterial (2 out of 4 runs with metabolic activation were positive, and one equivocal in the same strain TA1537; no test available in strain TA97, which is more sensitive for detecting frame-shift mutations) and mammalian cells (mutagenic in the TK mutation system with and without metabolic activation), while no in vivo test is available with the metabolite This conclusion is supported by some open public literature, showing some similarity with carbofuran itself Since 3-OH-carbofuran is the main metabolite of carbofuran in mammalian cells, the metabolite is considered likely to share a similar toxicological profile as the parent and it may be discussed whether the current database is still sufficient to conclude on the genotoxicity profile of carbofuran and its metabolite 3-OH-carbofuran daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; TRV, toxicological reference value.						

5.11.3 | Residue definitions

TABLE 63 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Sum of carbosulfan and carbofuran (expressed as carbosulfan)	Reg. 396/2005: Carbofuran (sum of carbofuran (including any carbofuran generated from carbosulfan, benfuracarb or furathiocarb) and 3-OH carbofuran expressed as carbofuran	No			
	Animal products	Not established Fat solubility not specified	Reg. 396/2005: 3-OH-carbofuran (free and conjugated) expressed as carbofuran	Not applicable			
			Peer review (EFSA, 2009f): No precise definition can currently be proposed due to outstanding data and information (preferably the same as for risk assessment pending information on the efficiency of the analytical method and the establishment of a conversion factor for 3-keto-carbofuran)				
			The residue is not fat soluble				
RD-RA	Plant products	 For long-term dietary exposure: Carbosulfan plus 10× (sum of carbofuran, 3-hydroxy carbofuran (free and conjugated), 3-hydroxy- 7-phenol and 3-keto-7-phenol), expressed as carbosulfan For acute dietary exposure: Carbosulfan plus 20× (sum of carbofuran, 3-hydroxy carbofuran (free and conjugated), 3-hydroxy- 7-phenol and 3-keto-7-phenol), expressed as carbosulfan 	Peer review (EFSA, 2009f): Carbofuran plus 3-hydroxy carbofuran plus 3-keto carbofuran and their conjugates expressed as carbofuran (uses with soil application)	No			
	Animal products	Not established	Peer review (EFSA, 2009f): 3-hydroxy carbofuran and 3-keto carbofuran, free and conjugated expressed as carbofuran	Not applicable			
Conclusion, comments	alfalfa and soybean. sulfone. Carbofuran becomes N-hydroxy forms Major foliar residues are carbofuran, with phe	Metabolic pathways involve hydrolysis to further oxidises to 7-phenol, forming 3-hy methyl carbofuran or 3-hydroxy/3-keto ca carbosulfan, carbofuran and dibutylamin enol-derivatives increasing. Dibutylamine	in various crops, including citrus, maize, rice carbofuran and dibutylamine or oxidation ydroxy-7-phenol and 3-keto-7-phenol. Alter arbofuran. Metabolites exist in conjugated/r ne; soil applications yield carbofuran and 3-h declines in immature plants. Residues in ma us/maize stover contain minimal 3-hydroxy o	to carbosulfan natively, it non-conjugated nydroxy ature sugar			
	commodities from ro Animal commodities: 0 levels (< 2% TRR). Pre and dibutylamine (fo the proposed metab	otational crops, but there is a potential for Carbosulfan undergoes rapid metabolism odominant metabolites include 3-hydroxy bund in poultry muscle and liver), with car	rbosulfan metabolites are not expected in for metabolite residues to be taken up in feed and excretion in animals, typically detected -carbofuran (found in poultry muscle, milk a bofuran being a minor component in all ma e of the N–S bond to form dibutylamine and ic carbofuran derivatives	commodities. I at very low and kidney) itrices. In goats,			
	The EU residue definition for enforcement is more comprehensive than the one proposed by JMPR. For risk assessment the residue definitions are not compatible						

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TRR: total radioactive residues.

5.11.4 | Analytical methods

TABLE 64 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark		
Carbosulfan					
Plant commodities: High water content High acid content	Yes	0.05	Analysis performed on 'properly stored, frozen samples in order to prevent degradation' (FAO and WHO, 2004a); extraction with hexane/2-propanol, acetonitrile or acetone, clean-up by partitioning steps and/or SPE; determination by GC- or LC techniques using different detectors		
	high water and h kg). This method LOQ is supposed of plant origin, w additional exper		EURLs have validated carbosulfan after conversion to carbofuran in high water and high acid content commodities (LOQ of 0.001 mg/ kg). This methodology is however not specific to carbosulfan. This LOQ is supposed to be also achievable for the other commodities of plant origin, with exception of difficult commodities for which additional experience needs to be gained		
Carbofuran and 3-hydrox	xy-carbofuran				
Plant commodities: High water content	Yes	0.05 (each)	Extraction with hexane/2-propanol, acetonitrile or acetone, clean-up by partitioning steps and/or SPE; determination by GC- or LC techniques using different detectors		
			EURLs data show successful validation for both compounds in high water content commodities (LOQ of 0.001 mg/kg each)		
Plant commodities: High water content (banana)	ater content		Successful validation reported but without giving details on method and validation figures (FAO and WHO, 2013). The EURLs are of the opinion that bananas may be represented by high water content commodities		
Plant commodities: High acid content	Yes	0.05 (each)	Extraction with hexane/2-propanol, acetonitrile or acetone, clean-up by partitioning steps and/or SPE; determination by GC- or LC techniques using different detectors EURLs data show successful validation for both compounds in high acid content (LOQs at 0.001 mg/kg each) and in dry commodities (LOQs at 0.005 mg/kg each)		
			EURLs data show successful validation for Carbofuran in high oil content commodities (LOQ at 0.005 mg/kg)		
Conclusion	All three precursors te food processing but a it was further shown t	The EURLs noted that carbosulfan (as well as benfuracarb and furathiocarb) are precursor compounds of carbofuran. All three precursors tend to degrade to carbofuran at various stages after their application, including during food processing but also during analysis. In an experiment by the EURL for Single Residue Methods (EURL-SRM), it was further shown that during household processing considerable fractions of carbosulfan, benfuracarb and furathiocarb will transform to carbofuran			
	the JMPR residue defi The current EU MRLs for f (eggplant and mange	nition food commodities)) are lower than th	nent for the relevant matrix groups are not identical/not equivalent with belonging to the matrix groups of high water content commodities ne Codex MRL proposals under discussion ment of the MRLs for these matrices are only partially available at JMPR level		

Abbreviations: GC, gas chromatography; LC, liquid chromatography; LOQ, limit of quantification; MRL, maximum residue level; SPE, solid-phase extraction.

5.11.5 | Codex MRL proposals

TABLE 65	Comparison of Codex MRL p	proposals derived by JMPR with EU MRLs.
----------	---------------------------	---

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus pulp, Dry	0.1 (W)	-	The existing CXL is proposed for withdrawal
Cotton seed	0.03* (W)	0.1	The existing CXL is proposed for withdrawal. In EU a higher MRL is applicable
Edible offal (mammalian)	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Eggplant	0.15 ^ª	0.002*	cGAP: Thailand: 3×60 g a.s./hL (use of carbosulfan), 7-day RTI, 9-day PHI Number of trials: 6 Sufficiently supported by data: Yes Specific comments: Residue trials were analysed for carbosulfan and carbofuran

TABLE 65 (Continued)			
Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is not acceptable because there is an acute intake concern was identified in the JMPR and the EU risk assessment (see risk assessment section) Follow-up action: None
Eggs	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Maize	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Maize forage	0.05* (W)	_	The existing CXL is proposed for withdrawal
Mandarin	0.1 (W)	0.01*	The existing CXL is proposed for withdrawal
Mango	0.1 ^a	0.01*	cGAP: Thailand 3×60 g a.s./hL (approx. 0.84–0.92 kg/ha of carbosulfan), 7-day RTI, 14-day PHI Number of trials: 6 Sufficiently supported by data: Yes Specific comments: Trials were analysed for carbosulfan and carbofuran Conclusion: The proposed Codex MRL is not acceptable because there is an acute intake concern identified in the JMPR and the EU risk assessment (see risk assessment section) Follow-up action: None
Meat (from mammals other than marine mammals)	0.05* fat (W)	– Muscle: 0.01*	The existing CXL is proposed for withdrawal
Milks	0.03* (W)	0.001*	The existing CXL is proposed for withdrawal
Oranges, sweet, sour (subgroup)	0.1 (W)	0.01*	The existing CXL is proposed for withdrawal
Potato	0.05 (W)	0.001*	The existing CXL is proposed for withdrawal
Poultry meat	0.05* (W)	– Muscle: 0.01*	The existing CXL is proposed for withdrawal
Poultry, edible offal of	0.05* (W)	0.01*	The existing CXL is proposed for withdrawal
Rice	0.05* (W)	-	The existing CXL is proposed for withdrawal
Rice straw and fodder, dry	0.05* (W)	_	The existing CXL is proposed for withdrawal
Spices, fruits and Berries	0.07 (W)	0.05*	The existing CXL is proposed for withdrawal
Spices, roots and rhizomes	0.1 (W)	0.05*	The existing CXL is proposed for withdrawal
Sugar beet	0.3 (W)	0.01*	The existing CXL is proposed for withdrawal
Sugar beet leaves or tops	0.05* (W)	_	The existing CXL is proposed for withdrawal
General comments	-		

Abbreviations: cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended. *Indicates that the input value is proposed at the limit of quantification.

^aJMPR concluded that the estimated acute dietary exposure to residues of carbosulfan for the consumption of mangoes and eggplants exceeds the ARfD and therefore may present a public health concern.

5.11.6 | Consumer risk assessment

TABLE 66 Summary of the consumer risk assessment.

Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment was performed with the EU ADI derived for carbosulfan	Specific comments: -
A long-term dietary risk assessment was performed using PRIMo rev. 3.1, the STMR values derived by JMPR for the commodities for which Codex MRLs were derived. For the remaining commodities, the calculations were performed with the existing MRLs and default LOQ of 0.01 mg/ kg	
R T	A assumptions: he risk assessment was performed with the EU ADI derived for carbosulfan long-term dietary risk assessment was performed using PRIMo rev. 3.1, the STMR values derived by JMPR for the commodities for which Codex MRLs were derived. For the remaining commodities, the calculations were performed with the existing MRLs and default LOQ of 0.01 mg/ kg he calculations are indicative, because the RA

TABLE 66 (Continued)						
Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment				
Results: The calculated short-term exposure exceeded the ARfD for all crops under assessment Mangoes: 2044% of ARfD Eggplants: 455% of ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 11% of the ADI Among the crops under consideration, eggplants were identified as the main contributor, accounting for up to 2% of the ADI (GEMS/Food G06)	Results: Long-term exposure: Max 2% of the JMPR ADI GECDE mean 70% of ADI GECDE max. 390% ADI (children and adolescents diet) Short-term exposure: Highest result for mangoes: 310% of ARfD egg plants: 210% of ARfD derived by JMPR				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.11.7 | Conclusions

TABLE 67 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU, EU assessments available
Toxicological assessment	EU TRV available. Divergent conclusions on toxicological profile of parent and metabolites from EU and JMPR Assessments
Residue definitions	EU and Codex RDs are not comparable/not fully compatible
Analytical methods	Validated analytical methods are available. EURLs reported validation data for EU RDs for MRL enforcement
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. However, see results of risk assessment
Dietary risk assessment	An acute intake concern was identified by EFSA and by JMPR
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.12 | Propiconazole (160) R

5.12.1 | Background information

TABLE 68 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	FI	
Approval status	Not approved	Commission Implementing Regulation (EU) 2018/1865 ⁴⁰
EFSA conclusion available	Yes, see comments	EFSA (2017b) EFSA (2018k) (conclusion confirmatory data on TDMs)
MRL review performed	Yes, see comments	EFSA (2015a)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2021a) (Art. 12 confirmatory data)
Classification of a.s. (cut-off criteria)	Yes, see comments	Toxic for reproduction cat. 1A/1B ATP13, ⁴¹ ECHA (2016)

⁴⁰Commission Implementing Regulation (EU) 2018/1865 of 28 November 2018 concerning the non-renewal of approval of the active substance propiconazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 304, 29.11.2018, p. 6–9.

⁴¹Commission Regulation (EU) 2018/1480 of 4 October 2018 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures and correcting Commission Regulation (EU) 2017/776. OJ L 251, 5.10.2018, p. 1–12.

TABLE 68 (Continued)

		Comments, references
Endocrine effects of a.s.	Yes, see comments	 EFSA (2017b) In the EU concern form submitted in 2021 to CCPR, the EU highlighted that EFSA was unable to conclude on the endocrine disrupting potential of propiconazole. In the EU evaluation, toxic effects have been observed on endocrine organs in the available data. Given the positive results observed in vitro for oestrogen and androgen receptor antagonism, AhR (aryl hydrocarbon receptor) agonism and aromatase inhibition and in the absence of a full investigation of the possibly related endpoints in the two-generation reproductive toxicity study (in particular the lack of sperm parameters), the possibility that propiconazole is an endocrine disruptor cannot be excluded. Further investigations of the endocrine disruption potential of propiconazole would be needed in particular on the male reproductive toxicity including a complete sperm analysis Under the framework of the biocide legislation, propiconazole is considered as having endocrine-disrupting properties that may cause adverse effects in humans (recital 5 of the Commission Implementing Regulation (EU) 2023/2596)⁴² (ECHA, 2022)
Other relevant information	Propiconazole belongs	to the class of triazole fungicides; it is authorised for use in veterinary medicine and as a

biocide; in addition, this a.s. is subject to PIC regulation

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.12.2 | Toxicological reference values

 TABLE 69
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation			EU evaluation	TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.07 mg/kg bw per day	JMPR (2004)	0.04 mg/kg bw per day	Reg. (EU) 2018/1865	No	
ARfD	0.3 mg/kg bw	JMPR (2004)	0.1 mg/kg bw	Reg. (EU) 2018/1865	No	
Conclusion/comments a.s.	JMPR (FAO and WHO, 2004b): The ADI is based on the NOAEL of 7 mg/kg bw per day in a multigeneration study of reproductive toxicity in rats and a 100-fold safety factor The ARfD is based on the NOAEL of 30 mg/kg bw per day in the study of developmental toxicity in rats and a 100-fold safety factor					
	The ADI is based on long-term NOAEL of 3.6 mg/kg bw per day in the 2-year study. An uncertainty factor of 100 was applied The ARfD is based on developmental NOAEL of 30 mg/kg bw per day in the developmental toxicity study in rats. A standard uncertainty factor of 100 was applied during the first review. The experts agreed to apply an additional uncertainty factor of 3 to the standard uncertainty factor of 100 to obtain a higher MOS with regard to the lowest observed adverse effect level (LOAEL) for the severe effects on cleft palate (EFSA, 2017b)					
	by the EU are lower than at 100 ppm correspondin statistically significantly r significantly reduced adr acknowledged that this c JMPR considered the slight re any related findings, as n Regarding the setting of the A LOAEL (lowest observed a consensus between the El	those of the JMPR: In t ig to 3.6 mg/kg bw per educed bodyweight g enal weights in males conclusion is conservat eduction in adrenal we ot adverse ARfD, an additional UF c dverse effect level) for U experts. JMPR conside	ne EU assessment, th day for males and 4. ain in females over t at the end of the stud ive ights and slight redu f 3 was applied in the che severe effects on ered that the margin	hat the ADI and ARfD values es ie NOAEL of the 2-year study ir 6 mg/kg bw per day for female he first year of the study and s dy in animals treated with 500 uction in bodyweight gain, in t e EU to obtain a higher MOS wit cleft palate. This conclusion wa between the ARfD of 0.3 mg/kg mg/kg bw per day was adequar	n rats was set es based on tatistically ppm. It is he absence of h regard to the s reached by y bw and the	
Comments on metabolites	Metabolites included in JMP – all metabolites convertible The common moiety is unsp below on metabolites inc	e to 2,4-dichlorobenzo ecific and covers a nur		(e.g. CGA91305, SYN547889, NC	DA436613). See	

(Continues)

⁴²Commission Implementing Regulation (EU) 2023/2596 of 21 November 2023 renewing the approval of propiconazole as an active substance for use in biocidal products of product-type 8 in accordance with Regulation (EU) No 528/2012 of the European Parliament and of the Council. OJ L, 22.11.2023, p. 1–9.

TABLE 69 (Continued)

JMPR evaluation		EU evaluation	TRV		
Value	Comments	Value	Comments	comparable	
	1,2-O-[(1RS)-1-(2,4-dich mation to conclude on		2,4-triazol-1-yl)ethylidene]-D,L- general toxicity (EFSA, 2017b)	•	
 all metabolites convertible to 2,4-dichlorobenzoic acid The common moiety is unspecific and covers a number of metabolites (CGA91305, SYN547889, NOA436613). In 2021, EFS/ concluded that more detailed qualitative and quantitative comparison to parent is missing for concluding on the toxicological profile of these metabolites, even if they are considered unlikely to be genotoxic 					
 CGA91305 ((1RS)-1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl) ethanol) There is not sufficient information to conclude on the genotoxicity and general toxicity (EFSA, 2017b). The metabol is not covered by TRVs of parent 					
5 5 .	, , , , , , , , , , , , , , , , , , , ,	5	(EFSA, <mark>2018k</mark>). The ADI and ARfE 2856 (TAA) is covered by the TR\		
	opiconazole and the Al	RfD of this metabolite	en set (EFSA, <mark>2018k</mark>). The ADI of e is the same as that of propico		
is lower than that of prop	er day and an ARfD of 0 piconazole. The ARfD of	f this metabolite is the	en set (EFSA <mark>, 2018k</mark>). The ADI of e same as that of propiconazole it by the ADI of the parent		

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition; UF, uncertainty factor.

5.12.3 | Residue definitions

TABLE 70 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Propiconazole	Reg. 396/2005 (implementing MRL review): Propiconazole (sum of isomers)	Yes
			Peer review (EFSA, 2017b): Propiconazole (sum of isomers)	
	Animal products	Propiconazole The residue is fat soluble	Reg. 396/2005 (implementing MRL review): Propiconazole (sum of isomers)	Yes
	Peer review (EFSA, 2017b): CGA91305 (free and conjugated)			
			The residue is fat soluble	
RD-RA	Plant products	Propiconazole plus all metabolites convertible to 2,4-dichlorobenzoic acid, expressed as propiconazole	 Peer review (EFSA, 2017b): <u>Primary crops:</u> (1) Propiconazole (sum of isomers) (2) CGA 118244 (3,5-dideoxy-1,2-O-[(1RS)-1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene]- p,L-pentitol) free and glucoside conjugated – whether the parent compound and CGA 118244 should be considered together or separately depends on the submission of toxicological data to address the toxicity profile of CGA 118244 	No
			(3) TDMs (EFSA, 2018k)	
	Animal products	Propiconazole plus all metabolites convertible to 2,4-dichlorobenzoic acid, expressed as propiconazole	 Peer review (EFSA, 2017b): (1) propiconazole, CGA91305 (free and conjugated) and CGA118244 (The expression of the residue definition is pending the requested toxicological profile for CGA 91305 and CGA 118244); 	No
		ρισμισπαζοιε	(2) CGA71019 (1,2,4-triazole)	

TABLE 70 (Continued)

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion, comments	which is a racer isomer ratio of While the JMPR res	mic mixture of four stereoiso propiconazole sidue definitions (based on c	mers do not investigate the impact	le metabolism studies with propiconazole of plant and livestock metabolism on the rehensive, they are not appropriate until) is adequately addressed

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TDM, triazole derivative metabolite.

5.12.4 | Analytical methods

TABLE 71 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High oil content Dry commodities	Yes	0.01	DFG S19 method LC–MS/MS detection
Animal products Fat Liver/kidney Eggs	Yes	0.01	DFG S19 method LC–MS/MS detection
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The current EU MRLs for food commodities belonging to the matrix groups high oil content, dry commodities, liver/kidney and fat are lower than the Codex MRL proposal under discussion Sufficiently analytical methods for the enforcement of the MRLs for these matrices are available		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level.

5.12.5 | Codex MRL proposals

 TABLE 72
 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Avocado	0.02	0.01*	cGAP: USA, 2×1.26 g a.s./cm, 90-day RTI, 7-day PHI Number of trials: 6 (root infusion) Sufficiently supported by data: Yes Specific comments: Two data sets were available: one comprising 6 trials following trunk injection and 6 trials following root infusion which selected by JMPR due to the highest residue levels. The results were reported for fruits without stones, which were then recalculated to the whole fruit. It was assumed that the stone constitutes 15% of the whole fruit's weight thus the trial results were multiplied with a factor of 1.15. EFSA notes that the calculations were incorrect: the residue results referring to pulp and peel need to be divided by 1.15 (instead of multiplying it with 1.15). Hence, a lower MRL of 0.01 mg/kg would be sufficient Conclusion: The proposed Codex MRL is sufficiently supported by data. JMPR should be asked to re-calculate the MRL, as the residues in the whole fruit are expected to be lower than in the pulp plus peel Follow-up action: None
Edible offal (mammalian)	0.2	0.01*	Max. dietary burden (beef/dairy cattle): 29 ppm Max. residues in liver: 0.18 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Eggs	0.01*	0.01*	 Max. dietary burden (poultry layer): 8.4 ppm Max. residues in eggs: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: Since no measurable residue levels were observed even at the highest feeding level, JMPR confirmed its previous CXL of 0.01* Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

TABLE 72 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Mammalian fats (except milk fats)	0.05	0.01*	Max dietary (beef/dairy cattle): 29 ppm. Max residues in fat: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.01*	– Muscle: 0.01*	 Max. dietary burden (beef/dairy cattle): 29 ppm Max. residues in muscle: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: Since no measurable residues were observed even at the highest feeding level (75 ppm), JMPR confirmed its previous CXL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Milks	0.01*	0.01*	Max. dietary burden (beef/dairy cattle): 29 ppm Max. residues in milk: <0.01 mg/kg Sufficiently supported by data: Yes Specific comments: JMPR confirmed its previous CXL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Peanut	0.03	0.01*	cGAP: USA, 4 × 123 kg a.s./ha, 10-day RTI, 14-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: The trials were analysed only for propiconazole. JMPR applied a conservative default factor of 3 to convert residues of parent to total residues convertible to 2,4-DCBA based on the metabolism studies. Further details on the conversion factor to be checked in JMPR Evaluation Conclusion: It is recommended to discuss with MS whether the proposed Code: MRL is acceptable, as data on the residue definition for risk assessment are not available Follow-up action: To check details in JMPR evaluation
Peanut, hay and/or straw	50 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Poultry fats	0.01*	0.01*	 Max. dietary burden (poultry layers): 8.4 ppm Max. residues in fats: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: Since no measurable residues were observed even at the highest feeding level (37.5 ppm), JMPR confirmed its previous CXL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: To check details in JMPR evaluation
Poultry meat	0.01*	– Muscle: 0.01*	Max. dietary burden (poultry layers): 8.4 ppm Max. residues in liver: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: JMPR confirmed its previous CXL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry, edible offal of	0.01*	0.01*	Max. dietary burden (poultry layers): 8.4 ppm Max. residues in liver: < 0.05 mg/kg Sufficiently supported by data: Yes Specific comments: JMPR confirmed its previous CXL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Rice bran, processed	80	-	JMPR derived a processing factor of 2.39 (for RD for MRL enforcement). Currently no EU MRLs are established for processed products
Rice, grain	30	_	See husked rice. EU MRLs are set for husked rice, but not for rice grain
Rice, hulls	80	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice, husked	4	0.01*	cGAP: South Korea: 4 × 7 g/hL, 1600 L/ha (resulting in calculated rate of 11.2 g a.s ha), 7-day RTI, 21-day PHI Number of trials: 10 (Thailand, India and China) Sufficiently supported by data: Yes Specific comments: The trials were conducted at 2.2–3.3 g a.s./hL (underdosed); number of applications not reported. The results were corrected by applying scaling factors ranging from 2.1 to 3.1. For rice grain, a MRL proposal of 30 mg/kg was derived. For deriving the Codex MRL proposal in husked rice,

30 mg/kg was derived. For deriving the Codex MRL proposal in husked rice, a processing factor (PF) of 0.13 was applied to the proposed Codex MRL in grain

TABLE 72 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: To check details on the residue trials in JMPR evaluation (number of applications in residue trials)
Rice, polished	10	-	JMPR derived processing factors of 0.07 and 0.12 for MRL enforcement and risk assessment, respectively. Currently, no EU MRLs are established for processed products
Peanut meal	-	-	JMPR derived a processing factor of \leq 1. Currently, no EU MRLs are established for processed products
Rice bran, unprocessed	-	-	JMPR derived a processing factor of 2.9. Currently, no EU MRLs are established for processed products
General comments			

Abbreviations: cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; dw, dry weight; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification.

5.12.6 | Consumer risk assessment

TABLE 73 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment for propiconazole was performed with the EU ARfD	RA assumptions: The risk assessment for propiconazole was performed with the EU ADI	Specific comments: -
 The indicative short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (avocado, peanut, rice-husked mammalian fats, edible offal). For rice, since no STMR-P for husked rice was provided the calculation was done with STMR for polished rice The risk assessment is indicative since the EU residue definitions are provisional (see comments on residue definitions) A risk assessment for TDMs and for the second EU RD could not be performed, as no input data are available reflecting these RDs The calculations are therefore indicative and affected by additional non- standard uncertainties. Moreover, by using the STMR for polished rice may underestimate the residues expected on treated rice 	 A long-term dietary risk assessment was performed using PRIMo rev. 3.1, including the STMR values derived by JMPR for avocado, peanut, rice grain and for animal products. For the remaining commodities, the calculations were performed using the MRLs set at the LOQ. For rice, since no STMR-P for husked rice was provided the calculation was done with STMR for polished rice. The risk assessment is indicative since the EU residue definitions are provisional (see comments on residue definitions) A risk assessment for TDMs and for the second EU RD could not be performed, as no input data are available reflecting these RDs The calculations are therefore indicative and affected by additional non-standard uncertainties. Moreover, by using the STMR for polished rice may underestimate the residues on treated rice 	
Results: No short-term consumer health risk was identified for the crops under assessment Bovine edible offal: 36% ARfD Bovine liver: 36% of ARfD Rice: 25% ARfD For the rest of the commodities the acute exposure was below 20% of the ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 11% of the ADI (NL toddler) Rice identified as the main contributor, accounting for up to 8% of the ADI	Results: Long-term exposure: Max 20% of the JMPR ADI GECDE Mean: 100% ADI (children/ adolescents) GECDE Max: 230 of ADI (infants/ toddler) Short-term exposure: Highest result for rice grain: 100% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue; TDM, triazole derivative metabolite.

5.12.7 | Conclusions

TABLE 74Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position	
Background information	A.s. no longer approved in the EU. a.s. meets EU cut-off criteria	
Toxicological assessment	EU TRV available	
Residue definitions	EU and Codex RDs for MRL enforcement are identical, but for risk assessment, they are different	
Analytical methods	Sufficiently validated analytical methods are available	
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. Clarifications should be requested from JMPR for avocados	
Dietary risk assessment	No acute and no chronic intake concern identified. However, the risk assessment is indicative, and could not be performed for all EU residue definitions	
Final conclusion	EU position to be discussed/decided by risk managers	

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.13 | Boscalid (221) R

5.13.1 | Background information

TABLE 75 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	SK	
Approval status	Approved. Renewal process ongoing	Commission Directive 2008/44/EC ⁴³ Renewal Assessment Report (RAR) submitted, EFSA peer review on clock-stop
EFSA conclusion available	No	EFSA peer review including Art. 12 assessment of confirmatory data currently ongoing (additional data requested)
MRL review performed	Yes, see comments	EFSA (2014d)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2020c) (pomegranates) EFSA (2019d) (honey) EFSA (2015c) (beans and peas with pods)
Classification of a.s. (cut-off criteria)	Not assessed	-
Endocrine effects of a.s.	Assessment ongoing	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.13.2 | Toxicological reference values

TABLE 76 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		- TRV
	Value	Comments	Value	Comments	comparable
ADI	0.04 mg/kg bw per day	JMPR (2019, 2006)	0.04 mg/kg bw per day	Commission Directive 08/44/EC	Yes
ARfD	Unnecessary	JMPR (2006)	Not necessary	Commission Directive 08/44/EC	Yes
Conclusion/comments	The JMPR ADI applies to boscalid plus metabolite M510F49, expressed as boscalid				

a.s.

⁴³Commission Directive 2008/44/EC of 4 April 2008 amending Council Directive 91/414/EEC to include benthiavalicarb, boscalid, carvone, fluoxastrobin, *Paecilomyces lilacinus* and prothioconazole as active substances. OJ L 94, 5.4.2008, p. 13–20.

TABLE 76 (Continued)

	JMPR evaluation		EU evaluati	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
Comments on metabolites	 2-chloro-N- The metabolit administer Metabolites in 2-chloro-N- bound resic 2-yl)forman 	red dose) and is therefor Included in EU RD for RA: -(4'-chloro-5-hydroxybip dues (measured as M510	henyl-2-yl) nicoti o urine > 10% of the considered cove henyl-2-yl nicotir 53 (N-(4'-chlorol	he absorbed dose (oral absorption ered by the ADI of the parent namide) (free and conjugated) (M piphenyl-2-yl)acetamide) or M510	510F01)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.13.3 | Residue definitions

TABLE 77 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Boscalid	Reg. 396/2005 (implementing MRL review): Boscalid	Yes	
	Animal products	Boscalid The residue is fat soluble	Reg. 396/2005 (implementing MRL review): <u>Muscle, fat, edible offal (except liver and</u> <u>kidney) milk, eggs:</u> Boscalid	No (for kidney and liver)	
			<u>Kidney, liver:</u> Sum of boscalid and its hydroxy metabolite 2-chloro- <i>N</i> -(4'-chloro-5- hydroxybiphenyl-2-yl) nicotinamide (free and conjugated) expressed as boscalid		
			The residue is fat soluble		
RD-RA	Plant products	Boscalid	MRL review (EFSA, 2014d): Boscalid	Yes	
	Animal products	Sum of boscalid, 2-chloro- <i>N</i> -(4'-chloro-5-) hydroxybiphenyl-2-yl nicotinamide (M510F01) including its conjugate, expressed as boscalid	MRL review (EFSA, 2014d): <u>Muscle, fat, edible offal (except liver and kidney), milk, eggs:</u> Boscalid <u>Kidney:</u> Sum of boscalid and M510F01 (2-chloro- <i>N</i> -(4'-chloro-5-hydroxybiphenyl- 2-yl) nicotinamide) (free and conjugated), expressed as boscalid Liver: Sum of boscalid and M 510F01(2-chloro-	No (except for kidney)	
			N-(4'-chloro-5-hydroxybiphenyl-2-yl) nicotinamide) (free and conjugated) and its bound residue (measured as M510F53 or M510F52), expressed as boscalid		
Conclusion, comments	As the renewal process is currently ongoing at EU level, a modification of the EU residue definitions might be proposed. The different residue definitions for some animal products are not of relevance for the current assessment, since no MRL proposals for animal products were derived by JMPR				

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.13.4 | Analytical methods

TABLE 78 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High acid content	Yes	0.01	Extraction with QuEChERS extraction, LC–MS/MS (FAO and WHO, 2019)
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix group is identical with the JMPR residue definition The current EU MRL for food commodity under discussion (i.e. pomegranate) is set at the same level as the Codex MRL proposal Sufficiently analytical methods for the enforcement of the MRL for this matrix are available		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.13.5 | Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Pomegranate	2	2	cGAP: Greece and Italy, 2×0.5 kg/ha, 5-day RTI, 7-day PHI Number of trials: 4 Sufficiently supported by data: Yes Specific comments: Residue concentration measured in whole fruits and in the edible part of the fruits. The GAP was also assessed in the EU Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
General comments	-		

TABLE 79 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Abbreviations: cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

5.13.6 | Consumer risk assessment

TABLE 80 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculations performed in the most recent long- term risk assessment (EFSA, 2020c) were refined, replacing the STMR derived from the residue trials assessed in the EU with the STMR-P (residues measured in the edible part of the crop)	Specific comments: –
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 75% of the ADI Pomegranates accounted for up to 0.02% of the ADI	Results: Long-term exposure: Max 60% of the JMPR ADI GECDE mean: Max. 160% (children and adolescents) GECDE max: Max. 560% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; RA, risk assessment; STMR, supervised trials median residue.

5.13.7 | Conclusions

TABLE 81 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (EFSA peer review currently on clock-stop)
Toxicological assessment	EU TRV available. They are identical with the JMPR TRV
Residue definitions	EU and Codex RDs for enforcement and risk assessment for plant products are identical. The different residue definitions for some animal products are not of relevance for the current assessment, since no MRL proposals for animal products were derived by JMPR
Analytical methods	According to JMPR assessment, sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRL is sufficiently supported by data
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified
Final conclusion	The proposed Codex MRL is sufficiently supported by data and is unlikely to pose a risk for consumers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.14 | Difenoconazole (224) R

5.14.1 | Background information

TABLE 82 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Approved, renewal process ongoing	Commission Directive 2008/69/EC ⁴⁴ Renewal Assessment Report (RAR) submitted, EFSA peer review on ED clock-stop
EFSA conclusion available	Yes, see comments	 EFSA (2011a) EFSA (2014j) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment of confirmatory data) EFSA (2018k) (conclusion confirmatory data on TDMs) EFSA (2023k) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment in light of confirmatory data) EFSA peer review ongoing (additional data requested) Art. 31 peer review on confirmatory data concerning difenoconazole (ongoing)
MRL review performed	Assessment ongoing	
EU MRL applications or other EU assessments	Yes, see comments	 Art. 10 import tolerance in various crops (additional data requested) EFSA (2023h) (wheat and rye) (implementation of the new MRL proposals was put on hold due to potential chronic intake concerns and additional uncertainties in relation to metabolites, which will be addressed in other ongoing assessments) EFSA (2021b) (leafy brassica) (implementation of the new MRL proposals was put on hold due to potential chronic intake concerns and additional uncertainties in relation to metabolites, which will be addressed in other ongoing assessments) EFSA (2021b) (leafy brassica) (implementation of the new MRL proposals was put on hold due to potential chronic intake concerns and additional uncertainties in relation to metabolites, which will be addressed in other ongoing assessments) EFSA (2018d) (various crops) EFSA (2018d) (various crops) EFSA (2014g) (lettuce and other salad plants including Brassicaceae and in basil (mint)) EFSA (2014b) (peppers and aubergines) EFSA (2012b) (raspberries, blackberries and cucurbits (edible peel)) EFSA (2011b) (beet leaves (chard), globe artichokes, broccoli, cardoons and strawberries) EFSA (2010c) (peppers and aubergines) EFSA (2010c) (peppers and aubergines) EFSA (2010a) (swedes and turnips) EFSA (2009e) (various leafy vegetables)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2021b)
Endocrine effects of a.s.	Assessment ongoing	-
Other relevant information	Difenoconazole belongs to the cla	ass of triazole fungicides; the a.s. is listed as a candidate for substitution

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.14.2 | Toxicological reference values

TABLE 83	Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.
----------	--

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2007)	0.01 mg/kg bw per day	European Commission (2013)	Yes
ARfD	0.3 mg/kg bw	JMPR (2007)	0.16 mg/kg bw	European Commission (2013)	No

(Continues)

⁴⁴Commission Directive 2008/69/EC of 1 July 2008 amending Council Directive 91/414/EEC to include clofentezine, dicamba, difenoconazole, diflubenzuron, imazaquin, lenacil, oxadiazon, picloram and pyriproxyfen as active substances. OJ L 172, 2.7.2008, p. 9–14.

TABLE 83 (Continued)

	JMPR evaluation Value Comments		EU evaluat	EU evaluation Value Comments	
			Value		
Conclusion/comments a.s.	As the renewal process is ongoing, the TRV might change				
Comments on metabolites	 Metabolites included in JMPR RD for RA: 1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol) (CGA 205375) According to JMPR 2007, this metabolite was also found in rats. The LD_{s0} was > 2000 mg/kg bw ar substance did not show alerts for mutagenic activity. Metabolites included in EU RD for RA: Difenoconazole alcohol (CGA 205375) In the peer review (EFSA, 2011a), the toxicological profile of the metabolite was not fully addressed point is under discussion in the currently ongoing renewal process TDM 				00 mg/kg bw and the

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LD_{sor} lethal dose, median; RD, residue definition; RA, risk assessment; TRV, toxicological reference value; TDM: triazole derivative metabolite.

5.14.3 | Residue definitions

TABLE 84 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Difenoconazole	Reg. 396/2005: Difenoconazole	Yes
			Peer review (EFSA, 2011a): Difenoconazole	
	Animal products	Sum of difenoconazole and 1-[2-chloro-4-(4-chloro- phenoxy)-phenyl]-2-(1,2,4- triazol)-1-yl-ethanol (CGA205375),	Reg. 396/2005: Difenoconazole Peer review (EFSA, 2011a): Difenoconazole alcohol (CGA 205375) expressed as difenoconazole	No
		expressed as difenoconazole The residue is fat soluble	According to Reg. 396/2005, the residue is classified as not fat soluble	
RD-RA	Plant products	Difenoconazole	 Peer review (EFSA, 2011a): (1) Difenoconazole (2) TA and TLA, TAA and 1,2,4-triazole (based on conclusion confirmatory data on TDMs) (EFSA, 2018k) 	Yes
	Animal products	Sum of difenoconazole and 1-[2-chloro-4-(4-chloro- phenoxy)-phenyl]-2- (1,2,4-triazol)-1-yl-ethanol) (CGA205375), expressed as difenoconazole	 Peer review (EFSA, 2011a): (1) Difenoconazole alcohol (CGA-205375) expressed as difenoconazole (2) TA and TLA, TAA and 1,2,4-triazole (based on conclusion confirmatory data on TDMs) (EFSA, 2018k) 	No
Conclusion, comments	The EU residue defi residue definitio		ant matrix groups (plant products) is identical with t	he JMPR

The enforcement and risk assessment residue definitions for animal commodities are currently not comparable. This has no impact on the current assessment since Codex MRL proposals are not made for animal commodities

As the renewal process is ongoing, the residue definitions may be subject to revision

The major difference between risk assessment residue definitions derived by the EU and by the JMPR in plant and animal commodities is the fact that JMPR did not consider TDMs

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TDM, triazole derivative metabolite.

5.14.4 | Analytical methods

TABLE 85 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content	Yes	0.003	Extraction with Korean Food Code Method, LC–MS/MS (FAO and WHO, 2018b)
Plant commodities: High acid content	Yes	0.01	Extraction with acetone/water mixture (2:1; v/v), LC–MS/MS (FAO and WHO, 2018b)

TABLE 85	(Continued)
----------	-------------

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: Dry commodities	Yes	0.01	Refluxing with methanol/conc. ammonium hydroxide (8;2 v/v), LC–MS/MS (FAO and WHO, 2018b)
Conclusion	 The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition Most of the current EU MRLs for food commodity under discussion are lower than the Codex MRL proposal The current JMPR received validation data for the method REM 147.08 in blackberries, mustard greens, radish roots, radish leaves, maize including several processed maize matrices and potato tubers Sufficiently analytical methods for the enforcement of the MRL for the relevant matrix groups are available 		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level.

5.14.5 | Codex MRL proposals

TABLE 86 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Cane berries	3	1.5 (blackberries and raspberries);0.1 (dewberries)	cGAP: USA, ground or air application, 4 × 126 g a.s./ha, 14-day RTI, 0-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: Combined data set of residue trials performed with blackberries (4) and raspberries (4). The JMPR noted that median residues on blackberries and raspberries are within a fivefold difference and the Mann–Whitney U-test also determined that the data sets are not statistically different, therefore the JMPR decided to combine these data sets for a subgroup recommendation Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Maize aspirated grain fractions ^a	-	-	JMPR derived a processing factor of 49.6 (22.2; 77.18). Currently, no EU MRLs are established for processed products
Maize gluten ^a	0.05	-	JMPR derived a processing factor of 3.1 (2.82; 3.39). Currently, no EU MRLs are established for processed products
Maize oil, crude	0.02	-	JMPR derived a processing factor of 1.2 for wet milled refined oil, which was used to derive the MRL for maize crude oil. Hence, according to EFSA, the Codex MRL proposal of 0.02 mg/kg should refer to refined oil. Currently, no EU MRLs are established for processed products
Maize, bran ^a	-	-	JMPR derived a processing factor of 3.2 (2.7; 3.6). Currently, no EU MRLs are established for processed products
Maize, flour	0.015	-	JMPR derived a processing factor of 0.77 (0.68; 0.85). Currently, no EU MRLs are established for processed products
Maize, hay and/or straw ^a	15 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Mustard greens	8	4 (Chinese cabbage, baby leaf crops)	 cGAP: USA, ground or air application, 4×0.128 kg a.s./ha, 7-day RTI, 7-day PHI (cGAP for brassica leafy vegetable, subgroup 13B)^b Number of trials: 13 (8 for mustard greens, 5 radish leaves) Sufficiently supported by data: Yes Specific comments: MRL proposal for mustard greens was derived from combined data set of trials with mustard greens and radish leaves. The JMPR noted that median residues on mustard greens and radish leaves are within a fivefold difference and the Mann–Whitney U-test also determined that the data sets are not statistically different; therefore, the JMPR decided to combine these data sets. The corresponding commodity in the EU classification is Chinese cabbage (pe-tsai, code 243010). In addition, mustard greens would also be covered by baby leaf crops (including brassica species) (code 251080). The US registration covers the subgroup of brassica leafy vegetable and since mustard greens and radish leaves are representative commodities the extrapolation of the estimates to the subgroup was possible according to Codex practices/rules. However, the JMPR noted that, the international estimate of short-term intake calculation for Chinese cabbage (VL 0466) resulted in a maximum of 120% of ARfD for children, therefore decided to estimate maximum residue level and STMR for the individual commodities of mustard greens and radish leaves only. See also general comments reported below in footnote (b).

(Continues)

TABLE 86 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is not acceptable because the calculated short-term exposure exceeded the ARfD for Chinese cabbages, which is the corresponding commodity of part A of the EU food classification for mustard greens (N.B.: lacking specific consumption data for mustard greens, EFSA calculated the exposure using the consumption data for Chinese cabbages). However, risk managers may discuss options on the implementation of the Codex MRL for mustard greens in a footnote to Chinese cabbage, specifying that it would apply only for mustard greens only and for baby leaf crops Follow-up action: None
Prunes	4	0.5	JMPR derived a processing factor of 2.55, based on the individual processing studies (1.9; 2.7; 2.7; 2.9). Hence, according to EFSA, the processing factor should be corrected to 2.7 (which is the median PF) (instead of 2.55, which is the mean of the individual PFs). Currently, no EU MRLs are established for processed products
Radish	0.7	0.4	cGAP: USA, ground, or air application or chemigation, 4×0.128 kg a.s./ha, 7-day RTI, 7-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: Residues obtained in radish roots Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Radish leaves	8	2	cGAP: USA, ground, or air application or chemigation, 4×0.128 kg a.s./ha, 7-day RTI, 7-day PHI (cGAP for brassica leafy vegetable, subgroup 13B) ^b Number of trials: 5 Sufficiently supported by data: Yes Specific comments: See also general comments reported below in footnote a Conclusion: The proposed Codex MRL is not acceptable because the calculated short-term exposure exceeded the ARfD for kales, which is the corresponding commodity of part A of the EU food classification for radish leaves (N.B.: lacking specific consumption data for radish leaves, the exposure calculation was performed with the consumption data for kale). However, risk managers may discuss options on the implementation of the Codex MRL for radish leaves in a footnote to kale, specifying that it would apply only for radish leaves and not for kale Follow-up action: None
Stone fruits	1.5	0.7 (apricots) 0.3 (cherries) 0.5 (peaches and plums)	 cGAP: USA, ground or air application, 4×0.128 kg a.s./ha, 7-day RTI, 0-day PHI Number of trials: 20 Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed on cherries (5), peaches (9) and plums (6). The JMPR noted that median residues on cherries, peaches and plums are within a fivefold difference and Kruskal–Wallis H-test indicates that these three populations are not significantly different. The JMPR decided to combine these data sets Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of maize Cereals	0.015	0.05*	cGAP: USA, Foliar, 3 × 0.126 kg a.s./ha, 7-day RTI, 30-day PHI Number of trials: 24 Sufficiently supported by data: Yes Specific comments: Registration is for the use on maize, popcorn and teosinte Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Sweet potato	4	0.1	cGAP: USA, Post-harvest spray, 1 × 3.3 g a.s./tonne, 0-day PHI Number of trials: 5 trials in potatoes Sufficiently supported by data: Yes Specific comments: The residue data were already assessed by the JMPR in 2013 where an MRL of 4 mg/kg in potatoes was proposed. The current JMPR confirmed its previous recommendations on potatoes and recommends extrapolating the estimates to sweet potato. In the 2014 CCPR meeting, the EU made a reservation on the potato MRL, as an intake concern was identified Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
General comments	None of the samples were analysed for triazole derivative metabolites (TDMs) ^b The codes for subgroup 13B cover a number of commodities, which have a corresponding entry in Part A of the EU food classification, i.e. Roman rocket/rucola, kales, cresses and other sprouts and shoots, red mustards, baby leaf crops (including brassica species), land cresses		

TABLE 86 (Continued)

Commodity	Codex MRL proposal EU MRL Comment			
	 In addition, some crops falling under this subgroup are classified in the EU in Part B, such as Radish leaves (0243020–008), currently classified under kales (0243020), Mustard greens (VL 0485) corresponds in the EU to Indian mustard (243010–002) which is classified under Chinese cabbages (243010) 			
	 Indian mustards/mustard greens (251080–003) are classified under baby leaf crops (251080). The JMPR noted an exceedance of the ARfD for Chinese cabbages (VL 0466) which corresponds in the EU to Pak-choi/ 			

paksoi (243010–005) classified in the EU under Chinese cabbages (vE 0400) which corresponds in the EU

Abbreviations: ARfD, acute reference dose; a.s., active substance; cGAP, critical Good Agricultural Practice; dw, dry weight; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification.

^aValue not relevant for IEDI assessment calculations.

5.14.6 | Consumer risk assessment

TABLE 87 Summary of the consumer risk assessment.

Acute exposure assessment

RA assumptions:

Chronic exposure assessment

RA assumptions:

The risk assessment was performed with the EU ARfD

- The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. blackberries, raspberries, dewberries, radish leaves (listed under kales), mustard greens (covered by Chinese cabbage), baby leaf crops, radish root, apricots, cherries, plums, peaches and sweet potatoes)
- The calculations are indicative, because the residue definitions for RA derived by JMPR is different to the EU RD, which also includes the triazole derivative metabolites (TDMs)
- Since there is no information on the residue levels of TDMs, is it not possible to assess their contribution to the dietary risk assessment
- Additional uncertainties are resulting from the fact the calculations were performed for the commodities kale, Chinese cabbage and baby leaf crops, instead of radish leaves and mustard greens, as in PRIMo rev. 3.1, specific consumption data are not available for these products
- For processed products, further refinements of the exposure calculations could be performed, if appropriate processing factors were available
- In addition, the exposure calculation may underestimate the toxicological burden for consumers, as an uncertainty factor for risk assessment has recently been proposed concerning the isomeric behaviour of difenoconazole in treated crops, following the Art. 31 peer review on confirmatory data for difenoconazole (ongoing)
- Therefore, the calculations are affected by additional, non-standard uncertainties

Results:

- The calculated short-term exposure exceeded the ARfD for two crops under assessment
- Radish leaves (covered by kales): 168% of ARfD (children)
- Mustard greens (covered by Chinese cabbages/petsai): 123% of ARfD (children)
- Sweet potatoes: 25% of the ARfD (adults)
- Processed commodities:
- Kales/boiled: 105% of ARfD (children) Sweet potatoes: 60% of the ARfD (adults)
- Baby leaf crops: no specific consumption data available

A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2023h) (wheat and rye) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. blackberries, raspberries, dewberries, radish leaves (from kales), mustard greens (from Pak-choi/paksoi), baby leaf crops, radish root, apricots, cherries, plums, peaches and sweet potatoes)

The risk assessment was performed with the EU ADI

- The calculations are indicative, because the residue definitions for RA derived by JMPR is different to the EU RD, which also includes the triazole derivative metabolites (TDMs)
- Since there is no information on the residue levels of TDMS is it not possible to assess their contribution to the dietary risk assessment
- Additional uncertainties are resulting from the fact the calculations were performed for the commodities kale, Chinese cabbage and baby leaf crops, instead of radish leaves and mustard greens, as in PRIMo rev. 3.1, specific consumption data are not available for these products
- In addition, the exposure calculation may underestimate the toxicological burden for consumers, as an uncertainty factor for risk assessment has recently been proposed concerning the isomeric behaviour of difenoconazole in treated crops, following the Art. 31 peer review on confirmatory data for difenoconazole (ongoing)
- Therefore, the calculations are affected by additional, non-standard uncertainties

Results:

- No long-term consumer health risk was identified in the indicative risk assessment
- The overall indicative chronic exposure accounted for 97% of the ADI (NL toddler)
- Among the crops under consideration, sweet potatoes were identified as the main contributor, accounting for up to 43% of the ADI (IE adult)

Results:

- Long-term exposure: Max 100% of the JMPR ADI (children)
- GECDE mean: Max. 430% (children and adolescents)
- GECDE max: Max. 1400% (children and adolescents)

Short-term exposure:

Highest result for mustard greens (Indian mustard, Amsoi, mustard cabbage, red mustards): 100% of ARfD (children)

Comments on JMPR exposure assessment

Specific comments:

TABLE 87 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
The calculated short-term exposure exceeded the ARfD for processed commodities under assessment (kales (boiled))		
In addition, the exposure for boiled witloofs (not under assessment) was found to exceed the ARfD. The exposure calculation was performed without refinement (e.g. use of processing factors)		

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; RA, risk assessment.

5.14.7 | Conclusions

TABLE 88Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position	
Background information	A.s. approved in the EU, renewal process (EFSA peer review on clock-stop) and MRL review are currently ongoing	
Toxicological assessment	EU TRV available. The values might be revised in the ongoing renewal of the approval	
Residue definitions	EU and Codex RDs are identical for the matrices under discussion. As the renewal process is ongoing, the EU residue definitions might change. However, it should be highlighted that in the EU, separate residue definitions have been established for triazole derivative metabolites (TDMs)	
Analytical methods	Sufficiently validated analytical methods are available	
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data	
Dietary risk assessment	Acute risk intake concerns were identified for some of the commodities assessed by JMPR. No chronic intake concern identified; however, considering the narrow safety margin to the ADI and the additional, non-standard uncertainties in the dietary risk assessment, further risk management discussions are required to derive the EU position for the proposed Codex MRLs	
Final conclusion	EU position to be discussed/decided by risk managers	

Abbreviations: ADI, acceptable daily intake; a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.15 | Clothianidin (238) R

5.15.1 | Background information

TABLE 89 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	See comments	BE and DE, as RMSs of the first approval and renewal, respectively, kindly provided support to prepare comments on this a.s.
Approval status	Not approved	In the light of the restrictions defined by Regulation (EU) No 2018/784, ⁴⁵ the applicant decided to withdraw the application for the renewal of approval of clothianidin. Consequently, the approval expired on 31 January 2019
EFSA conclusion available	No	The DAR prepared by the RMS was not peer reviewed by EFSA. Therefore, no EFSA conclusion is available For the peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules, an EFSA conclusion is available EFSA (2018h)
MRL review performed	Yes, see comments	EFSA (2014h)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2018n) (potatoes) In addition, EFSA assessed a number of emergency authorisations granted by Member States between 2018 and 2021

⁴⁵Commission Implementing Regulation (EU) 2018/784 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance clothianidin. OJ L 132, 30.5.2018, p. 35–39.

TABLE 89	(Continued)
----------	-------------

		Comments, references
Classification of a.s. (cut-off criteria)	No, see comments	Clothianidin does not fall under cut-off criteria. ATP01 ⁴⁶ ECHA (2021c)
Endocrine effects of a.s.	Not assessed	A.s. was not peer reviewed
Other relevant information	Clothianidin belongs to the group of regulation	neonicotinoids; this a.s. is used as a biocide and is subject to the PIC

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.15.2 | Toxicological reference values

TABLE 90 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.1 mg/kg bw per day	JMPR (2010)	0.097 mg/kg bw per day	06/41/EC	No
ARfD	0.6 mg/kg bw	JMPR (2010)	0.1 mg/kg bw	06/41/EC	No
Conclusion/comments a.s.	 According to JMPR 2010 (FAO and WHO, 2011a), the ADI is based on the NOAEL in the chronic study in the rat of 9.7 mg/kg bw per day for decreased body weight and feed consumption. A safety factor of 100 was applied The ARfD based on the NOAEL of 60 mg/kg bw in the acute neurotoxicity study in the rat, based on reduced locomotor activity at 100 mg/kg bw. A safety factor of 100 was applied The EU ADI is based on the same chronic study in rats (with an uncertainty factor of 100). The ARfD was derived from developmental toxicity rat and rabbit, using an uncertainty factor of 100 (European Commission, 2005) The existing TRVs have not been peer reviewed by EFSA 				
Comments on metabolites	Metabolites included in JMPR RD for RA: not relevant Metabolites included in EU RD for RA: not relevant				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition.

5.15.3 | Residue definitions

TABLE 91 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Clothianidin	Reg. 396/2005: Clothianidin	Yes
			MRL review (EFSA, <mark>2014h</mark>): Thiamethoxam and clothianidin (considered separately)	
	Animal products	Clothianidin	Reg. 396/2005: Clothianidin	Yes
		The residue is not fat soluble	MRL review (EFSA, <mark>2014h): <u>Ruminants and pigs:</u> Thiamethoxam and clothianidin (considered separately)</mark>	
			Poultry products: No residue definition proposed	
			Fat solubility not specified	
RD-RA	Plant products	Clothianidin	MRL review (EFSA, 2014h): Thiamethoxam and clothianidin (considered separately)	Yes
	Animal products	Clothianidin	MRL review (EFSA, 2014h): <u>Ruminants and pigs:</u> Thiamethoxam and clothianidin (considered separately) <u>Poultry products</u> : No residue definition proposed	Yes, except for poultry
Conclusion, comments		tion for MRL enforceme t the RD for RA for pou	ent and risk assessment in plants and livestock are equivalent to Itry	the JMPR residue

Abbreviations: MRL, maximum residue level; RA: risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

⁴⁶Commission Regulation (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 235, 5.9.2009, p. 1–439.

5.15.4 | Analytical methods

TABLE 92 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark		
Plant commodities: High water content High acid content High oil content	Yes	0.01	 Extraction with REM 179.06 using water/methanol mixture, clean-up by solvent partition and cartridge columns, determination with LC–MS/MS (FAO and WHO, 2015b) HPLC–MS/MS method 00552 (single residue method) Method AG-765 and method R20013B: Extraction with acetonitrile/water, (microwave extraction), clean-up by liquid–liquid partition with hexane and on cartridge columns, determination with LC–MS (FAO and WHO, 2011c) 		
Plant commodities: Difficult matrices (cumin seed)	Yes	0.1	Method AG-765 and method R20013B: Extraction with acetonitrile/water, (microwave extraction), clean-up by liquid–liquid partition with hexane and on cartridge columns, determination with LC–MS (FAO and WHO, 2011c)		
Conclusion	for goji berry, and	the method used	for the use of Method AG-765 and validation data for method R20013B, used I for cumin seeds. Method AG-765 and R20013B were demonstrated to have y of thiamethoxam, with an LOQ of 0.01 mg/kg		
	Sufficiently analytical	Sufficiently analytical methods for the enforcement of the MRLs for the relevant matrices are available			

Abbreviations: HPLC–MS/MS, high-performance liquid chromatography with tandem mass spectrometry; LC–MS/MS, liquid chromatography with tandem mass spectrometry; LC–MS, liquid chromatography with mass spectrometry; LOQ, limit of quantification.

5.15.5 | Codex MRL proposals

TABLE 93	Comparison of Codex MRL proposals derived by JMPR with EU MRLs.
----------	---

Commodity	Codex MRL proposal	Existing EU MRL ^a /new EU MRL ^b	Comment
Almond hulls	0.1 (dw) T	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Celery	0.04 T (W)	0.04/0.01*	The existing CXL is proposed for withdrawal. It will be replaced by the new Codex MRL proposal for Subgroup of stems and petioles
Cumin seed	1	0.05*/0.05*	 cGAP: No GAP information or residue trials for the use of thiamethoxam or clothianidin on cumin seed were provided Number of trials: The JMPR received monitoring data from India and of the 1089 samples analysed, 328 samples contained quantified residues Sufficiently supported by data: Yes Specific comments: The JMPR noted that according to the current Codex procedure (FAO, 2016) sufficient data of detected residues were available to estimate a maximum residue level. The upper 95% one-tailed confidence limit of the 95th percentile of the detected residues is 0.97 mg/kg Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of possible risks for pollinators, noting that details on the authorised uses (cGAPs) are not available
Fruiting vegetables other than cucurbits	0.05 (W)		The existing CXL is proposed for withdrawal, to be replaced by the new MRL proposal for fruiting vegetables other than cucurbits, except goji berries
Fruiting vegetables other than cucurbits except goji berry	0.05 T	0.04/0.01* (tomatoes, sweet peppers/bell peppers, aubergines/ eggplants; 0.01*/0.01* (okra/lady's fingers)	 cGAP of thiamethoxam (Italian GAP in sweet peppers, 1×0.1 kg a.s./ha, 3-day PHI) was assessed by JMPR in 2010 Specific comments: The CXL derived by JMPR in 2010 and adopted by CCPR in 2011 was now restricted, excluding goji berries, for which a separate Codex MRL proposal was derived in 2023 The CXL derived in 2011 has not been taken over in the EU legislation, because the extrapolation approach taken by JMPR was considered not acceptable. (Trials on pepper compliant with the Italian cGAP from greenhouse treatment were used to derive Codex MRLs for the whole group of 'Fruiting vegetables other than cucurbits except goji berry'.) The previously expressed EU reservation on the Codex MRL derived in 2011 has not been withdrawn

75 of 223

Commodity	Codex MRL proposal	Existing EU MRL ^a /new EU MRL ^b	Comment
			In addition, it is noted that the EU uses of thiamethoxam which are the basis of the Codex MRL are no longer authorised in the EU Conclusion : It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None
Goji berry	0.06 T	0.04/0.01*	 cGAP: China, 1×0.01 kg a.s./hL, 3-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: The cGAP is reported as 0.01 kg/hL. The exact water amount per hectare is not defined in the cGAP Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators. Follow-up action: To check details in JMPR evaluation to verify that trials were representative for the GAP (check the water amount)
Goji berry, dried	0.3 T	-	JMPR derived a processing factor of 4.9 (4.55, 5.23; 3.85, 6.3). First 2 values from sun-dried goji berry, last 2 values from hot air-dried goji berry. Currently, no EU MRLs are established for processed products
Group of tree nuts	0.01* T	0.01*/0.01*	 cGAP: USA, 2×70 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed with pecan (5) and almonds (5). Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None
Onion, bulb	0.01* T	0.01*/0.01*	cGAP: USA, Seed treatment, 1 × 0.2 mg a.s./seed Number of trials: 7 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None
Pecan	0.01* (W)	0.01*/0.01*	The existing CXL is proposed for withdrawal and will be replaced by the new Codex MRL proposal for tree nuts
Subgroup of stems and petioles	0.04, T	0.01*/0.01* (cardoons, Florence fennels, rhubarbs); 0.04/0.01* (celeries)	cGAP: USA, Foliar, 2×96 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 4 trials in celeries Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None
			· · ·

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; PHI, pre-harvest interval; MRL, maximum residue level; RTI, re-treatment interval.

^TBased on thiamethoxam use only; W: the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended; dw: dry weight.

*Indicates that the input value is proposed at the limit of quantification.

^aThe EU MRLs currently applicable are set according to Commission Regulation (EU) 2017/671.

 $^{\rm b} {\rm New}$ MRLs established by Commission Regulation (EU) 2023/334 (not yet applicable).

5.15.6 | Consumer risk assessment

TABLE 94 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment was performed with the EU ARfD	RA assumptions: The risk assessment was performed with the EU ADI	Specific comments: –
 The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. cumin seed, tomatoes, sweet peppers/bell peppers, aubergines/ eggplants, okra/lady's fingers, goji berry, cardoons, Florence fennels, rhubarbs and celeries) Since clothianidin and thiamethoxam share a common mode of action, the two substances should be considered together in the risk assessment, taking into account the different toxicological potencies. Therefore, clothianidin and thiamethoxam were assessed separately and in a combined assessment 	A long-term dietary risk assessment was performed using PRIMo rev. 3.1., based on the latest regulation (EC) 2023/334 (not yet applicable) where all MRLs are set at the LOQ, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. cumin seed, tomatoes, sweet peppers/bell peppers, aubergines/eggplants, okra/lady's fingers, goji berry, cardoons, Florence fennels, rhubarbs and celeries) Since clothianidin and thiamethoxam share a common mode of action, the two substances should be considered together in the risk assessment, taking into account the different toxicological potencies. Therefore, clothianidin and thiamethoxam were assessed separately and in a combined assessment	
Results: No short-term consumer health risk was identified for the crops under assessment Clothianidin Highest individual results for Sweet pepper: 2% of the ARfD Combined (thiamethoxam and clothianidin) Highest exposure among the commodities under consideration Consideration	Results: No long-term consumer health risk was identified Clothianidin The overall chronic exposure accounted for 1% of the ADI (NL toddler) From the crops under consideration, tomatoes contributed up to 0.04% of the ADI (GEMS/Food G06) Combined (thiamethoxam and clothianidin)	Results: Long-term exposure: Max 2% of the JMPR ADI (children). GECDE mean: 7% (children and adolescents) GECDE max: Max. 20% (infants and toddlers) Short-term exposure: Result for all crops under
Celeries: 3% of the ARfD	The overall chronic exposure accounted for 6% (NL toddler)	consideration: 0% of ARfD (children)

Abbreviations: ADI, acceptable daily intake; ARD, acute reference dose; GECDE, global estimate of chronic dietary exposure; LOQ, limit of quantification; MRL, ma: residue level; RA, risk assessment; STMR, supervised trials median residue.

5.15.7 | Conclusions

TABLE 95Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired in January 2019, as the application for renewal was withdrawn)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs for plant commodities (enforcement and risk assessment) are equivalent
Analytical methods	For the commodities under discussion, sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data, but further risk management discussions are recommended in view of the EU policy on protection of pollinators
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	Further discussion with risk managers are recommended in view of the EU policy on protection of pollinators

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.16 | Fluopyram (243) R

5.16.1 | Background information

TABLE 96Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	DE	
Approval status	Approved. Renewal process ongoing	Commission Implementing Regulation (EU) No 802/2013 ⁴⁷ Dossier submitted by the applicant, RMS assessment ongoing
EFSA conclusion available	Yes, see comments	EFSA (2013b) EFSA (2018p) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for fluopyram in light of confirmatory data)
MRL review performed	Yes, see comments	EFSA (2020a)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2023e) (Art. 10 and import tolerance in various crops)
Classification of a.s. (cut- off criteria)	No, see comments	A.s. does not fall under cut-off criteria ECHA (2014c); ATP09 ⁴⁸
Endocrine effects of a.s.	Not assessed	Not assessed under the new criteria established by Regulation (EU) 2018/605 EFSA (2013b)
Other relevant information	Fluopyram meets the defini	tion of per- and polyfluoroalkyl substances (PFAS) based on its chemical structure

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.16.2 | Toxicological reference values

TABLE 97 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		
	Value	Comments	Value	Comments	TRV comparable
ADI	0.01 mg/kg bw per day	JMPR (2010)	0.012 mg/kg bw per day	Reg. (EU) No 802/2013	No (minor difference due to rounding policy)
ARfD	0.5 mg/kg bw	JMPR (2010)	0.5 mg/kg bw	Reg. (EU) No 802/2013	Yes
Conclusion/comments a.s.	-				
Comments on metabolites	 Metabolites included in JMPR RD for RA: 2-(trifluoromethyl)benzamide (M25) N-(E)-2-[3-chloro-5-(trifluoromethyl)pyridine-2-yl]ethenyl)-2-trifluoromethyl) benzamide (M02) N-(Z)-2-[3-chloro-5-(trifluoromethyl)pyridine-2-yl]ethenyl)-2-trifluoromethyl) benzamide (M03) No toxicological information reported on the three metabolites, but according to the toxicological evaluation of WHO (FAO and WHO, 2011a), the three metabolites were major rat metabolites. However, the inconsistent coding of metabolites in JMPR assessments impedes the verification of the results reported Metabolites included in EU RD for RA: fluopyram-benzamide (M25) fluopyram-E/Z-olefin (M02/M03) No data available on the three metabolites, M25, M02 or M03 				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

⁴⁷Commission Implementing Regulation (EU) No 802/2013 of 22 August 2013 approving the active substance fluopyram, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/201. OJ L 225, 23.8.2013, p. 13–16.

⁴⁸Commission Regulation (EU) 2016/1179 of 19 July 2016 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 195, 20.7.2016, p. 11–25.

5.16.3 | Residue definitions

TABLE 98 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Fluopyram	Reg. 396/2005 (implementing MRL review): Fluopyram	Yes
			Peer review (EFSA, 2013b): Fluopyram	
	Animal products	Sum of fluopyram and 2-(trifluoromethyl) benzamide (M25), expressed as fluopyram The residue is not fat soluble	Reg. 396/2005 (implementing MRL review): Sum of fluopyram and fluopyram- benzamide (M25), expressed as fluopyram	Yes
			Peer review (EFSA, 2013b): Sum of fluopyram and fluopyram-benzamide (M25), expressed as fluopyram	
			The residue is not fat soluble	
RD-RA	Plant products	Fluopyram	MRL review (EFSA, <mark>2020a</mark>): Sum of fluopyram, fluopyram-benzamide (M25), expressed as fluopyram	No
			Peer review (EFSA, 2013b): Sum of fluopyram, fluopyram-benzamide (M25), expressed as fluopyram	
	Animal products	Sum of fluopyram, 2-(trifluoromethyl) benzamide and the combined residues of <i>N</i> -(<i>E</i>)-2-[3-chloro-5- (trifluoromethyl)pyridine-2-yl] ethenyl)-2-trifluoromethyl) benzamide and <i>N</i> -(<i>Z</i>)-2-[3-chloro- 5-(trifluoromethyl)pyridine-2-yl] ethenyl)-2-trifluoromethyl) benzamide, all expressed as fluopyram	 MRL review (EFSA, 2020a): Sum of fluopyram, fluopyram-benzamide (M25) and fluopyram <i>E/Z</i>-olefin (M02/M03), expressed as fluopyram Peer review (EFSA, 2013b): Sum of fluopyram, fluopyram-benzamide (M25), fluopyram-<i>E/Z</i>-olefin (M02/M03), expressed as fluopyram 	Yes
Conclusion, comments		as also observed in rotational crops e.g. cerea	metabolite was found only in few commoditie I straw. M25 is a common metabolite with fluto	

Abbreviations: MRL, maximum residue level; RA, risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.16.4 | Analytical methods

TABLE 99 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Fluopyram			
Plant commodities: Dry commodities (wheat)	Yes	0.01	Extraction Method 00984 and GM-001-P07-01, LC–MS/MS (FAO and WHO, 2011b) An additional analytical method (GM-006-P18-01) was validated for wheat and sorghum: extraction by acetonitrile-water (4:1, v/v) and analyse using LC–MS/MS
Animal products Milk Eggs	Yes	0.01	Extraction Method 01079, LC–MS/MS (FAO and WHO, 2011b)
Animal products Muscle/meat Fat Liver/kidney	No validation data reported	-	No methods could be found in JMPR assessments
Fluopyram benzamide (M25	5) (only relevant for animal	matrices)	
Animal products Milk Eggs	Yes	0.01 (EURL: 0.005)	Extraction Method 01079, LC–MS/MS Validation data in milk also available from the EURL-SRM at 0.005 mg/kg using CEN-QuEChERS and LC–MS/MS)

Matrices (relevant for	Validated methods available (incl.			
Codex MRL proposals)	extraction efficiency)	LOQ (mg/kg)	Remark	
Animal products Muscle/meat Fat Liver/kidney	Partially (see remarks)	EURL: 0.005 (see remarks)	No method validation data could be found at JMPR level. Validation data in liver and milk available from the EURL- SRM at 0.005 mg/kg using CEN-QuEChERS and LC–MS/MS)	
Conclusion	definition The current EU MRL for th Sufficiently validated ana	The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The current EU MRL for the commodities under discussion are lower than the Codex MRL proposals Sufficiently validated analytical methods for the enforcement of the MRLs for the relevant matrices are available, except for muscle/meat, fat and liver/kidney		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.16.5 | Codex MRL proposals

TABLE 99 (Continued)

TABLE 100 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Barley	0.4	0.2	 cGAP: USA, 2 × 0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 16 Sufficiently supported by data: Yes Specific comments: For a very similar EU cGAP assessed in the MRL review (EFSA, 2020a) with a lightly longer PHI slightly than in US GAP (i.e. 35 days), lower MRLs have been derived from the NEU and SEU residue trials (0.07 and 0.2 mg/kg, respectively) Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified. See also follow-up action Follow-up action: To investigate why for a similar GAP the Codex MRL proposal is significantly higher than the EU MRL proposal
Buckwheat	0.4	0.02	cGAP: USA, 2 × 0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 16 trials on barley, extrapolated to buckwheat Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Edible offal (mammalian)	8	Liver from - swine: 0.5; sheep, goat and equine: 0.8 Kidney from - swine: 0.08; - bovine, sheep, goat and equine: 0.15 Edible offal (other than liver and kidney) from - swine: 0.5; - bovine, sheep, goat and equine: 0.8	 Max. dietary burden (beef): Australia, 65 ppm Max. residues in liver: 7.2 mg/kg Sufficiently supported by data: Yes Specific comments: The calculations of the DB are not reported in Annex 6 of the JMPR report 2023, the information cannot be verified Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Eggs	2	0.15	 Max. dietary burden (layer): Europe, 9.1 ppm Max. residues in eggs: 1.5 mg/kg Sufficiently supported by data: Yes Specific comments: The HR of 1.3 mg/kg (RD for MRL enforcement) was rounded up to 2 mg/kg derive the Codex MRL proposal Conclusion: The proposed Codex MRL is sufficiently supported by data. Based on the current dietary burden calculation, a slightly lower value of 1.5 mg/kg might be sufficient. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None

(Continues)

Commodity	Codex MRL proposal	EU MRL	Comment
Mammalian fats (except milk fats)	1.5	0.09 (swine); 0.15 (bovine, sheep, goat and equine)	Max. dietary burden (beef): Australia, 65 ppm Mean/max. residues in fat: 1 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Meat (from mammals other than marine mammals)	1.5	– Muscle: 0.1 (swine); 0.15 (bovine, sheep, goat and equine)	 Max. dietary burden (beef): Australia, 65 ppm Max. residues in muscle and fat: 1 mg/kg, respect Sufficiently supported by data: Yes Specific comments: It is noted that according to the new Codex food classification, CXLs are established for muscle (MM 0095); hence, the commodity description should be changed to 'Muscle (from mammals other than marine mammals)'. However, this is just an editorial issue Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Milks	0.8	0.06 (goat and sheep); 0.07 (cattle and horse)	Max. dietary burden (beef): Australia, 55 ppm Mean. residues in fat: 0.72 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Oats	0.4	0.2	cGAP: USA, 2×0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 16 trials on barley, extrapolated to oats Specific comments: See comments for barley Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified. See also follow-up action Follow-up action: See proposed follow-up actions for barley
Poultry, edible offal of	4	0.02* (kidney) 0.3 (liver and edible offals)	Max. dietary burden (layers): Europe, 9.1 ppm Max. residues in liver: 3.1 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Poultry fats	1	0.07	Max. dietary burden (layers): Europe, 9.1 ppm Max. residues in fat: 0.9 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: None
Poultry meat	1.5	– Muscle: 0.07	 Max. dietary burden (layers): Europe, 9.1 ppm Max. residues in muscle: 0.97 mg/kg Sufficiently supported by data: Yes Specific comments: It is noted that the commodity description for the code PM 0110 should be revised to be compliant with the new Codex Food Classification, i.e. Avian muscle, group of (editorial change only) Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a lower value of 1 mg/kg would be sufficient. EFSA also recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-un action: None

TABLE 100 (Continued)

Follow-up action: None

TABLE 100 (Continued)

ABLE 100 (Con	tinued)		
Commodity	Codex MRL proposal	EU MRL	Comment
Rye	0.2	0.07	cGAP: USA, 2×0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 18 trials on wheat, extrapolated to rye Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified. Further comments, see wheat Follow-up action: None
Sorghum	0.6	4	cGAP: USA, 1 × 0.2 kg/ha, 30-day PHI Number of trials: 16 trials on barley, extrapolated to sorghum Specific comments: The existing EU MRL is based on a US GAP, which seems to be no longer valid Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: The existing EU MRL might need to be revised, as it is based on an obsolete US GAP
Triticale	0.2	0.9	cGAP: USA, 2×0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 18 trials on wheat, extrapolated to rye Sufficiently supported by data: Yes Specific comments: See comments on wheat Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the EU position, noting the chronic intake concern identified. Further comments, see wheat Follow-up action: See wheat
Wheat	0.2	0.9	 cGAP: USA, 2×0.125 kg/ha, 14-day RTI, 30-day PHI Number of trials: 18 Sufficiently supported by data: Yes Specific comments: For a very similar EU cGAP assessed in the MRL review (EFSA, 2020a) with a slightly longer PHI than in the US GAP (i.e. 35 days), lower MRLs have been derived from the NEU and SEU residue trials (0.03 and 0.07 mg/kg, respectively). The existing EU MRL is based on the CXL that is now proposed to be replaced with a lower CXL. The existing EU MRL reflects an obsolete US import tolerance/CXL Conclusion: The proposed Codex MRL is sufficiently supported by data. However, EFSA recommends to discuss with Member States the proposed follow-up action. EFSA also recommends to discuss with Member States the EU position, noting the chronic intake concern identified Follow-up action: To further investigate why for a similar GAP the Codex MRL proposal is significantly higher than the EU MRL proposal. The existing EU MRL should be reconsidered, as it is based on an obsolete CXL (reflecting an outdated US GAP)
Wheat bran	0.6	-	In 2017, JMPR derived a processing factor of 2.7. Currently, no EU MRLs are established for processed products
Wheat flour	-	-	In 2017, JMPR derived a processing factor of 0.12. Currently, no EU MRLs are established for processed products
Wheat germ	0.5	-	In 2017, JMPR derived a processing factor of 2.4. Currently, no EU MRLs are established for processed products
Aspirated grain fraction of wheat	-	-	JMPR derived a processing factor of 70. Currently, no EU MRLs are established for processed products
Barley, hay and/or straw	6 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Barley straw and fodder, dry	2 (W)	-	The existing CXL is proposed for withdrawal
Oat, hay and/or straw	6 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Oat straw and fodder, dry	2 (W)	-	The existing CXL is proposed for withdrawal

TABLE 100 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Rye, forage	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rye, hay and/or straw	6 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rye straw and fodder, dry	23 (W)	-	The existing CXL is proposed for withdrawal
Sorghum, forage (green)	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Sorghum, stover	3 (dw)	-	Based on residue trials, JMPR derived a MRL proposal for sorghum stover. Currently, no EU MRLs are established for processed products
Triticale, forage	_	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Triticale, hay and/ or straw	6 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Triticale straw and fodder, dry	23 (W)	-	The existing CXL is proposed for withdrawal
Wheat, forage	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat, hay and/or straw	6 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat straw and fodder, dry	23 (W)	-	The existing CXL is proposed for withdrawal
General comments			rops were considered for calculating the dietary burden for livestock. For soil was low compared to the residues related to the primary crop treatment

Abbreviations: cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; dw, dry weight; GAP, Good Agricultural Practice; MRL, maximum residue level; NEU, Northern European Union; PHI, pre-harvest interval; RTI, re-treatment interval; SEU, Southern European Union; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

5.16.6 | Consumer risk assessment

TABLE 101 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
 RA assumptions: The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (see table above, Codex MRL proposals highlighted in bold). In addition, EFSA also revised the input values for wheat and sorghum. As the existing EU MRLs are based on obsolete US import tolerances The calculations are indicative, because the EU residue definition is wider than the residue definition of Codex Therefore, the calculations are affected by additional, non-standard uncertainties 	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1 EFSA calculated two scenarios: Scenario 1: The input values of the most recent long-term risk assessment (EFSA, 2020a) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (see table above, Codex MRL proposals highlighted in bold). In addition, the following modifications were introduced in the PRIMo calculation: Inclusion of new MRL and STMR for pumpkin seeds (derived by fast-track procedure); Removal of MRL proposals of the MRL review that were not taken over in EU legislation. Replacement of existing MRL for wheat and sorghum with new Codex MRL proposal (as existing EU MRL was based on an obsolete US import tolerance/CXL). The new MRL proposals derived in EFSA (2023e) have not been included, as a decision has not yet been taken, which EU MRLs should be lowered to allow increasing of other MRLs 	Specific comments:

TABLE 101 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
	Scenario 2: Same assumptions as in scenario 1, but maintaining the existing EU MRLs (and the corresponding risk assessment values) for animal products, except for eggs, where the Codex MRL proposal (and the corresponding HR and STMR) were implemented	
	Scenario 3: Same as scenario 2, but implementing the MRLs proposed in EFSA (2023e) (lowering of the EU MRL for pome fruit, increasing the EU MRL for kiwi, some stem vegetables, peanuts, soybeans, spices seeds)	
	The calculations are indicative, because the EU residue definition is wider than the residue definition of Codex Therefore, the calculations are affected by additional, non- standard uncertainties	
Results: No short-term consumer health risk was identified for the crops under assessment The highest exposure among the commodities for which Codex MRLs are higher than the existing EU MRL were identified for Bovine liver: 12% of ARfD Cattle milk: 12% of ARfD Other edible offals of bovine: 11% of ARfD	 Results: Scenario 1: The calculated long-term exposure exceeded the ADI. The overall chronic exposure accounted for up to 331% of the ADI (NL toddler) Among the commodities under consideration, cattle milk was identified as the main contributor, accounting for up to 239% of the ADI Scenario 2: No long-term consumer health risk was identified, but the safety margin was very narrow The overall chronic exposure accounted for up to 96% of the ADI (NL toddler) Among the commodities under consideration, wheat was identified as the main contributor, accounting for up to 2.2% of the ADI Scenario 3: No long-term consumer health risk was identified, but the safety margin was very narrow The overall chronic exposure accounted for up to 88% of the ADI (NL toddler) 	Results: Long-term exposure: IEDI: Max 80% of the JMPR ADI. GECDE mean: Max. 270% (infants and toddler) GECDE max: Max. 920% (infants and toddler) Short-term exposure: Highest result for milks and edible offal (mammalian): respectively, 10% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; IEDI: international estimated daily intake; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.16.7 | Conclusions

TABLE 102 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (dossier submitted by the applicant, RMS assessment ongoing)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs are identical, except the RD for RA for plant products, where the EU RD is wider
Analytical methods	Sufficiently validated analytical methods are available for relevant matrices except for meat/ muscle, fat and liver/kidney
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	A chronic intake concern was identified by EFSA, if all Codex MRLs are taken over. In the scenario assuming implementation of MRL proposals for plant products only, the exposure was slightly below the ADI. Further risk management discussions are required
Final conclusion	EU position to be discussed/decided by risk managers

Abbrveiations: ADI, acceptable daily intake; a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.17 | Thiamethoxam (245) R

5.17.1 | Background information

TABLE 103 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Not approved	In the light of the restrictions defined by Regulation (EU) No 2018/785, ⁴⁹ the applicant decided to withdraw the application for the renewal of approval of thiamethoxam. Consequently, the approval expired on 30 April 2019
EFSA conclusion available	No	The DAR prepared by the RMS was not peer reviewed by EFSA. Therefore, no EFSA conclusion is available For the peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules, an EFSA conclusion is available (EFSA, 2018h)
MRL review performed	Yes, see comments	EFSA (2014h)
EU MRL applications or other EU assessments	Yes, see comments	EFSA assessed a number of emergency authorisations granted by Member States between 2018 and 2021
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2019f), ATP17 ⁵⁰
Endocrine effects of a.s.	Not assessed	-
Other relevant information	Thiamethoxam belongs to PIC regulation	the group of neonicotinoids; this a.s. is used as a biocide and is subject to the

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.17.2 | Toxicological reference values

 TABLE 104
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation TRV		TDV
	Value	Comments	Value	Comments	comparable
ADI	0.08 mg/kg bw per day	JMPR (2010)	0.026 mg/kg bw per day	Reg. 07/6/EC	No
ARfD	1 mg/kg bw	JMPR (2010)	0.5 mg/kg bw	Reg. 07/6/EC	No
Conclusion/comments a.s.	-				
Comments on metabolites	 Metabolites included in JMPR RD for RA: CGA 265307 (N-(2-chlorothiazol-5-ylmethyl)-N'-nitroguanidine) Metabolite was mentioned to be a minor rat metabolite, but found at much higher concentration in mouse than in rats. No toxicological studies reported MU3 (amino-([[2-chlorothiazol-5-ylmethyl])-amino]-methylene)-hydrazide, metabolite in poultry meat No information provided on the toxicological profile of either metabolite Metabolites included in EU RD for RA: Clothianidin See chapter on clothianidin 				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

⁴⁹Commission Implementing Regulation (EU) 2018/785 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance thiamethoxam. OJ L 132, 30.5.2018, p. 40–44.

⁵⁰Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

5.17.3 | Residue definitions

TABLE 105 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Thiamethoxam	Reg. 396/2005 (implementing MRL review): Thiamethoxam MRL review (EFSA, 2014h): Thiamethoxam and clothianidin	Yes
			(considered separately)	
	Animal products	Thiamethoxam and clothianidin (considered separately)	Reg. 396/2005: Thiamethoxam MRL review (EFSA, 2014h):	Yes
		The residue is not fat soluble	Ruminants and pigs: Thiamethoxam and clothianidin (considered separately) <u>Poultry products</u> : No residue definition proposed Fat solubility not specified	
RD-RA	Plant products	Thiamethoxam	MRL review (EFSA, 2014h): Thiamethoxam and clothianidin (considered separately)	Yes
	Animal products	All animal commodities except poultry: Thiamethoxam and clothianidin (considered separately) For poultry: Sum of thiamethoxam, CGA 265307 and MU3, expressed as thiamethoxam; and clothianidin (clothianidin to be considered separately from thiamethoxam)	MRL review (EFSA, 2014h): <u>Ruminants and pigs</u> : Thiamethoxam and clothianidin (considered separately). <u>Poultry products</u> : No residue definition proposed	Yes, except for poultry
Conclusion, comments		n for MRL enforcement and risk assessment ne RD for RA for poultry	in plants and livestock are equivalent to t	he JMPR residue

Abbreviations: MRL, maximum residue level; RA, risk assessment; RD, residue definition;; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.17.4 | Analytical methods

TABLE 106 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content High oil content	Yes	0.01	 Extraction with REM 179.06, using water/methanol mixture, clean-up by solvent partition and cartridge columns, determination with LC–MS/MS (FAO and WHO, 2015a) Method AG-765 and method R20013B: Extraction with acetonitrile/ water, (microwave extraction), clean-up by liquid–liquid partition with hexane, and on cartridge columns, determination with LC–MS (FAO and WHO, 2011c)
Plant commodities: Difficult matrices (cumin seed)	Yes, details on method validation not reported in JMPR report	0.1	Method AG-765 and method R20013B: Extraction with acetonitrile/ water, (microwave extraction), clean-up by liquid–liquid partition with hexane, and on cartridge columns, determination with LC–MS (FAO and WHO, 2011c)
Conclusion	The JMPR received new recovery data for the use of Method AG-765 and validation data for method R20013B, used for goji berry, and the method used for cumin seeds. Method AG-765 and R20013B were demonstrated to have adequate performance for recovery of thiamethoxam, with an LOQ of 0.01 mg/kg		
	Sufficiently validated analyti	ical methods	for the enforcement of the MRLs for the relevant matrices are available

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LC–MS, liquid chromatography with mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level.

5.17.5 | Codex MRL proposals

TABLE 107	Comparison of Codex MRL proposals derived by JMPR with EU MRLs.
-----------	---

Commodity	Codex MRL proposal	EU MRL ^a /new EU MRL ^b	Comment
Almond hulls	2 (dw)	-	Currently, no EU MRLs are established for products exclusively used for feed purpose
Celery	1 (W)	1/0.01*	The existing CXL is proposed for withdrawal. It will be replaced by the new Codex MRL proposal for Subgroup of stems and petioles
Cumin seed	1	0.05*/0.05*	 cGAP: No GAP information or residue trials for the use of thiamethoxam or clothianidin on cumin seed were provided Number of trials: The JMPR received monitoring data from India and of the 1089 samples analysed, 328 samples contained quantified residues Sufficiently supported by data: Yes Specific comments: The JMPR noted that according to the current Codex procedure (FAO, 2016) sufficient data of detected residues were available to estimate a maximum residue level. The upper 95% one-tailed confidence limit of the 95th percentile of the detected residues is 0.97 mg/kg Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of possible risks for pollinators, noting that details on the authorised uses (cGAPs) are not available
Fruiting vegetables other than cucurbits	0.7 (W)	-	The existing CXL is proposed for withdrawal, to be replaced by the new MRL proposal for fruiting vegetables other than cucurbits, except goji berries
Fruiting vegetables other than cucurbits except goji berry	0.7	0.2/0.01* (tomatoes and aubergines/ eggplants) 0.7/0.01* (sweet peppers/bell peppers) 0.01*/0.01* (okra/lady's fingers)	 Italian GAP in sweet peppers, 1 × 0.1 kg a.s./ha, 3-day PHI) was assessed by JMPR in 2010 Specific comments: The CXL derived by JMPR in 2010 and adopted by CCPR in 2011 was now restricted, excluding goji berries, for which a separate Codex MRL proposal was derived in 2023 The CXL derived in 2011 has not been taken over in the EU legislation, because the extrapolation approach taken by JMPR was considered not acceptable. (Trials on pepper compliant with the Italian cGAP from greenhouse treatment were used to derive Codex MRLs for the whole group of 'Fruiting vegetables other than cucurbits except goji berry'.) The previously expressed EU reservation on the Codex MRL derived in 2011 has not been withdrawn In addition, it is noted that the EU uses of thiamethoxam which are the basis of the Codex MRL are no longer authorised in the EU Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None
Goji berry	1.5	0.2/0.01*	cGAP: China, 1×0.01 kg a.s./hL, 3-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: The cGAP is reported as 0.01 kg/hL. The water amount per hectare is not defined in the GAP Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: To check details in JMPR evaluation
Goji berry, dried	5	_	JMPR derived a processing factor of 2.53, derived from sun dried goji berry and from hot air-dried goji berry. Currently, no EU MRLs are established for processed products
Group of tree nuts	0.01*	0.02*/0.01* (pecans) 0.01*/0.01* (other tree nuts)	 cGAP: USA, 2×70 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed with pecan (5) and almonds (5). Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators Follow-up action: None

TABLE 107 (Continued)

Commodity	Codex MRL proposal	EU MRL ^a /new EU MRL ^b	Comment
Onion, bulb	0.02	0.01*/0.01*	cGAP: USA, Seed treatment, 1 × 0.2 mg a.s./seed Number of trials: 7 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators. Follow-up action: None
Pecan	0.01* (W)	0.02*/0.01*	The existing CXL is proposed for withdrawal, to be replaced by the new Codex MRL proposal for tree nuts
Subgroup of stems and petioles	0.8	1/0.01* (celeries) 0.01*/0.01* (Florence fennels and rhubarbs)	cGAP: USA, Foliar, 2 × 96 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 4 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs in view of the appropriate level of protection for pollinators
General comments	-		

Abbreviations: a.s., active substance; CXL, Codex maximum residue limit; cGAP, critical Good Agricultural Practice; dw, dry weight; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

^aThe EU MRLs currently applicable are set according to Commission Regulation (EU) 2017/671.

^bNew MRLs established by Commission Regulation (EU) 2023/334 (not yet applicable).

5.17.6 Consumer risk assessment

TABLE 108 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
 RA assumptions: The risk assessment was performed with the EU ARfD The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. cumin seed, tomatoes, sweet peppers/bell peppers, aubergines/ eggplants, okra/lady's fingers, goji berry, cardoons, Florence fennels, rhubarbs and celeries) Since clothianidin and thiamethoxam share a common mode of action, the two substances should be considered together in the risk assessment, taking into account the different toxicological potencies. Therefore, clothianidin and thiamethoxam were assessed separately and in a combined assessment 	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1., based on the latest regulation (EC) 2023/334 (not yet applicable) where all MRLs are set at the LOQ, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. cumin seed, tomatoes, sweet peppers/bell peppers, aubergines/eggplants, okra/lady's fingers, goji berry, cardoons, Florence fennels, rhubarbs and celeries) Since clothianidin and thiamethoxam share a common mode of action, the two substances should be considered together in the risk assessment, taking into account the different toxicological potencies. Therefore, clothianidin and thiamethoxam were assessed separately and in a combined assessment 	Specific comments: –
 Results: No short-term consumer health risk was identified for the crops under assessment Thiamethoxam Highest individual results for Celeries: 3% of the ARfD Combined risk assessment (thiamethoxam and clothianidin) Highest exposure among the commodities under consideration Celeries: 3% of the ARfD 	Results: No long-term consumer health risk was identified Thiamethoxam The overall chronic exposure accounted for 5% of the ADI (NL toddler) The crops under consideration contributed for < 1% of the ADI	Results: Long-term exposure: Max 7% of the JMPR ADI GECDE mean: Max 40% (children and adolescents) GECDE max: Max. 80% (infants and toddlers) Short-term exposure: Highest result for celery: 1% of ARfD (all populations)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; MRL, maximum residue level; GECDE, global estimate of chronic dietary exposure; RA, risk assessment; STMR, supervised trials median residue.

5.17.7 | Conclusions

TABLE 109Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. no longer approved in the EU (approval expired in April 2019, as the application for renewal was withdrawn)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs for plant commodities (enforcement and risk assessment) are equivalent
Analytical methods	Sufficiently validated analytical methods are available for the relevant matrices
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data, but further risk management discussions are recommended in view of the EU policy on protection of pollinators
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	Further discussion with risk managers are recommended in view of the EU policy on protection of pollinators

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.18 Acetamiprid (246) R

5.18.1 | Background information

 TABLE 110
 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	NL	
Approval status	Approved	Commission Implementing Regulation (EU) 2018/113 ⁵¹
EFSA conclusion available	Yes, see comments	EFSA (2016g)
MRL review performed	Yes, see comments	EFSA (2011d)
EU MRL applications or other EU assessments	Yes, see comments	 Art. 10 in peach and escarole (ongoing) EFSA (2024e) Art. 31 on toxicological properties and maximum residue levels of acetamiprid and its metabolites EFSA (2022h) (honey and various oilseed crops) EFSA PPR Panel (2022a) (Statement on acetamiprid – Art. 69 of Regulation (EC) No 1107/2009) EFSA (2021h) (various crops) EFSA (2018j) (Art. 43 assessment and modification of the existing MRLs in table olives, olives for oil production, barley and oats) EFSA (2016b) (various crops) EFSA (2016b) (various crops) EFSA (2015f) (leafy brassicas) EFSA (2014f) (bananas) EFSA PPR Panel (2013) (Scientific opinion on the developmental neurotoxicity potential) EFSA (2013f) (apricots and tree nuts) EFSA (2012e) (purslane, legume vegetables, pulses, beans and peas)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria Annex VI of Regulation (EC) No 1272/2008 (Classification, Labelling and Packaging (CLP) Regulation); ECHA (2020a); ATP18 ⁵²
Endocrine effects of a.s.	Not assessed	Not assessed under the new criteria established by Regulation (EU) 2018/605 ⁵³ (EFSA, 2016g)
Other relevant information	Acetamiprid belongs to the	group of neonicotinoides; the a.s. is approved for use as biocide

Abbreviations: a.s., active substance; MRL, maximum residue level.

⁵¹Commission Implementing Regulation (EU) 2018/113 of 24 January 2018 renewing the approval of the active substance acetamiprid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance). OJ L 20, 25.1.2018, p. 7–10.

⁵²Commission Delegated Regulation (EU) 2022/692 of 16 February 2022 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 129, 3.5.2022, p. 1–17.

⁵³Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33.

5.18.2 | Toxicological reference values

TABLE 111 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		– TRV
	Value	Comments	Value	Comments	comparable
ADI	0.07 mg/kg bw per day	JMPR (2011)	0.025 mg/kg bw per day	Reg. (EU) 2018/113	No
ARfD	0.1 mg/kg bw	JMPR (2011)	0.025 mg/kg bw	Reg. (EU) 2018/113	No
Conclusion/comments a.s.	At EU level, a re-evaluation of the toxicological properties of acetamiprid and its metabolites has been recently completed; EFSA recommended to lower the toxicological reference values (ADI and ARfD 0.005 mg/kg bw (per day)), introducing an additional UF of 5 (EFSA, 2024e)			,	
Comments on metabolites	 Metabolites included in JMPR RD for RA: N-desmethyl-acetamiprid (IM-2-1) The metabolite was considered of lower toxicity than the parent Metabolites included in EU RD for RA: N-desmethyl-acetamiprid (IM-2-1) The metabolite is covered by the TRV derived for the parent compound. In the recently published EFSA statement, EFSA recommended the same HBGVs (ADI of 0.005 mg/kg bw per day and ARfD of 0.005 mg/kg bw) proposed for the parent should also apply to the metabolite (EFSA, 2024e) 			5 5 1	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition; UF, uncertainty factor.

5.18.3 | Residue definitions

TABLE 112	Comparison of the residue	definitions derived by	JMPR and at EU level.
-----------	---------------------------	------------------------	-----------------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf				•
KD enf	Plant products	Acetamiprid	Reg. 396/2005: Acetamiprid	Yes
			Peer review (EFSA, 2016g): Acetamiprid	
			MRL review (EFSA, 2011d): Acetamiprid	
	Animal products	Sum of acetamiprid and N- desmethyl-acetamiprid, expressed as acetamiprid	Reg. 396/2005: Sum of acetamiprid and N-desmethyl-acetamiprid (IM-2-1), expressed as acetamiprid	Yes
	The residue is not fat soluble		Peer review (EFSA, 2016g): N-desmethyl-acetamiprid (IM-2-1), expressed as acetamiprid	
			MRL review (EFSA, 2011d): Sum of acetamiprid and <i>N</i> -desmethyl- acetamiprid (IM-2-1), expressed as acetamiprid	
			The residue is not fat soluble	
RD-RA	Plant products	Acetamiprid	Peer review (EFSA, <mark>2016</mark> g): Acetamiprid	Yes
			MRL review (EFSA, 2011d): Acetamiprid	
	Animal products	Sum of acetamiprid and N- desmethyl-acetamiprid, expressed as acetamiprid	Peer review (EFSA, 2016g): Sum of acetamiprid and metabolite IM-2-1 (<i>N</i> -desmethyl-acetamiprid), expressed as acetamiprid	Yes
			MRL review (EFSA, 2011d): Sum of acetamiprid and N-desmethyl- acetamiprid (IM-2-1), expressed as acetamiprid	
Conclusion, comments		abolite IM-2-1 (N-desmethyl-acetan	ly ongoing, since in certain plant products, signiprid were detected in the framework of pes	·

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.18.4 | Analytical methods

TABLE 113 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High oil content	Yes	0.01	Extraction with QuEChERS (EN 15662), LC–MS/MS (FAO and WHO, 2018a; EFSA, 2016g)
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix group is identical with the JMPR residue definition The current EU MRL for the commodity under discussion (soya bean) is set at the same level as the proposed Codex MRL Sufficiently validated analytical methods for the enforcement of the MRLs for this matrix are available		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.18.5 | Codex MRL proposals

TABLE 114 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL ^a /new EU regulation ^b	Comment
Soya bean (dry)	0.01	0.01*/0.01*	cGAP: Australia, 2 × 70 g/ha, RTI not reported, 42-day PHI Number of trials: 1 trial approximating AUS GAP, supported by 4 overdosed trials (Brazil, 3 × 113 g/ha) Sufficiently supported by data: Yes Specific comments: In none of the trials, residues above the LOQ were detected Conclusion: The Codex MRL should be flagged with an asterisk, indicating that residues above the LOQ are not expected Follow-up action: None
General comments	The use in soya bean did not have an impact on the previously calculated dietary burden and therefore the existing Codex MRLs for animal products do not need to be modified		

Abreviations: cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; LOQ, limit of quantification; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification.

^aThe EU MRLs currently applicable are set according to Commission Regulation (EU) 2019/88.

^bThe draft Regulation SANTE/11278/2021 was voted favourably in the Standing Committee on Plants, Animals, Food and Feed held on 22–23 February 2022 (not yet applicable).

5.18.6 Consumer risk assessment

TABLE 115 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: EFSA calculated two scenarios: Scenario 1: The risk assessment was performed with the EU ARfD Scenario 2: The risk assessment was performed with the ARfD recommended by EFSA in 2024. In this scenario,	RA assumptions: EFSA calculated two scenarios: Scenario 1: The risk assessment was performed with the EU ADI Scenario 2: The risk assessment was performed with the ADI recommended by EFSA in 2024. In this scenario, EFSA	Specific comments: –
EFSA also included the MRL proposals derived in EFSA (2024e) The short-term dietary risk assessment (PRIMo rev. 3.1) focussed on soya beans only) The calculations are indicative, because the ARfD established at EU level may need to be modified, following an ongoing EU assessment Therefore, the calculations are affected by additional, non-standard uncertainties	 also included the MRL proposals derived in EFSA (2024e) A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2022h) were updated, including the STMR values derived by JMPR soya beans The calculations are indicative, because the EU residue definition for risk assessment and the EU ADI may need to be modified, following an ongoing EU assessment Therefore, the calculations are affected by additional, non-standard uncertainties 	

TABLE 115 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: Scenarios 1 and 2: No short-term consumer health risk was identified for the soya beans Scenario 1: Soya beans: 0.2% of ARfD Scenario 2:	Results: Scenarios 1 and 2: No long-term consumer health risk was identified Scenario 1: The overall chronic exposure accounted for 16% of the ADI (NL toddler) Soybeans for up to 0.15% of the ADI	Results: Long-term exposure: Max 3% of the JMPR ADI GECDE mean: Max. 10% (infants and toddler) GECDE max: Max. 30% (infants and toddler) Short-term exposure:
Soya beans: 1% of ARfD	Scenario 2: The overall chronic exposure accounted for 44% of the ADI (NL toddler) Soybeans for up to 0.7% of the ADI	Highest result for soya bean: 0% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.18.7 | Conclusions

TABLE 116 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU; a.s. belongs to the class of neonicotinoids
Toxicological assessment	EU TRV available. A review of the toxicological properties of the a.s. is ongoing which may trigger a revision of the ADI/ARfD
Residue definitions	EU and Codex RDs are identical. However, a review of the residue definitions in currently ongoing, which may trigger a modification of the residue definitions for some crop groups
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	No acute and no chronic intake concern identified in the indicative risk assessment, based on the current EU TRV and residue definitions
Final conclusion	Further discussion with risk managers are recommended in view of the EU policy on protection of pollinators

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.19 | Emamectin (247) T

5.19.1 | Background information

TABLE 117 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Other evaluation, see comment	Emamectin was evaluated by JMPR 2023 due to a request for additional information on analytical methodology, storage stability and MRLs
RMS	NL	
Approval status	Approved. Renewal process ongoing	Commission Implementing Regulation (EU) No 828/2013 ⁵⁴ Dossier submitted by the applicant
EFSA conclusion available	Yes, see comments	EFSA (2012d)
MRL review performed	Yes, see comments	EFSA (2019c)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2021g) (various crops) EFSA (2018i) (leafy brassica and beans and peas with pods)
Classification of a.s. (cut-off criteria)	No, see comments	Emamectin benzoate does not fall under cut-off criteria ECHA (2019b); ATP17 ⁵⁵

(Continues)

⁵⁴Commission Implementing Regulation (EU) No 828/2013 of 29 August 2013 approving the active substance emamectin, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 232, 30.8.2013, p. 23–28.

⁵⁵Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

		Comments, references
Classification of a.s. (cut-off criteria)	No, see comments	Emamectin benzoate does not fall under cut-off criteria ECHA (2019b); ATP17 ⁵⁴
Endocrine effects of a.s.	Not assessed	-
Other relevant information	Emamectin is approved in Eur	ope as candidate for substitution and it is authorised for use in veterinary medicine

Abbreviations: a.s., active substance; MRL, maximum residue level. 5.19.2 | Toxicological reference values

TABLE 118 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.0005 mg/kg bw per day	JMPR (2011)	0.0005 mg/kg bw per day as emamectin; 0.0007 mg/kg bw per day as emamectin benzoate	Regulation (EU) No 828/2013	No
ARfD	0.02 mg/kg bw	JMPR (2014)	0.01 mg/kg bw as emamectin; 0.011 mg/kg bw as emamectin benzoate	Regulation (EU) No 828/2013	No
Conclusion/ comments a.s.	Newly submitted stu	dies on a number of p	emamectin benzoate bhotodegradation metabolites (L-65 not affect the previously established		
Comments on metabolites	 were assessed by JMPR 2023; they did not affect the previously established ADI an ARfD for emamectin benzoate Metabolites included in JMPR RD for RA: not relevant, as currently no metabolites are included in the RD However, JMPR noted that currently it is unknown whether photodegradation metabolites occur as residues in commodities Data were provided for the following metabolites: L-657,831 (FAB1a), L-653,649 (AB1a), L-656,538 (8,9-Z MAB1a), L-660,599 (MFB1a)) For all these metabolites, JMPR concluded that the ADI and the ARfD of the parent compound should be used as reference values JMPR noted that the ADI for the parent and for these metabolites is lower than the Cramer class III threshold of 1.5 µg/kg bw per day Metabolites included in EU RD for RA: Emamectin B1b 8,9-Z-MBA_{1a} AB_{1a} MFB_{1a} For metabolite 8,9-Z-MBA_{1a}, a relative potency factor (RPF) of 1 may apply (EFSA, 2018)) According to the MRL review (EFSA, 2019c), metabolite AB_{1a}, MFB_{1a} and FAB_{1a} are considered more toxic than the parent and a relative potency factor (RPF) of 3 needs to be applied. Hence, for these three metabolites, the JMPR assessment differs from the EU assessment No toxicological information was retrieved specifically for emamectin B1b (and its metabolism/degradation enantiomers),			dues in e used as hold of 1.5 μg/kg than the parent MPR assessment	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.19.3 | Residue definitions

TABLE 119 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
	Plant products	Emamectin B1a benzoate	Reg. 396/2005 (implementing MRL review): Emamectin B _{1a} and its salts, expressed as emamectin B _{1a} (free base)	No
			Peer review (EFSA, 2012d): Emamectin B _{1a} and its salts, expressed as emamectin B _{1a} benzoate	
	Animal products	Emamectin B1a benzoate The residue is not fat soluble	Reg. 396/2005: Emamectin B _{1a}	No
			MRL review (EFSA, 2019c): <u>Ruminants and swine:</u> Emamectin B1a and its salts, expressed as emamectin B1a (free base) Peer review (EFSA, 2012d): Not required The residue is fat soluble	

TABLE 119 (Continued)

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD-RA	Plant products	Emamectin B1a benzoate	MRL review (EFSA, 2019c): Sum of emamectin $B_{1a'}$ emamectin $B_{1b'}$ 8,9-Z-MAB _{1a'} plus 3 times AB _{1a'} plus 3 times MFB _{1a} and 3 times FAB _{1a} , expressed as emamectin B_{1a} (free base)	No
			Peer review (EFSA, 2012d): Emamectin B _{1a} and emamectin B _{1b} and photo metabolites 8,9-Z- MBA _{1a} , AB _{1a} , MFB _{1a} and FaB _{1a} (Provisionally, pending information on the toxicity of the photo-metabolites)	
	Animal products	Emamectin B1a benzoate	MRL review (EFSA, 2019c): <u>Ruminants and swine:</u> Emamectin B1a and its salts, expressed as emamectin B1a (free base)	No
			Peer review (EFSA, 2012d): Not required	
Conclusion, comments	The Codex MRLs can be converted to match with the EU residue definition, by applying a conversion factor of 0.88 The metabolites included in the EU residue definition for risk assessment were assessed by JMPR. JMPR did not modify the residue definition, as the scope of 2023 JMPR was to assess new toxicological studies and not to re-evaluate the residue definition. However, JMPR noted that it is currently unknown whether the photodegradation metabolites occur as residues in commodities In the EU residue definition these metabolites were included, as they might not only be formed in the crops on the field,			

but also during sample preparation in the course of the residue analysis

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.19.4 | Analytical methods

Not relevant, no new Codex MRL proposals derived by JMPR.

5.19.5 | Codex MRL proposals

No new CXL proposals were derived by JMPR.

5.19.6 | Consumer risk assessment

Not relevant, no new CXL proposals were derived by JMPR; the previously established TRV were confirmed by JMPR 2023.

5.19.7 | Conclusions

TABLE 120 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (dossier submitted by the applicant) JMPR assessed new studies which did not affect the end points previously derived by JMPR
Toxicological assessment	The previously derived TRV for emamectin benzoate were confirmed by JMPR 2023 In the EU, the toxicity of three of the metabolites assessed by JMPR in 2023 (FAB1a, AB1a and MFB1a) is considered higher than the toxicity of the parent compound (reflected by a relative potency factor in the EU RD for RA), while JMPR considered the metabolites are covered by the parent
Residue definitions	No modifications of the previously derived residue definitions proposed by JMPR
Analytical methods	No new information assessed by JMPR
Codex MRL proposals	No new Codex MRL proposals
Dietary risk assessment	No modification of the previous risk assessments required
Final conclusion	No modification of TRV or Codex MRL proposals suggested. No EU position required on this a.s.

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.20 | Dinotefuran (255) R

5.20.1 | Background information

TABLE 121 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	No RMS assigned	Formally, no RMS nominated, but DE kindly volunteered for providing support to prepare comments on this a.s
Approval status	Not approved	Never notified and authorised in the EU
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	Yes, see comments	Art. 10 import tolerance in various crops (additional data requested)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2023b)
Endocrine effects of a.s.	Assessment ongoing	Assessment in the framework of the biocide assessment and import tolerance assessment is ongoing (EMS PT)
Other relevant informationDinotefuran is an a.s. belonging to the group of neon It is approved as a biocide for controlling insects, ants attraction		nging to the group of neonicotinoids for controlling insects, ants, etc. by means other than repulsion or
	In 2014, CXLs for peaches, grapes, cranberries, onion, spring onions, water cresses, celeries cotton seeds, rice and a number of animal products have been taken over in the EU MF legislation ⁵⁶	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.20.2 | Toxicological reference values

JMPR evaluation		EU evaluation	TRV			
	Value	Comments	Value	Comments	comparable	
ADI	0.2 mg/kg bw per day	JMPR (2012)	0.22 mg/kg bw per day (AEL systemic medium/ long-term)	ECHA (2014)	No	
ARfD	1 mg/kg bw	JMPR (2012)	1.75 mg/kg bw (AEL systemic, acute)	ECHA (2014)	No	
Conclusion/ comments a.s.	(BPR)). An acce and ECHA; an A In the framework o	 Dinotefuran has previously been assessed as insecticide under EU biocide legislation (Biocidal Products Regulation (BPR)). An acceptable exposure level (AEL) (systemic medium/long term) of 0.22 mg/kg bw/day was agreed by EU MS and ECHA; an AEL (systemic acute) of 1.75 mg/kg bw was derived (ECHA, 2014b) In the framework of the renewal of dinotefuran as biocide, ADI and ARfD values of 0.22 mg/kg bw per day and 1.25 mg/kg bw, respectively, were discussed/agreed by the experts, but the conclusion is not yet published 				
Comments on metabolites	 Mathematical intervention of differentiation as blocket, ADT and AND values of 0.22 mg/kg bw per day and 1.25 mg/kg bw per day and 1.25 mg/kg bw, respectively, were discussed/agreed by the experts, but the conclusion is not yet published Metabolites included in JMPR RD for RA: UF (1-methyl-3-(tetrahydro-3-furylmethyl) urea) DN (1-methyl-3-(tetrahydro-3-furylmethyl) guanidium dihydrogen) In the 2012 JMPR report (first evaluation of the a.s. dinotefuran), no toxicological studies are reported for the two metabolites included in the RD for risk assessment; according to the 2023 report, both metabolites are covered by the TRVs established for the parent Metabolites included in EU RD for RA: Not EU residue definition for risk assessment established. 					

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

⁵⁶Commission Regulation (EU) No 491/2014 of 5 May 2014 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for ametoctradin, azoxystrobin, cycloxydim, cyfluthrin, dinotefuran, fenbuconazole, fenvalerate, fludioxonil, fluopyram, flutriafol, fluxapyroxad, glufosinate-ammonium, imidacloprid, indoxacarb, MCPA, methoxyfenozide, penthiopyrad, spinetoram and trifloxystrobin in or on certain products. OJ L 146, 16.5.2014, p. 1–91.

5.20.3 | Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Dinotefuran	Reg. 396/2005: Dinotefuran	Yes	
			No EU peer review and no MRL review		
	Animal products	Sum of dinotefuran and UF (1-methyl-	Reg. 396/2005: Dinotefuran	No, see comment	
		3-(tetrahydro-3-furylmethyl) urea), expressed as dinotefuran	The residue is not fat soluble	below	
		The residue is not fat soluble			
RD-RA	Plant products	Sum of dinotefuran, UF and DN, expressed as dinotefuran	RD for RA not yet formally established (assessment of IT application is ongoing, proposal from zRMS: Sum of dinotefuran, UF and DN, expressed as dinotefuran)	Not applicable	
	Animal products	Sum of dinotefuran and UF, expressed as dinotefuran	RD for RA not yet formally established (assessment of IT application is ongoing)	Not applicable	
Conclusion, comments	In 2014, the CXLs for a number of plant and animal products have been taken over in the EU. However, the EU residue definition for animal products was not aligned with the Codex residue definition for animal products. Hence, EFSA recommends a reconsideration of the residue definition/MRLs for animal products in Regulation (EC) No 396/2005				

TABLE 123 Comparison of the residue definitions derived by JMPR and at EU level.

Abbreviations: CXL, Codex maximum residue limit; MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; zRMS, zonal Rapporteur Member State.

5.20.4 | Analytical methods

TABLE 124 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content	Yes	0.01	Extraction with acetonitrile/water clean-up with EXtrelut 20 column and ENVI Carb cartridge, LC–MS/MS
Conclusion	definition The current EU MRLs for t lower than the Codex Sufficiently analytical me The method validation re	he commodity unc MRL proposals unc thods for the enfor ported in the JMPF	ent for the relevant matrix group is identical with the JMPR residue ler discussion (goji berries, fruiting vegetables other than cucurbits) are der discussion cement of the MRLs for these matrices are available & assessment (FAO and WHO, 2012) was performed on 3 replicates only nethod at 0.002 mg/kg are available

Abbreviatins: LOQ, limit of quantification; LC–MS/MS, liquid chromatography with tandem mass spectrometry; MRL: maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.20.5 | Codex MRL proposals

TABLE 125 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Goji berry	0.6	0.01* (default MRL)	cGAP: China, 1 × 5 g/hL, 5-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: JMPR proposed to revise the existing CXL for fruiting vegetables other than cucurbits (VO 0050), taking out goji berries. In the EU, goji berries are covered by the MRL set for tomatoes Conclusion: The proposed Codex MRL is sufficiently supported by data. To discuss with risk managers, if and how the Codex MRL for goji berries could be implemented in EU legislation, as this commodity is listed in Part B of the EU food classification under tomatoes (e.g. introducing a footnote to tomatoes to specify that for goji berry, a higher MRL of 0.6 would be applicable). See also Codex MRL proposal for the Group of fruiting vegetables other than cucurbits (except goji berry) Follow-up action: None

TABLE 125 (Continued)

	Codex MRL		
Commodity	proposal	EU MRL	Comment
Goji berry, dried	2	-	JMPR derived a processing factor of 3 for the RD for enforcement and a factor of 3.3 for the residue definition for risk assessment. Currently, no EU MRLs are established for processed products
Group of fruiting vegetables other than cucurbits (except sweet corn and mushrooms)	0.5 (W)	_	The existing CXL is proposed for withdrawal, and shall be replaced by the new CXL for goji berries and the CXL below, excluding goji berries
Group of fruiting vegetables other than cucurbits (except goji berry)	0.5	0.01* (default MRL)	 The existing CXL established in 2013 shall continue to apply to all commodities of the group of fruiting vegetables, other than cucurbits, excluding goji berries The EU did not take over this CXL because it was based on a combined data set of residue trials on peppers (8) and tomatoes (15) reflecting a US GAP According to EU guidelines in place in 2013, the setting of a group MRL was not considered appropriate. EFSA recommended to set separate MRLs for peppers (0.3 mg/kg) and tomatoes (0.7 mg/kg), with the option to extrapolate the MRL from tomatoes to aubergines. However, this proposal was not supported by CCPR According to the current extrapolation rules agreed at Codex level, the data set would not be sufficient to set a Codex MRL for this group: studies would be required on one cultivar of large variety of tomatoes and one cultivar of small variety of tomatoes and Sweet Pepper and Chilli pepper and one cultivar of small variety eggplant and/or tomato and one cultivar of small variety eggplant and/or tomato. According to the information presented in the JMPR evaluation of 2012 (which was not available for deriving the EU position for CCPR 2013), the residue trials used to derive the MRL proposal for fruiting vegetables other than cucurbits were not representative for the cGAP Conclusion: The proposed Codex MRL is not acceptable because it does not reflect the cGAP for fruiting vegetables Follow-up action: None
General comments	-		

Abbreviations: cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended. *Indicates that the input value is proposed at the limit of quantification.

5.20.6 | Consumer risk assessment

 TABLE 126
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
 RA assumptions: The risk assessment was performed with the ARfD derived by ECHA for biocides The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. tomatoes (covering goji berries), peppers, aubergines; for okra, no consumption data are available in EFSA PRIMo) 	RA assumptions: The risk assessment was performed with the ADI derived by ECHA for biocides A long-term dietary risk assessment was performed using PRIMo rev. 3.1., including the proposed Codex MRLs and existing EU MRLs (derived from Codex MRLs) and the related risk assessment input values derived by 2013 and 2023 JMPR. For the remaining commodities, the existing default MRL of 0.01 mg/kg was used as input value	Specific comments: –
Results: No short-term consumer health risk was identified for the crops under assessment Tomatoes and sweet peppers: 2% of ARfD, respectively, Aubergines: 0.8% of the ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 3% of the ADI (GEMS/Food G06) Among the crops under consideration, tomatoes were identified as the main contributor, accounting for up to 0.3% of the ADI	Results: Long-term exposure: Max 2% of the JMPR ADI. GECDE mean: Max. 30% (children and adolescents) GECDE max: Max. 60% (infants and toddler) Short-term exposure: Result for goji berries: 0% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment.

5.20.7 | Conclusions

TABLE 127 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU under pesticide legislation; however, the a.s. is approved for biocidal uses. The EU assessment of an import tolerance is currently ongoing
Toxicological assessment	TRV have been derived by ECHA in the framework of the biocide assessment available
Residue definitions	EU and Codex RDs for MRL enforcement in plant commodities are identical. The EU residue definition for animal products should be re-considered: Codex MRLs for animal products have been taken over in the EU, but the residue definition was not aligned with the Codex residue definition
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRL for goji berries is sufficiently supported by data. However, further discussion required for the revised MRL for fruiting vegetables
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.21 | Cyantraniliprole (263) R

5.21.1 | Background information

TABLE 128 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Approved. Renewal process ongoing	Commission Implementing Regulation (EU) 2016/1414 ⁵⁷ Dossier submitted by the applicant
EFSA conclusion available	Yes, see comments	EFSA (2014e)
MRL review performed	Yes, see comments	EFSA (2017e) (Statement; no MRL review required)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2022d) (Art. 10 in apricots and import tolerance in various crops) EFSA (2021e) (olives) EFSA (2019e) (Chinese cabbages, blackberries and raspberries) EFSA (2018a) (leeks)
Classification of a.s. (cut-off criteria)	Not assessed	-
Endocrine effects of a.s.	Not assessed	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.21.2 | Toxicological reference values

TABLE 129 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.03 mg/kg bw per day	JMPR (2013)	0.01 mg/kg bw per day	Reg. (EU) 2016/1414	No	
ARfD	Unnecessary	JMPR (2013)	Not necessary	Reg. (EU) 2016/1414	Yes	

(Continues)

⁵⁷Commission Implementing Regulation (EU) 2016/1414 of 24 August 2016 approving the active substance cyantraniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 230, 25.8.2016, p. 16–19.

TABLE 129 (Continued)

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
	JMPR has based the ADI on th	ie 90-day and 1-yea	r toxicity studies (de	og) applying a safety factor of 100	
comments a.s.	The EU ADI is based on a 1-ye	ar dog study and ap	plying an uncertair	nty factor of 100	
Comments on metabolites	 Metabolites included in JMPR 2-[3-Bromo-1-(3-chloro-2-pr (IN-J9Z38) 2-[3-Bromo-1-(3-chloro-2-pyr carboxamide (IN-MYX98) These metabolites have been covered by the ADI for cya 3-Bromo-1-(3-chloro-2-pyr carboxamide (IN-N7B69) There is no information about (metabolite in livestock, cc Cramer class III compound Metabolites included in EU RI 2-[3-Bromo-1-(3-chloro-2-p (IN-J9Z38) The toxicity of the plant meta 2-[3-Bromo-1-(3-chloro-2-pyr carboxamide (IN-N7B69) 	RD for RA: byridinyl)-1 <i>H</i> -pyrazo byridinyl)-1 <i>H</i> -pyrazo idinyl)- <i>N</i> -[4-cyano-2 tested in rodents the antraniliprole idinyl)- <i>N</i> -[4-cyano-2 toxicity of IN-7B69 otton, rice, tomato l ds, there is no conce D for RA: byridinyl)-1 <i>H</i> -pyrazo ibolite IN-J9Z38, wa byridinyl)-1 <i>H</i> -pyrazo idinyl)- <i>N</i> -[4-cyano-2	II-5-yl]-3,4-dihydro- II-5-yl]-1,4-dihydro- 2[[(hydroxymethyl)a nrough their format 2-(hydroxymethyl)- In 2013, JMPR conc eaves and lettuce) y rn for this metaboli II-5-yl]-3,4-dihydro- s considered to be c II-5-yl]-1,4-dihydro- 2-(hydroxymethyl)-	3,8-dimethyl-4-oxo-6-quinazolineca 8-methyl-4-oxo-6-quinazolinecarbo amino]carbonyl]-6-methylphenyl]-1 <i>H</i> tion from the parent compound and a 6-[(methylamino)carbonyl]phenyl]-1 <i>H</i> cluded that as the estimated exposur- was below the threshold of toxicolog	nitrile (IN-MLA84) /-pyrazole-5- are therefore /-pyrazole-5- e to IN-N7B69 ical concern for arbonitrile antraniliprole nitrile (IN-MLA84) /-pyrazole-5-

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.21.3 | Residue definitions

TABLE 130 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cyantraniliprole	Reg. 396/2005: Cyantraniliprole Peer review (EFSA, <mark>2014e</mark>): Cyantraniliprole	Yes
	Animal products	Cyantraniliprole The residue is not fat soluble	Reg. 396/2005: Cyantraniliprole Peer review (EFSA, 2014e): Cyantraniliprole The residue is not fat soluble	Yes
RD-RA	Plant products	Cyantraniliprole For processed commodities: Sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole	Peer review (EFSA, 2014e): Cyantraniliprole <u>For processed commodities:</u> Sum cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole	Yes
	Animal products	Sum of cyantraniliprole, 2-[3-Bromo-1-(3- chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-3,4- dihydro-3,8-dimethyl-4-oxo-6-quinazoline carbonitrile [IN-J9Z38], 2-[3-Bromo-1-(3- chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-1,4- dihydro-8-methyl-4-oxo-6-quinazoline carbonitrile [IN-MLA84], 3-Bromo-1- (3-chloro-2-pyridinyl)- <i>N</i> -[4-cyano-2- (hydroxymethyl)-6-[(methylamino)carbonyl] phenyl]-1 <i>H</i> -pyrazole-5-carboxamide [IN- N7B69] and 3-Bromo-1-(3-chloro-2-pyridinyl)- <i>N</i> -[4-cyano-2[[(hydroxymethyl)amino] carbonyl]-6-methylphenyl]-1 <i>H</i> -pyrazole- 5-carboxamide [IN-MYX98], expressed α cyantraniliprole	Peer review (EFSA, 2014e): Sum cyantraniliprole, IN-J9Z38, IN-MLA84 and IN-N7B69, expressed as cyantraniliprole	No

TABLE 130 (Continued)

	Commodity		F U and the form	RDs
	group	JMPR evaluation	EU evaluation	comparable
Conclusion, comments	(cotton) and fr drench applica method, a sim	uit crops (tomato). Each crop underwe itions at 150 g/ha (except for rice, whi ilar metabolic profile was observed ac	rop categories: cereals (rice), leafy crops (lettuce) ent metabolism investigations after either three f ch had a single soil application at 300 g/ha). Rega ross different crop groups, with cyantraniliprole nforcement and risk assessment were proposed a	oliar or three soil ardless of application being the major
	and sterilisatio AR), IN-N5M09 higher levels tl enforcement a	n but degraded under boiling conditi and IN-F6L99 (5%–8% AR). Processing nan cyantraniliprole. Residue definitic	able under standard hydrolysis conditions simula ons, leading to the formation of metabolites IN-J g studies confirmed this degradation, with IN-J9Z ns for processed commodities were proposed as 239 expressed as cyantraniliprole' for risk assessm oducts	9Z38 (12%–14% 238 observed at 'cyantraniliprole' for
	assessed. The r (less than 1% ir products. Base expressed as cy evaluated the s	najority of administered radioactivity v a poultry, 2% in goats). Besides cyantra d on the overall findings the RD-RA wa yantraniliprole'. A conversion factor of 2 ame metabolism studies; in addition to	ng ¹⁴ C-cyantraniliprole labelled on either the cyand vas excreted, only limited residues were found in ti niliprole, IN-J9Z38, IN-MLA84, IN-N7B69, IN-MYX98 s proposed as 'sum cyantraniliprole, IN-J9Z38, IN-M 2 (except for meat and honey) derived from feedin o the metabolites included in the EU RD, JMPR also lentified in significant amounts in metabolism stud	issues, milk or eggs 8 were found in animal MLA84, IN-N7B69, g studies. The JMPR 9 included IN-MYX98

Abbreviations: RA, risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.21.4 | Analytical methods

TABLE 131 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High acid content	Yes	0.01	Aqueous acetonitrile extraction and LC–MS/MS analysis (validation study using cranberry, strawberry, grape, lime); DFG S19 extraction (aqueous acetone) and LC–MS/MS analysis (validation study using oranges)
Plant commodities: High oil content	Yes	0.01	DFG S19 extraction (aqueous acetone) and LC–MS/MS analysis (validation study using almonds)
Plant commodities: Dry commodities	Yes	0.01	DFG S19 extraction (aqueous acetone) and LC–MS/MS analysis (validation study using wheat grain)
Plant commodities: Difficult matrices	No validation data reported in JMPR report	0.04	Aqueous acetonitrile extraction, SPE clean-up by C18, SCX and SAX columns, LC–MS/MS analysis (tea leaves and tea infusion) No validation data available at the EURLs
Animal commodities: Eggs	Yes	0.01	DFG S19 extraction (aqueous acetone), SPE clean-up and LC–MS/MS; aqueous acetonitrile extraction, SPE clean-up, LC–MS/MS analysis
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The current EU MRLs for the commodities under discussion (except the MRL for olives) are lower than the Codex MRL proposal		
	Analytical methods for the enforcement of the MRLs for the relevant matrices are available. Validation data were available for all commodity groups in previous JMPR assessments, with the exception of validation data for difficult matrices (relevant for tea). As the method for tea has not been assessed previously, the validation data are probably reported in detail in the 2023 JMPR evaluation		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; SPE, solid-phase extraction.

5.21.5 | Codex MRL proposals

TABLE 132 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Avocado	0.4	0.01*	cGAP: Mexico: 2×0.08 kg/ha, 14-day RTI, 1-day PHI Number of trials: 7 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

JMPR concluded that the field application pattern reflects a double application rate and therefore scaled down the results of the residue

trial, using scaling factors ranging from 1.87–2.13

Commodity	Codex MRL proposal	EU MRL	Comment
Bean (dry)	0.3 (W)	0.3	The existing CXL is replaced with the new proposal for beans, dry subgroup of. See the comments below
Beans, dry, subgroup of	0.6	0.3 (beans) 0.01* (lupins/lupini beans) 0.4 (soybeans)	 cGAP: 4 × 0.15 kg a.s./ha, 5-day RTI, 7-day PHI Number of trials: 34 (10 beans, 3 peas, 21 soya beans) Sufficiently supported by data: Yes Specific comments: JMPR proposed combining residues from soybeans peas and beans to establish the Codex MRL for beans, dry, subgroup of and for peas, dry, subgroup of. The subgroup of dry beans would cover dry beans, lupins and soybeans Using the soybeans data set alone, a MRL proposal of 0.4 mg/kg is derived. It is noted that in 2014, JMPR assessed the same studies to derive the MRL for soya beans Conclusion: The proposed Codex MRL is sufficiently supported by data however, as for soya beans a lower MRLs would be sufficient, it is proposed to set the Codex MRL for beans, dry, subgroup of (except soya bens) Follow-up action: None
Cane berries, subgroup of	4	0.01* (blackberries, dewberries, raspberries)	cGAP: Canada: 3×0.15 kg/ha, 5-day RTI, 1-day PHI Number of trials: 9 (4 in blackberries and 5 in raspberries) Sufficiently supported by data: Yes Specific comments: The residues in blackberries and raspberries are from similar populations (Mann–Whitney test) Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: None
Eggs	0.3	0.15	 Max dietary burden (poultry layers): 5.14 ppm Max. residues in eggs: 0.203 mg/kg Sufficiently supported by data: Yes Specific comments: JMPR recalculated the dietary burden, including the new feed items (grape pomace, dry beans, dry peas). As for poultry the DB changed compared to the calculations of 2015 JMPR (+9% for maximum DB, +14% for mean DB), JMPR re-evaluated the MRLs for poultry products. Only for eggs a change of the existing CXL was considered necessary Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Grape pomace, dried	15	-	JMPR derived a processing factor of 6.1. Currently, no EU MRLs are established for processed products
Grape, dried (=currants, raisins and sultanas)	3	-	JMPR derived a processing factor of 1.4. Currently, no EU MRLs are established for processed products
Grapes	2	1.5	 cGAP: Chile: 2×0.01 kg a.s./hL with 1500 L/ha, 21-day RTI, not mentioned PHI Number of trials: 9 Sufficiently supported by data: No Specific comments: Trials conducted in Chile involved three applications at the GAP application rate, with the first application at BBCH 65 before fruit formation and 21-day RTI between applications, the first application was deemed insignificant for grape residue levels at harvest. JMPR concluded that the trials in Chile were suitable for CXL proposal Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy or setting MRLs Follow-up action: To check details on residue decline and PHI in JMPR evaluation report
Olives	1	3	cGAP: Malta: 3 × 7.5 g/ha, 7-day RTI, 7-day PHI; the GAP specifies spraying only on one side of the three row Number of trials: 9 Sufficiently supported by data: Yes Specific comments: The existing EU MRL was derived in 2021 based on a SEU use (3 × 15 g/ha (for treatment on each tree) or 7.5 g/ha on every row, 7-day RTI, 7-day PHI). Hence, the GAP was more critical that the GAP assessed by JMPR. At EU level, the same residue trials were provided (one additional trial was submitted to JMPR). The trials were conducted with 15 g a.s./ha (application pattern reflects a double

TABLE 132 (Continued)

101 of 223

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL reflects the GAP correctly or whether the EU MRL of 3 mg/kg would be the representative MRL for the EU GAP Follow-up action: None
Olives for oil production	1	3	See above the comments on olives
Peas, dry, subgroup of	0.6	0.01* (peas, lentils, dry)	See the comments on Beans, dry, subgroup of Conclusion: The proposed Codex MRL for peas, dry, subgroup of is sufficiently supported by data Follow-up action: None
Soya bean (dry)	0.4 (W)	0.4	 Specific comments: The existing CXL is proposed for withdrawal. The proposed Codex MRL for beans, dry, subgroup of will cover also soya beans However, the residue trials in soya beans demonstrate that the current CXL of 0.4 mg/kg is sufficient. In 2014, based on the same data set or soybeans (21 trials, see beans subgroup of), JMPR derived a Codex MRL proposal result in a MRL proposal of 0.4 mg/kg Conclusion: The existing CXL for soya bean (dry) should be maintained The new Codex MRL proposal for beans, dry, subgroup of should be modified, excluding soya beans
Tea, green, black (black, fermented and dried)	50	0.05*	cGAP: Japan: 1 × 5 g a.s./hL (with spray rate of 4000 L/ha), 7-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Wine-grapes	1 (W)	1.5	The existing CXL is proposed for withdrawal
Bottled wine	-	-	JMPR derived a processing factor (for MRL enforcement) of 1.7. Currently no EU MRLs are established for processed products
Grape juice	-	-	JMPR derived a processing factor (for MRL enforcement) of 0.83. Currently, no EU MRLs are established for processed products.
Malolactic fermentation wine	-	-	JMPR derived a processing factor (for MRL enforcement) of 1.8. Currentl no EU MRLs are established for processed products
Must (grapes)	-	-	JMPR derived a processing factor (for MRL enforcement) of 2.7. Currently no EU MRLs are established for processed products
Wet pomace (grapes)	-	-	JMPR derived a processing factor (for MRL enforcement) of 4.8. Currentl no EU MRLs are established for processed products
Processed olives	-	-	JMPR derived a processing factor (for MRL enforcement) of 0.38. Currently, no EU MRLs are established for processed products
Raw oil (olives)	_	-	JMPR derived a processing factor (for MRL enforcement) of 1.2. Currentl no EU MRLs are established for processed products
Refined oil (olives)	-	-	JMPR derived a processing factor (for MRL enforcement) of 0.65. Currently, no EU MRLs are established for processed products
Tea Infusion	_	_	JMPR did not derive any processing factor
Poultry fat	-	0.04	JMPR confirmed its previous CXL proposal of 0.04 mg/kg
Poultry meat	-	Muscle: 0.02	JMPR confirmed its previous CXL proposal of 0.02 mg/kg
Poultry offal	_	0.15	JMPR confirmed its previous CXL proposal of 0.15 mg/kg
General comments	the existin	asked to re-evaluate the M	RL for tomatoes (0.5 mg/kg) to reflect the indoor use. JMPR concluded tha ruiting vegetables other than cucurbits is sufficient to cover the residues

Abbreviations: a.s., active substance; BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended.

*Indicates that the input value is proposed at the limit of quantification.

5.21.6 | Consumer risk assessment

TABLE 133 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long- term risk assessment (EFSA, 2022d) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL: table and wine grapes; blackberries, dewberries, raspberries, avocado, beans dry; dry; lentils, dry; peas, dry; lupins, dry; soya beans, dry and eggs The calculations are indicative, because the residue definition for risk assessment derived by JMPR for animal commodities is wider than the EU RD Therefore, the calculations are affected by additional, non- standard uncertainties 	Specific comments: –
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 20% of the ADI (refined mode)/81% of the ADI (normal mode) Among the crops under consideration, wine grapes was identified as the main contributor, accounting for up to 14% of the ADI	Results: Long-term exposure: Max 40% of the JMPR ADI GECDE mean: Max. 110% (infants and toddler) GECDE max: Max. 420% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; RD, residue definition; STMR, supervised trials median residue.

5.21.7 | Conclusions

TABLE 134 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position	
Background information	A.s. approved in the EU, renewal process ongoing (dossier submitted by the applicant)	
Toxicological assessment	EU TRV available	
Residue definitions	EU and Codex RD for enforcement and RA in plant and processed are identical; for RA animal commodities, Codex RDs are more comprehensive	
Analytical methods	Sufficiently validated analytical methods are available for all relevant commodity groups; however, validation data for difficult matrices need to be verified in 2023 JMPR Evaluation	
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data except grapes	
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified	
Final conclusion	EU position to be discussed/decided by risk managers	

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.22 | Imazapyr (267) R

5.22.1 | Background information

TABLE 135 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	No RMS assigned	

TABLE 135 (Continued)

		Comments, references
Approval status	Not approved	Commission Regulation (EC) No 2076/2002 ⁵⁸
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2014c) (genetically modified soya bean, oilseeds, lentils)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria CLP00 ⁵⁹ (no Risk Assessment Committee opinion available)
Endocrine effects of a.s.	Not assessed	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.22.2 | Toxicological reference values

TABLE 136	Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.
-----------	--

	JMPR evaluation		EU evaluation			
	Value	Comments	Value	Comments	TRV comparable	
ADI	3 mg/kg bw per day	JMPR (2013)	2.5 mg/kg bw per day	EFSA (2014)	Yes, see comment below	
ARfD	Unnecessary	JMPR (2013)	Not necessary	EFSA (2014)	Yes	
Conclusion/comments a.s.	Although the ADI values are established at different levels, they are in the sa			e in the same order o	of magnitude	
Comments on metabolites	-					

Abbreviations: ADI, acceptable daily intake; ARfD: acute reference dose; bw, body weight.

5.22.3 | Residue definitions

 TABLE 137
 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Imazapyr	Reg. 396/2005: Imazapyr	Yes
			EFSA (2014c) (genetically modified soya bean, oilseeds, lentils): Imazapyr	
	Animal products	Imazapyr	Reg. 396/2005: Imazapyr	Yes
		The residue is not fat soluble	The residue is not fat soluble	
RD-RA	Plant products	lmazapyr	EFSA (2014c) (genetically modified soya bean, oilseeds, lentils): Imazapyr	Yes
	Animal products	lmazapyr	EFSA (2014c): Imazapyr	Yes
Conclusion, comments	The residue definitions derived by JMPR are similar with the EU			

Abbreviations: RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

⁵⁹Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

⁵⁸Commission Regulation (EC) No 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. OJ L 319, 23.11.2002, p. 3–11.

5.22.4 | Analytical methods

TABLE 138 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: Dry commodities	Yes	0.01	Methods involving extraction with an acetone/water/ hydrochloric acid-mixture followed by purification and concentration steps; determination by LC–MS/MS EURL validation data show successful validation in dry commodities (LOQ of 0.01 mg/kg)
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix group is identical with the JMPR residue definition The current EU MRL for rice is lower than the Codex MRL proposal Sufficiently validated analytical methods for the enforcement of the MRLs for dry commodities is available		

Abbreviations: LC–MS/MS: liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level.

5.22.5 | Codex MRL proposals

 TABLE 139
 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Rice	0.06	-	See husked rice. EU MRLs are set for husked rice, but not for rice grain
Rice bran, unprocessed	0.2	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice, hay and/or straw	0.015	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice, husked	0.07	0.01*	cGAP: Malaysia: 1 × 0.11 kg/ha, 7–14 days after sowing, ground spray application Number of trials: 9 (6 from Vietnam and 3 from Philippines) approximating the cGAP Sufficiently supported by data: Yes Specific comments: Two trials from Philippines were conducted in the same area, but applications were made more than 30 days apart. JMPR considered them as independent Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Rice, polished	0.05	_	JMPR derived a processing factor of 0.89. Currently, no EU MRLs are established for processed products
Wheat	0.6	0.05*	cGAP: Australia: 1 × 0.011 kg/ha, ground spray application, BBCH 31 Number of trials: 9 (6 from Australia and 3 from USA) Sufficiently supported by data: Yes Specific comments: JMPR combined trials conducted in Australia at 1-2N rates with trials from the USA conducted at a 4N rate. The trials from the USA were specifically designed for processing studies. Scaling factors were applied to all overdosed trials accordingly Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Wheat bran, unprocessed	1	-	JMPR derived a processing factor of 1.47. Currently, no EU MRLs are established for processed products
Wheat germ	1	-	JMPR derived a processing factor of 1.39. Currently, no EU MRLs are established for processed products
Wheat straw and fodder, dry	0.05* (W)	-	The existing CXL is proposed for withdrawal and will be replaced by the new MRL proposal for wheat hay and/or straw
Wheat, hay and/or straw	1 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat gluten	_	-	JMPR derived a processing factor of 0.4. Currently, no EU MRLs are established for processed products
Wheat starch	-	-	JMPR derived a processing factor of 0.05. Currently, no EU MRLs are established for processed products
Wheat whole meal (flour)	_	_	JMPR derived a processing factor of 0.99. Currently, no EU MRLs are established for processed products
Wheat whole meal bread	-	-	JMPR derived a processing factor of 0.79. Currently, no EU MRLs are established for processed products
Wheat, flour	_	-	JMPR derived a processing factor of 0.63. Currently, no EU MRLs are established for processed products

TABLE 139 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Rice straw	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat gluten meal	_	_	JMPR derived a processing factor of 0.44. Currently, no EU MRLs are established for processed products
Wheat hay	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat middlings	_	_	JMPR derived a processing factor of 0.72. Currently, no EU MRLs are established for processed products
Wheat milled by-products	-	-	JMPR derived a processing factor of 0.99. Currently, no EU MRLs are established for processed products
Wheat shorts	-	_	JMPR derived a processing factor of 0.8. Currently, no EU MRLs are established for processed products
Wheat straw	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
General comments			

Abbreviations: BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; dw, dry weight; MRL, maximum residue level; W, the previous recommendation is withdrawn, or withdrawal of the recommended MRL or existing Codex or draft MRL is recommended. *Indicates that the input value is proposed at the limit of quantification.

5.22.6 | Consumer risk assessment

TABLE 140 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1, including the STMR values derived by JMPR for wheat and rice. For the remaining commodities, the calculations were performed using STMR values related to the existing EU MRLs or the MRLs set at the LOQ	Specific comments: –
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 0.13% of the ADI (GEMS/Food G11) Among the crops under consideration, wheat was identified as the main contributor, accounting for up to 0.02% of the ADI	Results: Long-term exposure: Max < 0.1% of the JMPR ADI GECDE (mean and high) 0% of ADI Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.22.7 | Conclusions

TABLE 141 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. is not approved in the EU
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs are identical
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified
Final conclusion	The Codex MRL proposals are sufficiently supported by data and risk for consumers is unlikely

Abbreviations: ARfD, acute reference dose; a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.23 | Cyflumetofen (273) R

5.23.1 | Background information

TABLE 142Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	First assessment by JMPR 2014
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Approved. Renewal process ongoing	Commission Implementing Regulation (EU) No 22/2013 ⁶⁰ Renewal Assessment Report (RAR) submitted, EFSA peer review ongoing (representative uses assessed in renewal process: ornamentals and cucumbers)
EFSA conclusion available	Yes, see comments	EFSA (2012a) EFSA (2016h) (conclusion confirmatory data) EFSA (2016i) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for cyflumetofen in light of confirmatory data) EFSA peer review ongoing
MRL review performed	Yes, see comments	EFSA (2021f), implemented in Regulation (EU) 2023/173 ⁶¹
EU MRL applications or other EU assessments	No	-
Classification of a.s. (cut-off criteria)	No, see comments	Cyflumetofen does not fall under cut-off criteria ECHA (2017); ATP14 ⁶²
Endocrine effects of a.s.	Assessment ongoing	
Other relevant information	Cyflumetofen meets the defin structure	ition of per- and polyfluoroalkyl substances (PAFS) based on its chemical

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.23.2 | Toxicological reference values

TABLE 143 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.1 mg/kg bw per day	JMPR (2014)	0.17 mg/kg bw per day	Reg. (EU) No 2019/716	No
ARfD	Unnecessary	JMPR (2014)	Not necessary	Reg. (EU) No 2019/716	Yes
Conclusion/comments a.s.	The EU ADI is based on 90-day and 2-year rat studies (NOAEL 16.5 mg/kg bw per day, UF 100) The ADI derived by JMPR is based on a two-generation reproductive toxicity study (rat), UF 100				
Comments on metabolites	 Metabolites included in JMPR RD for RA: 2-trifluoromethylbenzoic acid (metabolite B-1) The metabolite was considered unlikely to be genotoxic in vivo; LD₅₀ > 2000 mg/kg bw. JMPR 2014: B-1 was also found in rat metabolism and is considered to be no more toxic than the parent and, therefore, toxicologically covered by the ADI Metabolites included in EU RD for RA: 2-(trifluoromethyl) benzoic acid (metabolite B-1). The reference values of the parent cyflumetofen are applicable to this metabolite (B-1) 				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; LD₅₀, lethal dose, median; NOAEL, no observed adverse effect level; RA, risk assessment; RD: residue definition; UF, uncertainty factor.

⁶⁰Commission Implementing Regulation (EU) No 22/2013 of 15 January 2013 approving the active substance cyflumetofen, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation. OJ L 11, 16.1.2013, p. 8–11.

⁶¹Commission Regulation (EU) 2023/173 of 26 January 2023 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1-methyl-3-(trifluoromethyl)-1*H*-pyrazole4-carboxamide (PAM), cycloxydim, cyflumetofen, cyfluthrin, metobromuron and penthiopyrad in or on certain products. OJ L 25, 27.1.2023, p. 1–35.

⁶²Commission Delegated Regulation (EU) 2020/217 of 4 October 2019 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures and correcting that Regulation. OJ L 44, 18.2.2020, p. 1–14.

5.23.3 | Residue definitions

TABLE 144 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Cyflumetofen	Reg. 396/2005 (implementing MRL review): Cyflumetofen (sum of isomers)	Yes			
			Peer review (EFSA, <mark>2012a</mark>): Cyflumetofen (sum of isomers)				
	Animal products	Sum of cyflumetofen and 2-trifluoromethylbenzoic acid	Reg. 396/2005: Cyflumetofen (sum of isomers)	No			
		(metabolite B-1), expressed as cyflumetofen The residue is not fat soluble	MRL review (EFSA, 2021f): 2-(trifluoromethyl) benzoic acid (metabolite B-1), expressed as cyflumetofen				
			Peer review (EFSA, 2012a): not applicable				
			The residue is not fat soluble				
RD-RA	Plant products	Sum of cyflumetofen and 2-trifluoromethylbenzoic acid (metabolite B-1), expressed as cyflumetofen	MRL review (EFSA, 2021f) and Peer review (EFSA, 2012a): Sum of cyflumetofen (sum of isomers) and 2-(trifluoromethyl) benzoic acid (metabolite B-1), expressed as cyflumetofen	Yes			
	Animal products	Sum of cyflumetofen and 2 trifluoromethylbenzoic acid (metabolite B-1), expressed as cyflumetofen	MRL review (EFSA, 2021f): Sum of cyflumetofen (sum of isomers) and 2-(trifluoromethyl) benzoic acid (metabolite B-1), expressed as cyflumetofen	Yes			
			Peer review (EFSA, 2012a): not applicable				
Conclusion, comments	Plant commodities: Metabolism of cyflumetofen was investigated in fruit crops (mandarin, apple and eggplant) at EU and JMPR level (JMPR 2014). Cyflumetofen constituted the major portion of total radioactive residue (TRR), ranging from 67% to 84% TRR initially and 44%–65% TRR after 30 days on fruits, and 77%–87% TRR initially and 44%–81% TRR after 30 days on leaves. Among identified metabolites, only 2-(trifluoromethyl) benzoic acid (metabolite B-1) (free and conjugated), exceeded 10% TRR (up to 15% and 16% TRR, free and conjugated, respectively, in eggplant fruits), and AB-6 at 10% TRR in eggplant leaves The current residue definitions at EU and JMPR levels are similar						
	During EU MRL review, the lack of metabolism studies in leafy crops was considered acceptable only for hops, assuming the the metabolic pattern is similar to eggplant leaves at 14 PHI and field trials on hops. However, it was highlighted that a metabolism study on leafy would be desirable to confirm this assumption Under the current evaluation, JMPR received new GAPs for hops, tea and coffee beans. As JMPR noted that no metabolism studies exist for leafy crops and pulses/oilseeds, essential for hops, tea and coffee beans uses, JMPR re-evaluated the metabolism studies submitted in 2014. JMPR concluded that the metabolism observed in apple and mandarin tree leaves can be considered representative for tea leaves, as both are permanent woody crops. Metabolism in hops was found to be sufficiently addressed by the metabolism studies in eggplants (leaves), mandarin and apple tree leaves. For coffee beans, JMPR considered the metabolism studies of the metabolism studies are permanent.						
	categorised as fruits Overall, the previously derived residue definitions were confirmed for the additional commodities under assessment The approach used by JMPR to extrapolate the results of metabolism studies in fruit crops to coffee beans is not fully in line with the EU practices and with the requirements described in the FAO manual. Risk management discussion is therefore recommended to decide whether the approach is acceptable						
	Processed commodities : In standard hydrolysis studies, cyflumetofen was found to degrade to B-1 (44–75% AR) and AB-1 (32–49% AR) under boiling/brewing and sterilisation conditions						
	These findings suggest that the setting of a separate residue definition for processed products should be considered, as previously suggested in the MRL review (EFSA, 2021f)						
	Animal commodities: The RDs for enforcement derived by JMPR and at EU level are different: At EU level, it was theref decided not to include metabolite B-1 in the enforcement residue definition for animal products, since this metabo not specific for cyflumetofen (it can be also formed from flutolanil and fluopyram and any of their metabolites cont the 2-trifluoromethylbenzyl moiety)						

Abbreviations: AR; applied radioactivity. MRL, maximum residue level; PHI, pre-harvest interval; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.23.4 | Analytical methods

TABLE 145 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Cyflumetofen			
Plant commodities: High water content Difficult matrices	Yes	0.01	 Methods involving extraction with acetone/water- or acetonitrile/ water mixtures followed by several partitioning and/or concentration steps, determination by LC–MS/MS or LC coupled with other detection techniques. EURL validation data show successful validation in high water content commodities (LOQs of 0.01 mg/kg) No validation data are available within the EURLs for cyflumetofen in difficult commodities
2-trifluoromethylbenzoic acid for MRL enforcement)	l (metabolite B-1) (not releva	ant for the cor	nmodities under discussion, since the metabolite is not included in RD
Plant commodities: High water content Difficult matrices	Yes	0.01	The above described methods were also successfully validated for metabolite B1 on the same commodities and levels EURL validation data show successful validation in high water content commodities (LOQ of 0.01 mg/kg). No validation data are available within the EURLs for metabolite B-1 in difficult commodities
Conclusion	 The EU residue definition for MRL enforcement for the relevant matrix groups are identical with the JMPR residue definition The current EU MRLs for the commodities under discussion (except the MRL for hops) are lower than the Codex MRL proposal Sufficiently validated analytical methods for the enforcement of the MRLs for cyflumetofen in the relevant matrices are available 		

Abbreviations: LC, liquid chromatography; LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; RD, residue definition.

5.23.5 | Codex MRL proposals

 TABLE 146
 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Coffee bean	0.08	0.05*	cGAP: Brazil: 2×0.16 kg a.s./ha, 15-day RTI, 14-day PHI Number of trials: 8 Sufficiently supported by data: No Specific comments: See comment on the lack of metabolism studies representative for coffee (classified in metabolism group under pulses/oilseeds) Conclusion: The proposed Codex MRL is not acceptable due to the lack of a metabolism studies on pulses/oilseeds Follow-up action: None
Coffee beans instant powder	-	-	JMPR derived a processing factor of 0.24 based on one study only. Currently, no EU MRLs are established for processed products
Coffee beans roasted		-	JMPR derived a processing factor of 0.63 based on one study only. Currently, no EU MRLs are established for processed products
Cucumber	0.5	0.4	cGAP: NL, 2×0.02 kg a.s./hL, 7-day RTI, 1-day PHI Number of trials: 10 (2 from Japan and 8 from EU) Sufficiently supported by data: Yes Specific comments: EU trials were conducted at a higher application rate (2×0.026– 0.04 kg/hL) and a scaling factor of 0.48–1 was applied by the JMPR for the EU trials Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Hops beer	-	-	JMPR derived a processing factor of 0.0135, However one trials was below 0.01 mg/ kg. Currently, no EU MRLs are established for processed products
Hops extract	-	-	JMPR derived a processing factor of 3.85. Currently, no EU MRLs are established for processed products
Hops, dried	15	30	cGAP: USA 2×0.2 kg a.s./ha, 14-day RTI, 14-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: It is noted that at EU level a slightly more critical GAP was assessed, supported by residue trials which lead to a higher MRL (cGAP: Netherlands, 2×0.2 kg a.s./ha, 10-day RTI, 14-day PHI)

Conclusion: The proposed Codex MRL is sufficiently supported by data. The manufacturer should be encouraged to submit the cGAP authorised in the EU and the supporting residue trials to Codex

Follow-up action: None

TABLE 146 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment	
Nectarine canned	-	-	JMPR derived a processing factor of < 0.1. Currently, no EU MRLs are established for processed products	
Nectarine jam	_	-	JMPR derived a processing factor of 0.22. Currently, no EU MRLs are established for processed products	
Nectarine, dried	2	-	JMPR derived a processing factor of 7.2. Currently, no EU MRLs are established for processed products	
Peach canned	_	-	JMPR derived a processing factor of < 0.1. Currently, no EU MRLs are established for processed products	
Peach jam	-	-	JMPR derived a processing factor of 0.22. Currently, no EU MRLs are established for processed products	
Peach, dried	2	-	JMPR derived a processing factor of 7.2. Currently, no EU MRLs are established for processed products	
Subgroup of cherries	0.4	0.01*	cGAP: Republic of Korea, 2×0.01 kg a.s./hL, not specified RTI, 7-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: Trials were conducted at the rate of 2×0.018–0.033 kg a.s./hL, RTI (6–7 days). The results were scaled to match with the Korean GAP Conclusion: The proposed Codex MRL is sufficiently supported by data, but the scaling of the residue trials should be checked in the JMPR evaluation. Follow-up action: To check details in JMPR evaluation.	
Subgroup of peaches	0.3	0.3 (peaches, apricots)	cGAP: USA: 2×0.2 kg a.s./ha, 14-day RTI, 7-day PHI Number of trials: 12 (10 peach and 2 apricot) Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data, at EU level the same MRL is in place Follow-up action: None	
General comments	PF derived for the processed products of coffee beans were based on one study only; these factors are therefore not sufficiently robust to be used for MRL enforcement			

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification.

5.23.6 | Consumer risk assessment

TABLE 147 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2021f) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. cherries, cucumber, coffee beans) 	Specific comments: –
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 2% of the ADI (NL toddler) Among the crops under consideration, coffee was identified as the main contributor, accounting for up to 0.14% of the ADI	Results: Long-term exposure: Max 1% of the JMPR ADI GECDE mean: Max. 5% (infants and toddler) GECDE max: Max. 20% (infants and toddler, children and adolescents) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.23.7 | Conclusions

TABLE 148 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (Renewal Assessment Report (RAR) submitted)
Toxicological assessment	EU TRV available

TABLE 148	(Continued)
-----------	-------------

Subsection of the assessment	Findings relevant for discussion of EU position
Residue definitions	EU and Codex RDs for plant commodities are identical
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data except coffee beans
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.24 | Oxathiapiprolin (291) R

5.24.1 | Background information

TABLE 149 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New use	
RMS	IE	
Approval status	Approved	Commission Implementing Regulation (EU) 2017/23963
EFSA conclusion available	Yes, see comments	EFSA (2016d) EFSA (2018r) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for oxathiapiprolin in light of confirmatory data)
MRL review performed	Yes, see comments	EFSA (2016d) also addresses the assessment required from EFSA under Article 12 of Regulation (EC) No 396/2005
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2022f) (import tolerance in blueberries) EFSA (2022a) (kales/radish leaves) EFSA (2020b) (import tolerance in various crops) EFSA (2019b) (Art. 10 and import tolerance in various commodities)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2018); ATP15 ⁶⁴
Endocrine effects of a.s.	Not assessed	Not assessed under the new criteria established by Regulation (EU) 2018/605 ⁶⁵ EFSA (2016d)
Other relevant information	A.s. meets the definition o	f per- and polyfluoroalkyl substances (PFAS) based on its chemical structure

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.24.2 | Toxicological reference values

TABLE 150
 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation Value Comments		EU evaluation		TRV comparable
			Value Comments		
ADI	4 mg/kg bw per day	JMPR (2016)	0.14 mg/kg bw per day	Reg. (EU) 2017/239	No
ARfD	Unnecessary	JMPR (2016)	Not needed	Reg. (EU) 2017/239	Yes

⁶⁵Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33.

⁶³Commission Implementing Regulation (EU) 2017/239 of 10 February 2017 approving the active substance oxathiapiprolin in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance) OJ L 36, 11.2.2017, p. 39–42.

⁶⁴Commission Delegated Regulation (EU) 2020/1182 of 19 May 2020 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 261, 11.8.2020, p. 2–15.

TABLE 150 (Continued)

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
Conclusion/comments a.s.	The JMPR derived an ADI of 4 mg/kg bw per day, based on the NOAEL of 430 mg/kg bw per day for delayed balanopreputial separation in offspring in a two-generation reproductive toxicity study in rats.; UF of 100 applied In the EU assessment, the ADI of 0.14 mg/kg bw per day is based on the NOAEL of 13.6 mg/kg bw per day for increased relative liver weight in a 1-year dog toxicity study and applying an UF of 100				its.; UF of 100
Comments on metabolites	 Metabolites included in JMPR RD for RA: 5-(Trifluoromethyl)-1<i>H</i>-pyrazole-3-carboxylic acid (IN-E8S72) 1-b-D-Glucopyranosyl-3-(-(trifluoromethyl)-1<i>H</i>-pyrazole-5-carboxylic acid (IN-SXS67) The metabolites are covered by genotoxicity assays and a subacute toxicity study in rat, including IN-SXS67, a glucose conjugate of IN-E8S72 Metabolites included in EU RD for RA: - 				ng IN-SXS67, a

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RD, residue definition; RA, risk assessment; UF, uncertainty factor.

5.24.3 | Residue definitions

TABLE 151 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Oxathiapiprolin	Reg. 396/2005: Oxathiapiprolin	Yes		
			Peer review (EFSA, 2016d): oxathiapiprolin			
	Animal products	Oxathiapiprolin	Reg. 396/2005: Oxathiapiprolin	Yes		
		The residue is not fat soluble	Peer review (EFSA, <mark>2016d</mark>): Oxathiapiprolin			
			The residue is not fat soluble			
RD-RA	Plant products	Sum of oxathiapiprolin, 5-(trifluoromethyl)- 1H-pyrazole-3-carboxylic acid (IN-E8S72) and 1-b-D-Glucopyranosyl- 3-(-(trifluoromethyl)-1H-pyrazole-5- carboxylic acid (IN-SXS67), expressed as parent equivalents	Peer review (EFSA, <mark>2016d</mark>): Oxathiapiprolin	No		
	Animal products	Sum of oxathiapiprolin, 5-(trifluoromethyl)- 1H-pyrazole-3-carboxylic acid (IN-E8S72) and 1-b-D-glucopyranosyl- 3-(-(trifluoromethyl)-1H-pyrazole-5- carboxylic acid (IN-SXS67), expressed as parent equivalents	Peer review (EFSA, 2016d): Oxathiapiprolin	No		
Conclusion, comments	The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The JMPR RD for RA proposed for plants and livestock includes additional metabolites (IN-E8S72 and IN-SXS67)					

Abbreviations: MRL, maximum residue level; RA, risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.24.4 | Analytical methods

TABLE 152 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High acid content High oil content Low water content High water content	Yes	0.01	Extraction with acetonitrile/formic acid/water extraction aqueous formic acid/methanol dilution SPE clean-up (some matrices) reverse-phase LC-MS/MS
Plant commodities: High acid content	Yes	0.01	QuEChERS acetonitrile/water extraction, SPE, LC–MS/MS

TABLE 152 (Continued)

alidated methods vailable (incl. xtraction efficiency)	LOQ (mg/kg)	Remark	
25	0.01	DuPont 30422 Acetonitrile/formic acid/water extraction acetonitrile/water dilution reverse-phase LC–MS/MS	
25	0.01	DuPont 30422 Acetonitrile/formic acid/water extraction acetonitrile/water dilution reverse-phase LC-MS/MS	
25	0.01	Ginseng: DuPont 30422 Supplement No. 1 Acetonitrile/formic acid/water extraction aqueous formic acid/methanol dilution SPE clean-up (some matrices) reverse-phase LC–MS/MS	
 The EU residue definition for MRL enforcement for the relevant matrix groups is identical with the JMPR residue definition The current EU MRLs for the commodities under discussion are higher than the Codex MRL proposal, except the MRL for avocados Analytical method DuPont 30422 Supplement No. 1 was previously evaluated by the JMPR (FAO and WHO, 2017); it 			
can be used to determine oxathiapiprolin, IN-E8S72 and IN-SXS67 Sufficiently validated analytical methods for the enforcement of the MRLs for the relevant matrices are available			
	railable (incl. ctraction efficiency) is is the EU residue definition for definition the current EU MRLs for the for avocados halytical method DuPont 3 can be used to determine	Trailable (incl. (traction efficiency) LOQ (mg/kg) is 0.01 is 0.01	

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method); SPE, solid-phase extraction.

5.24.5 | Codex MRL proposals

TABLE 153	Comparison of	Codex MRL proposals	derived by JMPR	with EU MRLs.
-----------	---------------	---------------------	-----------------	---------------

Commodity	Codex MRL proposal	EU MRL	Comment
Almond hulls	0.05	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Avocado	0.09	0.01*	 cGAP: USA, Foliar, 2×34 g a.s./ha 14-day RTI, 1-day PHI (maximum seasonal application 67 g a.s./ha) Number of trials: 5 Sufficiently supported by data: Yes Specific comments: A second GAP was assessed by JMPR (USA, Soil application, 2×134 g a.s./ha at a 30-day RTI, 30-day PHI (maximum seasonal application 280 g a.s./ha). However, residues were higher following foliar application and thus, MRL and risk assessment values were derived from the GAP with foliar application According to the Codex classification and the FAO Manual, the commodity to be analysed is the whole avocado after removal of pit where the residue is calculated and expressed on a whole fruit basis. As the pits account for an average of 15% of the whole fruit weight, for MRL calculation, the residues for pitted avocadoes were adjusted by multiplying the results with a factor of 1.15 for MRL calculation. EFSA noted that the re-calculation was performed incorrectly: the residues measured in avocado without pit and stem should be recalculated to the whole fruit by multiplying the result with a factor of 0.85 (instead of 1.15). For dietary risk assessment, no residues were reported for pulp, per se, therefore, the total residues reported for pitted avocadoes (peel and pulp) were considered Conclusion: The proposed Codex MRL is not acceptable because the recalculation of the residues measured in avocados without pit to the whole fruit would result in a lower MRL of 0.07 mg/kg Follow-up action: None
Group of tree nuts	0.01*	0.01*	 cGAP: USA, Soil application, 2×0.134 kg a.s./ha, 30-day RTI, 30-day PHI (maximum seasonal application 280 g a.s./ha) Number of trials: 10 Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed on almonds (5) and pecan nuts (5). Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: To verify the maximum seasonal application rate in the JMPR evaluation
Hops, dried	5	8	cGAP: USA, Foliar, 3×34 g a.s./ha 7-day RTI, 7-day PHI (maximum seasonal application 101 g a.s./ha) OR USA, Soil application, 1×280 g a.s./ha, 7-day PHI Number of trials: 6 Sufficiently supported by data: Yes

TABLE 153 (Continued)

223

Commodity	Codex MRL proposal	EU MRL	Comment
			 Specific comments: None of the trials matched GAP as they involved both soil and foliar applications. The current JMPR noted that residues of oxathiapiprolin following soil application were all < LOQ in previous assessments (EFSA, 2016d, 2018r). However, EFSA would not agree with this conclusion as residues above the LOQ were reported in JMPR 2016, following soil applications, for several crops (e.g. cucumber, summer squash, melons, peppers, tomatoes, lettuces, spinaches) Residues of the metabolites in trials on hops with a soil and three foliar applications were all < LOQ for IN-SXS67 and IN-E8S72. The current JMPR agreed that the contribution of the soil applications to the final residue would be minor and noted that any additional residue would lead to a slight overestimate of consumer exposure and that this would be acceptable Conclusion: The proposed Codex MRL is sufficiently supported by data, but the details on the residue trials should be checked in the JMPR evaluation. As for the EU uses a higher MRL was derived, the manufacturer should be encouraged to share the EU GAP and the supporting trials with JMPR in view of aligning the Codex MRL with the EU MRL Follow-up action: To check details in JMPR evaluation
Subgroup of bush berries	0.5	0.5 (blueberries) 0.01* (currants, gooseberries and rose hips)	 cGAP: USA, Foliar, 2×0.280 kg a.s./ha, 7-day RTI, 1-day PHI (maximal season application is 580 g a.s./ha (which is probably a wrong value and should read 560 g/ha); the US GAP which refers the US Bush berry subgroup 13-07B, except lowbush blueberry covers also currants, gooseberries, rose hips and some minor crops listed only in Part B of the EU food classification Number of trials: 8 trials in blueberry (highbush) Sufficiently supported by data: Yes Specific comments: The extrapolation to the whole subgroup of bush berries (FB 2006) is in line with the Codex extrapolation rules. In the JMPR report the seasonal maximum seasonal rate is reported as 580 g a.s./ha Conclusion: The proposed Codex MRL is sufficiently supported by data. The proposed Codex MRL is higher than the current EU MRLs for currants, gooseberries and rose hips Follow-up action: None
General comments	 The current EU MRLs for the commodities under discussion are higher than the Codex MRL proposals, except the MRL for avocados, currants, gooseberries and rose hips For determining the sum of oxathiapiprolin and metabolites IN-E8S72 and IN-SXS67 (according to the residue definition for dietary assessment proposed by JMPR), the concentration of oxathiapiprolin in each sample was added to the concentration of IN-E8S72 multiplied by 2.99 [the ratio of the molecular weights of oxathiapiprolin (539 amu) and IN-E8S72 (180 amu)] and the concentration of IN-SXS67 multiplied by 1.58 [the ratio of the molecular weights of oxathiapiprolin (539 amu) and IN-E8S72 (180 amu)] and the concentration of IN-SXS67 multiplied by 1.58 [the ratio of the molecular weights of oxathiapiprolin (539 amu) and IN-E8S72 (180 amu)]. When calculating total residues, values reported as below the LOQ were assumed to be at the LOQ The registered GAPs require an SC (suspension concentrate) formulation. The residue trials submitted for all crops, except for blueberries, applied oxathiapiprolin as an oil dispersion (OD) formulation. Side-by-side residue trials performed with cucumber, brassica, potato and tobacco for the two formulations were made available to the JMPR and demonstrated that residues following use of SC and OD formulations are equivalent. The JMPR agreed that trials using an OD formulation could be used to support estimation of maximum residue levels for oxathiapiprolin when the GAP is for an SC formulation 		

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; LOQ, limit of quantification; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval. *Indicates that the input value is proposed at the limit of quantification.

5.24.6 | Consumer risk assessment

 TABLE 154
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2022f) (import tolerance in blueberries)) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL/ risk assessment value is higher than the EU MRL (i.e. avocados, blueberries, currants, gooseberries and rose hips) The calculations are indicative, because the RD for RA derived by JMPR is wider than the EU RD for RA 	Specific comments: –
	Therefore, the calculations are affected by additional, non-standard uncertainties	Continue

TABLE 154 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 3% of the ADI (NL toddler) Among the crops under consideration, currants and rose hips were identified as the main contributors, accounting for up to 0.01% of the ADI	Results: Long-term exposure: Max 1% of the JMPR ADI GECDE mean: Max. 0% (infants and toddlers) GECDE max: Max. 2% (infants and toddlers)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; RD, residue definition; STMR, supervised trials median residue.

5.24.7 | Conclusions

TABLE 155Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RD for enforcement are identical; for RA, Codex RDs are more comprehensive
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. However, the Codex MRL proposal for avocado should be re-considered by JMPR
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.25 | Tetraniliprole (324) R

5.25.1 | Background information

 TABLE 156
 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	Other evaluation, see comment	Follow-up assessment of MRL proposal for mandarins (including mandarin-like hybrids) (subgroup) See below other relevant information
RMS	No RMS assigned	Formally, no RMS nominated, but DE volunteered for providing support to prepare comments on this a.s
Approval status	Not approved	Not authorised in EU
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2024c) Assessment of toxicological data of tetraniliprole)
Classification of a.s. (cut-off criteria)	Not assessed	-
Endocrine effects of a.s.	Not assessed	-
Other relevant information	has not been completed. to derive a MRL proposal f JMPR agreed with the comme evaluated by JMPR 2023. (general reservation on tetraniliprole, as the EU assessment of the substance in addition, the EU noted that the number of residue trials were insufficient for mandarins (subgroup) ent and informed the CCPR meeting that the MRL proposal will be re- CCPR therefore retained the MRL proposals for mandarins (1 mg/kg) at step 4. is presented in the table below

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.25.2 | Toxicological reference values

	JMPR evaluation		EU evalua	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	2 mg/kg bw per day	JMPR (2021)	-	No EU value derived	Not applicable
ARfD	Unnecessary	JMPR (2021)	-	No EU value derived	Not applicable
Conclusion/comments a.s.	EFSA reviewed the toxicological assessment performed by JMPR in 2021 (EFSA, 2024c)				
Comments on metabolites	 Metabolites included in JMPR RD for RA: tetraniliprole-<i>N</i>-methyl-quinazolinone-carboxylic acid (BCS-CT30673) tetraniliprole-benzyl alcohol (BCS-CZ91631) The ADI applies to these metabolites; JMPR also concluded that no ARfD is required for these two metabolites. Further details, see EFSA (2023f) 				
	Metabolites included in EU RD for RA: not relevant				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.25.3 | Residue definitions

TABLE 158 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Tetraniliprole	Reg. 396/2005: Tetraniliprole (default MRLs/RD according to Art. 18(1)(b))	Yes
	Animal products	Tetraniliprole The residue is not fat soluble	Reg. 396/2005: Tetraniliprole (default MRLs/RD according to Art. 18(1)(b))	Yes
RD-RA	Plant products	Tetraniliprole + tetraniliprole-N- methyl-quinazolinone, expressed as tetraniliprole	No EU assessment for residue definitions	Not applicable
	Animal products	Tetraniliprole + tetraniliprole- N-methyl-quinazolinone + tetraniliprole-benzylalcohol, expressed as tetraniliprole	No EU assessment for residue definitions	Not applicable
Conclusion, comments	 The JMPR evaluated tetraniliprole for residue definitions and dietary risk assessment. In plant metabolism studies, tetraniliprole was the predominant component across the investigated crops. Although other metabolites were identified, tetraniliprole was considered the marker compound for the enforcement residue definition. Notably, tetraniliprole-<i>N</i>-methyl-quinazolinone was detected in plant matrices and processed commodities and therefore included in the RA-RD alongside with tetraniliprole (see CCPR 2023 for detailed assessment) For livestock assessment (which is not relevant for the current CXL proposal), EFSA disagreed with JMPR proposal for the residue definition in animal commodities (EFSA, 2023f) 			

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.25.4 | Analytical methods

A validated analytical method is readily available for analysing tetraniliprole and tetraniliprole-N-methyl-quinazolinone at (LOQ) of 0.01 mg/kg in various plant matrices, including citrus. The method's principle involves extraction with water and acetonitrile, followed by determination using LC–MS/MS (JMPR, 2022). For more details, see EFSA (2023f).

5.25.5 | Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Mandarins (including Mandarin-like hybrids), Subgroup of	1.5	0.01* default MRL Art. 18(1)(b) (mandarins)	 cGAP: USA, foliar, 3×60 g a.s./ha, 5-day RTI, 1-day PHI Number of trials: 9 (5 lemon and 4 in mandarins) Sufficiently supported by data: Yes Specific comments: In 2022, JMPR assessed the GAP on mandarins based on only 4 trials which was considered insufficient for a major crop. JMPR 2023 revised the MRL proposal, as suggested by the EU, and derived a new MRL proposal based on the combined residue trials on lemons and mandarins for the commodity code FC 0003. The STMR for the new MRL proposal is slightly higher than the one derived by JMPR in 2022 (0.19 vs. 0.185 mg/kg) For lemons and lime (including citron) subgroup (FC 0002), a Codex MRL of 1.5 mg/kg was adopted in 2023, based on the same residue trials Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
General comments	-		

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; RTI, re-treatment interval; PHI, pre-harvest interval; STMR, supervised trials median residue.

*Indicates that the input value is proposed at the limit of quantification.

5.25.6 | Consumer risk assessment

TABLE 159 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: An indicative risk assessment was performed with the JMPR ADI An indicative long-term dietary risk assessment was performed for mandarins only, using PRIMo rev. 3.1 The calculations are affected by additional, non-standard uncertainties, related to the fact that the active substance was never assessed at the EU level 	Specific comments: JMPR did not update the risk assessment performed in 2022. However, the small increase of the STMR from 0.185 to 0.19 mg/kg is expected not to have a significant impact on the results	
Results: Not relevant	Results: No long-term consumer health risk was identified The chronic exposure accounted for 0.01% of the ADI (NL toddler)	Results of risk assessment performed by JMPR in 2022: Long-term exposure: Max 0.1% of the JMPR ADI Short-term exposure: Not relevant (JMPR did not derive an ARfD)	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; RA, risk assessment; STMR, supervised trials median residue.

5.25.7 | Conclusions

TABLE 160 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU
Toxicological assessment	No EU TRV available; EFSA recently assessed toxicological data presented in JMPR Evaluation. Discussion with risk managers still pending
Residue definitions	Specific residue definitions are not established in the EU, since the a.s. has not been assessed at EU level
Analytical methods	According to JMPR assessment, sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRL is sufficiently supported by data
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified (indicative risk assessment)
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; ARfD, acute reference dose; MRL, maximum residue level; TRV, toxicological reference value.

5.26 | Isoflucypram (330) R/T

5.26.1 | Background information

TABLE 161 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	FR	
Approval status	Approval process ongoing	EFSA conclusion published; Discussion at risk management level ongoing
EFSA conclusion available	Yes, see comments	EFSA (2022e)
MRL review performed	No	
EU MRL applications or other EU assessments	No	
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (<mark>2020b</mark>), ATP18 ⁶⁶
Endocrine effects of a.s.	No conclusion derived	 Because of the lack of data in the most sensitive population of concern, the ED assessment for the T-modality for humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009, as amended by Commission Regulation (EU) 2018/605, cannot be concluded The data set for the EAS-modalities was considered as sufficiently investigated with no evidence of adversity (scenario 1a). Therefore, for the EAS-modalities, the ED criteria for humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009, as amended by Commission Regulation (EU)2018/605, were considered not met EFSA (2022e)

Other relevant information

Abbreviations: a.s., active substance; MRL, maximum residue level.

_

5.26.2 | Toxicological reference values

	JMPR evaluation		EU evaluation	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	0.06 mg/kg bw per day	JMPR (2023)	0.04 mg/kg bw per day	EFSA (2022)	No
ARfD	Unnecessary	JMPR (2023)	0.1 mg/kg bw	EFSA (2022)	No
Conclusion/comments a.s.	The JMPR established an ADI of 0.06 mg/kg bw per day based on a NOAEL of 6.27 mg/kg bw per day the long-term toxicity and carcinogenicity study in rats and applying an UF of 100. The parent AI applies to M01, M02, M11, M12, M62, M66, M67, M68 and M69 The EU ADI was set at 0.04 mg/kg bw per day, based on the short-term NOAEL of 4.2 mg/kg bw per of for reduced body weight gain, liver toxicity (hypertrophy) and clinical chemistry changes in the day and 1-year toxicity studies in dogs and applying an UF of 100 The EU ARfD is 0.1 mg/kg bw based on the maternal NOAEL of 10 mg/kg bw per day for the early and significant onset of decreased body weight gain in a developmental toxicity study in rabbits; an			The parent ADI g/kg bw per day hanges in the 90- r the early and	
	100 was applied The experts considered that the margin of safety to the highest tested dose in the rat carcinogenicity would be 465 in males and 1165 in females, reassuring that the ADI would be protective enough regardless the limitation of the dose selected in the rat carcinogenicity study				5 ,
Comments on metabolites	 isoflucypram-p isoflucypram-ca isoflucypram-da 	led in JMPR RD for RA: ropanol (free (M01) an arboxylic acid (M12) esmethyl-carboxylic a propanol (free (M02) a	d conjugated (M19))		

(Continues)

⁶⁶Commission Delegated Regulation (EU) 2022/692 of 16 February 2022 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 129, 3.5.2022, p. 1–17.

TABLE 162 (Continued)

JMPR evaluation		EU evaluatio	n	TRV
Value	Comments	Value	Comments	comparable
 isoflucypram de 	se metabolites is covere esmethyl-propanol (M0 as assessed using TTC a	6)		
 N-{[5-chloro-2-(methyl-1<i>H</i>-pyra: N-{[5-chloro-2-(pyrazole-4-carb 2-[4-chloro-2-({c methyl)phenyl] N-{[5-chloro-2-({c methyl-1<i>H</i>-pyra: 2-[4-chloro-2-({c methyl)phenyl] 2-[4-chloro-2-({c propanoic acid t The TRVs of the pa In addition, the tox 	zole-4-carboxamide (N 1-hydroxypropan-2-yl) boxamide (M06) cyclopropyl[3(difluoron propyl D-glucopyranos 2-hydroxypropan-2-yl) zole-4-carboxamide (N cyclopropyl[3(difluoron propan-2-yl b-D-glucop cyclopropyl[3(difluoron (M11) irent apply to the metal kicity of metabolites M0	101) phenyl]methyl}-N- nethyl)-5-fluoro-1-r iduronic acid (M19) phenyl]methyl}-N- 102) nethyl)-5-fluoro-1-r pyranosiduronic aci nethyl)-5-fluoro-1 <i>H</i> polites M01, M06, <i>N</i> 07, M10, M12, M18, N	cyclopropyl-3(difluoromet nethyl-1 <i>H</i> -pyrazole-4-cark id (M20) (conjugate of M02 -pyrazole-4-carbonyl]ami 119, M02, M20 and M11 A21, M22, M36, M37, M41, M	thyl)-5-fluoro-1 <i>H</i> - ponyl]amino} thyl)-5-fluoro-1- ponyl]amino} 2) no}methyl)phenyl]
· ·	TRVs of the parent, bas levels of metabolites in		milarity, QSAR-negative QS	SAR predictions
genotoxicity Q metabolite (uri	SAR predictions. M66 a	nd M67 were obser ntified in goat (urin	5, M67 and M77, based on p rved in rotational crop stud e and kidney). M77 occurro	dies. M50 is a rat

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition; TTC, threshold of toxicological concern; UF, uncertainty factor.

5.26.3 | Residue definitions

TABLE 163 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	lsoflucypram	Reg. 396/2005: Isoflucypram (default MRLs/RD according to Art. 18(1)(b))	Yes
			Peer review (EFSA, 2022e): Isoflucypram	
	Animal products	lsoflucypram The residue is fat soluble	Reg. 396/2005: Isoflucypram (default MRLs/RD according to Art. 18(1)(b))	Yes
			Peer review (EFSA, 2022e): Isoflucypram	
RD-RA	Plant products	Sum of isoflucypram and isoflucypram- propanol (M01) (free and conjugated), expressed as isoflucypram	 Peer review (EFSA, 2022e): Sum of isoflucypram, M01 and its conjugates, M06 and its conjugates, expressed as isoflucypram (RD applies only for cereals after foliar application) The residue definition for plant products is provisional, pending toxicological data on M77, a degradation product of M06 and M66 and M67 (both metabolites observed in rotational crop studies. For these metabolites, genotoxicity potential needs to be addressed) 	No
	Animal products	Sum of isoflucypram, isoflucypram- propanol (M01) (free and conjugated), isoflucypram-carboxylic acid (M12), isoflucypram- desmethyl-carboxylic acid (M11) and isoflucypram-2- propanol (M02) (free and conjugated), expressed as isoflucypram	 Peer review (EFSA, 2022e): Sum of isoflucypyram, M01 and its conjugates M19, M02 and its conjugates M20 and M11 expressed as isoflucypyram The residue definition for animal products is provisional, pending toxicological data on M50 (metabolite in ruminant kidney observed at a level of 0.011 mg/kg). No conclusion could be drawn on its genotoxic potential Honey: Sum of isoflucypram, M01 and its conjugates, M06 and its conjugates, expressed as isoflucypram (see RD-RA for plants) 	No

TABLE 163 (Continued)
----------------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparabl	
onclusion,	The same me	tabolism studies in plant and	d animal were assessed at JMPR and EU leve	2	
comments	potatoes. cereals fee Residue trials compound The proposed M06 and c the metab For enforcem JMPR also inc	Isoflucypram was the prima ed items. Other relevant com on cereals showed that met d residue definition for risk as conjugates expressed as isof polism studies representative ent purposes, the residue de	finition was proposed as isoflucypram alor at considering the results from the field tria	nificant residues in their edible parts an ops Is comparable or higher than the parent of isoflucypram, M01 and its conjugates bolic pattern was found to be different i ne	
	 In rotational crops, several compounds, including M49, M52, M66 and M67, occurred at levels above 10% of TRRs, differing from primary crops. Isoflucypram was detected only in wheat forage Concerns regarding the potential genotoxicity of metabolites M66 and M67 in wheat forage and grain led to a data gap for genotoxicity data during the peer review JMPR proposed applying the (TTC) approach to assess M66 and M67 for genotoxicity Additionally, M52 was found in Swiss chard at 0.015 mg/kg Confined rotational field trials analysing isoflucypram and M49 were conducted in cereals, root and leafy crops, with isoflucypram found only in carrot tops at 0.066 mg/kg. JMPR proposed to apply the TTC approach to assess M66 and M67 for the genotoxicity. As regards the occurrence of residues in rotational crops, JMPR consider the current levels are not relevant, especially for feed items, but may need to be re-evaluated for more critical future GAPs 				
	 Processed commodities: Isoflucypram and M01 remain stable (98%) under standard hydrolysis conditions, while M06 degrades into M77 during boiling/brewing/baking (up to 66%) and sterilisation (up to 98%) Due to the potential genotoxicity of M77, additional genotoxicity testing is necessary, particularly because M06 was found in barley grain at significant levels At EU level the residue definitions were proposed provisionally for processed similar to plants. JMPR also proposed a similar residue definition as for plants. JMPR concluded that M77 is not relevant for processing based on processing trials where M77 was found to be below 0.01 mg/kg 				
	 Animal commodities: Animal metabolism studies revealed the presence of isoflucypram in all animal tissues, milk, eggs, liver and ruminant fat. M01 and M06 were detected in significant amounts in most matrices, except for M01 in milk and ruminant fat. Although M07, M11 and M12 were found above 10% TRRs in poultry muscle and liver, poultry feeding studies suggested M07 levels would likely be below 0.01 mg/kg Additional compounds like M02, M19, M20 and M50 were found in ruminants, with the genotoxic potential of M50 remaining not addressed The EU proposed a residue definition for risk assessment including isoflucypram, M01, M19, M02, M20 and M11 expressed as isoflucypram 				
	For enforcement, both the EU and JMPR proposed isoflucypram alone. For risk assessment besides the compounds included in the residue definition at EU level, JMPR included M12 (isoflucypram carboxylic acid) found in poultry metabolism studies at max 12% TRRs but not expected above 0.01 mg/kg (1N) from the feeding studies results				

5.26.4 | Analytical methods

 TABLE 164
 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: Dry commodities	Yes, but no details on validation provided in JMPR report	0.01	According to the peer review of the pesticide risk assessment of the active substance and EURLs, isoflucypram residue can be monitored in food and feed of plant origin by high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS) with a limit of quantification (LOQ) of 0.01 mg/kg in all commodities The validation data are not presented in JMPR report. To check details in JMPR Evaluation
Animal products Muscle/meat Fat Liver/kidney Milk Eggs	Yes, but no details on validation provided in JMPR report	0.05 except for eggs (0.005)	Isoflucypram residue in food of animal origin can be determined by QuEChERS method with HPLC–MS/MS. The validation data are not presented in JMPR report. To check details in JMPR Evaluation

TABLE 164 (Continued)

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Conclusion	definition The current EU MRLs for food o kidney) are lower than the proposed Codex MRLs are	commodities belonging to Codex MRL proposal und at the same level	elevant matrix groups are identical with the JMPR residue o the matrix groups of dry commodities and edible offal (liver/ ler discussion. For the remaining commodities, the EU and the e MRLs for these matrices are available to EFSA. See remarks

Abbreviations: MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.26.5 | Codex MRL proposals

TABLE 165 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Barley	0.1	0.01*	cGAP: New Zealand, 1 × 75 g a.s./ha, 56-day PHI Number of trials: 21 Sufficiently supported by data: Yes Specific comments: The highest residue (0.1 mg/kg) appears to be an outlier, as it is significantly higher than the remaining residue trial values (19 trials were below 0.01 mg/kg) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Triticale	0.05	0.01*	cGAP: New Zealand, 1 × 75 g a.s./ha, 42-day PHI Number of trials: 29 Sufficiently supported by data: Yes Specific comments: extrapolation from data set on wheat Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Wheat	0.05	0.01*	cGAP: New Zealand, 1 × 75 g a.s./ha up to BBCH 69, 42-day PHI Number of trials: 29 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Barley, hay and/or straw	5	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Triticale, hay and/ or straw	5	_	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Wheat, hay and/or straw	5	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Milks	0.005*	0.01*	Max. dietary burden (dairy cattle): 2.5 ppm Max. residues in milk: <0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Milk fats	0.005*	-	Residue of 0.005 mg/kg at the 15.5 ppm feeding level was used for the determination of the residue in milk fats
Meat (from mammals other than marine mammals)	0.01*	– Muscle: 0.01*	Max. dietary burden (beef cattle): 3.6 ppm Max. residues in muscle: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Mammalian fats (except milk fats)	0.01*	0.01*	Max. dietary burden (beef cattle): 3.6 ppm Max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

TABLE 165 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Edible offal (mammalian)	0.01*	0.01*	Max. dietary burden (beef cattle): 3.6 ppm Max. residues in muscle/liver/kidney: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is supported by data Follow-up action: None
Eggs	0.01*	0.01*	Max. dietary burden (poultry layer): 0.37 ppm. Max. residues in egg: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action:
Poultry meat	0.01*	– Muscle: 0.01*	Max. dietary burden (poultry layer): 0.37 ppm Max. residues in muscle: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Poultry fats	0.01*	0.01*	Max. dietary burden (poultry layer): 0.37 ppm Max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry, edible offal of	0.01*	0.01*	Max. dietary burden (poultry layer): 0.37 ppm Max. residues in liver/kidney: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Barley flour	0.02	-	JMPR derived a processing factor of 1.7. Currently, no EU MRLs are established for processed products
Barley bran, unprocessed	0.05	_	JMPR derived a processing factor of 4.3. Currently, no EU MRLs are established for processed products
Wheat germ	0.015	-	JMPR derived a processing factor of 1.1. Currently, no EU MRLs are established for processed products
Wheat bran, unprocessed	0.015	_	JMPR derived a processing factor of 1.2. Currently, no EU MRLs are established for processed products
General comments	-		

Abbreviations: a.s., active substance; BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval.

*Indicates that the input value is proposed at the limit of quantification.

5.26.6 | Consumer risk assessment

TABLE 166 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The risk assessment was performed with the EU ARfD	The risk assessment was performed with the EU ADI	-
LOAND	A long-term dietary risk assessment was performed using	
The short-term dietary risk assessment	PRIMo rev. 3.1, the STMR values derived by JMPR	
(PRIMo rev. 3.1) was performed for the	for the commodities for which Codex MRLs were	
commodities, for which the Codex MRL	derived (barley and wheat/triticale). For the remaining	
proposal is higher than the existing EU	commodities, the calculations were performed with	
MRL (barley and wheat/triticale)	the existing MRLs (set at the default LOQ of 0.01 mg/kg)	
•		

(Continues)

TABLE 166 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
The calculations are indicative, because the residue definitions for risk assessment derived by JMPR are different from the EU residue definitions. In addition, the residue definitions for risk assessment derived in the EU are provisional, pending further data on genotoxicity of some metabolites	The calculations are indicative, because residue definitions for risk assessment derived by JMPR are different from the EU residue definitions. In addition, the residue definitions for risk assessment derived in the EU are provisional, pending further data on genotoxicity of some metabolites	
Results: No short-term consumer health risk was identified for the crops under assessment Wheat: 0.3% of ARfD Barley: 0.1% of ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 3% of the ADI (NL toddler). Among the crops under consideration, wheat was identified as the main contributor, accounting for up to 0.4% of the ADI	Results: Long-term exposure: Max 0.3% of the JMPR ADI GECDE (mean): 1% (infants and toddler, children adolescents) GECDE (max): 2% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.26.7 | Conclusions

TABLE 167 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	The assessment of the a.s. for approval in the EU is ongoing
Toxicological assessment	EU TRVs available for the parent compound which are applicable also to the metabolites included in the provisional RD for RA. For additional metabolites (M50, M66, M67 and M77), positive genotoxicity QSAR predictions still need to be addressed by providing genotoxicity studies JMPR applied TTC approach (genotoxicity threshold) for M66 and M67
Residue definitions	EU and Codex RDs are different for the risk assessment
Analytical methods	Validated analytical methods are available. The validation data need to be checked once the JMPR evaluation is published
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	No acute and no chronic intake concern identified in an indicative risk assessment (further toxicological data are required to derive conclusion on genotoxicity potential of some metabolites)
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TTC, threshold of toxicological concern; TRV, toxicological reference value.

5.27 | 1,4-Dimethylnaphthalene (331) R/T

5.27.1 | Background information

TABLE 168 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	NL	
Approval status	Approved. Renewal process ongoing	Commission Implementing Regulation (EU) No 192/2014 ⁶⁷ Dossier submitted by the applicant

⁶⁷Commission Implementing Regulation (EU) No 192/2014 of 27 February 2014 approving the active substance 1,4-dimethylnaphthalene, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011 Text with EEA relevance. OJ L 59, 28.2.2014, p. 20–24.

TABLE 168 (Continued)

		Comments, references
EFSA conclusion available	Yes, see comments	EFSA (2013d) EFSA (2017g) (outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for 1,4-dimethylnaphthalene in light of confirmatory data)
MRL review performed	Yes, see comments	EFSA (2021c)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2023g) (potatoes)
Classification of a.s. (cut-off criteria)	No, see comments	1,4-Dimethylnaphthalene does not fall under cut-off criteria ECHA (2019d); ATP17 ⁶⁸
Endocrine effects of a.s.	Not assessed	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.27.2 | Toxicological reference values

TABLE 169 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

JMPR evaluation		EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable
ADI	0.3 mg/kg bw per day	JMPR (2023)	0.1 mg/kg bw per day	Commission Implementing Regulation (EU) No 192/2014	No
ARfD	Unnecessary	JMPR (2023)	Not necessary	Commission Implementing Regulation (EU) No 192/2014	Yes
Conclusion/ comments a.s.	JMPR derived the ADI based on the NOAEL of 27 mg/kg bw per day in the 104-week combined chronic toxicity and carcinogenicity study in rats, UF 100, supported by the NOAEL of 32 mg/kg bw per day in the 90-day rat dietary study				,
	EU: The ADI is 0.1 mg/kg bw per day, based on the 2-year study in rats NOAEL with an UF of 100				
Comments on metabolites	Metabolites included in JMPR RD for RA: – 1-hydroxymethyl-4-methylnaphthalene (M21) – 4-methyl-1-naphthoic acid (M23) – Glycine conjugate of 4-methyl-1-naphthoic acid (Gly-M23: M02) The ADI applies also to M21, M23 and M02, expressed as parent The ADI covers additional metabolites not included in the RD (i.e., M01 and M03)				
	 Metabolites included in EU RD for RA: 1-hydroxymethyl-4-naphthalene (M21) 4-methyl-1-naphtanoic acid (M23) The metabolites are covered by ADI of parent as they are major rat metabolites and therefore contribute substantiall the toxicological profile of 1,4-dimethylnaphthalene; it is very unlikely that they have higher toxicity compared to parent (EFSA, 2013d) 				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RD, residue definition; RA, risk assessment; UF, uncertainty factor.

5.27.3 | Residue definitions

 TABLE 170
 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	1,4-dimethylnaphthalene	Reg. 396/2005: 1,4-dimethylnaphthalene	Yes
			MRL review (EFSA, 2017c): <u>Root crops:</u> 1,4-dimethylnaphthalene <u>Processed potato (tentative)</u> : 1,4-dimethylnaphthalene	
				(Continues

⁶⁸Commission Delegated Regulation (EU) 2021/849 of 11 March 2021 amending, for the purposes of its adaptation to technical and scientific progress, Part 3 of Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 188, 28.5.2021, p. 27–43.

TABLE 170 (Continued)

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
	Animal products	For milk: Glycine conjugate of 4-methyl- 1-naphthoic acid (Gly-M23) Other animal products: Sum of 1,4-dimethylnaphthalene and metabolite 4-methyl-1-naphthoic acid (M23), expressed as 1,4-dimethylnaphthalene The residue is fat soluble The residue definition in milk is not	Reg. 396/2005: Sum of 1,4-dimethylnaphthalene and its metabolite M23 free and conjugated, expressed as 1,4-dimethylnaphthalene The residue is fat soluble	Not fully comparable
		fat-soluble		
RD-RA	Plant products	Sum of 1,4-dimethylnaphthalene and metabolite 1-hydroxymethyl- 4-methylnaphthalene (M21), expressed as 1,4-dimethylnaphthalene	MRL review (EFSA, 2021c): <u>Root crops:</u> Sum of 1,4-dimethylnaphthalene, M21 and its conjugates, expressed as 1,4-dimethylnaphthalene (RMS noted that the determination of M21 conjugates is technically not possible)	Slightly different
			<u>Processed potato (tentative)</u> : Sum of 1,4-dimethylnaphthalene, M21 and its conjugates, expressed as 1,4-dimethylnaphthalene	
	Animal products	Sum of 1,4-dimethylnaphthalene, metabolite 4-methyl-1-naphthoic acid (M23) and its glycine conjugate 4-methyl-1-naphthoic acid (Gly- M23) expressed as 1,4-dimethyl naphthalene	MRL review (EFSA, 2017c): Sum of 1,4-dimethylnaphthalene and its metabolite M23 free and conjugated, expressed as 1,4-dimethylnaphthalene	No
Conclusion, comments				

Abbreviations: MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TRR, total radioactive residues.

5.27.4 | Analytical methods

TABLE 171 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
1,4-Dimethylnaphthalene			
All plant commodities except high protein	Yes	0.05	QuEChERS-extraction and determination by LC–MS/MS. EURL data show successful validation, of 1,4-DMN in high water content commodities of plant origin with an LOQ of 0.01 mg/kg
Animal products Muscle/meat Fat Liver/kidney Milk (only relevant for EU RD) Eggs	Yes	0.01–0.06 (unspecified)	Extraction with acetonitrile or ethanol followed by a clean-up procedure and determination by GC–MS/MS. EURL data show successful validation, of 1,4-DMN in in milk and liver with an LOQ of 0.01 mg/kg. Based on the experience gained for milk and liver, an LOQ of 0.01 mg/ kg could be achievable also for the other matrices of animal origin
4-Methyl-1-naphthoic acid (M23)	1		
Animal products Muscle/meat Fat Liver/kidney Milk (glycine conjugate of M23) Eggs	Yes	0.01–0.06 (unspecified)	Extraction with acetonitrile or ethanol followed by a clean-up procedure and determination by GC–MS/MS The detailed validation data are not reported in the JMPR report
Conclusion	 The EU residue definition for MRL enforcement for the plant products is identical with the JMPR residue definition. For animal commodities except milk, the EU residue definition also comprises the conjugates of metabolite M23 (without specifying) and therefore differs from the JMPR residue definition which does not include any conjugates of M23 The JMPR RD for milk is set for the glycine-conjugate of M23 and therefore also differs from the EU RD Sufficiently analytical methods for the enforcement of the MRL for this matrix are available, both at JMPR and EU level 		

Abbreviations: GC–MS/MS, gas chromatography with tandem mass spectrometry; LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.27.5 | Codex MRL proposals

TABLE 172 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	Existing EU MRL/new MRLs ^a	Comment
Baked potato (unpeeled)	-	-	JMPR derived a processing factor of 0.59. Currently, no EU MRLs are established for processed products
Boiled potato (peeled)	-	-	JMPR derived a processing factor (PF) of < 0.02. Currently, no EU MRLs are established for processed products
Boiled potato (unpeeled)	-	-	JMPR derived a processing factor of 0.26. Currently, no EU MRLs are established for processed products
Canned potatoes (unpeeled)	-	-	JMPR derived a PF of 0.25. Currently, no EU MRLs are established for processed products
Edible offal (mammalian)	0.5	Liver from – swine: 1.5/1.5; – bovine and equine: 3/2; – sheep and goat: 4/3 Kidney from: – swine: 1.5/1.5; – bovine and equine: 3/2 sheep and goat: 3/3 Edible offals (other than liver and kidney) from: – swine: 1.5/1.5; – bovine and equine: 3/2; – sheep and goat: 4/3	 Max. dietary burden (EU dairy cattle): 33 ppm Max. residues in liver: 0.42 mg/kg Max. residues in kidney: 0.21 mg/kg Sufficiently supported by data: Yes Specific comments: In the EU assessment (EFSA, 2023g), a higher dietary burden was estimated for dairy cattle (207 ppm). This difference is explained by the use of default processing factors for feed items based on potatoes (N.B.: the EU dietary burden calculation is mainly driven by potato dried pulp, using a PF of 38, while JMPR used an empirical PF of 3.2). In addition, in the EU dietary burden calculation, for all feed items, the occurrence of a natural background level of 1,4-DMN at a level of 0.1 (multiplied by the default PF) was assumed. Hence, the EU assessment was following a very conservative approach Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

126 of 223

TABLE 172 (Continued)

FABLE 172 (Continued)	Codex MRL	Existing EU MRL/new	
Commodity	proposal	MRLs ^a	Comment
Eggs	0.03	0.15/ 0.4	 Max. dietary burden (EU poultry layer): 13 ppm Max. residues in eggs: 0.025 mg/kg Sufficiently supported by data: Yes Specific comments: In the EU assessment (EFSA, 2023g), a higher dietary burden was estimated for dairy cattle (69 ppm). This difference is explained by the use of default PFs for feed items based on potatoes (see also edible offal (mammalian). In addition, in the EU dietary burden calculation, for all feed items, the occurrence of a natural background level of 1,4-DMN at a level of 0.1 (multiplied by the default PF) was assumed Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Fried potato (unpeeled)	-	-	JMPR derived a PF of 0.6 based on one processing study only. Currently, no EU MRLs are established for processed products
Mammalian fats	0.03	0.4/ 0.3 (swine); 1/ 0.5 (bovine and equine); 1.5/ 0.6 (sheep and goat)	Max. dietary burden (EU beef cattle): 35 ppm Max. residues in fat: 0.025 mg/kg Sufficiently supported by data: Yes Specific comments: See also comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.03 (fat)	– Muscle: 0.03/0.03 (swine); 0.04/ 0.03 (bovine, sheep, goat and equine)	 Max. dietary burden (EU beef cattle): 35 ppm. Max. residues in muscle: < 0.016 mg/kg Sufficiently supported by data: Yes Specific comments: The Codex MRL proposal is flagged with the suffix (fat). Hence it refers to fat. The corresponding MRL for muscle would be slightly lower (0.02 mg/kg) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Microwaved potatoes (unpeeled)	-	-	JMPR derived a PF of 0.17. Currently, no EU MRLs are established for processed products
Milks	0.03	0.4/ 0.3 (cattle and horse); 0.5/ 0.3 (sheep and goat)/	 Max. dietary burden dairy cattle: 33 ppm Mean/max. residues in milk: 0.022 mg/kg Sufficiently supported by data: Yes Specific comments: See specific comments on edible offal (mammalian) Since the enforcement residue definitions are different, the EU MRL and the Codex MRL are not directly comparable. In theory, the Codex MRL could be recalculated to match with the EU residue definition, using molecular weight correction factors. However, this conversion is not necessary, considering that the EU MRL is set at a significantly higher level than the proposed Codex MRL is sufficiently supported by data Follow-up action: None
Peeled potato	-	-	JMPR derived a PF of 0.24. Currently, no EU MRLs are established for processed products
Potato	15 (Po)	15/ 20	cGAP: Germany: 6 × 20 mL a.s./1000 kg, 28- to 42-days RTI, 30-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: Trials were performed in UK and NL within 25% GAP deviation. The GAP assessed in the EU (EFSA, 2023g) is more critical (i.e. 6 × 19.6 g a.s./1000 kg, 30- to 40-day RTI, 3-day PHI), leading to a higher MRL Conclusion: The proposed Codex MRL is sufficiently supported by data. In the EU a higher MRL will be implemented based on more critical data set Follow-up action: None
Potato crisps (peeled)	-	-	JMPR derived a PF of 0.14. Currently, no EU MRLs are established for processed products
Potato crisps (unpeeled)	-	_	JMPR derived a PF of 0.19. Currently, no EU MRLs are established for processed products

TABLE 172(Continued)

(continued)			
Commodity	Codex MRL proposal	Existing EU MRL/new MRLs ^a	Comment
Potato dried pulp		-	JMPR derived a PF of 3.2. Currently, no EU MRLs are established for processed products
Potato flakes (flour)	_	-	JMPR derived a PF of 0.15. Currently, no EU MRLs are established for processed products
Potato fries (chips) (peeled)	-	-	JMPR derived a PF of < 0.05. Currently, no EU MRLs are established for processed products
Potato fries (chips) (unpeeled)	_	-	JMPR derived a PF of 0.18. Currently, no EU MRLs are established for processed products
Potato process waste	-	-	JMPR derived a PF of 0.29. Currently, no EU MRLs are established for processed products
Potato starch	-	-	JMPR derived a PF of 0.45. Currently, no EU MRLs are established for processed products
Poultry edible offal	0.2	0.6/ 1.5 (liver) 0.7/ 1.5 (kidney and edible offals)	 Max. dietary burden (EU poultry broiler): 15 ppm Max. residues in liver: 0.18 mg/kg Sufficiently supported by data: Yes Specific comments: At EU level a higher MRL is in place. See also specific comments on eggs Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry fats	0.3	0.7/ 1.5	Max. dietary burden (EU poultry broiler): 15 ppm Max. residues in fat: 0.21 mg/kg Sufficiently supported by data: Yes Specific comments: At EU level a higher MRL is in place. See also specific comments on eggs Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry meat	0.3 (fat)	– Muscle: 0.2/ 0.3	 Max. dietary burden (EU poultry broiler): 15 ppm Max. residues in muscle: 0.51 mg/kg Sufficiently supported by data: Yes Specific comments: The See also specific comments on eggs. The Codex MRL proposal is flagged with the suffix (fat). Hence it refers to fat. The corresponding MRL for muscle would be slightly lower (0.06 mg/kg) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Sliced potato	-	-	JMPR derived a PF of 0.45. Currently, no EU MRLs are established for processed products
General comments			ed at EU level and by JMPR. Thus, the details of the processing studies ation is published, to identify the reason for the differences

Abbreviations: a.s., active substance; cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; Po, the recommendation accommodates post-harvest treatment of the commodity; PHI, pre-harvest interval; RTI, re-treatment interval. ^aNew MRLs voted via written procedure following the PAFF meeting of February 2024 (PLAN/2023/2305).

5.27.6 | Consumer risk assessment

TABLE 173 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. For the commodities under assessment, the input values in the most recent long-term risk assessment (EFSA, 2023g) were higher than the values derived by JMPR. Therefore, the EU risk assessment of 2023 is still valid 	Specific comments: –

(Continues)

TABLE 173 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
-	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 83% of the ADI (NL toddler) The most recently voted EU-MRLs are higher than the proposed CXL, thus the dietary exposure calculations were conducted with the inputs values from EU assessment	Results: Long-term exposure: Max 0.3% of the JMPR ADI GECDE mean: Max. 20% (infants and toddler, children and adolescents) GECDE max: Max. 60% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; CXL, Codex maximum residue limit; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment.

5.27.7 | Conclusions

 TABLE 174
 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (dossier submitted by the applicant)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RD for enforcement are similar for plants; in animal commodities, the RDs are slightly different; for RA, EU RDs are more comprehensive including also all conjugates
Analytical methods	Sufficiently validated analytical methods are available. However, the details on the validation are not reported in the JMPR report
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified
Final conclusion	Codex MRL proposals are sufficiently supported by data and risk for consumers is unlikely

Abbreviations: ARfD, acute reference dose; a.s., active substance; MRL, maximum residue level; RA, risk assessment; RD, residue definition; TRV, toxicological reference value.

5.28 | Florylpicoxamid (332) R/T

5.28.1 | Background information

TABLE 175 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	DK	
Approval status	Approval process ongoing	Dossier submitted by the applicant, RMS assessment ongoing
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	No	
Classification of a.s. (cut-off criteria)	Not assessed	-
Endocrine effects of a.s.	Not assessed	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.28.2 | Toxicological reference values

	JMPR evaluation		EU evaluat	EU evaluation	
	Value	Comments	Value	Comments	TRV comparable
ADI	0.1 mg/kg bw per day	JMPR (2023)	-	No EU assessment finalised	Not applicable
ARfD	Unnecessary	JMPR (2023)	-	No EU assessment finalised	Not applicable
Conclusion/comments a.s.	The JMPR ADI is based on the NOAEL of 9.58 mg/kg bw per day in the developmental toxicity study in rabbits (maternal toxicity) and applying a safety factor of 100			city study in	
Comments on metabolites	Metabolites included in JMPR RD for RA: – X12485649 The metabolite is covered by the parent compound Metabolites included in EU RD for RA: not relevant				

TABLE 176 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition.

5.28.3 | Residue definitions

 TABLE 177
 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Sum of florylpicoxamid and X12485649 expressed as florylpicoxamid	Reg. 396/2005: Florylpicoxamid (default MRLs/RD according to Art. 18(1)(b))	No (compared with the default RD)
			No EU peer review and no MRL review	
	Animal products	Sum of florylpicoxamid and X12485649 expressed as florylpicoxamid The residue is fat soluble	Reg. 396/2005: Florylpicoxamid (default MRLs/RD according to Art. 18(1)(b))	No (compared with the default RD)
			No EU peer review and no MRL review	
			Fat solubility not specified	
RD-RA	Plant products	Sum of florylpicoxamid and X12485649 expressed as florylpicoxamid	No EU peer review and no MRL review	Not applicable
	Animal products	Sum of florylpicoxamid and X12485649 expressed as florylpicoxamid	No EU peer review and no MRL review	Not applicable
Conclusion, comments	 JMPR assessed metabolism studies with foliar application to tomatoes, lettuce and wheat with radiolabelled a.s. (phenyl-UL-14C label and pyrazol-2-14-C label). The residue definitions derived by JMPR cover the parent compound and metabolite X12485649, which were the major residues in metabolism studies in tomatoes (fruits), lettuce. In wheat grain, parent florylpicoxamid was not detected. Only limited results are reported for cereal grain. X12485649 was also often unquantified in cereal grain Follow-up action: To check details in JMPR evaluation, whether metabolite X12485649 is a suitable marker for cereal grain. The RMS also proposed to align the EU enforcement residue definitions for plant and animal products with the residue definition derived by JMPR (including metabolite X12485649) 			

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.28.4 | Analytical methods

 TABLE 178
 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content High oil content Dry commodities	Yes	0.01	Extraction with acetonitrile/waters acidified with $\rm H_3PO_4$, purified with SPE, LC–MS/MS

TABLE 178 (Continued)

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Animal products Muscle/meat Fat Liver/kidney Milk Eggs	Yes	0.01	Extraction with acetonitrile/waters acidified with H_3PO_4 , purified with SPE, LC–MS/MS
Conclusion	assessed previously in the Sufficiently validated analytic Codex MRL proposals wer	EU al methods for the e derived by JMPR a	nt compound only) is applicable, as the a.s. has not been enforcement of the MRLs for the matrix groups for which are available for the residue definition suggested by or recovery and relative standard deviations

Abbreviations: a.s., active substance; LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; SPE, solid-phase extraction.

5.28.5 | Codex MRL proposals

TABLE 179 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Grapes	3	0.01* default MRL Art. 18(1)(b) (table and wine grapes)	cGAP: AUS, 3 × 15 g/hL, 10-day RTI, 10-day PHI Number of trials: 14 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Strawberry	1.5	0.01* default MRL Art. 18(1)(b)	cGAP: AUS, 3 × 0.150 kg/ha, 7-day RTI, 1-day PHI Number of trials: 26 (19 trials on outdoor strawberries and 7 trials on protected strawberries) Sufficiently supported by data: Yes Specific comments: the GAP refers to outdoor and protected conditions Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Banana	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Panama, 3 × 50 g/ha, 7-day RTI, 0-day PHI Number of trials: 23 (7 trials in Australia, 3 in Colombia, 4 in Costa Rica, 3 in Ecuador, 6 in Brazil) Sufficiently supported by data: Yes Specific comments: In all trials, residues were measured in bagged and unbagged bananas. The highest result of a site was selected for calculating the MRL. In all trials except the Brazilian trials, also the pulp was analysed Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Mango	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Nicaragua, 3 × 0.15 kg/ha, 7-day RTI, 7-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: Residues analysed in whole fruit (without stone) and in pulp. For calculating the MRL, a pit weight of 15% was assumed Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of fruiting vegetables, cucurbits – cucumbers and summer squashes	0.3	0.01* default MRL Art. 18(1)(b)	cGAP: Australia, 3×0.15 kg/ha, 7-day RTI, 1-day PHI Number of trials: 29 (12 trials in summer squash and 13 in cucumbers) Sufficiently supported by data: Yes Specific comments: In addition to the outdoor GAP, JMPR also received information on an indoor GAP. Since this gave lower residues, the MRL proposal was based on the outdoor GAP. The data sets for cucumbers and summer squash were merged Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of fruiting vegetables, cucurbits – melons, pumpkins and winter squashes	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: no country reported, 3×0.15 kg/ha, 7-day RTI, 1-day PHI (outdoor use) Number of trials: 16 trials on melons Sufficiently supported by data: Yes Specific comments: The trials were performed under outdoor conditions Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

TABLE 179 (Continued)

131 of 223

Commodity	Codex MRL proposal	EU MRL	Comment
Subgroup of tomatoes	0.9	0.01* default MRL Art. 18(1)(b)	cGAP: Australia, 3×0.15 kg/ha, 7-day RTI, 1-day PHI (outdoor use) Number of trials: 35 Sufficiently supported by data: Yes Specific comments: For the indoor use, the residues were lower Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Peppers, chilli	0.8	0.01* default MRL Art. 18(1)(b)	See sweet peppers
Peppers, sweet	0.8	0.01* default MRL Art. 18(1)(b)	cGAP: Australia, 3×0.15 kg/ha, 7-day RTI, 1-day PHI (outdoor use) Number of trials: 30 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Peppers, chilli, dried	8	-	The Codex MRL proposal was derived by applying the default dehydration factor of 10 to the MRL for sweet peppers Currently, no EU MRLs are established for processed products
Subgroup of eggplants	0.9	0.01* default MRL Art. 18(1)(b)	cGAP: Australia, 3×0.15 kg/ha, 7-day RTI, 1-day PHI (outdoor use) Number of trials: 35 trials on tomatoes Sufficiently supported by data: Yes Specific comments: The MRL proposal for eggplants was derived by extrapolation from tomatoes (see above) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Lentil (dry)	0.02	0.01* default MRL Art. 18(1)(b)	 cGAP: Canada, 1 × 50 g/ha, up to BBCH 72, 30-day PHI Number of trials: 10 (5 trials on dry beans and 5 on peas) Sufficiently supported by data: Yes Specific comments: Trials were performed with exaggerated rates (2 × 100 – 260 g/ha, PHI ranging from 21 to 36 days. As in none of the trials residue above the LOQ of 0.021 mg/kg were detected, the trials were considered acceptable Conclusion: To discuss with MS whether the trials are sufficiently representative for the cGAP and to conclude that residues above the LOQ are unlikely to occur. If this is agreed, the MRL proposals should be flagged with an asterisk, indicating that it is set at the LOQ Follow-up action: To check details in JMPR evaluation
Sugar beet	0.05	0.01* default MRL Art. 18(1)(b)	cGAP: Canada, 2×0.15 kg/ha, 10-day RTI, 21-day PHI Number of trials: 18 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: None
Wheat	0.03	0.01* default MRL Art. 18(1)(b)	cGAP: Canada and Australia, 2×50 g/ha up to BBCH 69, 14-day RTI, PHI not required Number of trials: 69 Sufficiently supported by data: Yes Specific comments: Trials from Australia, Europe, US and Canada were merged. In all trials except one residues were below the LOQ Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Rape seed	0.15	0.01* default MRL Art. 18(1)(b)	cGAP: Canada, 2×0.15 kg/ha, 7-day RTI, 21-day PHI Number of trials: 20 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Grape, dried	7	-	JMPR derived a processing factor of 2.1. Currently, no EU MRLs are established for processed products
Grape, juice	-	-	JMPR derived a processing factor of 0.25. Currently, no EU MRLs are established for processed products
Grape, jelly	-	-	JMPR derived a processing factor of 0.061 Currently, no EU MRLs are established for processed products
Grape, wine (red)	-	-	JMPR derived a processing factor of 0.064. Currently, no EU MRLs are established for processed products
			(Combine

TABLE 179 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Grape, wine (white)	-	-	JMPR derived a processing factor of 0.023. Currently, no EU MRLs are established for processed products
Tomato, dried	6	-	JMPR derived a processing factor of 6. Currently, no EU MRLs are established for processed products
Tomato, paste/puree	-	-	JMPR derived a processing factor of 0.63 for paste and 0.19 for puree. Currently, no EU MRLs are established for processed products
Tomato, juice	-	-	JMPR derived a processing factor of 0.11. Currently, no EU MRLs are established for processed products
Tomato, canned fruit	_	-	JMPR derived a processing factor of < 0.03. Currently, no EU MRLs are established for processed products
Refined sugar	-	-	JMPR derived a processing factor of < 0.2. Currently, no EU MRLs are established for processed products
Wheat bran (unprocessed)	0.07	-	JMPR derived a processing factor of 2.2. Currently, no EU MRLs are established for processed products
Wheat white flour (550)	-	-	JMPR derived a processing factor of < 0.91. Currently, no EU MRLs are established for processed products
Wheat wholemeal flour	-	-	JMPR derived a processing factor of 1.2. Currently, no EU MRLs are established for processed products
Wheat wholemeal bread	-	-	JMPR derived a processing factor of 1. Currently, no EU MRLs are established for processed products
Wheat germ	-	-	JMPR derived a processing factor of < 0.91. Currently, no EU MRLs are established for processed products
Wheat starch	-	-	JMPR derived a processing factor of < 0.91. Currently, no EU MRLs are established for processed products
Wheat gluten	0.04	-	JMPR derived a processing factor of 1.3. Currently, no EU MRLs are established for processed products
Edible offal (Mammalian)	0.09	0.01* default MRL Art. 18(1)(b)	Max. dietary burden (Australian beef cattle): 24 ppm Mean/max. residues in liver: 0.086 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Eggs	0.02	0.01* default MRL Art. 18(1)(b)	 Max. dietary burden (Canadian layer): 0.43 ppm. Max. residues in eggs: < 0.021 mg/kg Sufficiently supported by data: Yes Specific comments: To request clarifications whether the Codex MRL proposal reflects the expected dietary burden. From the table presented in the JMPR report, it seems that the MRL was based on a dietary burden of 3.47 ppm instead of 0.43 ppm. As the residues are not expected to exceed the LOQ at the higher dietary burden, the level of the Codex MRL proposal will not be affected. However, the value should be flagged with an asterisk as being a LOQ Conclusion: The proposed Codex MRL is sufficiently supported by data, but the MRL should be flagged with an asterisk Follow-up action: None
Mammalian fats (except milk fats)	0.15	0.01* default MRL Art. 18(1)(b)	Max. dietary burden (Australian beef cattle): 24 ppm Max. residues in fat: 0.15 mg/kg Sufficiently supported by data: Yes Specific comments: the MRL Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.15	– Muscle: 0.01*	 Max. residues in muscle/fat: 0.03/0.15 mg/kg Sufficiently supported by data: Yes Specific comments: The Codex MRL should be flagged with the suffix 'fat', since according to Codex policy, for fat soluble substances, MRLs are set on fat basis In future, Codex MRLs will be established for muscle (new commodity description for Code MM 0095 'Group of muscle (from mammals other than marine mammals)'. To ask for clarification if the new food classification will have an impact on the policy for setting MRLs for fat soluble substances (e.g. will Codex MRLs be established for the code MM 0095 with suffix rat or only for MF 0100) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

TABLE 179 (Continued)

133	of	223
-----	----	-----

Milks	0.02		
	0.03	0.01*	Max. dietary burden (Australian dairy cattle): 24 ppm Max. residues in milk: 0.023 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry fats	0.02	0.01*	Max. dietary burden (Canadian layer): 0.43 ppm Max. residues in eggs: < 0.021 mg/kg Sufficiently supported by data: Yes Specific comments: To request clarifications whether the Codex MRL proposal reflects the expected dietary burden. From the table presented in the JMPR report, it seems that the MRL was based on a dietary burden of 3.47 ppm instead of 0.43 ppm. As the residues are not expected to exceed the LOQ at the higher dietary burden, the level of the Codex MRL proposal will not be affected. However, the value should be flagged with an asterisk as being a LOQ In future, the Conclusion: The proposed Codex MRL is sufficiently supported by data, but the MRL should be flagged with an asterisk Follow-up action: None
Poultry meat	0.02	– Muscle: 0.01* default MRL Art. 18(1)(b)	 Max. dietary burden (Canadian layer): 0.43 ppm Max. residues in muscle: < 0.021 mg/kg Sufficiently supported by data: Yes Specific comments: To request clarifications whether the Codex MRL proposal reflects the expected dietary burden. From the table presented in the JMPR report, it seems that the MRL was based on a dietary burden of 3.47 ppm instead of 0.43 ppm. As the residues are not expected to exceed the LOQ at the higher dietary burden, the level of the Codex MRL proposal will not be affected. However, the value should be flagged with an asterisk as being a LOQ In future, Codex MRLs will be established for muscle (new commodity code and description: Code PM 0110, Group of avian muscle). To ask for clarification if the new food classification will have an impact on the policy for setting MRLs for fat soluble substances (e.g. will Codex MRLs be established for the code PM 0110 with suffix rat or only for PF 0111 Group of avian fats) Conclusion: The proposed Codex MRL is sufficiently supported by data, but the MRL should be flagged with an asterisk Follow-up action: None
Poultry, edible offal of	0.02	0.01* default MRL Art. 18(1)(b)	Max. dietary burden (Canadian layer): 0.43 ppm Max. residues in liver and kidney: < 0.021 mg/kg Sufficiently supported by data: Yes Specific comments: To request clarifications whether the Codex MRL proposal reflects the expected dietary burden. From the table presented in the JMPR report, it seems that the MRL was based on a dietary burden of 3.47 ppm instead of 0.43 ppm. As the residues are not expected to exceed the LOQ at the higher dietary burden, the level of the Codex MRL proposal will not be affected. However, the value should be flagged with an asterisk as being a LOQ Conclusion: The proposed Codex MRL is sufficiently supported by data, but the MRL should be flagged with an asterisk Follow-up action: None
Wheat, hay and/or straw	2 (dw)	_	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose

Abbreviations: BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue limit; GAP, Good Agricultural Practice; LOQ, limit of quantification; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval. *Indicates that the input value is proposed at the limit of quantification; dw: dry weight.

5.28.6 | Consumer risk assessment

TABLE 180 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the JMPR ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculations were performed with the STMR values derived by JMPR for the crops for which the Codex MRLs were proposed. For commodities for which no Codex MRLs were proposed, EFSA used the default MRL of 0.01 mg/kg for the exposure calculation The calculations are indicative, because no agreed toxicological reference values and residue definitions for risk assessment are established in the EU Therefore, the calculations are affected by additional, non- standard uncertainties 	Specific comments: -
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 2% of the ADI (NL toddler) Among the crops under consideration, cattle milk was identified as the main contributor, accounting for up to 0.8% of the ADI	Results: Long-term exposure: Max 1% of the JMPR ADI GECDE mean: Max. 3% (infants and toddler) GECDE max: Max. 10% (infants and toddler) Short-term exposure: Not relevant (JMPR did not derive an ARfD)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.28.7 | Conclusions

TABLE 181 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU; approval process ongoing (RMS assessment is ongoing)
Toxicological assessment	JMPR did not derive an ARfD; no EU assessment finalised
Residue definitions	At EU level, the default RD are applicable. At EU level, the setting of a specific residue definition for MRL enforcement should be considered (including metabolite(s) in the RD that are a valid marker substance for the use of the a.s.)
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. However, discussion with RM on the proposal for lentils are recommended. In addition, EFSA identified additional points for discussion for the Codex MRL proposal for animal products
Dietary risk assessment	Acute risk assessment not required (no ARfD derived in the EU). No chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; ARfD, acute reference dose; MRL, maximum residue level; RD, residue definition.

5.29 | Fluazinam (333) R/T

5.29.1 | Background information

TABLE 182 Background information.

Comments, references				
JMPR assessment	JMPR meeting September 2023			
Type of JMPR evaluation	New compound evaluation	JMPR assessed fluazinam already in 2018, but due to missing information, the assessment could not be concluded		
RMS	AT			

TABLE 182(Continued)

		Comments, references
Approval status	Approved. Renewal process ongoing	Commission Directive 2008/108/EC ⁶⁹ Renewal Assessment Report (RAR) submitted, EFSA peer review on ED clock-stop
EFSA conclusion available	Yes, see comments	EFSA (2008a) EFSA peer review ongoing including Art. 12 confirmatory data currently ongoing (additional data requested)
MRL review performed	Yes, see comments	EFSA (2015g)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2017d) (onions, shallots and garlic) EFSA (2016c) (import tolerance in blueberries)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not fall under cut-off criteria ECHA (2012a); ATP06 ⁷⁰
Endocrine effects of a.s.	Assessment ongoing	-
Other relevant information	Fluazinam meets the de	finition of per- and polyfluoroalkyl substances (PAFS) based on its chemical structure

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.29.2 | Toxicological reference values

TABLE 183 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation	TRV		
	Value	Comments	Value Comments		comparable	
ADI	Not established	JMPR (2023)	0.01 mg/kg bw per day	Commission Directive 2008/108/EC ⁷¹	Not applicable	
ARfD	Not established	JMPR (2023)	0.07 mg/kg bw	Commission Directive 2008/108/EC	Not applicable	
Conclusion/comments a.s.	 In 2018, when fluazinam was assessed for the first time by JMPR, ADI/ARfD were not derived, because information on the level of impurity B-1457 (5-chloro-<i>N</i>-(3-chloro-5-trifluoromethyl-2-pyridyl)-α,α,α-trifluoro-4,6-dinitro-<i>o</i>-toluidine) in batches used for toxicity studies was not reported. The FAO specification for fluazinam limits the level of this impurity to 0.3% This year, JMPR noted again outstanding issues regarding metabolites, impurities and carcinogenicity; as information was submitted too late for evaluation, the assessment was again postponed As the renewal process is ongoing, the TRV might change 			ł,6-dinitro- <i>o-</i> n limits the level		
Comments on metabolites	 Metabolites included in JMPR RD for RA: Not relevant, as JMPR was unable to conclude on a residue definition for risk assessment Metabolites included in EU RD for RA: 4-chloro-N2-[3-chloro-5-(trifluoromethyl)-2pyridinyl]-3-nitro-5-(trifluoromethyl)-1,2-benzenediamine (AMPA-fluazinam) (25)-3-{[4-amino-3-{[3-chloro-5-(trifluoromethyl)2-pyridinyl]amino}-2-nitro-6(trifluoromethyl)phenyl]thio}-2-(β-Dglucopyranosyloxy)propanoic acid (AMGT) The assessment of the metabolites is ongoing. In 2008, the toxicity of the metabolites AMPA-fluazinam and AMGT was considered covered by the TRVs established for the parent 					

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RA, risk assessment; RD, residue definition.

⁶⁹Commission Directive 2008/108/EC of 26 November 2008 amending Council Directive 91/414/EEC to include flutolanil, benfluralin, fluazinam, fuberidazole and mepiquat as active substances. OJ L 317, 27.11.2008, p. 6–13.

⁷⁰Commission Regulation (EU) No 605/2014 of 5 June 2014 amending, for the purposes of introducing hazard and precautionary statements in the Croatian language and its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 167, 6.6.2014, p. 36–49.

⁷¹Commission Directive 2008/108/EC of 26 November 2008 amending Council Directive 91/414/EEC to include flutolanil, benfluralin, fluazinam, fuberidazole and mepiquat as active substances. OJ L 317, 27.11.2008, p. 6–13.

5.29.3 | Residue definitions

TABLE 184	Comparison of the residue definitions derived by JMPR and at EU level.
IADEL 104	comparison of the residue deminitions derived by shirth and at Lo level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Fluazinam	Reg. 396/2005 (implementing Peer review and MRL review): Fluazinam	Yes		
			MRL review (EFSA, 2015g): <u>Raw commodities:</u> fluazinam <u>Processed commodities:</u> sum of fluazinam, AMPA-fluazinam and AMGT, expressed as fluazinam (tentative)			
			Peer review (EFSA, 2008a): Fluazinam			
	Animal products	No residue definition	Reg. 396/2005: Fluazinam	Not applicable		
		derived (see comments below).	MRL review (EFSA, <mark>2015g</mark>): No proposal, MRLs not needed			
		Fat solubility not specified	Peer review (EFSA, 2008a): Not required as animal exposure is extremely low			
			The residue is fat soluble			
RD-RA	Plant products	The Meeting was unable to conclude on a residue definition for risk assessment	MRL review (EFSA, 2015g): Sum of fluazinam, AMPA-fluazinam and AMGT, expressed as fluazinam	Not applicable		
		lisk assessment	Peer review (EFSA, 2008a): Sum of fluazinam, AMPA-fluazinam and AMGT, expressed as fluazinam (provisional)			
	Animal products	No residue definition derived (see comments below)	MRL review (EFSA, <mark>2015g</mark>): No proposal, MRLs not needed	Not applicable		
			Peer review (EFSA, 2008a) Not required as animal exposure is extremely low			
Conclusion, comments	values for fluaz Animal products: In residues in mus definitions for a	inam, a decision on the resid n 2018, JMPR decided that du		(lack of stability of		

Abbreviations: HPLC, high-performance liquid chromatography; MRL, maximum residue level; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.29.4 | Analytical methods

No new information was provided to JMPR in 2023. In 2018, sufficient methods were provided for fluazinam and its metabolites. No Codex MRL proposals derived by JMPR in 2023.

5.29.5 | Codex MRL proposals

No CXL proposals were derived by JMPR.

5.29.6 | Consumer risk assessment

Not relevant, no CXL proposals were derived by JMPR.

5.29.7 | Conclusions

TABLE 185 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, A.s. approved in the EU, renewal process ongoing (EFSA peer review currently on clock-stop)
Toxicological assessment	EU TRV available. JMPR could not complete the toxicological evaluation of fluazinam and therefore did not derive TRV

TABLE 185 (Continued)	
Subsection of the assessment	Findings relevant for discussion of EU position
Residue definitions	The EU and JMPR RD for MRL enforcement in plant products are identical. For other matrices and for risk assessment JMPR did not derive residue definitions
Analytical methods	Analytical methods for MRL enforcement in plant products were assessed in 2018. They were considered sufficiently validated for crops of high starch, high acid, high water, high protein and high oil content
Codex MRL proposals	No Codex MRL proposals were derived
Dietary risk assessment	Not relevant, as no TRV and no Codex MRL proposals were derived
Final conclusion	See also point General considerations, section 2.6 on the rolling submission of data (FAO and WHO, 2024). In order to avoid waste of JMPR resources, a complete dossier needs to be submitted. Multiple assessments of studies submitted to JMPR over the years should be avoided

Abbreviations: a.s., active substance; MRL, maximum residue level; TRV, toxicological reference value; RD, residue definition.

5.30 | Isocycloseram (334) R/T

5.30.1 | Background information

TABLE 186 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	No RMS assigned	
Approval status	Not approved	Not authorised in the EU
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	No	
Classification of a.s. (cut-off criteria)	Not assessed	-
Endocrine effects of a.s.	Not assessed	
Other relevant information	Isocycloseram meets the definition of per- and poly on its chemical structure	fluoroalkyl substances (PFAS) based

Abreviations: a.s., active substance; MRL, maximum residue level.

5.30.2 | Toxicological reference values

TABLE 187 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evalu	ation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.02 mg/kg bw per day	JMPR (2023)	-	No EU assessment	Not applicable
ARfD	0.5 mg/kg bw general population 0.08 mg/kg bw females of child- bearing age	JMPR (2023)	-	No EU assessment	Not applicable
Conclusion/ comments a.s.	With regard to isocycloseram, although of slow elimination in ADME studies in rats (overall with 6\$–10% of administered dose still retained in the carcass, organs and gastrointestinal tract after 168–192 h, and 16% after 72 h), the JMPR concluded that based on data from repeated administration, there was no evidence of accumulation				
	The JMPR concluded that isocycloseram is not carcinogenic in mice or rats. Reproductive toxicity was observed together with parental toxicity and developmental toxicity was observed a doses lower than those exhibiting maternal toxicity				
Comments on metabolites	 Metabolites included in JMPR RD for RA: N-[2-amino-1-(hydroxymethyl)-2-oxo-ethyl]-4-[5-(3,5-dichloro-4-fluoro-phenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-benzamide (SYN549544) Not genotoxic based on QSAR and read-across analysis; indirectly covered by the TRVs of the parent as it is a precursor of metabolite SYN549543 (the latter being a major rat metabolite) 				
	 4-[5-(3,5-dichloro-4-fluoro-phenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-N-(3-oxoisoxazolidin-4-yl) benzamide (SYN549436) Not genotoxic based on QSAR and read-across analysis; its toxicity is covered by the TRVs of the parent as it was identified as a major metabolite in rats 				
	Accordingly, the ADI and ARfD of the parent also apply to these two metabolites In addition, metabolite SYN549543 is covered by the TRV derived for parent isocycloseram				
	Metabolites included in EU RD for RA: not rel	evant			

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.30.3 | Residue definitions

TABLE 188 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Isocycloseram	Default RD (i.e. parent compound). A.s. was never notified and authorised in the EU No EU peer review and no MRL review	Yes, compared to default RD			
	Animal products	lsocycloseram The residue is fat soluble	Default RD (i.e. parent compound). A.s. was never notified and authorised in the EU No EU peer review and no MRL review Fat solubility not specified	Yes, compared to default RD			
RD-RA	Plant products	Isocycloseram	No RD for RA formally established. No EU peer review and no MRL review	Not applicable			
	Animal products	Sum of isocycloseram and metabolites N-[2-amino-1-(hydroxymethyl)-2-oxo- ethyl]-4-[5-(3,5-dichloro-4-fluoro-phenyl)- 5-(trifluoromethyl)-4H-isoxazol-3-yl]- 2-methyl-benzamide (SYN549544) and 4-[5-(3,5-dichloro-4-fluoro-phenyl)-5- (trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl- N-(3-oxoisoxazolidin-4-yl) benzamide (SYN549436) (expressed as isocycloseram)	No RD for RA formally established. No EU peer review and no MRL review	Not applicable			
Conclusion, comments		ostance has never been notified or authorised in t nent (for plants and animals)	ne EU. Therefore, In the EU, there is no residu	le definition for			
	The residue de	finitions for enforcement are similar in the JMPR	and in the EU (parent by default)				
	The JMPR assessed metabolism studies for isocycloseram (SYN547407) conducted in fruiting vegetables (tomato), leafy vegetables (mustard greens), cereals (rice, paddy conditions) and oilseeds (soybeans), confined rotational crops (lettuce, radish and wheat) and livestock (lactating goats and laying hens). The studies were conducted with isocycloseram radiolabelled in 3 different positions: halophenyl-U-14C]-radiolabel, a [methylphenyl-U-14C]-radiolabel and an [oxoisoxazolidinyl-4,5-14C]-labelled)]						
	According to the JMPR, the metabolism in primary crops was similar in all crops (foliar: tomato, soya bean, mustard greens and paddy rice, and in-furrow: mustard greens). Parent was the main component in plants. Metabolite SYN549431 was the major metabolite identified in all studies and accounted for 0.7%–6.0% TRR (food commodities) and 0.7%–25% (feed commodities) across all commodities and radiolabels for foliar treatments. SYN549431 was also at 7.7% TRR in immature mustard greens from the in-furrow application (methylphenyl-labelled only)						
	In confined rotational crop metabolism studies, the TRRs generally decreased with increasing PBIs. At PBIs of 30 days, isocycloseram was the predominant residue in most cases, with increasing proportions of the metabolites SYN552188 and/ or SYN549431 becoming predominant at longer PHIs. Concentrations of those residues in food for human consumption were low (typically <0.01 mg eq/kg; radish root, 30-day PBI is an exception at 0.059 mg/kg isocycloseram)						
In the supervised field trials, isocycloseram and SYN549431 were the most frequently detected residues. Re were always lower than parent isocycloseram residues and were, on average, <8% compared to parent was consistent across all processed fractions analysed. Therefore, the JMPR determined that SYN549431 minor metabolite			ere, on average, < 8% compared to parent res	idues. This ratio			
	Residues of metabolite SYN548569 were typically not observed above 0.01 mg/kg with limited exceptions in processed commodities						
	In deciding which compounds should be included in the residue definition for risk assessment for plants, the JMPR considered the likely occurrence of the compounds and the toxicological properties of isocycloseram and SYN549431 The JMPR determined that SYN549431 does not have similar toxicity to parent isocycloseram and is not covered by the HBGVs for isocycloseram and could be assessed using the threshold of toxicological concern for Cramer Class III compounds of 1.5 µg/kg bw per day. The JMPR concluded that SYN549431 is unlikely to present a dietary exposure concern from the uses evaluated by the current JMPR						
	The JMPR proposed the following residue definition for enforcement and dietary risk assessment for plant commodities: isocycloseram						
	The JMPR considered the metabolism of isocycloseram in lactating goats and laying hens was qualitatively similar and that no tissue unique metabolites were detected. Using estimates of livestock dietary burden for each of the compounds and assuming the same transfer rate to animal commodities as for isocycloseram, the JMPR noted that the metabolites SYN549544 and SYN549436 could make a significant contribution to overall consumer exposure. Residues of SYN549544 were greater than 10% TRR relative to parent in almost all tissue samples in the animal metabolism studies. In addition, the JMPR determined that the submitted feeding studies showed residues of SYN54936 were found at similar levels to residues of SYN549544						
		sidered that it was not necessary to include SYN54 ies as it was only occasionally detected in the field		ment for animal			

Commodity group JMPR evaluation	EU evaluation	RDs comparable
The JMPR proposed following definition of the resi the metabolites <i>N</i> -[2-amino-1-(hydroxymethyl) isoxazol-3-yl]-2-methyl-benzamide (SYN54954 yl]-2-methyl- <i>N</i> -(3-oxoisoxazolidin-4-yl)benzam)-2-oxo-ethyl]-4-[5-(3,5-dichloro-4-fluoro-phen 4) and 4-[5-(3,5-dichloro-4-fluoro-phenyl)-5-(tr	yl)-5-(trifluoromethyl)-4H- ifluoromethyl)-4H-isoxazol-3-
The JMPR proposed as residue definition for enfo	rcement for animal commodities: isocyclosera	m

The JMPR considered isocycloseram residue as fat-soluble

Abbreviations: MRL, maximum residue level; RA, risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment; TRR, total radioactive residues.

5.30.4 | Analytical methods

TABLE 189 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content	Yes, but no validation data is published in JMPR report	0.01	QuEChERS extraction, LC–MS/MS
Animal products Muscle/meat Fat Liver/kidney Milk	Yes, but no validation data is published in JMPR report	0.01	QuEChERS extraction, LC–MS/MS
Conclusion	Sufficiently validated analytical methods for t which Codex MRL proposals were derived reported No validation data available at the EURLs		5 .

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.30.5 | Codex MRL proposals

TABLE 190 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Apple pomace, wet	1	-	JMPR derived a processing factor of 2.4 (1.9; 2.8). Currently, no EU MRLs are established for processed products
Broccoli	0.7	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 60 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Brussels sprouts	2	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 4 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Cabbages, head	4	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 60 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: Trials on head cabbage were analysed with wrapper leaves (to derive MRL proposal and input values for dietary burden calculation) and without wrapper leaves (to derive STMR/HR) Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

ABLE 190	(Continued)		
Commodity	Codex MRL proposal	EU MRL	Comment
Cauliflower	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 60 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Citrus Oil	80	-	JMPR derived a processing factor of 200 (127; 256). Currently, no EU MRLs are established for processed products
Coffee bean	0.04	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 30-day RTI, 40-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Cotton seed	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 4 × 75 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 11 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Cucumber	0.1	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 7-day RTI, 3-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Edible offal (Mammalia	0.3 n)	0.01* default MRL Art. 18(1)(b)	 Max./Mean dietary burden (Australian beef cattle): 14.89/0.955 ppm Max residues in liver: 0.099 mg/kg (RD enf)/0.266 mg/kg (RD for RA) Sufficiently supported by data: Yes Specific comments: Although the tables reporting the results are not very clear, apparently, a MRL of 0.1 mg/kg (based on the results for isocycloseram in kidney) would be sufficient. See also general comments on feeding studies in cattle, as regards the metabolites included in the RD for risk assessment Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that apparently a lower MRL of 0.1 mg/kg would be sufficient Follow-up action: None
Eggplant	0.3	0.01* default MRL Art. 18(1)(b)	 cGAP: Guatemala, Foliar, 3 × 120 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 12 (4 trials in eggplants and 8 trials in peppers, sweet) Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed on sweet peppers (8) and eggplants (4). The JMPR concluded that there are insufficient trials on eggplants to estimate a maximum residue level, however, the JMPR has previously reviewed residues in peppers, sweet and eggplants and noted that residues in peppers, sweet and eggplants are similar and that residues in peppers, sweet can be used to support a maximum residue for eggplants Since the Mann–Whitney test suggests the distributions are similar the JMPR decided to combine the residues from pepper and eggplants for estimating a Codex MRL proposal for eggplants. This would not be acceptable in the EU. However, in JMPR report 2018, the extrapolation of residue trials in peppers or tomatoes (whatever would lead to a higher MRL) was recommended. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs. Follow-up action: To check details in JMPR evaluation.

Follow-up action: To check details in JMPR evaluation.

TABLE 190 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Group of pome fruits	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 3 × 90 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 30 Sufficiently supported by data: Yes Specific comments: Combined data set of trials performed on apples (18) and pears (12). The JMPR noted that the cGAP covers pome fruits and that median residues of apples and pears were within a fivefold difference. A Mann–Whitney U-Test demonstrate that populations of apple and pear were not significantly different and therefore could be combined. This extrapolation would be also acceptable in the EU Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Maize	0.01*	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, one in-furrow at-planting application at 150 g a.s./ha followed by two foliar applications at 30 g a.s./ha, 7-day RTI, 21-day PHI Number of trials: 27 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Maize, stover	1.5	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Mammalian fats (except milk fats)	0.4	0.01* default MRL Art. 18(1)(b)	 Max./Mean dietary burden (Australia beef cattle): 14.89/0.955 ppm Max residues in fat: 0.362 mg/kg Sufficiently supported by data: Yes Specific comments: See also general comments on feeding studies in cattle, as regards the metabolites included in the RD for risk assessment Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.02	– Muscle: 0.01* default MRL Art. 18(1)(b)	 Max./Mean dietary burden (Australia beef cattle): 14.89/0.955 ppm Max residues in liver: 0.011 mg/kg Sufficiently supported by data: Yes Specific comments: See also general comments on feeding studies in cattle, as regards the metabolites included in the RD for risk assessment Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Melons, except watermelon	0.15	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 7-day RTI, 3-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Milks	0.05	0.01* default MRL Art. 18(1)(b)	Max./Mean dietary burden (Australia dairy cattle): 9.388/0.923 ppm. Mean residues in milk: 0.021 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: None
Onion, bulb	0.01*	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 120 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments:× Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Oranges, dried pulp	3	-	JMPR derived a processing factor of 6.4 (4.4; 8.4). Currently, no EU MRLs are established for processed products
			(Continue)

Commodity	Codex MRL proposal	EU MRL	Comment
Peppers, chilli	0.6	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Details of the GAP not reported in the JMPR report Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
			Follow-up action: To check details on the cGAP in JMPR evaluation
Peppers, chilli, dried	4.2	-	No processing factor was reported by JMPR for peppers, chilli, dried The MRL proposal was derived by applying the default factor of 7. Currently, no EU MRLs are established for processed products
Peppers, sweet	0.3	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 120 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Potato	0.01*	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 26 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Prune, dried	1.5	-	JMPR derived a processing factor of 3.1 (2.6; 3.7). Currently, no EU MRLs are established for processed products
Soya bean (dry)	0.15	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 3 × 75 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 21 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Soya bean hulls	1	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Soya bean, hay and/or straw	20	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Squash, summer	0.09	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3×60 g a.s./ha, 7-day RTI, 3-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data
Subgroup of cherries	1	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 3 × 90 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of lemons and limes (including citron)	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 2×90 g a.s./ha followed by 2×30 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of Mandarins (including mandarin-like hybrids)	0.4	0.01* default MRL Art. 18(1)(b)	 cGAP: Paraguay, Foliar, 2×90 g a.s./ha followed by 2×30 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 4 trials in mandarins and 5 trials in lemons Sufficiently supported by data: Yes Specific comments: As the number of trials in mandarins was not sufficient, JMPR merged the mandarin trials with the data set or lemons and limes Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

143 of 223

Commodity	Codex MRL proposal	EU MRL	Comment	
Subgroup of oranges, sweet, sour (including orange- like hybrids)	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 2×90 g a.s./ha followed by 2×30 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 9 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None	
Subgroup of peaches (including nectarine and apricots)	0.3	0.01* default MRL Art. 18(1)(b)	 cGAP: Paraguay, Foliar, 3×90 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None 	
Subgroup of plums (including fresh prunes)	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 3 × 90 g a.s./ha, 7-day RTI, 14-day PHI Number of trials: 10 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None	
Subgroup of pummelo and grapefruits (including shaddock-like hybrids, among others grapefruit)	0.3	0.01* default MRL Art. 18(1)(b)	cGAP: Paraguay, Foliar, 2×90 g a.s./ha followed by 2×30 g a.s./ha, 7-day RTI, 7-day PHI Number of trials: 6 Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None	
Tomato	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Guatemala, Foliar, 3 × 120 g a.s./ha, 7-day RTI, 1-day PHI Number of trials: 12 Sufficiently supported by data: Yes Specific comments: Four trials were performed with cherry tomatoes, leading to 4 highest residue levels of the data set Conclusion: The proposed Codex MRL is sufficiently supported by data	
Tomato, dried	2	-	JMPR derived a processing factor of 3.2 (3.1; 3.2) Currently, no EU MRLs are established for processed products	
Tomato, pomace	8	-	JMPR derived a processing factor of 16 (13; 18) in tomato wet pomace and 72 (53; 90) in tomato dry pomace. Currently, no EU MRLs are established for processed products	
General comments	as parent p JMPR repo was a mino definition.	olus metabolite SYN549544 and SY rt), however, it is reported that the or metabolite identified in livestocl	e definition for risk assessment for animal products was established N549436, expressed as parent. In the feeding study in cattle (p. 268 of results refer to parent plus SYN549543 and SYN549436. As SYN549543 < metabolism studies, it was decided not to include it in the residue the JMPR Evaluation. If the document is published late, JMPR should b	
	yellow pro The second ta HR and ST	bably should be removed) ble should describe the results for	efers to the results for parent isocycloseram (footnote 4 highlighted in the residue definition for risk assessment and was used to derive the plite was incomplete in the table header; in the footnote it defines the)	
	Regarding establishing Codex MRL proposal for poultry, the JMPR noted that the maximum dietary burden for poultry (2.566 mg/kg; EU poultry layer) was more than 150% the highest feeding rate (1.7 mg/kg) that was used in the poultry feeding study. Therefore, the JMPR determined that the poultry feeding study was unsuitable for the estimation of residues levels based on the uses considered by the JMPR. Consequently, the JMPR considered that a new poultry feeding study would be desirable			
	To discuss with Member States, whether the estimated dietary burden for EU poultry is relevant, considering that the a.s. is not approved in the EU. Unfortunately, the dietary burden calculation for isocycloseram are not presented in Annex 6 of the JMPR report to identify the main drivers of the dietary burden for EU poultry			

Abbreviations: a.s., active substance; CXL, Codex maximum residue limit; cGAP, critical Good Agricultural Practice; GAP, Good Agricultural Practice; MRL, maximum residue level; PHI, pre-harvest interval; RA, risk assessment; RD, residue definition; RTI, re-treatment interval; STMR, supervised trials median residue. *Indicates that the input value is proposed at the limit of quantification.

5.30.6 | Consumer risk assessment

 TABLE 191
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
 RA assumptions: The risk assessment was performed with the JMPR ARfD established for child-bearing population (0.08 mg/kg bw). A higher JMPR ARfD was established for the general population (0.5 mg/kg bw) The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. citrus fruits, pome fruits, stone fruits, kumquats, kaki, broccoli, Brussels sprouts, head cabbages, cauliflower, coffee bean, cotton seed, cucumber, eggplant, maize, melons, soybeans, ruminants tissues and milk) The calculations are indicative, because no agreed toxicological reference values are established in the EU and a residue definition for risk assessment has not been established in the EU Therefore, the calculations are affected by additional, non-standard uncertainties 	 RA assumptions: The risk assessment was performed with the JMPR ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values (default MRLs established in the EU) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. citrus fruits, pome fruits, stone fruits, kumquats, kaki, broccoli, Brussels sprouts, head cabbages, cauliflower, coffee bean, cotton seed, cucumber, eggplant, maize, melons, soybeans, ruminants tissues and milk). For the remaining commodities, the EU default MRL was used as input value for the exposure calculations The calculations are indicative, because no agreed toxicological reference values are established in the EU and a residue definition for risk assessment has not been established in the EU Therefore, the calculations are affected by additional, non-standard uncertainties 	Specific comments:It was noted that the short-term intake calculations were not reported in Annex 4 of the JMPR reportFor the following metabolites not covered by the TRVs, TTC approach was used (Cramer Class III) (in brackets the estimated exposure, in µg/kg bw per day)SYN549431 (0.1314)SYN549431 (0.1314)SYN550402: 0.0031SYN550402: 0.0031SYN551474 (0.0006)SYN551475 (0.0006)SYN551475 (0.0000)SYN551479 (0.0000)SYN4549107 (0.0000)The estimated exposures are below the threshold of toxicological concern for Cramer Class III compounds (1.5 µg/kg bw per day). Therefore, the JMPR concluded that these metabolites were unlikely to present a dietary exposure concern from the uses evaluated by the current JMPRIt would be desirable to present more details in the JMPR report how the calculations were performed (e.g. input values for the exposure calculation, diets, etc.)
Results: No short-term consumer health risk was identified for the crops under assessment Head cabbages: 66% of ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 13% of the ADI (NL toddler)	Results: Long-term exposure: Max 4% of the JMPR ADI (G04) GECDE mean: 20% (infants and toddlers) GECDE max: Max. 80% (infants and toddlers)
	Among the crops under consideration, apples were identified as the main contributor, accounting for up to 6% of the ADI	Short-term exposure: Highest result: 9% of ARfD (no information on the commodity which lead to the highest result)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.30.7 | Conclusions

TABLE 192 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU; no EU assessment available
Toxicological assessment	No EU TRV available
Residue definitions	No EU residue definitions established (default RD for enforcement with parent compound is similar to residue definition proposed by JMPR for MRL enforcement). Further clarifications are required as regards the residue definition for risk assessment for animal products and the related feeding study
Analytical methods	Validated analytical methods are available. Validation data need to be checked in JMPR evaluation, once this document is published
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	No acute and no chronic intake concern identified (indicative calculations)
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.31 | Isotianil (335) R/T

5.31.1 | Background information

TABLE 193Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	No RMS assigned	Formally, no RMS nominated, but NL kindly volunteered for providing support to prepare comments on this a.s
Approval status	Not approved	Never notified and authorised in the EU
EFSA conclusion available	No	
MRL review performed	No	
EU MRL applications or other EU assessments	Yes, see comments	An import tolerance application for citrus and banana was submitted to NL. The assessment by the EMS is ongoing
Classification of a.s. (cut-off criteria)	Not assessed	
Endocrine effects of a.s.	Not assessed	
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.31.2 | Toxicological reference values

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.05 mg/kg bw per day	JMPR (2023)	-	No EU assessment	Not applicable
ARfD	Unnecessary	JMPR (2023)	-	No EU assessment	Not applicable
Conclusion/comments a.s.	-				
Comments on metabolites	Metabolites included in JMPR RD for RA: – 3,4-dichloro-1,2-thiazole-5-carboxylic acid (DCIT-acid) Acutely more toxic than the parent. The ADI also applies to DCIT-acid Metabolites included in EU RD for RA: Not relevant, as no RD for risk assessment is established in the EU				

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition.

5.31.3 | Residue definitions

TABLE 195 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Isotianil	Reg. 396/2005: Isotianil (default MRLs/RD according to Art. 18(1)(b))	Yes (compared with the default EU RD)
			No EU peer review and no MRL review	
	Animal products	Sum of isotianil and 3,4-dichloro-1,2- thiazole-5-carboxylic acid (DCIT- acid) expressed as isotianil	Reg. 396/2005: Isotianil (default MRLs/RD according to Art. 18(1)(b))	No
		The residue is not fat soluble	No EU peer review and no MRL review	
			Fat solubility not specified	
RD-RA	Plant products	Sum of isotianil and 3,4-dichloro-1,2- thiazole-5-carboxylic acid (DCIT- acid) expressed as isotianil	No residue definition established as no EU peer review and no MRL review	Not applicable
	Animal products	Sum of isotianil and 3,4-dichloro-1,2- thiazole-5-carboxylic acid (DCIT- acid) expressed as isotianil	No residue definition established as no EU peer review and no MRL review	Not applicable
		aciu) expressed as isolianii		

TABLE 195	(Continued)
-----------	-------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion, comments	substance based of 21 days and sampl taken shortly after	on the findings in metaboli ing 1 day after the last trea treatment. However, cons	ition for MRL enforcement including only the sm studies (e.g. metabolism studies in lemon v tment). The parent compound might be a suff idering the degradation kinetics, it might be a finition for MRL enforcement, considering also	with 4 foliar treatments, RTI ficient marker if samples are ppropriate, to include also the

Abbreviations: MRL, maximum residue level; RD-RA, residue definition for risk assessment; RD enf, residue definition for enforcement practice.

5.31.4 | Analytical methods

TABLE 196 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High water content High acid content	Yes	0.01	Aqueous acetonitrile extraction; SPE clean up; eluted with cyclohexane/ethyl acetate; LC–MS/MS; matrices not specified
Animal products Muscle/meat Fat Liver/kidney Milk Eggs	Partially (see remarks)	0.01	 QuEChERS extraction and LC–MS/MS (milk, cream, whey, eggs, muscle, fat, kidney and liver) applicable for parent, only For animal commodities, two extractions with acetonitrile/water. After centrifuging, an aliquot of the extract was analysed for isotianil and DCIT-acid by reversed-phase LC–MS/MS Detailed validation data are not reported in the JMPR report Additional metabolites (not included in the RD for MRL enforcement) can be determined, with the following steps: A second aliquot was derivatised with benzoyl chloride, and subsequently analysed by reversed-phase LC–MS/MS for 'free' 2-aminobenzonitrile and 2-amino-5-hydroxybenzonitrile A third aliquot was enzymatically treated with β-glucuronidase/arylsulphatase to cleave potential glucuronide and sulphate conjugates of 2-aminobenzonitrile and 2-amino-5-hydroxybenzonitrile, cleaned up, derivatised with benzoyl chloride and subsequently analysed by reversed-phase LC–MS/MS for 2-amino-benzonitrile and 2-amino-5-hydroxybenzonitrile
Conclusion	The EU default residue definition for MRL enforcement for the plant products is comparable with the proposed RD For animal products, the RD for enforcement are not identical The current EU MRLs for the commodities under discussion are all set at the default level of 0.01 mg/kg, hence, lower than or equal to the Codex MRL proposal		
	Analytical methods for the enforcement of the MRLs for the relevant matrices are available. However, the details on the method validation were not reported in the JMPR report		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; RD, residue definition; SPE, solid-phase extraction; QuEChERS, Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method).

5.31.5 | Codex MRL proposals

 TABLE 197
 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Banana	0.01*	0.01* default MRL Art. 18(1)(b)	cGAP for bagged bananas: Guatemala, Honduras, Panama, Dominican Republic, 4×0.05 kg/ha, 90-day RTI for the last two applications, PHI 0 or not required when used directly AUS, 4×0.05 kg/ha, 56-day RTI, use up to 8-leaf stage Colombia, 4×0.05 kg/ha, 42-day RTI, PHI 0 or not required when used directly Number of trials: 12 trials with exaggerated number of applications and shorter RTI Sufficiently supported by data: Yes Specific comments: Although the trials did not match the cGAPs, they were found acceptable, as the residues resulting from a more critical treatment regime were all below the LOQ Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

147 of 223

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus oil, edible	40	-	JMPR derived a processing factor of 85 (for MRL enforcement) and 65 (for risk assessment). Currently, no EU MRLs are established for processed products
Edible offal (Mammalian)	0.02*	0.01* default MRL Art. 18(1)(b)	Max. dietary burden (AUS beef/dairy cattle): 0.038 ppm Max. residues in kidney: 0.000067 mg/kg Sufficiently supported by data: Yes Specific comments: The MRL proposal is equal to the LOQ for the enforcement residue definition Conclusion: The proposed Codex MRL is sufficiently supported b data Follow-up action: None
Mammalian fats (except milk fats)	0.02*	0.01* default MRL Art. 18(1)(b)	 Max. dietary burden (AUS beef/dairy cattle): 0.038 ppm Max. residues in fat: 0.00002 mg/kg Sufficiently supported by data: Yes Specific comments: The MRL proposal is equal to the LOQ for the enforcement residue definition Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Marmalade		-	JMPR derived a processing factor of 0.11 (for MRL enforcement) an 0.17 (for risk assessment). Currently, no EU MRLs are established for processed products. As marmalade is a composite product containing fruit and sugar, for a correct application of the processing factor, it would be necessary to describe the sugar content of the marmalade
Meat (from mammals other than marine mammals)	0.02*	– Muscle: 0.01* default MRL Art. 18(1)(b)	 Max. dietary burden (AUS beef/dairy cattle): 0.038 ppm. Max. residues in muscle: 0.00002 mg/kg Sufficiently supported by data: Yes Specific comments: The MRL proposal is equal to the LOQ for the enforcement residue definition Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Milks	0.02*	0.01* default MRL Art. 18(1)(b)	 Max. dietary burden (AUS dairy cattle): 0.038 ppm. Max. residues in muscle: 0.00002 mg/kg Sufficiently supported by data: Yes Specific comments: The MRL proposal is equal to the LOQ for the enforcement residue definition Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Orange juice		-	JMPR derived a processing factor of 0.11 (for MRL enforcement)) and 0.17 (for risk assessment). Currently, no EU MRLs are established for processed products
Orange oil		_	JMPR derived a processing factor of 85 (for MRL enforcement) and 65 (for risk assessment). Currently, no EU MRLs are established for processed products
Orange peel processed		-	JMPR derived a processing factor of 1.75 (for MRL enforcement)) and 1.8 (for risk assessment). Currently, no EU MRLs are established for processed products
Poultry fats	0.02*	0.01* default MRL Art. 18(1)(b)	Dietary burden: 0 ppm Sufficiently supported by data: Yes Specific comments: The proposed Codex MRL reflects the LOQ of the analytical method for animal products Conclusion: The proposed Codex MRL is considered acceptable Follow-up action: None
Poultry meat	0.02*	– Muscle: 0.01* default MRL Art. 18(1)(b)	Dietary burden: 0 ppm. Sufficiently supported by data: Yes Specific comments: The proposed Codex MRL reflects the LOQ of the analytical method for animal products Conclusion: The proposed Codex MRL is considered acceptable Follow-up action: None

(Continues)

TABLE 197 (Continued)

Commodity	Codex MRL proposal	EU MRL	Comment
Poultry, edible offal of	0.02*	0.01* default MRL Art. 18(1)(b)	Dietary burden: 0 ppm. Sufficiently supported by data: Yes Specific comments: The proposed Codex MRL reflects the LOQ of the analytical method for animal products Conclusion: The proposed Codex MRL is considered acceptable Follow-up action: None
Subgroup of lemons and limes (including citron)	0.5	0.01* default MRL Art. 18(1)(b)	cGAP: Cambodia, 5 × 0.075 kg/ha, 21-day RTI, 1-day PHI Number of trials: 5 Sufficiently supported by data: Yes Specific comments: For estimating the residues in the edible portion (STMR), JMPR used a factor of 0.098 derived from metabolism studies reflecting the expected residues in pulp. Considering that the processing factor for orange juice is in a similar range (0.17), STMR derived for pulp can be used for performing an indicative consumer risk assessment Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of Mandarins (including mandarin-like hybrids)	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Cambodia, 5 × 0.075 kg/ha, 21-day RTI, 1-day PHI Number of trials: 9 (4 trials in mandarins and 5 trials in lemons) Sufficiently supported by data: Yes Specific comments: As the number of trials in mandarins was not sufficient, JMPR combined the trials of lemons and mandarins to derive the MRL proposal for mandarins. Similar to lemons and lime, the STMR for pulp was calculated using the correction factor of 0.098. See also comments on lemons and limes Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Subgroup of oranges, sweet, sour (including orange- like hybrids)	0.4	0.01* default MRL Art. 18(1)(b)	cGAP: Cambodia, 5 × 0.075 kg/ha, 21-day RTI, 1-day PHI Number of trials: 9 Sufficiently supported by data: Yes Specific comments: Similar to lemons and lime, the STMR for pulp was calculated using the correction factor of 0.098. See also comments on lemons and limes Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: None
Subgroup of pummelo and grapefruits (including shaddock-like hybrids, among other grapefruit)	0.2	0.01* default MRL Art. 18(1)(b)	cGAP: Cambodia, 5 × 0.075 kg/ha, 21-day RTI, 1-day PHI Number of trials: 6 Sufficiently supported by data: Yes Specific comments: Similar to lemons and lime, the STMR for pulp was calculated using the correction factor of 0.098. See also comments on lemons and limes Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
General comments			trials in citrus, deriving a MRL proposal of 0.4 mg/kg for all citrus fruit. the Council, bearing in mind the ALARA principle

Abbreviations: cGAP, critical good agricultural practice; GAP, good agricultural Practice; LOQ, limit of quantification; MRL, maximum residue level; PHI, pre-harvest interval; RTI, re-treatment interval; STMR, supervised trials median residue.

*Indicates that the input value is proposed at the limit of quantification.

5.31.6 | Consumer risk assessment

TABLE 198 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	 RA assumptions: The risk assessment was performed with the JMPR ADI An indicative long-term dietary risk assessment was performed using PRIMo rev. 3.1. was performed for the commodities, for which the Codex MRLs are proposed (i.e. bananas, citrus fruits, animal products), using the STMR values derived by JMPR; for bananas and animal products, the exposure calculations are performed with the proposed MRL (as the STMR-P was reported as being 0 mg/kg). For the remaining commodities, the default EU MRL was used as input value The calculations are indicative, because the a.s. has never been assessed at EU level and therefore no EU end points (RD, TRV) are available. In addition, the use of a correction factor for citrus fruit derived from metabolism studies is based on assumptions that should be verified with specific studies investigating the transfer of residues to the edible part of the fruits Therefore, the calculations are affected by additional, non-standard uncertainties 	 Specific comments: For one metabolite (2-aminobenzonitrile, JMPR estimated the long-term exposure based on metabolism and processing studies and compared it with the TTC for Cramer Class III compounds (1.5µg/ kg bw per day For another group of metabolites (sulphate conjugates of 2-aminohydroxybenzonitrile) the long-term exposure calculated based on metabolism studies and compared with the TTC for genotoxic substances (0.025 µg/kg bw per day) Details on the calculations are not reported. For transparency reasons, JMPR should be invited to present the details of the calculation in the JMPR report According to EFSA, for potentially genotoxic substances, an additional short-term exposure calculation would be required
Results: Not relevant	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 4% of the ADI (NL toddler) Among the crops under consideration, cattle milk was identified as the main contributor, accounting for up to 2% of the ADI	Results: Long-term exposure: 0% of the JMPR ADI GECDE mean: 0% (all population groups) GECDE max: Max. 3% (infants and toddler, children and adolescents) Exposure of 2-aminobenzonitrile: < TTC (Cramer class III)

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; RD, residue definition; STMR, supervised trials median residue; TTC, threshold of toxicological concern; TRV, toxicological reference value.

5.31.7 | Conclusions

TABLE 199 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU; no EU assessment available, but an assessment of an import tolerance application is ongoing
Toxicological assessment	No EU TRV available
Residue definitions	The default residue definition for plant products is identical with the proposed Codex RDs; for animal products and for risk assessment, the Codex RD covers the parent and a metabolite
Analytical methods	Analytical methods are available. The details on the method validation should be checked in the JMPR evaluation
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	Acute risk assessment not performed/required (no ARfD derived by JMPR). No chronic intake concern identified in the indicative risk assessment performed with the ADI and RD proposed by JMPR
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; a.s., active substance; MRL, maximum residue level; TRV, toxicological reference value; RD, residue definition.

5.32 | Mepiquat-chloride (336) R/T

5.32.1 | Background information

TABLE 200Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	FI	
Approval status	Approved. Renewal process ongoing	Commission Directive 2008/108/EC Renewal Assessment Report (RAR) submitted, EFSA peer review ongoing
EFSA conclusion available	Yes, see comments	EFSA (<mark>2008b</mark>) EFSA peer review ongoing
MRL review performed	Yes, see comments	EFSA (2015d)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2024a) (cultivated fungi and oyster mushrooms) EFSA (2019a) (oyster mushrooms) EFSA (2018o) (cotton seeds and animal commodities) EFSA (2018l) (oilseeds and animal commodities) EFSA (2018g) (cotton seeds) EFSA (2016a) (fungi)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria ECHA (2021a)
Endocrine effects of a.s.	Assessment ongoing	-
Other relevant information	-	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.32.2 | Toxicological reference values

TABLE 201 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation	on	EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.3 mg/kg bw per day	JMPR (2023)	0.2 mg/kg bw per day	Commission Directive 2008/108/EC	No
ARfD	0.6 mg/kg bw	JMPR (2023)	0.3 mg/kg bw	Commission Directive 2008/108/EC	No
Conclusion/comments a.s.	chloride The TRVs derive	The ADI/ARfD derived by JMPR apply to mepiquat chloride and 4-hydroxy-mepiquat, expressed as mepiquat chloride The TRVs derived in the EU in 2008 apply to mepiquat-chloride and 4-hydroxy mepiquat chloride As the renewal process is ongoing, the EU TRV might change			
Comments on metabolites	Metabolites included in JMPR RD for RA: – 4-hydroxy-1,1-dimethylpiperidinium cation (4-hydroxymepiquat) The metabolite is covered by the TRVs established for the parent Metabolites included in EU RD for RA:				
	 4-hydroxy m The metabolite 		ered by the toxicity	profile of the parent	

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; RA, risk assessment; RD, residue definition; UF, uncertainty factor.

5.32.3 | Residue definitions

TABLE 202 Comparison of the residue definitions derived by JMPR and at EU level.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Mepiquat cation	Reg. 396/2005 implementing MRL review and peer review): Mepiquat (sum of mepiquat and its salts, expressed as mepiquat chloride)	No, but MRLs can be recalculated
	Animal products	Mepiquat cation The residue is not fat soluble	Reg. 396/2005 (implementing MRL review and peer review): Mepiquat (sum of mepiquat and its salts, expressed as mepiquat chloride) The residue is not fat soluble	No, but MRLs can be recalculated

TABLE 202 (C	Continued)			
	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD-RA	Plant products	Mepiquat cation	MRL review (EFSA, 2015d) and Peer review (EFSA, 2008b): Sum of mepiquat and its salts, expressed as mepiquat chloride	No
	Animal products	Mepiquat cation and 4-hydroxy- 1,1-dimethylpiperidinium cation (4-hydroxymepiquat cation, free and conjugated), expressed as mepiquat cation	MRL review (EFSA, 2015d) and Peer review (EFSA, 2008b): Sum of mepiquat, 4-hydroxy mepiquat and their salts, expressed as mepiquat chloride	No
Conclusion,	The metabolism studi	es in plants and livestock assessed by t	he JMPR were performed with mepiquat-chl	oride
comments	The EU residue definition for MRL enforcement for the relevant matrix groups are not fully comparable with the JMPR residue definition, but a recalculation of the Codex MRLs to match with the EU residue definition would be possible			
	To recalculate a Codex MRL to match with the current EU residue definition, the unrounded Codex MRL proposal derived with the OECD calculator needs to be multiplied with a correction factor of 1.31 before rounding the result to the next MRL class			
	It is noted that the proposed RDs for enforcement in the context of renewal assessment are comparable with the existing EU RDs for enforcement			
	It is noted that the proposed RD for RA for plant products in the context of the renewal assessment is comparable with the existing RD for RA. For animal products the proposed RD for RA is: Sum of mepiquat and 4-hydroxy mepiquat chloride (free and conjugated) and their salts, expressed as mepiquat chloride			

Abbreviations: MRL, maximum residue level; RA, risk assessment; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.32.4 | Analytical methods

TABLE 203 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: High acid content High oil content	Yes	0.01 (referring to mepiquat chloride)	Extraction with methanol/aqueous hydrochloric acid- or acetone/ water mixtures, determination by LC–MS/MS. EURL validation data show that mepiquat chloride can be monitored in high acid and high oil content commodities of plant origin with an LOQ of 0.01 mg/kg and 0.02 mg/kg, respectively
Animal products Muscle/meat Fat Liver/kidney Milk Eggs	Yes	0.01 (referring to mepiquat chloride)	Extraction with methanol/aqueous hydrochloric acid- or acetone/water mixtures, determination by LC–MS/MS. EURL validation data show that mepiquat chloride can be monitored in muscle, animal fat, liver, kidney, milk and eggs with an LOQ of 0.01 mg/kg
Conclusion	The EU residue definition for MRL enforcement for the relevant matrix groups are not fully comparable with the JMPR residue definition, but a recalculation of the Codex MRLs to match with the EU residue definition would be possible. The current EU MRLs for grapes is lower than the Codex MRL proposal under discussion; the EU MRLs for cotton seeds and for animal products however are higher than the Codex MRL proposal		
	Sufficiently analytical methods for the enforcement of the MRL for this matrix are available, both at JMPR and EU level		

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL, maximum residue level.

5.32.5 | Codex MRL proposals

TABLE 204 Comparison of Codex MRL proposals derived by JMPR with EU MRLs.

Commodity	Codex MRL proposal	EU MRL	Comment
Cotton seed	4	6	 cGAP: Greece, Foliar, 1 × 75 g a.s./ha, BBCH 69 Number of trials: 8 Sufficiently supported by data: Yes Specific comments: The analytical results expressed as mepiquat chloride were converted into mepiquat cation by the ratio of their molecular weights (× 0.763) The same cGAP was assessed in an Art 10 (EFSA, 2018o) (cotton seeds and animal commodities). The different MRLs derived for the same GAP by JMPR and at EU level is resulting from the different residue definitions. However, the two MRLs are considered equivalent Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

TABLE 204 (Continued)			
	Codex MRL		
Commodity	proposal	EU MRL	Comment
Cotton seed oil, crude	-	-	JMPR derived a processing factor of 0.043. Currently, no EU MRLs are established for processed products
Cotton seed oil, edible	-	-	JMPR derived a processing factor of 0.040. Currently, no EU MRLs are established for processed products
Edible offal (mammalian)	0.04	Liver from - bovine and equine: 0.5; - swine: 0.07; - sheep and goat: 0.6 Kidney from - ruminants and equine: 0.8; - swine: 0.07 Edible offal (other than liver and kidney) from - ruminants and equine: 0.8; - swine: 0.05*	 Max. dietary burden (AUS beef cattle): 2.4 ppm Mean/max. residues in liver/kidney: 0.027/0.034 Sufficiently supported by data: Yes Specific comments: As the samples were not analysed for the metabolite included in the RD for RA, JMPR re-calculated the results for liver derived in the feeding study, using a conversion factor derived from the metabolism study It is noted that in the table presented in the JMPR report (FAO and WHO, 2024), Section 5.23, the values for the HR and the STMR were interchanged. However, the risk assessment was performed with the correct values Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Eggs	0.008*	0.07	Max. dietary burden (US-Canada layer): 0.56 ppm Mean/max. residues in eggs: < 0.0073 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Grapes	4	0.02*	cGAP: Japan, Foliar, 2×88 g a.s./ha, at (1) 7–11 shoot leaves or pre- flowering stage and (2) 10–20 days after full bloom, 60-day PHI Number of trials: 8 Sufficiently supported by data: Yes Specific comments: The analytical values of mepiquat chloride were converted into mepiquat cation by the ratio of their molecular weights (× 0.763). The JMPR noted that although the trials were not conducted in strict accordance with the GAP in terms of the timing of the second application, it was agreed that the trials likely reflect the cultivation practice for faster growing varieties and that the trials could be used to support a Codex MRL recommendation Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: If risk managers decide to take over the Codex MRL for grapes, which is higher than the current EU MRL set for grapes in EU legislation, the Codex MRL needs to be recalculated to match with the EU residue definition. The corresponding EU MRL would be 5 mg/kg
Grape, dried (=currants, raisins and sultanas)	20	-	JMPR derived a processing factor of 2.6. Currently, no EU MRLs are established for processed products
Grape juice		-	JMPR derived a processing factor of 0.91. Currently, no EU MRLs are established for processed products
Mammalian fat (except milk fats)	0.01	0.05 (swine) 0.06 (bovine, sheep, goat and equine)	Max. dietary burden (AUS beef cattle): 2.4 ppm. Mean/max. residues in fat: < 0.0092 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.01	– Muscle: 0.05 (swine); 0.09 (bovine, sheep, goat and equine)	 Max. dietary burden (AUS beef cattle): 2.4 ppm. Mean/max. residues in in muscle: <0.0092 mg/kg Sufficiently supported by data: Yes Specific comments: It is noted that according to the new Codex food classification, CXLs are established for muscle (MM 0095); hence, the commodity description should be changed to 'Muscle (from mammals other than marine mammals)' Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None

153 of 223

TABLE 204 (Continued	1)		
Commodity	Codex MRL proposal	EU MRL	Comment
Milk	0.008*	0.07 (cattle and horse); 0.15 (sheep and goat)	 Mean/max. dietary burden (AUS dairy cattle): 1.8/1.8 ppm. Mean/max. residues in milk: 0.0069 mg/kg Sufficiently supported by data: Yes Specific comments: As the samples were not analysed for the metabolite included in the RD for RA, JMPR re-calculated the results for milk derived in the feeding study, using a conversion factor derived from the metabolism study Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry, edible offal of	0.008*	0.05* (kidney and edible offals); 0.05 (liver)	Mean/max. dietary burden (US-Canada broiler): 0.56/0.56 ppm Mean/max. residues in liver: < 0.0025 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry fats	0.008*	0.05	Mean/max. dietary burden (US-Canada broiler): 0.56/0.56 ppm Mean/max. residues in fat: < 0.0025 mg/kg Sufficiently supported by data: Yes Specific comments:- Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Poultry meat	0.008*	– Muscle: 0.05	Mean/max. dietary burden (US-Canada broiler): 0.56/0.56 ppm. Mean/max. residues in muscle: < 0.0025 mg/kg Sufficiently supported by data: Yes Specific comments: – Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Cotton delinted seed		-	JMPR derived a processing factor of 1.2. Currently, no EU MRLs are established for processed products
Cotton seed hulls		-	JMPR derived a processing factor of 0.28. Currently, no EU MRLs are established for processed products
Cotton seed meal	8	_	JMPR derived a processing factor of 1.9. Currently, no EU MRLs are established for processed products
Grape pomace, dried	15	-	JMPR derived a processing factor of 2.6. Currently, no EU MRLs are established for processed products
Grape pomace, wet		-	JMPR derived a processing factor of 1.1. Currently, no EU MRLs are established for processed products
General comments	-		

Abbreviations: a.s., active substance; BBCH, growth stages of mono- and dicotyledonous plants; cGAP, critical Good Agricultural Practice; CXL, Codex maximum residue level; PHI, pre-harvest interval.

 $\ensuremath{^*\sc lndicates}$ that the input value is proposed at the limit of quantification.

5.32.6 | Consumer risk assessment

 TABLE 205
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment was performed with the EU ARfD	RA assumptions: The risk assessment was performed with the EU ADI	Specific comments: Methylpiperidine was found in animal metabolism study but not in plant metabolism study
The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. grapes) The HR value derived by JMPR was recalculated to match with the EU residue definition for risk assessment	A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long- term risk assessment (EFSA, 2024a) (cultivated fungi and oyster mushrooms) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (i.e. grapes). The STMR value derived by JMPR was recalculated to match with the EU residue definition for risk assessment Concentrations in liver of swine and ruminants were multiplied by a conversion factor for risk assessment of 1.7 derived from the metabolism study in ruminants (EFSA, 2015d)	 The JMPR noted that methylpiperidine was not considered to be genotoxic. As no further information was available, the JMPR agreed to apply the TTC approach (Cramer Class III, 1.5 µg/kg bw/day) for toxicity In the goat metabolism study fed at 800 ppm of mepiquat chloride (610 ppm as mepiquat cation), methylpiperidine was detected at 0.052 mg mepiquat cation eq/kg in liver (0.034 mg/kg expressed as methylpiperidine using the ratio of their molecular weights of 0.661), 0.255 mg eq/kg in kidney (0.17 mg/kg), 0.061 mg eq/kg in muscle (0.040 mg/kg) and 0.018 mg eq/kg in fat (0.012 mg/kg). Methylpiperidine was not found in milk. In the hen metabolism study fed at 254 ppm (194 ppm as mepiquat cation), methylpiperidine was found only in muscle at 0.02 mg eq/kg (0.013 mg/kg) After scaling the above levels to account for the dietary burden of the parent compound (2.4 ppm cattle, 0.56 ppm poultry), the dietary exposure to methylpiperidine calculated using the 17 cluster diets were < 0.001 µg/kg bw, significantly lower than the TTC for Cramer Class III The JMPR concluded that the chronic dietary exposure of methylpiperidine arising from uses of mepiquat chloride considered by the Meeting is unlikely to present a public health concern
Results: No short-term consumer health risk was identified for the crops under assessment Table grapes: 83% of ARfD EFSA noted a narrow safety margin to the ARfD. If grapes contain residues at the level of the MRL, the exposure would exceed the ARfD	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 8% of the ADI (NL toddler) The contribution of table and wine grapes to the overall chronic exposure accounted for a maximum of 0.71% and 1.2% of the ADI, respectively	Results: Long-term exposure: Max 1% of the JMPR ADI GECDE mean: Max. 1% (infants and toddler) GECDE max: Max. 10% (infants and toddler) Short-term exposure: Highest result for children: 40% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE, global estimate of chronic dietary exposure; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue; TTC, threshold of toxicological concern.

5.32.7 | Conclusions

TABLE 206	Summary of the assessment.
-----------	----------------------------

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. approved in the EU, renewal process ongoing (EFSA peer review ongoing)
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs are not fully comparable, but the Codex MRLs can be recalculated to match with the EU RD
Analytical methods	Sufficiently validated analytical methods are available
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	The proposed Codex MRLs are sufficiently supported by data and risk to consumers is unlikely

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

5.33 | Tricyclazole (337) R/T

5.33.1 | Background information

TABLE 207 Background information.

		Comments, references
JMPR assessment	JMPR meeting September 2023	
Type of JMPR evaluation	New compound evaluation	
RMS	IT	
Approval status	Not approved	Commission Implementing Regulation (EU) 2016/1826 ⁷²
EFSA conclusion available	Yes, see comments	EFSA (2015b) EFSA (2018k) (conclusion confirmatory data on TDMs)
MRL review performed	Yes, see comments	EFSA (2017e) (Statement; no MRL review required)
EU MRL applications or other EU assessments	Yes, see comments	EFSA (2023a) (import tolerance in rice)
Classification of a.s. (cut-off criteria)	No, see comments	A.s. does not meet cut-off criteria CLP00 ⁷³ (not reviewed by ECHA)
Endocrine effects of a.s.	No, see comment	Tricyclazole is not an endocrine disruptor in humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009, ⁷⁴ as amended by Commission Regulation (EU) 2018/605 ⁷⁵ (EFSA, 2023a)
Other relevant information	Tricyclazole belongs to the class of triazole fungicides and it is subject to PIC Regulation The measure implementing the MRL proposal for rice (0.09 mg/kg) derived in the EFSA assessment (EFSA, 2023a) was presented for vote in the PAFF meeting in May 2023; no qualified majority. In August 2023, a modified draft was presented to the Council and the European Parliament (EP); no opinion delivered by the Council; response from EP pending. The European Parliament opposed the adoption of the MRL proposal for rice (P9_TA(2023)0474)). Hence, the MRL for tricyclazole in rice remains at 0.01 mg/kg in the EU legislation	

Abbreviations: a.s., active substance; MRL, maximum residue level.

5.33.2 Toxicological reference values

TABLE 208 Comparison of toxicological reference values (TRVs) derived by JMPR and at EU level.

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.05 mg/kg bw per day	JMPR (2023)	0.05 mg/kg bw per day	EFSA (2023) (Developmental NOAEL in the developmental toxicity study in rat, supported by 2-year rat study; UF 100)	Yes
ARfD	0.05 mg/kg bw	JMPR (2023)	0.05 mg/kg bw	EFSA (2023) (Developmental NOAEL in the rat developmental toxicity study); UF 100)	Yes
Conclusion/ comments a.s.	 In the EU assessment, parent tricyclazole was found unlikely to be genotoxic and unlikely to be carcinogenic (EFSA, 2023a) Similar conclusion was derived by the JMPR Metabolites included in JMPR RD for RA: 1,3,4-triazolo[3,4-b][1,3]benzo-thiazol-5-methanol (X355227) Covered by parent based on lower toxicity of metabolite Metabolites included in EU RD for RA: tricyclazole-OH ([1,2,4]triazolo[3,4-b][1,3]benzothiazol-5-yl)methanol, X355227: The metabolite is unlikely to be genotoxic. Similar toxicity profile to parent (equally or less toxic than parent tricyclazole). Reference values of tricyclazole are applicable (EFSA, 2023a) Based on overall evidence, EFSA concluded that metabolite tricyclazole-OH has a similar toxicity profile and is equally or less toxic than tricyclazole parent compound 			nic	
Comments on metabolites					

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; bw, body weight; NOAEL, no observed adverse effect level; RD, residue definition; RA, risk assessment; UF, uncertainty factor.

⁷²Commission Implementing Regulation (EU) 2016/1826 of 14 October 2016 concerning the non-approval of the active substance tricyclazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 279, 15.10.2016, p. 88–89.

⁷³Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

⁷⁴Regulation (EC) No 1107/2009 of 21 October 2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

⁷⁵Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.33.3 | Residue definitions

TABLE 209	Comparison of the residue definitio	ns derived by JMPR and at EU level.
-----------	-------------------------------------	-------------------------------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Tricyclazole	Reg. 396/2005: Tricyclazole	Yes
			Peer review (EFSA, 2015b): Tricyclazole	
	Animal	Tricyclazole	Reg. 396/2005: Tricyclazole	Yes
	products	The residue is not fat soluble	Peer review (EFSA, <mark>2015b</mark>): None proposed	
			The residue is not fat soluble	
RD-RA	I D-RA Plant products	Sum of tricyclazole and 1,3,4-triazolo[3,4-b][1,3]benzo- thiazol-5-methanol, expressed as tricyclazole	Art. 10. reasoned opinion (EFSA, 2023a): Sum of tricyclazole and tricyclazole-OH, expressed as tricyclazole	Yes
			Peer review (EFSA, 2015b): Provisionally proposed as tricyclazole and tricyclazole-OH (not finalised; genotoxicity and carcinogenicity potential to be defined for parent)	
	Animal products	Sum of tricyclazole and 1,3,4-triazolo[3,4-b][1,3]benzo- thiazol-5-methanol, expressed	Art. 10. reasoned opinion (EFSA, 2023a): No RD derived, as calculated DB did not exceed the trigger value	Not applicable
		as tricyclazole	Peer review (EFSA, 2015b): None proposed, assessment currently not triggered by primary crop (rice), however pending the finalisation of the assessment of rotational crop residues	
Conclusion, comments	Metabolism was ii rice	nvestigated only in rice (flooded conditi	ions). The experimental conditions were representa	tive for the GAP in

Abbreviations: GAP, Good Agricultural Practice; RD, residue definition; RD enf, residue definition for enforcement practice; RD-RA, residue definition for risk assessment.

5.33.4 | Analytical methods

TABLE 210 Summary of available analytical methods.

Matrices (relevant for Codex MRL proposals)	Validated methods available (incl. extraction efficiency)	LOQ (mg/kg)	Remark
Plant commodities: Dry commodities	No validation data reported in JMPR report	0.05	Extraction using various organic solvents and LC–MS/MS analysis (rice)
Animal products Muscle/meat Fat Liver/kidney Milk Eggs	No validation data reported in JMPR report	0.01	Extraction using various organic solvents and LC–MS/MS analysis (ruminant and poultry tissues); QuEChERS extraction, clean-up with SPE, LC–MS/MS analysis (egg, milk, kidney and fat)
Conclusion			groups of dry commodities and edible offal cussion. For the remaining commodities, the fficiently validated for the enforcement of the ca are not presented in detail, but most likely, ot yet published ities (cereal grain) with an LOQ of 0.005 mg/

Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; LOQ, limit of quantification; MRL: maximum residue level; QuEChERS: Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method); SPE: solid-phase extraction.

5.33.5 | Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL/ proposed MRL	Comment
Edible offal (mammalian)	0.1	0.01*	 Max. dietary burden (beef): Japan, 2.15 ppm Max. residues in liver: 0.07 mg/kg Sufficiently supported by data: Yes Specific comments: It is noted that the dietary burden calculation for tricyclazole was not presented in Annex VI of the JMPR report. A slightly lower MRL might be sufficient (e.g. 0.07 or 0.08 mg/kg) Conclusion: The proposed Codex MRL is sufficiently supported by data. Risk managers to discuss the EU position, considering that a lower MRL would be considered sufficient Follow-up action: None
Eggs	0.01*	0.01*	 Max. dietary burden (poultry layer): 0.442 or 0.289 ppm (see specific comments) Mean/max. residues in eggs: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: EFSA noted a discrepancy regarding the information reported in the JMPR Report on the mean and maximum dietary burden for poultry. In the table summarising the dietary burden (p. 470), it is reported as 0.442 ppm, while on p. 471, 0.289 ppm are reported. As the dietary burden calculation for tricyclazole was not presented in Annex VI of the JMPR report, the correct value could not be retrieved. However, residues above the LOQ are not expected Conclusion: The proposed Codex MRL is sufficiently supported by data. JMPR should be asked to provide further information on the expected dietary burden Follow-up action: None
Husked rice	0.3	0.01*/0.09 ^a	cGAP: Uruguay, 2×0.3 kg/ha, 14-day RTI, 30-day PHI Number of trials: 12 trials matching or approximating the cGAP Sufficiently supported by data: Yes Specific comments: A slightly less critical GAP was assessed in the EU (EFSA, 2023a) 2×0.225 kg/ha, 14- or 30-day RTI, 30-day PHI, leading to a MRL proposal of 0.09 mg/kg Conclusion: The proposed Codex MRL is sufficiently supported by data. However, details on the residue trials should be checked in the JMPR evaluation Follow-up action: To check in the JMPR evaluation whether the trials are sufficiently representative for the GAP and to understand why EU trials for a similar GAP lead to a significantly different MRL
Mammalian fats (except milk fats)	0.01*	0.01*	Max. dietary burden (beef): Japan, 2.15 ppm Max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Sufficiently supported by data: Yes Specific comments: It is noted that the dietary burden calculation for tricyclazole was not presented in Annex VI of the JMPR report Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Meat (from mammals other than marine mammals)	0.01*	– Muscle: 0.01*	 Max. dietary burden (beef): Japan, 2.15 ppm. Max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Sufficiently supported by data: Yes Specific comments: The dietary burden calculation for tricyclazole is missing in Annex VI of the JMPR report. It is noted that according to the new Codex food classification, CXLs are established for muscle (MM 0095); hence, the commodity description should be changed to 'Muscle (from mammals other than marine mammals)' Conclusion: The proposed Codex MRL is sufficiently supported by data Follow-up action: None
Milks	0.01*	0.01*	Max. dietary burden (dairy): Japan, 0.976 ppm Max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Sufficiently supported by data: Yes Specific comments: Even at the highest dose level of the feeding study (15N), neither tricyclazole nor tricyclazole-OH was detected in milk. It is noted that the dietary burden calculation for tricyclazole was not presented in Annex VI of the JMPR report Conclusion: The proposed Codex MRL is sufficiently supported by data. Follow-up action: None
Polished rice	0.3	_	JMPR estimated that in polished rice the same residue levels as in husked rice will occur

(Continues)

TABLE 211 (Continued)

(Continued)	,		
Commodity	Codex MRL proposal	EU MRL/ proposed MRL	Comment
Poultry fats	0.01*	0.01*	 Max. dietary burden (poultry layer and broiler): 0.442 or 0.289 ppm (see specific comments) Mean/max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: See specific comments reported for eggs. Residues above the LOQ are not expected Conclusion: The proposed Codex MRL is sufficiently supported by data. JMPR should be asked to provide further information on the expected dietary burden
			Follow-up action: None
Poultry meat	0.01*	– Muscle: 0.01*	 Max. dietary burden (poultry layer and broiler): 0.442 or 0.289 ppm (see specific comments) Mean/max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: See specific comments reported for eggs. Residues above the LOQ are not expected Conclusion: The proposed Codex MRL is sufficiently supported by data. JMPR should be asked to provide further information on the expected dietary burden Follow-up action: None
Poultry, edible offal of	0.01*	0.01*	 Max. dietary burden (poultry layer and broiler): 0.442 or 0.289 ppm (see specific comments). Mean/max. residues in fat: < 0.01 mg/kg Sufficiently supported by data: Yes Specific comments: See specific comments reported for eggs. Residues above the LOQ are not expected Conclusion: The proposed Codex MRL is sufficiently supported by data. JMPR should be asked to provide further information on the expected dietary burden Follow-up action: None
Rice	5	_	See husked rice. EU MRLs are set for husked rice, but not for rice grain
Rice, hay and/or straw	5 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice, hulls	15 (dw)	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice bran, unprocessed	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
Rice germ	-	-	Not relevant; currently, no EU MRLs are established for products exclusively used for feed purpose
General comments	-		

Abbreviations: CXL, Codex maximum residue limit; cGAP, critical Good Agricultural Practice; dw, dry weight; LOQ, limit of quantification; MRL, maximum residue level; PHI, pre-harvest interval; RTI: re-treatment interval.

*Indicates that the input value is proposed at the limit of quantification.

^aMRL proposal derived in EFSA (2023a). The MRL was not implemented in Regulation (EC) No 396/2005.

5.33.6 | Consumer risk assessment

 TABLE 212
 Summary of the consumer risk assessment.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The risk assessment was performed with the EU ARfD The short-term dietary risk assessment (PRIMo rev. 3.1) was performed for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. husked rice, animal products). For animal products, except edible offal (mammalian) and edible offal of poultry, the calculations were performed with the LOQ of 0.01 mg/kg	RA assumptions: The risk assessment was performed with the EU ADI A long-term dietary risk assessment was performed using PRIMo rev. 3.1 (normal mode), including the STMR values derived by JMPR for the commodities for which Codex MRLs were derived For animal products, except edible offal (mammalian) and edible offal of poultry, the calculations were performed with the LOQ of 0.01 mg/kg	Specific comments: –

TABLE 212 (Continued)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term consumer health risk was identified for the commodities under assessment Results for the most important commodities Bovine liver: 3% of ARfD Milk, cattle: 2% Rice: 0.3%	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 2% of the ADI (NL toddler) Among the crops under consideration, cattle milk was identified as the main contributor, accounting for up to 1.2% of the ADI	Results: Long-term exposure: 0% of the JMPR ADI GECDE mean: Max. 1% (infants and toddler) GECDE max: Max. 1% (infants and toddler) Short-term exposure: Highest result for rice: 20% of ARfD

Abbreviations: ADI, acceptable daily intake; ARfD, acute reference dose; GECDE: global estimate of chronic dietary exposure; LOQ, limit of quantification; MRL, maximum residue level; RA, risk assessment; STMR, supervised trials median residue.

5.33.7 | Conclusions

TABLE 213 Summary of the assessment.

Subsection of the assessment	Findings relevant for discussion of EU position
Background information	A.s. not approved in the EU
Toxicological assessment	EU TRV available
Residue definitions	EU and Codex RDs are identical
Analytical methods	According to JMPR assessment, sufficiently validated analytical methods are available. EURLs confirm the availability of analytical methods for MRL enforcement
Codex MRL proposals	The proposed Codex MRLs are sufficiently supported by data. Details of the residue trials should be checked in the JMPR Evaluation (to ensure the trials are sufficiently representative for the GAP)
Dietary risk assessment	No acute and no chronic intake concern identified
Final conclusion	EU position to be discussed/decided by risk managers

Abbreviations: a.s., active substance; MRL, maximum residue level; RD, residue definition; TRV, toxicological reference value.

ABBREVIATIONS

AChE	acetylcholinesterase
ADI	acceptable daily intake
AEL	acceptable exposure level
AhR	aryl hydrocarbon receptor
ARfD	acute reference dose
a.s.	active substance
bw	body weight
BBCH	growth stages of mono- and dicotyledonous plants
BMD	benchmark dose
CCPR	Codex Committee on Pesticide Residues
cGAP	critical Good Agricultural Practice
CXL	Codex maximum residue limit (Codex MRL)
DAR	Draft Assessment Report
dw	dry weight
ED	endocrine disruptor
eq	residue expressed as a.s. equivalent
EURLs	European Reference Laboratories
EWG	electronic working group
FAO	Food and Agriculture Organization of the United Nations
GAP	Good Agricultural Practice
GC	gas chromatography
GC-ECD	gas chromatography with electron capture detector
GC–MS	gas chromatography with mass spectrometry
GC–MS/MS	gas chromatography with tandem mass spectrometry
GECDE	global estimate of chronic dietary exposure
GLC-EC	gas–liquid chromatography with electron-capture detection
GLP	Good Laboratory Practice
HPLC-MS	liquid chromatography with tandem mass spectrometry

HPLC-MS/MS	high-performance liquid chromatography with tandem mass spectrometry
HPLC-UV	high-performance liquid chromatographic method coupled with ultraviolet detector
HR	highest residue
IEDI	international estimated daily intake
JMPR	Joint FAO/WHO Meeting on Pesticide Residues
KMD	kinetically derived maximum dose
LC-MS	liquid chromatography–mass spectrometry
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LC-QTOF	liquid chromatography quadrupole time-of-flight mass spectrometry
LC-UV	liquid chromatography with ultraviolet detection
	lethal dose, median
LD ₅₀ LOAEL	lowest observed adverse effect level
LOQ	limit of quantification
MOE	margin of exposure maximum residue level
MRL	
MS	Member States
MTD	maximum tolerated dose
NEU	Northern European Union
NOAEL	no observed adverse effect level
NOEL	no observed effect level
n.a.	not applicable
NTP	National Toxicology Program
OECD	Organisation for Economic Co-operation and Development
PBI	plant-back interval
PF	processing factor
PHI	pre-harvest interval
Ро	post-harvest
PRIMo	(EFSA) Pesticide Residues Intake Model
QuEChERS	Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method)
RA	risk assessment
RAC	Committee for Risk Assessment
RAR	Renewal Assessment Report
RD	residue definition
RD enf	residue definition for enforcement practice
RD-RA	residue definition for risk assessment
RMS	rapporteur Member State
RPF	relative potency factor
RTI	re-treatment interval
SEU	Southern European Union
SPE	solid-phase extraction
STMR	supervised trials median residue
TDM	triazole derivative metabolite
ToR	Terms of Reference
TRV	toxicological reference value
TTC	threshold of toxicological concern
TRR	total radioactive residues
WHO	World Health Organization
UF	uncertainty factor

CONFLICT OF INTEREST

If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu.

REQUESTOR

European Commission

QUESTION NUMBER

EFSA-Q-2023-00897

COPYRIGHT FOR NON-EFSA CONTENT

EFSA may include images or other content for which it does not hold copyright. In such cases, EFSA indicates the copyright holder and users should seek permission to reproduce the content from the original source.

REFERENCES

- CCPR (Codex Committee on Pesticide Residues). (2023). Report of the 54th Session of the Codex Committee on Pesticide Residues, 26 June 1 July 2023. ECHA (European Chemicals Agency). (2012a). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of fluazinam (ISO), June 2012. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2012b). Assessment report on diflubenzuron prepared by the Evaluating Competent Authority Sweden in the framework of Directive 98/8/EC, September 2012. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2014a). Assessment report on permethrin prepared by the Evaluating Competent Authority Ireland in the framework of Regulation (EU) No 528/2012 the making available on the market and use of biocidal products, April 2014. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2014b). Assessment report on dinotefuran prepared by the Evaluating Competent Authority UK in the framework of Regulation (EU) No 528/2012, June 2014. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2014c). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of fluopyram, December 2014. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2016). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of propiconazole (ISO); (2RS,4RS;2RS,4SR)-1-{[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl}-1H-1,2,4-triazole, December 2016. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2017). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of cyflumetofen (ISO); 2-methoxyethyl (RS) -2-(4-tert-butylphenyl)-2-cyano-3-oxo-3-(α,α,αtrifluoro-o-tolyl)propionate, December 2017. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2018). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of oxathiapiprolin (ISO); 1-(4-{4-[5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3- thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3- (trifluoromethyl)-1H-pyrazol-1-yl]ethanone, November 2018. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019a). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of thiophanate-methyl (ISO); dimethyl (1,2- phenylenedicarbamothioyl)biscarbamate; dimethyl 4,4'-(o-phenylene)bis(3- thioallophanate), March 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019b). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of emamectin benzoate (ISO); (4"R)-4"-deoxy-4"-(methylamino)avermectin B1 benzoate, September 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019c). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of carbendazim (ISO); methyl benzimidazol-2- ylcarbamate, December 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019d). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of 1,4-dimethylnaphthalene, December 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019e). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of cypermethrin (ISO); α-cyano-3-phenoxybenzyl 3- (2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate; cypermethrin cis/trans +/- 40/60, December 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2019f). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of thiamethoxam (ISO); 3-(2-chloro-thiazol-5-ylmethyl)-5-methyl[1,3,5]oxadiazinan-4-ylidene-N-nitroamine, December 2019. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2020a). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of acetamiprid (ISO); (1E)-N-[(6-chloropyridin-3- yl)methyl]-N'-cyano-N-methylethanimidamide; (E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1- methylacetamidine, May 2020. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2020b). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of N-(5-chloro-2-isopropylbenzyl)-N-cyclopropyl-3- (difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole4-carboxamide; isoflucypram, October 2020. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2021a). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of mepiquat chloride (ISO); 1,1-dimethylpiperidinium chloride, March 2021. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2021b). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of difenoconazole (ISO); 1-{{2-[2-chloro-4-(4- chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole; 3-chloro-4-[(2RS,4RS;2RS,4SR)-4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4- chlorophenyl ether, June 2021. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2021c). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of clothianidin (ISO); (E)-1-(2-chloro-1,3-thiazol-5- ylmethyl)-3-methyl-2-nitroguanidine, September 2021. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2022). Biocidal Products Committee (BPC). Opinion on the application for approval of the active substance: propiconazole. ECHA/BPC/324/2022. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2023a). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of *Chrysanthemum cinerariaefolium*, extract from open and mature flowers of *Tanacetum cinerariifolium* obtained with hydrocarbon solvents, June 2023. www.echa.europa.eu
- ECHA (European Chemicals Agency). (2023b). Committee for Risk Assessment (RAC). Opinion proposing harmonised classification and labelling at EU level of dinotefuran (ISO); (RS)-1-methyl-2-nitro-3- (tetrahydro-3-furylmethyl)guanidine, September 2023. www.echa.europa.eu
- EFSA (European Food Safety Authority). (2008a). Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluazinam. EFSA Journal, 6(7), 137r. https://doi.org/10.2903/j.efsa.2008.137r
- EFSA (European Food Safety Authority). (2008b). Conclusion regarding the peer review of the pesticide risk assessment of the active substance mepiquat. EFSA Journal, 6(7), RN-146. https://doi.org/10.2903/j.efsa.2008.146r
- EFSA (European Food Safety Authority). (2008c). Reasoned opinion on the MRLs of concern for the active substances benfuracarb and carbosulfan. EFSA Scientific Report, 6(11), 171. https://doi.org/10.2903/j.efsa.2008.171
- EFSA (European Food Safety Authority). (2009a). Conclusion regarding the peer review of the pesticide risk assessment of the active substance zetacypermethrin. *EFSA Journal*, 7(1), RN-196. https://doi.org/10.2903/j.efsa.2009.196r
- EFSA (European Food Safety Authority). (2009b). Reasoned opinion on the refined risk assessment regarding certain MRLs of concern for the active substances carbendazim and thiophanate-methyl. *EFSA Scientific Report*, 289. https://doi.org/10.2903/j.efsa.2009.289r
- EFSA (European Food Safety Authority). (2009c). Conclusion on pesticide peer review regarding the risk assessment of the active substance carbofuran. EFSA Scientific Report, 310. https://doi.org/10.2903/j.efsa.2009.310r
- EFSA (European Food Safety Authority). (2009d). Conclusion on pesticide peer review regarding the risk assessment of the active substance diflubenzuron. EFSA Scientific Report, 332. https://doi.org/10.2903/j.efsa.2009.332r
- EFSA (European Food Safety Authority). (2009e). Reasoned opinion on the modification of the existing MRLs for difenoconazole in various leafy vegetables. EFSA Scientific Report, 337. https://doi.org/10.2903/j.efsa.2009.337r
- EFSA (European Food Safety Authority). (2009f). Conclusion on the peer review of the pesticide risk assessment of the active substance carbosulfan. EFSA Journal, 7(10), 1354. https://doi.org/10.2903/j.efsa.2009.1354

- EFSA (European Food Safety Authority). (2010a). Reasoned opinion on the modification of the existing MRLs for difenoconazole in swedes and turnips. EFSA Journal, 8(2), 1510. https://doi.org/10.2903/j.efsa.2010.1510
- EFSA (European Food Safety Authority). (2010b). Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. *EFSA Journal*, 8(5), 1598. https://doi.org/10.2903/j.efsa.2010.1598
- EFSA (European Food Safety Authority). (2010c). Reasoned opinion on the modification of the existing MRLs for difenoconazole in peppers and aubergines. EFSA Journal, 8(6), 1651. https://doi.org/10.2903/j.efsa.2010.1651
- EFSA (European Food Safety Authority). (2011a). Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole. EFSA Journal, 9(1), 1967. https://doi.org/10.2903/j.efsa.2011.1967
- EFSA (European Food Safety Authority). (2011b). Reasoned opinion on the modification of the existing MRLs for difenoconazole in beet leaves (chard), globe artichokes, broccoli, cardoons and strawberries. *EFSA Journal*, 9(5), 2153. https://doi.org/10.2903/j.efsa.2011.2153
- EFSA (European Food Safety Authority). (2011c). Conclusion on the peer review of the pesticide risk assessment of the active substance prochloraz. EFSA Journal, 9(7), 2323. https://doi.org/10.2903/j.efsa.2011.2323
- EFSA (European Food Safety Authority). (2011d). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for acetamiprid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 9(7), 2328. https://doi.org/10.2903/j.efsa.2011.2328
- EFSA (European Food Safety Authority). (2012a). Conclusion on the peer review of the pesticide risk assessment of the active substance cyflumetofen. EFSA Journal, 10(1), 2504. https://doi.org/10.2903/j.efsa.2012.2504
- EFSA (European Food Safety Authority). (2012b). Reasoned opinion on the modification of the existing MRLs for difenoconazole in raspberries, blackberries and cucurbits (edible peel). EFSA Journal, 10(8), 2867. https://doi.org/10.2903/j.efsa.2012.2867
- EFSA (European Food Safety Authority). (2012c). Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance diflubenzuron. EFSA Journal, 10(9), 2870. https://doi.org/10.2903/j.efsa.2012.2870
- EFSA (European Food Safety Authority). (2012d). Conclusion on the peer review of the pesticide risk assessment of the active substance emamectin. EFSA Journal, 10(11), 2955. https://doi.org/10.2903/j.efsa.2012.2955
- EFSA (European Food Safety Authority). (2012e). Reasoned opinion on the modification of the existing MRLs for acetamiprid in purslane, legume vegetables and pulses (beans and peas). *EFSA Journal*, 10(12), 3051. https://doi.org/10.2903/j.efsa.2012.3051
- EFSA (European Food Safety Authority). (2013a). Conclusion on the peer review of the pesticide risk assessment of the active substance pyrethrins. EFSA Journal, 11(1), 3032. https://doi.org/10.2903/j.efsa.2013.3032
- EFSA (European Food Safety Authority). (2013b). Conclusion on the peer review of the pesticide risk assessment of the active substance fluopyram. EFSA Journal, 11(4), 3052. https://doi.org/10.2903/j.efsa.2013.3052
- EFSA (European Food Safety Authority). (2013c). Reasoned Opinion on the modification of the existing MRLs for difenoconazole in various crops. EFSA Journal, 11(3), 3149. https://doi.org/10.2903/j.efsa.2013.3149
- EFSA (European Food Safety Authority). (2013d). Conclusion on the peer review of the pesticide risk assessment of the active substance 1,4-dimethylnaphthalene. *EFSA Journal*, 11(10), 3229. https://doi.org/10.2903/j.efsa.2013.3229
- EFSA (European Food Safety Authority). (2013e). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for iprodione according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 11(10), 3438. https://doi.org/10.2903/j.efsa.2013.3438
- EFSA (European Food Safety Authority). (2013f). Reasoned opinion on the modification of the existing maximum residue level (MRL) for acetamiprid in apricots and tree nuts. *EFSA Journal*, *11*(12), 3506. https://doi.org/10.2903/j.efsa.2013.3506
- EFSA (European Food Safety Authority). (2014a). Reasoned opinion on the review of the existing MRLs for carbofuran, carbosulfan, benfuracarb and furathiocarb and the setting of an import tolerance for carbofuran in cultivated mushrooms. *EFSA Journal*, *12*(2), 3559. https://doi.org/10.2903/j. efsa.2014.3559
- EFSA (European Food Safety Authority). (2014b). Reasoned opinion on the modification of the existing MRLs for difenoconazole in peppers and aubergines. EFSA Journal, 12(4), 3676. https://doi.org/10.2903/j.efsa.2014.3676
- EFSA (European Food Safety Authority). (2014c). Reasoned opinion on the setting of MRLs for imazapyr in genetically modified soya bean and other oilseeds and in lentils. *EFSA Journal*, 12(6), 3743. https://doi.org/10.2903/j.efsa.2014.3743
- EFSA (European Food Safety Authority). (2014d). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for boscalid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 12(7), 3799. https://doi.org/10.2903/j.efsa.2014.3799
- EFSA (European Food Safety Authority). (2014e). Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA Journal, 12(9), 3814. https://doi.org/10.2903/j.efsa.2014.3814
- EFSA (European Food Safety Authority). (2014f). Reasoned opinion on the modification of the existing MRL for acetamiprid in bananas. *EFSA Journal*, 12(9), 3824. https://doi.org/10.2903/j.efsa.2014.3824
- EFSA (European Food Safety Authority). (2014g). Reasoned opinion on the modification of the existing MRLs for difenoconazole in lettuce and other salad plants including Brassicaceae and in basil (mint). *EFSA Journal*, *12*(10), 3882. https://doi.org/10.2903/j.efsa.2014.3882
- EFSA (European Food Safety Authority). (2014h). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for clothianidin and thiamethoxam according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 12(12), 3918. https://doi.org/10.2903/j.efsa.2014.3918
- EFSA (European Food Safety Authority). (2014i). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for thiophanate-methyl and carbendazim according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, *12*(12), 3919. https://doi.org/10.2903/j.efsa.2014.3919
- EFSA (European Food Safety Authority). (2014j). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment of confirmatory data for the active substance difenoconazole. *EFSA Supporting Publications*, EN-680. https://doi.org/10.2903/sp.efsa.2014.EN-680
- EFSA (European Food Safety Authority). (2015a). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propiconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 13(1), 3975. https://doi.org/10.2903/j.efsa.2015.3975
- EFSA (European Food Safety Authority). (2015b). Conclusion on the peer review of the pesticide risk assessment of the active substance tricyclazole. EFSA Journal, 13(2), 4032. https://doi.org/10.2903/j.efsa.2015.4032
- EFSA (European Food Safety Authority). (2015c). Reasoned opinion on the modification of the existing maximum residue levels (MRLs) for boscalid in beans and peas with pods. *EFSA Journal*, *13*(3), 4045. https://doi.org/10.2903/j.efsa.2015.4045
- EFSA (European Food Safety Authority). (2015d). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for mepiquat according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, 13(8), 4214. https://doi.org/10.2903/j.efsa.2015.4214
- EFSA (European Food Safety Authority). (2015e). Conclusion on the pesticides peer review on the review of the approval of the active substance diflubenzuron regarding the metabolite PCA. *EFSA Journal*, *13*(12), 4222. https://doi.org/10.2903/j.efsa.2015.4222
- EFSA (European Food Safety Authority). (2015f). Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in leafy brassicas. EFSA Journal, 13(10), 4229. https://doi.org/10.2903/j.efsa.2015.4229
- EFSA (European Food Safety Authority). (2015g). Reasoned opinion on the review of the existing maximum residue levels for fluazinam according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 13(9), 4240. https://doi.org/10.2903/j.efsa.2015.4240
- EFSA (European Food Safety Authority). (2015h). Reasoned opinion on the review of the existing maximum residue levels for deltamethrin according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, 13(11), 4309. https://doi.org/10.2903/j.efsa.2015.4309

- EFSA (European Food Safety Authority). (2015i). Technical report on the outcome of the consultation with member states, applicant and EFSA on the pesticide risk assessment of confirmatory data for the active substance prochloraz. *EFSA Supporting Publications*, EN-730. https://doi.org/10.2903/sp.efsa.2015.EN-730
- EFSA (European Food Safety Authority). (2015j). Technical report on the outcome of the consultation with member states, the applicants and EFSA on the pesticide risk assessment for pyrethrins in light of confirmatory data. *EFSA Supporting Publications*, EN-800. doi:10.2903/sp.efsa.2015.EN-800
- EFSA (European Food Safety Authority). (2016a). Reasoned opinion on the setting of a temporary maximum residue level for mepiquat in cultivated fungi. EFSA Journal, 14(2), 4315. https://doi.org/10.2903/j.efsa.2016.4315
- EFSA (European Food Safety Authority). (2016b). Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in various crops. *EFSA Journal*, 14(2), 4385. https://doi.org/10.2903/j.efsa.2016.4385
- EFSA (European Food Safety Authority). (2016c). Reasoned opinion on the setting of import tolerance for fluazinam in blueberries. *EFSA Journal*, 14(4), 4460. https://doi.org/10.2903/j.efsa.2016.4460
- EFSA (European Food Safety Authority). (2016d). Conclusion on the peer review of the pesticide risk assessment of the active substance oxathiapiprolin. EFSA Journal, 14(7), 4504. https://doi.org/10.2903/j.efsa.2016.4504
- EFSA (European Food Safety Authority). (2016e). Conclusion on the peer review of the pesticide risk assessment of the active substance iprodione. *EFSA Journal*, *14*(11), 4609. https://doi.org/10.2903/j.efsa.2016.4609
- EFSA (European Food Safety Authority). (2016f). Conclusion on the peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA Journal, 14(11), 4610. https://doi.org/10.2903/j.efsa.2016.4610
- EFSA (European Food Safety Authority). (2016g). Reasoned opinion on the setting of maximum residue levels for amitraz, coumaphos, flumequine, oxytetracycline, permethrin and streptomycin in certain products of animal origin. *EFSA Journal*, 14(8), 4570. https://doi.org/10.2903/j.efsa.2016.4570
- EFSA (European Food Safety Authority). (2016h). Conclusion on the peer review of the pesticide risk assessment for the active substance cyflumetofen in light of confirmatory data submitted. EFSA Journal, 14(12), 4635. https://doi.org/10.2903/j.efsa.2016.4635
- EFSA (European Food Safety Authority). (2016i). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for cyflumetofen in light of confirmatory data. *EFSA Supporting Publications*, EN-997. https://doi.org/10.2903/sp.efsa. 2016.EN-997
- EFSA (European Food Safety Authority). (2017a). Reasoned opinion on the modification of the existing maximum residue levels for deltamethrin in celery, Florence Fennel and Rhubarb. *EFSA Journal*, *15*(1), 4683. https://doi.org/10.2903/j.efsa.2017.4683
- EFSA (European Food Safety Authority), Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., De Maglie, M., Egsmose, M., Erdos, Z., Fait, G., Ferreira, L., Goumenou, M., ... Villamar-Bouza, L. (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance propiconazole. *EFSA Journal*, *15*(7), 4887. https:// doi.org/10.2903/j.efsa.2017.4887
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2017c). Reasoned opinion on the modification of the existing maximum residue levels for difenoconazole in various crops. *EFSA Journal*, *15*(7), 4893. https://doi.org/ 10.2903/j.efsa.2017.4893
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2017d). Reasoned opinion on the modification of the existing maximum residue levels for fluazinam in onions, shallots and garlic. *EFSA Journal*, *15*(7), 4904. https:// doi.org/10.2903/j.efsa.2017.4904
- EFSA (European Food Safety Authority). (2017e). Statement on pesticide active substances that do not require a review of the existing maximum residue levels under Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 15(12), 5080. https://doi.org/10.2903/j.efsa.2017.5080
- EFSA (European Food Safety Authority). (2017f). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for pyrethrins in light of confirmatory data. *EFSA Supporting Publications*, EN-1212. https://doi.org/10.2903/sp.efsa. 2017.EN-1212
- EFSA (European Food Safety Authority). (2017g). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for 1,4-dimethylnaphthalene in light of confirmatory data. *EFSA Supporting Publications*, EN-1225. https://doi.org/10.2903/sp.efsa.2017.EN-1225
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2018a). Reasoned opinion on the setting of a maximum residue level for cyantraniliprole in leeks. *EFSA Journal*, *16*(1), 5124. https://doi.org/10.2903/j.efsa.2018.5124
- EFSA (European Food Safety Authority), Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., Egsmose, M., Erdos, Z., Fait, G., Ferreira, L., Goumenou, M., Greco, L., ... Villamar-Bouza, L. (2018b). Conclusion on the peer review of the pesticide risk assessment of the active substance thiophanate-methyl. *EFSA Journal*, *16*(1), 5133. https://doi. org/10.2903/j.efsa.2018.5133
- EFSA (European Food Safety Authority), Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., Egsmose, M., Erdos, Z., Fait, G., Ferreira, L., Goumenou, M., Greco, L., ... Villamar-Bouza, L. (2018c). Conclusion on the peer review of the pesticide risk assessment of the active substance indoxacarb. *EFSA Journal*, *16*(1), 5140. https://doi.org/10. 2903/j.efsa.2018.5140
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Janossy, J., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., ... Villamar-Bouza, L. (2018d). Reasoned opinion on the modification of the existing maximum residue levels for difenoconazole in various crops. *EFSA Journal*, *16*(1), 5143. https://doi.org/ 10.2903/j.efsa.2018.5143
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Ferreira, L., Greco, L., Jarrah, S., Leuschner, R., Medina, P., Miron, I., Nougadere, A., Pedersen, R., Reich, H., Santos, M., Stanek, A., Tarazona, J., Theobald, A., & Villamar-Bouza, L. (2018e). Guidance on use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). *EFSA Journal*, *16*(1), 5147. https://doi.org/10.2903/j.efsa.2018.5147
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2018f). Reasoned opinion on the modification of the existing maximum residue level for deltamethrin in kale. *EFSA Journal*, *16*(1), 5153. https://doi.org/10.2903/j. efsa.2018.5153
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2018g). Reasoned opinion on the modification of a maximum residue level for mepiquat in cotton seeds. *EFSA Journal*, *16*(2), 5162. https://doi.org/10.2903/j.efsa. 2018.5162
- EFSA (European Food Safety Authority). (2018h). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules. *EFSA Journal*, *16*(2), 5177. https://doi.org/10.2903/j.efsa.2018.5177

- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Cabrera, L. C., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Pedersen, R., Reich, H., Riemenschneider, C., Sacchi, A., ... Villamar-Bouza, L. (2018i). Reasoned opinion on the modification of the existing maximum residue levels for emamectin in leafy brassica and beans and peas with pods. *EFSA Journal*, *16*(4), 5255. https://doi.org/10.2903/j.efsa.2018.5255
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Pedersen, R., Reich, H., Riemenschneider, C., Sacchi, A., ... Villamar-Bouza, L. (2018j). Reasoned opinion on the focussed assessment of certain existing MRLs of concern for acetamiprid and modification of the existing MRLs for table olives, olives for oil production, barley and oats. *EFSA Journal*, *16*(5), 5262. https://doi.org/10.2903/j.efsa.2018.5262
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., Chiusolo, A., Civitella, C., Court Marques, D., Crivellente, F., De Lentdecker, C., Erdös, Z., Ferreira, L., Goumenou, M., Greco, L., Istace, F., Jarrah, S., Kardassi, D., Leuschner, R., Medina, P., Mineo, D., ... Villamar-Bouza, L. (2018k). Conclusion on the peer review of the pesticide risk assessment for the triazole derivative metabolites in light of confirmatory data submitted. *EFSA Journal*, *16*(7), 5376. https://doi.org/10.2903/j.efsa.2018.5376
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., De Lentdecker, C., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2018l). Reasoned opinion on the modification of the existing maximum residue levels for mepiquat in various oilseeds and animal commodities. *EFSA Journal*, *16*(7), 5380. https://doi.org/10.2903/j.efsa.2018.5380
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lostia, A., Lythgo, C., Medina, P., Miron, I., Molnar, T., Pedersen, R., Reich, H., Sacchi, A., ... Villamar-Bouza, L. (2018m). Reasoned opinion on the review of the existing maximum residue levels for prochloraz according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 16(8), 5401. https://doi.org/10.2903/j.efsa.2018.5401
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lostia, A., Lythgo, C., Medina, P., Miron, I., Molnar, T., Pedersen, R., Reich, H., Sacchi, A., ... Villamar-Bouza, L. (2018n). Reasoned opinion on the modification of the existing maximum residue level for clothianidin in potatoes. *EFSA Journal*, *16*(9), 5413. https://doi. org/10.2903/j.efsa.2018.5413
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Carrasco Cabrera, L., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lostia, A., Lythgo, C., Medina, P., Miron, I., Molnar, T., Pedersen, R., Reich, H., Sacchi, A., ... Villamar-Bouza, L. (2018o). Reasoned opinion on the modification of the existing maximum residue levels for mepiquat in cotton seeds and animal commodities. *EFSA Journal*, *16*(10), 5428. https://doi.org/10.2903/j.efsa.2018.5428
- EFSA (European Food Safety Authority). (2018p). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for fluopyram in light of confirmatory data. *EFSA Supporting Publications*, EN-1359. https://doi.org/10.2903/sp.efsa. 2018.EN-1359
- EFSA (European Food Safety Authority). (2018q). Technical report on the follow up assessment of MRLs for the active substance iprodione. *EFSA Supporting Publications*, EN-1404. https://doi.org/10.2903/sp.efsa.2018.EN-1404
- EFSA (European Food Safety Authority). (2018r). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for oxathiapiprolin in light of confirmatory data. *EFSA Supporting Publications*, EN-1434. https://doi.org/10.2903/sp. efsa.2018.EN-1434
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Raczyk, M., Reich, H., Ruocco, S., Sacchi, A., Santos, M., Stanek, A., ... Verani, A. (2019a). Reasoned opinion on the modification of the temporary maximum residue level for mepiquat in oyster mushrooms. *EFSA Journal*, *17*(7), 5744. https://doi. org/10.2903/j.efsa.2019.5744
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Raczyk, M., Reich, H., Ruocco, S., Sacchi, A., Santos, M., Stanek, A., Theobald, A., ... Verani, A. (2019b). Reasoned opinion on the modification of the existing maximum residue levels and setting of import tolerances for oxathiapiprolin in various commodities. *EFSA Journal*, *17*(7), 5759. https://doi.org/10.2903/j.efsa.2019.5759
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Raczyk, M., Reich, H., Rojas, A., Ruocco, S., Sacchi, A., Santos, M., ... Verani, A. (2019c). Reasoned opinion on the review of the existing maximum residue levels for emamectin according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, *17*(8), 5803. https://doi.org/10.2903/j.efsa.2019.5803
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Stanek, A., Theobald, A., Vagenende, B., & Verani, A. (2019d). Reasoned opinion on the modification of the existing maximum residue level for boscalid in honey. *EFSA Journal*, *17*(11), 5897. https://doi.org/10.2903/j.efsa.2019.5897
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Stanek, A., Theobald, A., Vagenende, B., & Verani, A. (2019e). Reasoned opinion on the modification of the existing maximum residue levels for cyantraniliprole in Chinese cabbages, blackberries and raspberries. *EFSA Journal*, *17*(11), 5903. https://doi.org/10.2903/j.efsa.2019.5903
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Pedersen, R., Raczyk, M., Reich, H., Ruocco, S., Sacchi, A., Santos, M., Stanek, A., Tarazona, J., ... Verani, A. (2019f). Pesticide residue intake model- EFSA PRIMo revision 3.1 (update of EFSA PRIMo revision 3). EFSA Supporting Publications, EN-1605. https://doi.org/10.2903/ sp.efsa.2019.EN-1605
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Stanek, A., Theobald, A., ... Verani, A. (2020a). Reasoned opinion on the review of the existing maximum residue levels for fluopyram according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, *18*(4), 6059. https://doi.org/10.2903/j.efsa.2020.6059
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Stanek, A., Theobald, A., ... Verani, A. (2020b). Reasoned opinion on the setting of import tolerances for oxathiapiprolin in various crops. EFSA Journal, 18(6), 6155. https://doi.org/10.2903/j.efsa.2020.6155
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Theobald, A., ... Verani, A. (2020c). Reasoned opinion on the modification of the existing maximum residue level for boscalid in pomegranates. *EFSA Journal*, *18*(9), 6236. https://doi.org/10. 2903/j.efsa.2020.6236
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Theobald, A., ... Verani, A. (2020d). Reasoned opinion on the modification of the existing maximum residue level for deltamethrin in carobs/Saint John's breads. *EFSA Journal*, *18*(10), 6271. https://doi.org/10.2903/j.efsa.2020.6271

- EFSA (European Food Safety Authority). (2020e). Statement on pesticide active substances that do not require a review of the existing maximum residue levels under Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, 18(12), 6318. https://doi.org/10.2903/j.efsa.2020.6318
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Scarlato, A. P., ... Verani, A. (2021a). Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for propiconazole. *EFSA Journal*, *19*(2), 6405. https://doi.org/ 10.2903/j.efsa.2021.6405
- EFSA (European Food Safety Authority), Anastassiadou, M., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Scarlato, A. P., ... Verani, A. (2021b). Reasoned opinion on the modification of the existing maximum residue levels for difenoconazole in leafy brassica. *EFSA Journal*, *19*(2), 6407. https://doi.org/ 10.2903/j.efsa.2021.6407
- EFSA (European Food Safety Authority), Anastassiadou, M., Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Santos, M., Scarlato, A. P., Theobald, A., ... Verani, A. (2021c). Reasoned opinion on the review of the existing maximum residue levels for 1,4-dimethylnaphthalene according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 19(5), 6597. https://doi.org/10.2903/j.efsa.2021.6597
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2021d). Reasoned opinion on the toxicological properties and maximum residue levels (MRLs) for the benzimidazole substances carbendazim and thiophanate-methyl. *EFSA Journal*, *19*(7), 6773. https://doi.org/10.2903/j.efsa.2021.6773
- EFSA (European Food Safety Authority), Anastassiadou, M., Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., ... Verani, A. (2021e). Reasoned opinion on the modification of the existing maximum residue levels for cyantraniliprole in olives. *EFSA Journal*, *19*(8), 6805. https://doi.org/10. 2903/j.efsa.2021.6805
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2021f). Reasoned opinion on the review of the existing maximum residue levels for cyflumetofen according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, *19*(8), 6812. https://doi.org/10.2903/j.efsa.2021.6812
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2021g). Reasoned opinion on the modification of the existing maximum residue levels for emamectin in various crops. *EFSA Journal*, *16*(8), 682. https://doi.org/10. 2903/j.efsa.2021.6824
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2021h). Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in various crops. *EFSA Journal*, *19*(9), 6830. https://doi.org/10. 2903/j.efsa.2021.6830
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., Theobald, A., ... Verani, A. (2022a). Reasoned opinion on the modification of the existing maximum residue level for oxathiapiprolin in kales/radish leaves. *EFSA Journal*, 20(1), 7049. https://doi.org/10. 2903/j.efsa.2022.7049
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Pia Scarlato, A., Theobald, A., ... Verani, A. (2022b). Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review and modification of the existing maximum residue levels for deltamethrin in tomatoes and okra/lady's fingers. *EFSA Journal*, 20(3), 7107. https://doi.org/10.2903/j.efsa.2022.7107
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Castellan, I., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., Santos, M., ... Verani, A. (2022c). Reasoned opinion on the setting of import tolerances for deltamethrin in mangoes and papayas. *EFSA Journal*, 20(3), 7198. https://doi.org/10.2903/j.efsa.2022.7198
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Castellan, I., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2022d). Reasoned opinion on the modification of the existing maximum residue level for apricots and setting of import tolerances for cyantraniliprole in various crops. *EFSA Journal*, 20(3), 7219. https://doi.org/10.2903/j.efsa.2022.7219
- EFSA (European Food Safety Authority), Alvarez, F., Arena, M., Auteri, D., Binaglia, M., Castoldi, A. F., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., De Lentdecker, C., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Nogareda, L. H., Ippolito, A., Istace, F., Jarrah, S., ... Villamar-Bouza, L. (2022e). Conclusion on the peer review of the pesticide risk assessment of the active substance isoflucypram. *EFSA Journal*, 20(6), 7328. https://doi.org/10. 2903/j.efsa.2022.7328
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Castellan, I., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., Santos, M., ... Verani, A. (2022f). Reasoned opinion on the setting of an import tolerance for oxathiapiprolin in blueberries. *EFSA Journal*, 20(5), 7347. https://doi.org/10.2903/j.efsa.2022.7347
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Castellan, I., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., Santos, M., ... Verani, A. (2022g). Reasoned opinion on the modification of the existing maximum residue level for deltamethrin in maize/corn. *EFSA Journal*, 20(7), 7446. https://doi.org/10.2903/j.efsa. 2022.7446
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Cabrera, L. C., Castellan, I., Ferreira, L., Giner, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., Santos, M., ... Verani, A. (2022h). Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in honey and various oilseed crops. *EFSA Journal*, *20*(8), 7535. https:// doi.org/10.2903/j.efsa.2022.7535
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Castellan, I., Del Aguila, M., Ferreira, L., Giner Santonja, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., ... Theobald, A. (2023a). Reasoned opinion on the setting of import tolerance for tricyclazole in rice. *EFSA Journal*, *21*(1), 7757. https://doi.org/10.2903/j.efsa.2023.7757
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Binaglia, M., Brancato, A., Cabrera, L. C., Castellan, I., Castoldi, A. F., Chiusolo, A., Crivellente, F., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Istace, F., Jarrah, S., Lanzoni, A., Leuschner, R., Magrans, J. O., ... Verani, A. (2023b). Reasoned opinion on the review of the existing maximum residue levels for cypermethrins according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, 21(3), 7800. https://doi.org/10.2903/j.efsa.2023.7800

- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Castellan, I., Del Aguila, M., Ferreira, L., Giner Santonja, G., Greco, L., Jarrah, S., Leuschner, R., Magrans, J. O., Miron, I., Nave, S., Pedersen, R., Reich, H., Robinson, T., Ruocco, S., ... Theobald, A. (2023c). Reasoned opinion on the review of the existing maximum residue levels for dithiocarbamates according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 21(3), 7864. https://doi.org/10.2903/j.efsa.2023.7987
- EFSA (European Food Safety Authority). (2023d). Statement on the review of the residue definitions for risk assessment of pyrethroids forming common metabolites. *EFSA Journal*, 21(5), 8022. https://doi.org/10.2903/j.efsa.2023.8022
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Brancato, A., Carrasco Cabrera, L., Castellan, I., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Jarrah, S., Leuschner, R., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2023e). Reasoned opinion on the modification of the existing maximum residue levels and setting of import tolerances for fluopyram in various crops. *EFSA Journal*, 21(6), 8036. https://doi.org/10.2903/j.efsa.2023.8036
- EFSA (European Food Safety Authority). (2023f). Scientific report on the scientific support for preparing an EU position in the 54th session of the codex committee on pesticide residues (CCPR). *EFSA Journal*, *21*(8), 8111. https://doi.org/10.2903/j.efsa.2023.8111
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Cabrera, L. C., Castellan, I., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Jarrah, S., Leuschner, R., Perez, J. M., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2023g). Reasoned opinion on the modification of the existing maximum residue levels for 1,4-dimethylnaphthalene in potatoes. *EFSA Journal*, *21*(8), 8190. https://doi.org/10. 2903/j.efsa.2023.8190
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Carrasco Cabrera, L., Castellan, I., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Jarrah, S., Leuschner, R., Perez, J. M., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2023h). Reasoned opinion on the modification of the existing maximum residue levels for difenoconazole in wheat and rye. *EFSA Journal*, *21*(8), 8207. https://doi.org/ 10.2903/j.efsa.2023.8207
- EFSA (European Food Safety Authority). (2023i). Statement on the targeted risk assessment for prochloraz. EFSA Journal, 21(8), 8231. https://doi.org/10. 2903/j.efsa.2023.8231
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Carrasco Cabrera, L., Castellan, I., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Jarrah, S., Leuschner, R., Perez, J. M., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., ... Verani, A. (2023j). Reasoned opinion on the modification of the existing maximum residue levels for mefentrifluconazole in various commodities. *EFSA Journal*, *21*(9), 8237. https://doi.org/10.2903/j.efsa.2023.8237
- EFSA (European Food Safety Authority). (2023k). Technical report on the outcome of the consultation with member states, the applicant and EFSA on the pesticide risk assessment for difenoconazole in light of confirmatory data (EN-8474). EFSA Supporting publication. https://doi.org/10.2903/sp.efsa. 2023.EN-8474
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Cabrera, L. C., Castellan, I., Del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., Jarrah, S., Leuschner, R., Miron, I., Nave, S., Pedersen, R., Reich, H., Ruocco, S., Santos, M., Scarlato, A. P., Szot, M., ... Verani, A. (2024a). Reasoned opinion on the modification of the temporary maximum residue levels for mepiquat in cultivated fungi and oyster mushrooms. *EFSA Journal*, *22*(1), e8476. https://doi.org/10.2903/j.efsa.2024.8476
- EFSA (European Food Safety Authority), Bellisai, G., Bernasconi, G., Binaglia, M., Carrasco Cabrera, L., Castellan, I., Castoldi, A. F., Chiusolo, A., Crivellente, F., Del Aguila, M., Ferreira, L., Giner Santonja, G., Greco, L., Istace, F., Jarrah, S., Lanzoni, A., Leuschner, R., Mangas, I., Mioc, A., ... Verani, A. (2024b). Updated reasoned opinion on the toxicological properties and maximum residue levels (MRLs) for the benzimidazole substances carbendazim and thiophanate-methyl. *EFSA Journal*, 22(2), e8569. https://doi.org/10.2903/j.efsa.2024.8569
- EFSA (European Food Safety Authority). (2024c). Scientific report on the assessment of fall-back MRLs for revoked CXLs previously implemented in the EU legislation and review of the JMPR evaluation of the toxicological data related to pyrasulfotole, pyraziflumid, spiropidion and tetraniliprole. *EFSA Journal*, 22(4), e8693. https://doi.org/10.2903/j.efsa.2024.8693
- EFSA (European Food Safety Authority). (2024d). Statement on the assessment of quality of data available to EFSA to derive the health-based guidance values for carbendazim. *EFSA Journal*, 22(5), e8756. https://doi.org/10.2903/j.efsa.2024.8756
- EFSA (European Food Safety Authority), Hernandez-Jerez, A., Coja, T., Paparella, M., Price, A., Henri, J., Focks, A., Louisse, J., Terron, A., Binaglia, M., Guajardo, I. M., Mangas, I., Guajardo, I. M., Ferreira, L., Kardassi, D., De Lentdecker, C., Molnar, T., & Vianello, G. (2024e). Statement on the toxicological properties and maximum residue levels of acetamiprid and its metabolites. *EFSA Journal*, 22(5), e8759. https://doi.org/10.2903/j.efsa.2024.8759
- EFSA (European Food Safety Authority). (2024f). Member States consultation report prepared by EFSA for preparing an EU position for the 55th Session of the Codex Committee on Pesticide Residues (CCPR), 22 May 2024. www.efsa.europa.eu
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). (2013). Scientific opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA Journal, 11(12), 3471. https://doi.org/10.2903/j.efsa.2013.3471
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), Hernandez Jerez, A., Adriaanse, P., Berny, P., Coja, T., Duquesne, S., Focks, A., Marinovich, M., Millet, M., Pelkonen, O., Pieper, S., Tiktak, A., Topping, C., Widenfalk, A., Wilks, M., Wolterink, G., Rundlöf, M., Ippolito, A., Linguadoca, A., ... Aldrich, A. (2022a). Statement on the active substance acetamiprid. *EFSA Journal*, 20(1), 7031. https://doi.org/10.2903/j.efsa.2022.7031
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), Hernandez-Jerez, A. F., Adriaanse, P., Aldrich, A., Berny, P., Duquesne, S., Focks, A., Marinovich, M., Millet, M., Pelkonen, O., Pieper, S., Tiktak, A., Topping, C. J., Widenfalk, A., Wilks, M., Wolterink, G., Binaglia, M., Chiusolo, A., Serafimova, R., ... Coja, T. (2022b). Scientific opinion on toxicity of pyrethroid common metabolites. *EFSA Journal*, 20(10), 7582. https://doi.org/ 10.2903/j.efsa.2022.7582
- EFSA Scientific Committee, More, S. J., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T. I., Hernández-Jerez, A. F., Bennekou, S. H., Koutsoumanis, K., Lambré, C., Machera, K., Mennes, W., Mullins, E., Nielsen, S. S., Schrenk, D., Turck, D., Younes, M., Aerts, M., Edler, L., ... Schlatter, J. (2022). Guidance on the use of the benchmark dose approach in risk assessment. *EFSA Journal*, 20(10), 7584. https://doi.org/10.2903/j.efsa.2022.7584
- European Commission. (2005). Review report for the active substance clothianidin. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 27 January 2006 in view of the inclusion of clothianidin in Annex I of Council Directive 91/414/EEC. SANCO/10533/05-Final, 18 January 2005.
- FAO (Food and Agriculture Organization of the United Nations). (2016). Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed. Pesticide Residues. Third Edition. FAO Plant Production and Protection Paper 225.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2002a). Report 2002 Pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. Rome.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2002b). Deltamethrin. In: Evaluation 2002, part I, residues, volume 1 - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 175/1.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2004a). Carbosulfan. In: Evaluation 2003, part I – Residues. Pesticides residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 177.

- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2004b). Evaluation 2004, Part II, Toxicological - Pesticide residues in food 2004. Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticides Residues.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2011a). Evaluation 2010, Part II, Toxicological - Pesticide residues in food 2010. Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticides Residues.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2011b). Fluopyram. In: Evaluation 2010, part I, residues - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO expert group. FAO Plant Production and Protection Paper 206.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2011c). In: Thiamethoxam. In: Evaluation 2010, part I– Residues. Pesticides residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. Rome. FAO Plant Production and Protection Paper 206.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2012). Dinotefuran. In: Evaluation 2012, part I, residues - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 216.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2013). Report 2012 Pesticide residues in food 2012. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 215.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2015a). Thiamethoxam. In: Evaluation 2014, part I– Residues. Pesticides residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. Rome. FAO Plant Production and Protection Paper 222.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2015b). Clothianidin. In: Evaluation 2014, part I, residues - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 222.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2017). Oxathiapiprolin. In: Evaluation 2016, part I, residues - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 231.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2018a). Acetamiprid. In: Evaluation 2017, part I, residues - pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 233.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2018b). Difenoconazole. In: Evaluation 2017, part I, residues pesticide residues in food 2017. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. FAO Plant Production and Protection Paper 233.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2019). Boscalid. In: Evaluation 2019, part I, residues pesticide residues in food. Extra joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2024). Report 2023 Pesticide residues in food. Joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core assessment group on pesticides residues. Rome. https://doi.org/10.4060/cc9755en
- France. (2017). Revised Renewal Assessment Report (RAR) on indoxacarb prepared by the rapporteur Member State France in the framework of Commission Implementing Regulation (EU) No 844/2012, August 2017. www.efsa.europa.eu
- OECD (Organisation for Economic Co-operation and Development). (2011). OECD MRL calculator: Spreadsheet for single data set and spreadsheet for multiple data set, 2 march 2011. In: Pesticide Publications/Publications on Pesticide Residues.
- Parrilla Vázquez, P., Hakme, E., Uclés, S., Cutillas, V., Martínez Galera, M., Mughari, A. R., & Fernández-Alba, A. R. (2016). Large multiresidue analysis of pesticides in edible vegetable oils by using efficient solid-phase extraction sorbents based on quick, easy, cheap, effective, rugged and safe methodology followed by gas chromatography-tandem mass spectrometry. *Journal of Chromatography A*, 1463, 20–31. https://doi.org/10.1016/j. chroma.2016.08.008

How to cite this article: EFSA (European Food Safety Authority), (2024). Scientific support for preparing an EU position in the 55th Session of the Codex Committee on Pesticide Residues (CCPR). *EFSA Journal*, 22(7), e8841. <u>https://doi.org/10.2903/j.efsa.2024.8841</u>

APPENDIX A

Calculations of Consumer exposure with Pesticide Residue Intake Model (PRIMO)

4	K *	C				ifluconazo							
	*	fsa		LOQs (mg/kg) range		0.01 gical reference v	to:	2.0	Details - ch		Supplementary re chronic risk asses		
	C	I Da 🛄		ADI (mg/kg bw/day):	TOXICOIO	0.035	ARfD (mg/kg bw):	0.15	assessi			ament	
E	Jropean Food	Safety Authority							Details - a	cute risk	Details - acute	risk	
				Source of ADI: Year of evaluation:		EC 2019	Source of ARfD: Year of evaluation:	EC 2019	assessment	:/children	assessment/ad	ults	
	ts:	vision 3.1; 2019/03/19		real of evaluation.		2013	Tear of evaluation.	2013					
	ta.												
						Normal	mode						
					Chronic r	isk assessment:	JMPR methodo	logy (IEDI/TMDI)					
				No of diets exceeding	the ADL :							Exposure	e resulting
												MRLs set at	
				Highest contributor to			2nd contributor to			3rd contributor to M		the LOQ (in % of ADI)	(in % o
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity / group of commodities		MS diet (in % of ADI)	Commodity / group of commodities		diet (in % of ADI)	Commodity / group of commodities		1
	(% 01 AD1) 33%	NL toddler	11.66	(III % 01 ADI) 17%	Spinaches		2%	Apples		2%	Milk: Cattle	0.1%	1
	21%	DE child	7.40	5%	Spinaches		3%	Apples		2%	Oranges	0.1%	e
	17%	NL child	5.99	6%	Spinaches		1%	Apples		1%	Wheat	0.1%	1 3
	16%	GEMS/Food G07	5.49	3%	Lettuces		2%	Wine grapes		2%	Sugar canes	0.1%	4
	15%	GEMS/Food G10	5.32	4%	Lettuces		1%	Sugar canes		1%	Spinaches	0.0%	5
	15%	GEMS/Food G08	5.26	2%	Lettuces		2%	Sugar canes		2%	Wine grapes	0.0%	3
	15%	GEMS/Food G06	5.20	2%	Wheat		2%	Sugar canes		1%	Tomatoes	0.0%	2
	15%	GEMS/Food G11	5.16	2%	Spinaches		2%	Sugar canes		2%	Wine grapes	0.1%	3
	15%	IE adult	5.14	3%	Spinaches		2%	Wine grapes		1%	Lettuces	0.1%	4
	14%	ES child	4.87	5%	Lettuces		2%	Spinaches		1%	Oranges	0.1%	7
	14%	ES adult	4.85	6%	Lettuces		2%	Spinaches		0.8%	Oranges	0.0%	8
	13%	GEMS/Food G15	4.42	2%	Wine grapes		1%	Sugar canes		1%	Lettuces	0.0%	2
	13%	SE general	4.40	5%	Lettuces		2%	Spinaches		0.8%	Wheat	0.0%	6
	11%	FR child 3 15 yr	4.02	2%	Spinaches		2%	Oranges		1%	Wheat	0.1%	3
	11%	IT adult	3.88	5%	Lettuces		2%	Spinaches		1%	Wheat	0.0%	7
	11%	FR toddler 2 3 yr	3.70	4%	Spinaches		0.9%	Oranges		0.8%	Milk: Cattle	0.1%	4
	10%	DE women 14-50 yr	3.66	1%	Lettuces		1%	Wine grapes		1%	Oranges	0.0%	1
	10%	IT toddler	3.55	3%	Lettuces		2%	Wheat		1%	Spinaches	0.1%	5
	10%	DE general	3.48	1%	Wine grapes		1%	Lettuces		1%	Spinaches	0.0%	2
	10%	NL general	3.48	4%	Spinaches		1%	Lettuces		0.9%	Wine grapes	0.1%	5
	10%	PT general	3.39	4%	Wine grapes		1%	Lettuces		1%	Wheat	0.0%	1
	9%	FR infant	3.20	6%	Spinaches		0.5%	Milk: Cattle		0.4%	Apples	0.0%	6
	9%	DK child	3.01	2%	Lettuces		1%	Rye		1%	Wheat	0.0%	2
	8%	RO general	2.93	3%	Wine grapes		1%	Wheat		0.8%	Tomatoes	0.0%	
	8%	FR adult	2.89	4%	Wine grapes		1%	Spinaches		0.6%	Wheat	0.1%	1
	7%	UK toddler	2.61	1%	Oranges		1%	Wheat		0.6%	Spinaches	0.0%	0
	7%	FI 3 yr	2.48	2%	Spinaches		0.7%	Oat		0.5%	Raspberries (red and yellow)	0.0%	2
	7%	UK vegetarian	2.34	2%	Lettuces		1%	Wine grapes		0.8%	Spinaches	0.0%	2
	7%	UK infant	2.29	1%	Milk: Cattle		0.8%	Oranges		0.7%	Wheat	0.0%	0.
	6%	Fladult	2.16	2%	Lettuces		2%	Coffee beans		0.5%	Wine grapes	0.0%	2
	6%	FI 6 yr	2.12	1%	Spinaches		1.0%	Lettuces		0.4%	Oat	0.0%	2
	6%	UK adult	2.06	2%	Wine grapes		1%	Lettuces		0.4%	Wheat	0.0%	2
	5%	DK adult	1.85	1%	Wine grapes		1%	Lettuces		0.3%	Wheat	0.0%	1
	3% 3%	LT adult	1.09	0.8%	Lettuces		0.4%	Apples		0.3%	Rye Charrian (awant)	0.0%	0.
	3%	PL general IE child	0.91	0.5%	Apples Wheat		0.4%	Tomatoes Milk: Cattle		0.3%	Cherries (sweet) Rice	0.0%	0.
		IL CHIN								0.176			1 0.

	۵	cute risk assessment /c	hildren		Acute risk a	ssessment / adults / g	general pop	oulation
	Details -	acute risk assessmer	it /childro	en	Details	- acute risk assessn	nent/adul	ts
		ssment is based on the ARfD. sed on the large portion of the m	ost critical con	sumer group.				
	S	how results of IESTI	calculat	ion only f	or crops with	GAPs under asses	ssment	
Unprocessed commodities	Results for childre No. of commodities (IESTI):	n for which ARfD/ADI is exceeded		2	Results for adults No. of commodities f exceeded (IESTI):	or which ARfD/ADI is		
8	IESTI				IESTI			
iesseoo.	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)
ndnU	271% 211%	Spinaches Lettuces	30 / 18 15 / 8.3	407 316	67% 48%	Lettuces Spinaches	15 / 8.3 30 / 18	101 72
	Expand/collapse list	mmodities exceeding the ARfD	/ADI in					
	children and adult (IESTI calculation)			2				
Processed commodities	Results for childre No of processed cor exceeded (IESTI):	n nmodities for which ARfD/ADI is		1	Results for adults No of processed com is exceeded (IESTI):	modities for which ARfD/ADI		
umo	IESTI				IESTI			
ssed c	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)
Proce	167%	Spinaches / frozen; boiled	30 / 18	250	99%	Spinaches / frozen; boiled	30 / 18	149
	Expand/collapse list							

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 2 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases.

170	of	223
-----	----	-----

	*	-		Carbendazim				Input values				
		faa		LOQs (mg/kg) range f	rom: 0.01	to:	0.05	Details - chronic risk	Supplementar	y results -		
	**e	fsa			Toxicological reference va			assessment	chronic risk as			
E.	Ironoan Food	Safety Authority		ADI (mg/kg bw/day):	0.02	ARfD (mg/kg bw):	0.02	Details - acute risk	Details - act	ite risk		
				Source of ADI:	EFSA	Source of ARfD:	EFSA	assessment/children	assessment			
		vision 3.1; 2021/01/06		Year of evaluation:	2021	Year of evaluation:	2021					
iment	its:											
					Refined calcula	ation mode						
					Chronic risk assessment: JI	MPR methodolo	y (IEDI/TMDI)					
				No of diets exceeding	the ADI : -					Exposure	e resulting fr	
										MRLs set at		
			Expsoure	Highest contributor to		2nd contributor to		3rd contributor to M		the LOQ (in % of ADI)	under asses (in % of /	
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity / group of commodities	MS diet (in % of ADI)	Commodity / group of commodities	diet (in % of ADI)	Commodity / group of commodities	(1, ,, 0, ADI)	1	
-	(% 01 ADI) 1%	NL child	0.22	0.8%	Mandarins	0.2%	Lemons	0.0%	Limes		1%	
	1%	FR toddler 2 3 yr	0.21	1%	Mandarins	0.0%	Lemons	0.0%	Almonds		1%	
	0.8%	GEMS/Food G06	0.16	0.4%	Mandarins	0.4%	Lemons	0.0%	Okra/lady's fingers		0.85	
	0.8%	IE adult	0.16	0.7%	Mandarins	0.1%	Lemons	0.1%	Limes		0.89	
	0.8%	DE child	0.15	0.5%	Mandarins	0.2%	Lemons	0.0%	Limes		0.89	
	0.7%	NL toddler	0.14	0.5%	Mandarins	0.2%	Lemons	0.0%	Limes		0.79	
	0.7%	GEMS/Food G11	0.14	0.5%	Lemons	0.2%	Mandarins	0.0%	Almonds		0.79	
	0.7%	SE general	0.14	0.6%	Mandarins	0.1%	Lemons	0.0%	Limes		0.79	
	0.7%	GEMS/Food G08	0.13	0.3%	Lemons	0.3%	Mandarins	0.0%	Almonds		0.79	
	0.5%	FI3 yr	0.10	0.5%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.59	
	0.5%	GEMS/Food G10	0.10	0.3%	Lemons	0.2%	Mandarins	0.0%	Okra/lady's fingers		0.5%	
3	0.5%	GEMS/Food G07	0.10	0.3%	Mandarins	0.2%	Lemons	0.0%	Almonds		0.5%	
	0.4%	DE women 14-50 vr	0.09	0.3%	Lemons	0.1%	Mandarins	0.0%	Limes		0.49	
2	0.4%	FIGyr	0.09	0.4%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.49	
afaiafa	0.4%	UK toddler	0.08	0.4%	Mandarins	0.0%	Limes	0.0%	Lemons		0.49	
	0.4%	DE general	0.08	0.3%	Lemons	0.1%	Mandarins	0.0%	Limes		0.49	
	0.3%	GEMS/Food G15	0.07	0.2%	Mandarins	0.1%	Lemons	0.0%	Almonds		0.39	
5	0.3%	IT toddler	0.06	0.3%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.39	
neepri	0.3%	NL general	0.05	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.39	
í I	0.2%	IT adult	0.05	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.29	
	0.2%	FR child 3 15 yr	0.05	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.29	
	0.2%	ES child	0.05	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.2%	
	0.2%	ES adult	0.04	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.25	
	0.2%	FI adult	0.04	0.2%	Mandarins	0.0%	Lemons	0.0%	Almonds	1	0.2	
	0.2%	FR infant	0.04	0.2%	Mandarins	0.0%	Lemons				0.29	
	0.2%	PT general	0.03	0.1%	Mandarins	0.1%	Lemons				0.2	
	0.2%	DK adult	0.03	0.1%	Mandarins	0.0%	Lemons	0.0%	Almonds		0.2	
	0.1%	DK child	0.03		Mandarins	0.0%	Lemons	0.0%	Limes	1	0.1	
	0.1%	RO general	0.03	0.1%	Lemons	0.1%	Lemons				0.1	
	0.1%	PL general	0.02	0.1%	Lemons	0.0%	Mandarins		1	1	0.1	
	0.1%	FR adult	0.02	0.1%	Mandarins	0.0%	Lemons	0.0%	Almonds	1	0.19	
	0.1%	UK vegetarian	0.02	0.1%	Mandarins	0.023%	Lemons	0.0%	Limes	1	0.1	
	0.1%	UK adult	0.02	0.1%	Mandarins	0.0%	Lemons	0.0%	Limes	1	0.19	
	0.0%	UK infant	0.01	0.0%	Lemons	1	FRUIT AND TREE NUTS		1	1	0.0	
	0.0%	LT adult	0.01	0.0%	Mandarins	0.0%	Lemons		l		0.0	
	0.0%	IE child	0.00	0.0%	Lemons	0.0%	Mandarins	0.0%	Almonds		0.0	
+	Conclusion:		1		1	-1	1		1	1	1	
		erm dietary intake (TMDI/NEDI/IEDI) was	below the ADI.									

Acute risk assessment /children	Acute risk assessment / adults / general population
Details - acute risk assessment /children	Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

			Sho	w result	s for all crops	5		
Unprocessed commodities	Results for childre No. of commodities (IESTI):	n for which ARfD/ADI is exceeded		2	Results for adults No. of commodities f (IESTI):	for which ARfD/ADI is exceeded		
a co	IESTI				IESTI			
	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)
	178% 103% 60% 0.7%	Mandarins Lemons Limes Almonds	0.7 / 0.6 0.7 / 0.6 0.7 / 0.6 0.01 / 0.05	36 21 12 0.14	54% 27% 21% 0.4%	Mandarins Lemons Limes Almonds	0.7/0.6 0.7/0.6 0.7/0.6 0.7/0.6 0.01/0.05	11 5.4 4.2 0.07
	Expand/collapse list Total number of co children and adult (IESTI calculation)	ommodities exceeding the ARfD/ diets	'ADI in	2				
-	Results for childre No of processed con exceeded (IESTI):	n mmodities for which ARfD/ADI is			Results for adults No of processed con exceeded (IESTI):	nmodities for which ARfD/ADI is		
	IESTI				IESTI			
	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)
	4% 0.1%	Lemons / jam Limes / juice	0.7 / 0.26	0.79	7%	Okra, lady's fingers / boiled Lemons / juice	1.5 / 0.87 0.7 / 0.26	1.4 0.49

Expand/collapse list

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 2 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

172	of	223
-----	----	-----

*			LOQs (mg/kg) range t	from:	0.01	to:	0.15	Details - chronic ris		Supplementary	results -	
`**E	efsa			Toxicolog	jical reference va			assessment		chronic risk asse	ssment	
	od Safety Authority		ADI (mg/kg bw/day):		0.02	ARfD (mg/kg bw):	0.02	Details - acute risl	k	Details - acut	e risk	
	,		Source of ADI: Year of evaluation:		EFSA 2021	Source of ARfD: Year of evaluation:	EFSA 2021	assessment/childre	en l	assessment/a		
S:	revision 3.1; 2021/01/06		rear or evaluation.		2021	real of evaluation.	2021					
					Refined calcula	tion mode						
					k assessment: JI							
			No of diets exceeding		R ussessment. U						Exposure	o roculti
Calculated expo (% of ADI)	sure MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity / group of commodities		2nd contributor to MS diet (in % of ADI)	Commodity / group of commodities	d	butor to MS diet of ADI)	Commodity / group of commodities	MRLs set at the LOQ (in % of ADI)	t comr under
0.1%	IE adult	0.01	0.1%	Limes		0.0%	Almonds	(=) /0		group of contribution	0.0%	\square
0.0% 0.0%	DE child GEMS/Food G06	0.01	0.0%	Almonds Okra/lady's fingers		0.0%	Limes Almonds				0.0%	
0.0%	GEMS/Food G08	0.01	0.0%	Almonds		0.070	FRUIT AND TREE NUTS				0.0%	
0.0%	DE women 14-50 yr	0.01	0.0%	Almonds		0.0%	Limes				0.0%	
0.0% 0.0%	UK toddler SE general	0.00	0.0%	Limes		0.0%	Almonds FRUIT AND TREE NUTS				0.0%	
0.0%	DE general	0.00	0.0%	Almonds		0.0%	Limes				0.0%	
0.0%	GEMS/Food G11	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	GEMS/Food G10	0.00	0.0%	Almonds		0.0%	Okra/lady's fingers				0.0%	
0.0% 0.0%	ES adult UK vegetarian	0.00	0.0%	Almonds Limes		0.0%	FRUIT AND TREE NUTS Almonds				0.0%	
0.0%	GEMS/Food G07	0.00	0.0%	Almonds		0.076	FRUIT AND TREE NUTS				0.0%	
0.0%	NL general	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	NL child	0.00	0.0%	Almonds		0.0%	Limes				0.0%	
0.0%	GEMS/Food G15	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	ES child UK adult	0.00	0.0%	Almonds Limes		0.0%	FRUIT AND TREE NUTS Almonds				0.0%	
0.0%	FR child 3 15 yr	0.00	0.0%	Almonds		0.070	FRUIT AND TREE NUTS				0.0%	
0.0%	FR toddler 2 3 yr	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	FR adult	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	Fladult	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	IT toddler DK child	0.00	0.0%	Almonds		0.0%	FRUIT AND TREE NUTS Limes				0.0%	
0.0%	FI 6 yr	0.00	0.0%	Almonds		0.0%	FRUIT AND TREE NUTS				0.0%	
0.0%	FI 3 yr	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0%	NL toddler	0.00	0.0%	Limes			FRUIT AND TREE NUTS					
0.0%	IT adult	0.00	0.0%	Almonds			FRUIT AND TREE NUTS				0.0%	
0.0% 0.0%	DK adult IE child	0.00	0.0%	Almonds Almonds			FRUIT AND TREE NUTS				0.0%	
0.076	16 G100	0.00	0.0%				INGO AND THEE NOTS				0.0%	

Acute risk assessment /children	Acute risk assessment / adults / general population
Details - acute risk assessment /children	Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	S				
Unprocessed commodities	Results for childre No. of commodities (IESTI):	n for which ARfD/ADI is exceeded		Results for adults No. of commodities for which ARfD/ADI is exceeded (IESTI):						
	IESTI				IESTI					
rocessed	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)		
du n	48% 2%	Limes Almonds	6 / 0.47 0.15 / 0.15	9.5 0.43	17% 1%	Limes Almonds	6 / 0.47 0.15 / 0.15	3.3 0.21		
	Expand/collapse list	ommodities exceeding the ARfD	/ADI in							
	children and adult (IESTI calculation)	diets								
Processed commodities	Results for childre No of processed con exceeded (IESTI):	mmodities for which ARfD/ADI is			Results for adults No of processed cor exceeded (IESTI):	nmodities for which ARfD/ADI is				
l u	IESTI				IESTI					
essed c	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)		
Proc	1%	Limes / juice	6 / 2.5	0.23	3%	Okra, lady's fingers / boiled	0.9 / 0.41	0.66		

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Thiophanate-methyl is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

* efsa
European Food Safety Authority
EFSA PRIMo revision 3.1; 2021/01/06
mments:

	Iprodione	Input values			
LOQs (mg/kg) range from: Tox	0.01 icological reference values	to: S	0.05	Details - chronic risk assessment	Supplementary results - chronic risk assessment
ADI (mg/kg bw/day):	0.02	ARfD (mg/kg bw):	0.06	Details - acute risk	Details - acute risk
Source of ADI: Year of evaluation:	EC 2017	Source of ARfD: Year of evaluation:	EC 2017	assessment/children	assessment/adults

					No	rmal mode					
					Chronic risk assessm	nent: JMPR methodology (IEI	I/TMDI)				
				No of diets exceeding	the ADI :					Exposure	resulting fro
										MRLs set at	commoditie
	Calculated exposur (% of ADI)	e MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity / group of commodities	2nd contributor t MS diet (in % of ADI)	Commodity /	d contributor to MS diet (in % of ADI)	Commodity / group of commodities	the LOQ (in % of ADI)	under asser (in % of .
	(% of ADI) 49%	NS Diet NL toddler	day) 9,86	(In % of ADI) 27%	group of commodities Broccoli	(in % of ADI) 11%	group of commodities Raspberries (red and yellow)	 (In % of ADI) 3%	group or commodities Milk: Cattle	6%	43%
	21%	NL child	4.14	9%	Raspberries (red and yellow)	5%	Broccoli	2%	Blackberries	3%	18%
	21%	IE adult	4.14	10%	Broccoli	8%	Blackberries	0.6%	Potatoes	2%	19%
	19%	FI 3 yr	3.72	13%	Raspberries (red and vellow)	4%	Broccoli	1%	Potatoes	0.7%	189
	15%	UK toddler	2.94	7%	Raspberries (red and yellow)	3%	Broccoli	1%	Dewberries	2%	139
	14%	DE child	2.89	6%	Broccoli	4%	Raspberries (red and vellow)	1.0%	Milk: Cattle	3%	11%
	12%	FI 6 vr	2.31	9%	Raspberries (red and vellow)	1.0%	Broccoli	1.0%	Potatoes	0.5%	119
5	11%	FR toddler 2 3 yr	2.24	5%	Broccoli	1%	Milk: Cattle	1%	Raspberries (red and yellow)	3%	9%
	10%	SE general	2.10	4%	Broccoli	2%	Dewberries	1%	Potatoes	2%	9%
5	10%	FR infant	1.94	7%	Broccoli	0.8%	Milk: Cattle	0.7%	Beans (with pods)	1%	8%
3	7%	NL general	1.50	3%	Broccoli	2%	Raspberries (red and yellow)	0.6%	Potatoes	1%	6%
	7%	FR child 3 15 yr	1.46	2%	Broccoli	1%	Milk: Cattle	1%	Raspberries (red and yellow)	3%	5%
tood	7%	GEMS/Food G11	1.44	3%	Broccoli	1%	Raspberries (red and yellow)	1.0%	Potatoes	2%	5%
Ē	7%	DE women 14-50 yr	1.42	3%	Broccoli	2%	Raspberries (red and yellow)	0.6%	Milk: Cattle	2%	5%
ē.	7%	GEMS/Food G15	1.41	2%	Raspberries (red and yellow)	2%	Broccoli	0.9%	Potatoes	2%	5%
Š	7%	GEMS/Food G07	1.40	3%	Broccoli	0.9%	Potatoes	0.5%	Raspberries (red and yellow)	2%	5%
5	7%	DE general	1.31	3%	Broccoli	2%	Raspberries (red and yellow)	0.6%	Milk: Cattle	2%	5%
ğ	6%	UK vegetarian	1.24	4%	Broccoli	0.6%	Raspberries (red and yellow)	0.3%	Potatoes	0.6%	6%
ase	6%	UK infant	1.20	2%	Milk: Cattle	2%	Dewberries	0.8%	Potatoes	3%	3%
ē	6%	FI adult	1.19	3%	Raspberries (red and yellow)	1%	Coffee beans	1%	Broccoli	2%	4%
5	6%	GEMS/Food G08	1.18	1%	Broccoli	1%	Raspberries (red and yellow)	1.0%	Potatoes	2%	4%
at	5%	UK adult	1.04	4%	Broccoli	0.4%	Raspberries (red and yellow)	0.3%	Potatoes	0.6%	5%
3	5%	GEMS/Food G06	1.02	1%	Blackberries	0.9%	Broccoli	0.5%	Potatoes	2%	3%
ö	5%	DK child	0.97	2%	Braccoli	0.6%	Milk: Cattle	0.6%	Potatoes	2%	3%
MDI/NEDI/IEDI	5%	GEMS/Food G10	0.93	1%	Raspberries (red and yellow)	0.7%	Potatoes	0.4%	Broccoli	2%	3%
5	4%	IE child	0.72	3%	Braccoli	0.2%	Raspberries (red and yellow)	0.2%	Milk: Cattle	0.4%	3%
ų.	3%	DK adult	0.70	2% 0.9%	Broccoli Potatoes	0.7%	Raspberries (red and yellow) Milk: Cattle	0.3%	Potatoes Wheat	0.8%	3%
Ś.	3% 3%	RO general FR adult	0.61	0.9%	Potatoes Broccoli	0.6%		0.3% 0.4%		2% 1%	1%
	3%	ES child	0.59	0.9%	Broccoli Milk: Cattle	0.4%	Raspberries (red and yellow) Potatoes	0.4%	Beans (with pods) Beans (with pods)	1%	1.09
-	2%	PT general	0.54	1%	Potatoes	0.5%	Wheat	0.4%	Wine grapes	0.8%	2%
	2%	PL general	0.46	0.9%	Potatoes	0.2%	Raspberries (red and yellow)	0.5%	Broccoli	0.3%	2%
	2%	IT adult	0.45	1%	Broccoli	0.5%	Beans (with pods)	0.2%	Wheat	0.6%	2%
	2%	LT adult	0.43	0.8%	Potatoes	0.7%	Raspberries (red and yellow)	0.2%	Milk: Cattle	0.7%	1%
	2%	IT toddler	0.39	0.5%	Broccoli	0.3%	Wheat	0.2%	Potatoes	0.8%	1%
	2%	ES adult	0.33	0.4%	Beans (with pods)	0.2%	Milk: Cattle	0.2%	Potatoes	1.0%	0.7%

The estimated long-term dietary intake (TMD/NED/IED) was below the ADI. The long-term intake of residues of Iprodione is unlikely to present a public health concern. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

Acute risk assessment /children

Acute risk assessment / adults / general population

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

		Show	results	for all crops			
Results for childrer No. of commodities f	n for which ARfD/ADI is exceeded (IESTI):		3	Results for adults No. of commodities	or which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Ex
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg
1664%	Broccoli	40 / 24	998	953%	Broccoli	40 / 24	
404%	Blackberries	50 / 22.6	242	309%	Blackberries	50 / 22.6	
348%	Raspberries (red and yellow)	50 / 22.6	209	203%	Raspberries (red and yellow)	50 / 22.6	
66%	Dewberries	50 / 22.6	40	54%	Dewberries	50 / 22.6	
15%	Beans (with pods)	1.5 / 0.81	9.3	10%	Beans (with pods)	1.5 / 0.81	
13%	Potatoes	0.05 / 0.05	7.7	3%	Onions	0.15 / 0.11	
8%	Peaches	0.05 / 0.05	4.8	2%	Potatoes	0.05 / 0.05	
4%	Onions	0.15 / 0.11	2.5	2%	Cherries (sweet)	0.3/0.14	
3%	Apricots	0.05 / 0.05	1.7	2%	Peaches	0.05 / 0.05	(
3%	Cherries (sweet)	0.3/0.14	1.7	0.9%	Apricots	0.05 / 0.05	i i
3%	Melons	0.01 / 0.01	1.5	0.7%	Head cabbages	0.01 / 0.01	i
2%	Pears	0.01/0.01	1.4	0.7%	Watermelons	0.01/0.01	į.
2%	Oranges	0.01 / 0.01	1.3	0.7%	Melons	0.01/0.01	į.
	Milk: Cattle	0.01 / 0.01	1.2	0.6%	Milk: Cattle	0.01/0.01	i
2%							
diets	watermelons	0.01 / 0.01	1.2	0.6%	Swedes/rutabagas	0.01 / 0.01	(
2% Expand/collapse list Total number of co	Watermelons	0.01 / 0.01			Swedes/rutabagas	0.01 / 0.01	0
2% Expand/collapse list Total number of co diets	Watermelons mmodities exceeding the ARfD/ADI in child	0.01 / 0.01	1.2		Swedes/rutabagas	0.01 / 0.01	
2% Expand/collapse list Total number of co diets (IESTI calculation) Results for childrer	Watermelons mmodities exceeding the ARfD/ADI in child	0.01 / 0.01	1.2	0.6%	Swedes/rutabagas	0.01 / 0.01	(
2% Expand/collapse list Total number of co diets (IESTI calculation) Results for childrer No of processed con	Watermelons mmodities exceeding the ARfD/ADI in child	0.01 / 0.01	3	0.6% Results for adults No of processed cor			
2% Expand/collapse list Total number of co- diets (IESTI calculation) Results for childrer No of processed con (IESTI): IESTI	Watermelons mmodities exceeding the ARfD/ADI in child	0.01 / 0.01	1.2 3 2	0.6% Results for adults No of processed cor (IESTI): IESTI		MRL / input	
2% Expand/collapse list Total number of co- diets (IESTI calculation) Results for childrer No of processed con (IESTI) IESTI Highest % of	Watermelons mmodities exceeding the ARID/ADI in child n n n n n n n n n n n n n n n n n n n	0.01 / 0.01	1.2 3 2 Exposure	0.6% Results for adults No of processed cor (IESTI): IESTI Highest % of	nmodities for which ARID/ADI is exceeded	MRL / input for RA	Ex
2% Expand/collapse list Total number of co diets (IESTI calculation) Results for childrer No of processed con (IESTI): IESTI Highest % of ARTD/ADI	Watermelons mmodities exceeding the ARfD/ADI in child n mmodities for which ARfD/ADI is exceeded Processed commodities	0.01 / 0.01	1.2 3 2 Exposure (µg/kg bw)	0.6% Results for adults No of processed cor (IESTI): IESTI Highest % of ARID/ADI	nmodilies for which AR(D/AD) is exceeded	MRL / input for RA (mg/kg)	Ext (µg
2% Expand/collapse list Total number of co diets (IESTI calculation) No of processed con (IESTI) IESTI Highest % of ARTD/ADI 3151%	Watermelons mmodifies exceeding the ARTD/ADI in child mmodifies for which ARTD/ADI is exceeded Processed commodifies Broccoil / boiled	0.01 / 0.01 Iren and adult MRL / input for RA (mg/kg) 40 / 24	1.2 3 2 Exposure (µg/kg bw) 1891	0.6% Results for adults No of processed cor (IESTI): IESTI Highest % of ARD/ADI 963%	nmodities for which ARID/ADI is exceeded Processed commodities Broccoil / boiled	MRL / input for RA (mg/kg) 40 / 24	Ext (µg
2% Expand/collapse list Total number of co diets (IESTI calculation) Results for childrer No of processed con (IESTI): IESTI Highest % of AR(D)ADI 3151% 263%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Broccoli / boiled Raspberries / luice	0.01 / 0.01 Iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5	1.2 3 2 Exposure (µg/kg bw) 1891 158	0.6% Results for adults No of processed cor (IESTI): IESTI Highest % of AR(D/AD) 963% 2%	nmodilies for which ARID/ADI is exceeded Processed commodilies Broccoli / boiled Onlins / boiled	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11	Ex (µg
2% Expand/collapse list.1 Total number of co diets (IESTI calculation) Results for childrer No of processed con (IESTI) IESTI Highest % of ARID/ADI 3151% 263% 17%	Watermelons mmodities exceeding the ARID/ADI in child mmodities for which ARID/ADI is exceeded Processed commodities Broccoil / boiled Raspberries / luice Beans (with pools / boiled	0.01 / 0.01 iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81	1.2 3 2 Exposure (µg/kg bw) 1891 158 10	0.6% Results for adults No of processed cor (IESTI): IESTI Highest % of ARID/ADI 963% 2% 0.9%	Processed commodities Processed commodities Broccoil / boiled Onions / boiled Pumpkins / boiled	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01	Exp (µg
2%, Expand/collapse list Total number of co diets (IEST collutation) Results for childrer No of processed con (IEST); IESTI Highest % of ARID/ADI 3151% 263% 17% 8%	Watermelons mmodities exceeding the ARfD/ADI in child nmodities for which ARfD/ADI is exceeded Processed commodities Processed commodities Braccoli / boiled Respheries / luice Beans (with pods) / boiled Potatoes / fried	0.01 / 0.01 Iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81 0.5 / 0.05	1.2 3 Exposure (µg/kg bw) 1891 158 10 4.7	0.6% Results for adults No of processed cor (I(ESTI): EISTI Highest % of ARID/ADI 963% 2% 0.9% 0.7%	Processed commodities Processed commodities Processed commodities Processed commodities Strate of boiled Pumpkins / boiled Pumpkins / boiled Pumpkins / boiled	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.12	Ext (µg/
2% Expand/collapse list Total number of co diets (IEST) calculation) Results for childrer No of processed con (IEST): IESTI Highest % of ARID/ADI 3151% 263% 17% 8% 5%	Watermelons mmodifies exceeding the ARfD/ADI in child mmodifies for which ARfD/ADI is exceeded Processed commodilies Processed commod	0.01 / 0.01 iren and adult MRL / input for RA (mg/kg) 407 (24 50 / 13.5 1.5 / 0.81 0.05 / 0.23	1.2 3 Exposure (µg/kg bw) 1891 158 10 4.7 3.0	0.6% Results for adults No of processed cor (IEST): IESTI IESTI IEST 2% 0.9% 0.7%	Processed commodities Processed commodities Broccoil / boiled Onions / boiled Pumpkins / boiled Sugar boets (root) / sugar Potatoes / robips	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.05 / 0.05	Ex((µg
2%. Expand/collapse list Total number of co diets (IEST1 calculation) Results for childrer No of processed con (IESTI): IESTI Highest % of AR(D/AD) 3151% 263% 17% 8% 5% 2%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Processed commodities Processed / boiled Raspberries / luice Beans (with pods) / boiled Potatoes / fraid (flakes) Peaches / canned	0.01 / 0.01 iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81 0.05 / 0.05 0.05 / 0.05	1.2 3 Exposure (µg/kg bw) 1891 158 10 4.7 3.0 1.3	0.6%	Processed commodities Processed commodities Broccoli / boiled Onions / boiled Pumpkins / boiled Sugar beet, oboiled Caulifitower, boiled	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.01 / 0.12 0.05 / 0.05 0.01 / 0.01	Ех(µ9
2% Expand/collapse list Total number of co diets (IEST) calculation) Results for childrer No of processed con (IEST): IESTI Highpest % of ARID/ADI 3151% 283% 17% 8% 5% 2%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Broccoil / boiled Raspberrise / luice Beans (with posk) / boiled Polatoes / fried Polatoes / fried Polatoes / and(falkes) Peaches / canned Sugar beats (cold / sugar	0.01 / 0.01 iren and aduit MRL / input for EA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81 0.05 / 0.03 0.05 / 0.23 0.05 / 0.23	1.2 3 2 Exposure (µg/kg bw) 1891 158 10 4.7 3.0 1.3 1.1	0.6%	Processed commodities Processed commodities Processed commodities Processed commodities Processed commodities Processed commodities Cauiflowers / boiled Cauiflowers / boiled Potatoes / conned Cauiflowers / boiled Peaches / canned	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.05 / 0.05 0.05 / 0.05 0.01 / 0.01	Ext (µg/))) () () () () () () () () () () ()
2%. Expand/collapse list Total number of co diets (IEST) calculation) Results for childrer No of processed con (IEST)): IESTI Highest % of ARTD/ADI 3151% 283% 5% 5% 2% 2% 2%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities (accessed in the ARfD/ADI is exceeded) Processed commodities Processed (accessed in the ARfD/ADI is exceeded) Processed (accessed	0.01 / 0.01 iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 0.05 / 0.05 0.05 / 0.05 0.05 / 0.05 0.01 / 0.1 0.01 / 0.01	1.2 3 2 Exposure (µg/kg bw) 1891 158 10 4.7 3.0 1.3 1.1 1.0 .89	0.6% Results for adults No of processed cor (IESTI): ESTI Highest % of ARID/ADI 963% 2% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6%	Processed commodities Processed commodities Broccoil / boiled Onions / boiled Onions / boiled Sugar beets / cont) / sugar Potatoes / chips Cauliflowers / boiled Peaches / canned Beetrools / boiled	MRL / input for RA (mg/kg) 40/7 / 24 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01	Exi (µg
2% Expand/collapse list Total number of co diets (IEST claudition) Results for childrer No of processed con (IEST): IESTI Highpest % of ARTD/ADI 3151% 263% 17% 8% 5% 2% 2% 1%	Watermelons mmodifies exceeding the ARfD/ADI in child mmodifies for which ARfD/ADI is exceeded Processed commodilies Processed commodilies Broccoli / boiled Polatoes / fred (fakes) Peaches / caned Pentes / caned Sugar beets / caned Pentes / caned Sugar beets / cold / sugar Pentes / cold / sugar Pentes / caned Wittoofs / boiled	0.01 / 0.01 iren and aduit MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81 0.05 / 0.03 0.05 / 0.03 0.05 / 0.02 0.01 / 0.12 0.01 / 0.01	1.2 3 2 Exposure (µg/kg bw) 158 10 4.7 3.0 1.3 1.1 0.89 0.89	0.6% Results for adults No of processed corr (IEST): HESTI Highest % of ARDDADI 963% 2% 0.7% 0.7% 0.7% 0.7% 0.6%	Processed commodilies Processed commodilies Processed commodilies Processed commodilies Processed commodilies Processed commodilies Caulifoxers / boiled Potatose / chips Caulifoxers / boiled Peaches / conned Beetroots / boiled Celeries / boiled Celeries / boiled	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01	Ext (µg
2% Expand/collapse list Total number of co diets (IEST) calculation) Results for childrer No of processed con (IEST): IESTI Highest % of ARTD/ADI 263% 27% 2% 2% 2% 2% 1% 1%	Watermelons modities exceeding the ARfD/ADI in child modifies for which ARfD/ADI is exceeded Processed commodilies Processed commodilies Processed commodilies Broccoll / boiled Potatose / fried Potatose	0.01 / 0.01 ren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 0.05 / 0.05 0.05 / 0.23 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.05 / 0.05	1.2 3 2 Exposure (µg/kg bw) 1891 168 10 4.7 3.0 3.0 1.3 1.1 0.89 0.83	0.6% Results for adults No of processed core (IESTI): IESTI Highest % of ARID/ADI 963% 97% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6%	Processed commodities Processed commodities Braccoll / boiled Onions / boiled Onions / boiled Coll / boiled Coll / boiled Coll / boiled Paches / canned Beetrools / boiled Celeries / boiled Cel	MRL / input for RA (mg/kg) 40724 0.15/0.11 0.01/0.01 0.05/0.05 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01	Ехц (µg
2% Expand/collapse list Total number of co diets (IEST calculation) Results for childrer No of processed con (IEST): IESTI Highpast % of ARID/ADI 3151% 28% 17% 8% 5% 2% 1% 1% 1%	Watermelons mmodifies exceeding the ARfD/ADI in child mmodifies for which ARfD/ADI is exceeded Processed commodifies Processed commodifies Broccoli / boiled Potatoes / fuice Bears (with pods) / boiled Potatoes / freid (fakes) Peaches / canned Pumpkins / boiled Puttods / boiled Paches / juice Cauliflowers / boiled	0.01 / 0.01 iren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 50 / 13.5 0.05 / 0.03 0.05 / 0.03 0.05 / 0.03 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	1.2 3 Exposure (µg/kg bw) 1891 158 10 4.7 3.0 1.3 1.1 0.89 0.83 0.70	0.6% Results for adults No of processed corr (IEST): IEST1 Highest % of ARTD/AD1 963% 2% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.5%	Processed commodities Processed commodities Processed commodities Processed commodities Processed commodities Property of the processed commodities Property of the processed commodities Property of the processed commodities Peaches / coning Pe	MRL / input for RA (mg/kg) 40/5 / 0.4 0.6 / 0.4 0.0 / 1/ 0.01 0.05 / 0.05 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Ех(µд. (µд. () () () () () () () () () () () () ()
2% Expand/collapse list Total number of co diets (IEST calculation) Results for childrer No of processed con (IEST); IEST) Highest % of ARTD/ADI 263% 27% 27% 2% 2% 2% 1% 1% 1% 1%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Processed commodities Broccoil / boiled Potatose / fried Potatose / fr	0.01 / 0.01 ren and adult MRL / input for RA (mg/kg) 40 (24 50 / 13.5 0.05 / 0.05 0.05 / 0.05 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01	1.2 2 Exposure (µg/kg bw) 158 10 4.7 3.0 1.3 1.3 1.3 1.3 0.89 0.83 0.68 0.83 0.70 0.66	0.6% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 963% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.5% 0.4%	Processed commodities Processed commodities Broccoil / boiled Onions / boiled Onions / boiled Control / boiled Could (tool) / boiled Could (tool) / boiled Pacthes / canned Beetrools / boiled Celefres / boiled Celefres / boiled Potatoes / drived (tikkes) Maize / oil	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Ext (µg, (((((((((((((((((((
2% Expand/collapse list Total number of co diets (IEST calculation) Results for childrer No of processed con (IEST): IESTI Highpast % of ARID/ADI 3151% 28% 2% 2% 1% 1% 1% 1% 1% 1% 1%	Watermelons mmodities exceeding the ARTD/ADI in child mmodities for which ARTD/ADI is exceeded Processed commodities Procesed commodities Processed commodities Processed commodi	0.01 / 0.01 ren and adult MRL / input for RA (mg/kg) 40 / 24 50 / 13.5 1.5 / 0.81 0.05 / 0.05 0.05 / 0.05 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	1.2 3 Exposure (µg/kg bw) 1891 168 10 4.7 3.0 1.3 1.1 0.89 0.83 0.70 0.66 0.57	0.6% Results for adults No of processed cor (IEST): Highest % of ARIDADI 963% 2% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.6% 0.4% 0.4%	Processed commodities Processed commodities Processed commodities Processed commodities Processed commodities Conions / boiled Pumpkins / boiled Pumpkins / boiled Pauliflowers / boiled Peaches / canned Beetroots / boiled Celeries / boiled Apples / juice Potatoos / draid (flakes) Maize / oil Coffee beans / extraction	MRL / input for RA (mg/kg) 40/724 0.15 / 0.11 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.05 / 0.03 0.05 / 0.05	Ext (µg)
2% Expand/collapse list Total number of co diets (IEST calculation) Results for childrer No of processed con (IEST); IEST) Highest % of ARTD/ADI 263% 27% 27% 2% 2% 2% 1% 1% 1% 1%	Watermelons mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Processed commodities Broccoil / boiled Potatose / fried Potatose / fr	0.01 / 0.01 ren and adult MRL / input for RA (mg/kg) 40 (24 50 / 13.5 0.05 / 0.05 0.05 / 0.05 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01	1.2 2 Exposure (µg/kg bw) 158 10 4.7 3.0 1.3 1.3 1.3 1.3 0.89 0.83 0.68 0.83 0.70 0.66	0.6% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 963% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.5% 0.4%	Processed commodities Processed commodities Broccoil / boiled Onions / boiled Onions / boiled Control / boiled Could (tool) / boiled Could (tool) / boiled Pacthes / canned Beetrools / boiled Celefres / boiled Celefres / boiled Potatoes / drived (tikkes) Maize / oil	MRL / input for RA (mg/kg) 40 / 24 0.15 / 0.11 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.05 / 0.05 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exp (µg/ (µg/ (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 3 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases

****	_	
	Fon	
- E	5	$\langle \odot \rangle$
European Food	Safety Aut	hority

zei	ta cypermethrin	Input values			
LOQs (mg/kg) range from:	0.01 oxicological reference value	to:	0.10	Details - chronic risk assessment	Supplementary results - chronic risk assessment
ADI (mg/kg bw/day): Source of ADI: Year of evaluation:	0.0015 EFSA 2023	ARfD (mg/kg bw): Source of ARfD: Year of evaluation:	0.0015 EFSA 2023	Details - acute risk assessment/children	Details - acute risk assessment/adults

EFSA PRIMo revision 3.1; 2021/01/06 Comments:

					Refined calc	ulation mode					
					Chronic risk assessment:	JMPR methodology (IEDI/	TMDI)				
				No of diets exceeding	g the ADI :						resulting from
onsumption)	Calculated exposure (% of ADI) 9% 5% 4% 4% 4% 4% 4% 3% 3% 3%	MS Diet NL toddier NL chid GEMS/Food G15 FI 3 yr GEMS/Food G08 DE chid UK toddier GEMS/Food G06 SE general RC general		Highest contributor 1 MS diet (in % of AD)) 9% 2% 2% 2% 2% 2% 2% 3% 2% 3% 3% 3%		2nd contributor to MS det (n % cf AD) 5% 2% 2% 2% 0.6% 0.6% 0.6% 0.7% 0.4% 0.4% 0.3%	Commodity / group of commodities Rose hips Onions Onions Onions Onions Currents (red, black and white) Rose hips Currents (red, black and white) Garris (red, black and white) Garris (red, black and white)	3rd contributor to M dief (in% of ADI) 0.8% 0.5% 0.3% 1% 0.5% 0.5% 0.4% 0.2% 0.4%	Commodity / group of commodities Bluebernies Onions Currants (red, black and white) Rose hips Goosebernies Bluebernies Bluebernies Garric Currants (red, black and white)	the LOQ (in % of ADI)	commodities n under assessme (in % of ADI) 16% 9% 5% 5% 5% 4% 4% 4% 4% 4% 3% 3%
alculation (based on average food co	3% 3% 2% 2% 2% 2% 2% 2% 1% 1% 1%	In U guint as UK infant IE adult IE adult IE adult IE general DE general DE general GEMS/Food G07 NL general IK septarian GEMS/Food G11 PT general PT general SF child 315 yr	0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02	2% 1% 2% 1% 1% 1% 0.9% 0.8% 0.6% 1% 0.6%	Currants (red, black and white) Currants (red, black and white) Avocados Currants (red, black and white) Gooseberries (green, red and yellow) Currants (red, black and white) Currants (red, black and white) Onions Currants (red, black and white) Onions Onions	0.6% 0.5% 1.0% 1% 0.4% 0.7% 0.4% 0.7% 0.5% 0.4% 0.2% 0.0%	Control Rose hips Onions Onions Onions Onions Accados Onions Currants (red, black and white) Currants (red, black and white) Garlic Garlic Accados	0 3% 0 3% 0 2% 0 2% 0 4% 0 3% 0 3% 0 3% 0 3% 0 1% 0 2% 0 2%	Goosebarries (green, red and yellow) Onions Shaldot Rose hips Blueberries Rose hips Rose hips Coosebarries (green, red and yellow) Avocados Currents (red, black and white)		3% 3% 2% 2% 2% 2% 2% 2% 1% 1% 1%
TMDI/NEDI/IEDI ci	1% 1% 0.9% 0.8% 0.8% 0.7% 0.6% 0.5% 0.4%	IE child UK adult UK adult ER todiar 2 3 yr ES adult FR adult ES child LT adult IT todder FR Infant IT todder FR Infant	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	0.7% 0.5% 0.9% 0.7% 0.5% 0.4% 0.6% 0.6% 0.4% 0.4% 0.4% 0.4%	Currants (red, black and white) Onions Onions Onions Onions Onions Onions Onions Currants (red, black and white) Onions Onions Onions Onions Onions	0.3% 0.2% 0.5% 0.1% 0.2% 0.1% 0.3% 0.2% 0.1% 0.0% 0.0%	Ordenia Currente (red. black and white) Currente (red. black and white) Avocadas Avocadas Avocadas Garic FRUIT AND TREE NUTS Garic Currents (red. black and white) Garic	0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Carrie Variante (red., black and white) Currants (red., black and white) Currants (red., black and white) Carrie Carrie Currants (red., black and white) Avocados Bluebernies Garlie Gooseberries (green, red and yellow)		1% 1% 1% 0.9% 0.8% 0.8% 0.7% 0.7% 0.6% 0.5% 0.4%

Acute risk assessment /children	Acute risk assessment / adults / general population
Details - acute risk assessment /children	Details - acute risk assessment/adults
The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were include	ded in PRIMO when the UK was a member of the European Union.
The calculation is based on the large portion of the most critical consumer group.	

		Showi	esuns iu	or all crops			
Results for childre	n for which ARfD/ADI is exceeded (IESTI):		4	Results for adults	for which ARfD/ADI is exceeded (IESTI):		4
No. or commodities	TOF WHICH ARID/ADTIS exceeded (IESTI).		4	No. or commodules	IOI WHICH ARID/ADI IS exceeded (IESTI).		4
IESTI				IESTI			
		MRL / input	_			MRL / input	_
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
806%	Avocados	0.5 / 0.24	12	322%	Blueberries	1.5 / 0.53	4. 3.
279%	Currants (red, black and white)	1.5 / 0.53	4.2	240%	Avocados	0.5 / 0.24	
211%	Blueberries	1.5 / 0.53	3.2	233%	Currants (red, black and white)	1.5 / 0.53	3. 2
208%	Gooseberries (green, red and yellow)	1.5 / 0.53 0.05 / 0.05	3.1	159%	Gooseberries (green, red and yellow)	1.5 / 0.53 1.5 / 0.53	2.
76%	Onions	0.05 / 0.05	1.1 0.18	78% 50%	Rose hips Onions	0.05 / 0.05	0.7
1000							0.1
12%	Garlic						
12% 1%	Garlic Shallots	0.05 / 0.05	0.02	9%	Shallots	0.05 / 0.05	0.1
	Shallots						0.1
1% Expand/collapse list	Shallots	0.05 / 0.05		9%	Shallots	0.05 / 0.05	0.1
1% Expand/collapse list Total number of co	Shallots	0.05 / 0.05	0.02	9% 2%	Shallots	0.05 / 0.05	0.1
1% Expand/collapse list Total number of co (IESTI calculation)	Shallots	0.05 / 0.05	0.02	9% 2% Results for adults	Shallots Garlic	0.05 / 0.05	0.1
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre	Shallots ommodities exceeding the ARfD/ADI in children a	0.05 / 0.05	0.02	9% 2% Results for adults No of processed cor	Shallots	0.05 / 0.05	0.1
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co	Shallots	0.05 / 0.05	4	9% 2% Results for adults No of processed cor exceeded (IESTI):	Shallots Garlic	0.05 / 0.05	0.1
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre	Shallots ommodities exceeding the ARfD/ADI in children a	0.05 / 0.05	4	9% 2% Results for adults No of processed cor	Shallots Garlic	0.05 / 0.05	0.1
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co	Shallots ommodities exceeding the ARfD/ADI in children a	0.05 / 0.05	4	9% 2% Results for adults No of processed cor exceeded (IESTI):	Shallots Garlic	0.05 / 0.05	0.0
1% Expand/collapse list Total number of ce (IESTI calculation) Results for childre No of processed co IESTI	Shallots ommodities exceeding the ARfD/ADI in children a	0.05 / 0.05 nd adult diets MRL / input	4	9% 2% Results for adults No of processed cor exceeded (IESTI): IESTI	Shallots Garlic	0.05 / 0.05 0.05 / 0.05 MRL / input	0.1 0.0
1% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of	Shallots commodities exceeding the ARfD/ADI in children a sn mmodities for which ARfD/ADI is exceeded (IESTI):	0.05 / 0.05 nd adult diets MRL / input for RA	0.02 4 1 Exposure	9% 2% Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of	Shallots Garlic mmodities for which ARfD/ADI is	0.05 / 0.05 0.05 / 0.05 MRL / input for RA	0.1 0.0 1 Expo (µg/kg
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI	Shallots ommodities exceeding the ARfD/ADI in children a mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	0.05 / 0.05 nd adult diets MRL / input for RA (mg/kg)	0.02 4 1 Exposure (μg/kg bw)	9% 2% Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI	Shallots Garlic mmodities for which ARfD/ADI is Processed commodities	0.05 / 0.05 0.05 / 0.05 MRL / input for RA (mg/kg)	0.1 0.0 1 Expo (µg/kg 5.
1% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARfD/ADI 762%	Shallots ommodities exceeding the ARfD/ADI in children a on mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Currants (red, black and white) / juice	0.05 / 0.05 nd adult diets MRL / input for RA (mg/kg) 1.5 / 0.4	0.02 4 1 Exposure (µg/kg bw) 11	9% 2% Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ART0/ADI 340%	Shallots Garlic mmodities for which ARfD/ADI is Processed commodities Currants (red, black and white) / juice	0.05 / 0.05 0.05 / 0.05 MRL / input for RA (mg/kg) 1.5 / 0.4	0.1

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 4 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases

L	*	fsa			Cypermethrins -	- combine	d (F)			Input	values		
		faa		LOQs (mg/kg) range f		0.01	to:	0.10	Details - c		Supplementary res	ults -	
	°* * 🏳				Toxicological ref	ference values					chronic risk assess	nent	
	-			ADI (mg/kg bw/day):		0.00125	ARfD (mg/kg bw):	0.00125					
Eur	ropean Food	d Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	Details - a		Details - acute r		
E	FSA PRIMo re	vision 3.1; 2021/01/06		Year of evaluation:		2019	Year of evaluation:	2019		t/children	assessment/adu	lts	
ents		Combined risk assessment based on all uses	s identified as safe in the previous so	enarios, except from th	e import tolerance GAP for zeta-cypermethrin on wheat. For	this commodities, the no	rthern outdoor GAP for	cypermethrin was considered to deriv	ve a fall-back MRL.				
					<u>Norm</u>	al mode							
				-	Chronic risk assessmen	nt: JMPR methode	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :		1					Exposure	
1												MRLs set at the LOQ	under a
	Calculated exposur	re	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /		3rd contributor to MS diet	Commodity /	(in % of ADI)	(in 9
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	110%	NL toddler	1.37	48%	Milk: Cattle		20%	Maize/com		9%	Currants (red, black and white)		
	55%	NL child	0.68	20%	Milk: Cattle		7% 7%	Sugar beet roots		7% 6%	Currants (red, black and white)		
	51% 49%	GEMS/Food G11 GEMS/Food G10	0.63	15% 13%	Soyabeans		4%	Sugar canes Milk: Cattle		4%	Milk: Cattle Sugar canes		
	48%	UK infant	0.60	31%	Milk: Cattle		4 %	Maize/com		2%	Bovine: Muscle/meat		
	47%	GEMS/Food G08	0.59	8%	Sovabeans		5%	Sugar canes		4%	Milk: Cattle		
	43%	GEMS/Food G07	0.55	7%	Soyabeans		5%	Milk: Cattle		5%	Sugar canes		
	43%	GEMS/Food G15	0.53	7%	Soyabeans		6%	Milk: Cattle		4%	Sugar canes		
	41%	FI adult	0.52	37%	Coffee beans		0.9%	Currants (red, black and white)		0.4%	Rye		
	41%	GEMS/Food G06	0.51	6%	Sugar canes		5%	Soyabeans		4%	Wheat		
	41%	FR child 3 15 yr	0.51	18%	Milk: Cattle		3%	Sugar beet roots		3%	Wheat		
	39%	FR toddler 2 3 yr	0.49	23%	Milk: Cattle		2%	Sugar beet roots		2%	Bovine: Muscle/meat		
	39%	DE child	0.48	16%	Milk: Cattle		3%	Oranges		3%	Wheat		
	37%	UK toddler	0.46	17%	Milk: Cattle		3%	Currants (red, black and white)		3%	Beans		
	29%	DE women 14-50 yr	0.36	10%	Milk: Cattle		4%	Sugar beet roots		3%	Coffee beans		
	29%	DE general	0.36	10%	Milk: Cattle		3%	Sugar beet roots		3%	Coffee beans		
	27%	SE general	0.34	10%	Milk: Cattle		7%	Bovine: Muscle/meat		2%	Wheat		
	27%	ES child	0.34	10%	Milk: Cattle		3%	Wheat		2%	Bovine: Muscle/meat		
	27%	RO general	0.33	9%	Milk: Cattle		3%	Wheat		3%	Maize/com		
	25%	DK child	0.32	10%	Milk: Cattle		3%	Rye		3%	Wheat		
	25%	IE adult	0.31	3%	Milk: Cattle		2%	Avocados		1%	Wheat		
	25%	NL general	0.31	7%	Milk: Cattle		2%	Sugar beet roots		2%	Coffee beans		
	19% 16%	FR infant FR adult	0.24	13%	Milk: Cattle Milk: Cattle		1% 3%	Sugar beet roots Coffee beans		0.5%	Bovine: Muscle/meat Wheat		
	15%	ES adult	0.20	4% 4%	Milk: Cattle		3%	Wheat		1% 1%	Barley		
	12%	PT general	0.15	2%	Wheat		1%	Maize/com		1%	Sovabeans		
	11%	DK adult	0.13	4%	Milk: Cattle		1%	Bovine: Fat tissue		1.0%	Swine: Muscle/meat		
	11%	FI 3 yr	0.14	2%	Currants (red, black and white)		1%	Oat		1%	Rose hips		
	10%	UK vegetarian	0.13	3%	Milk: Cattle		1%	Wheat		1%	Beans		
	10%	LT adult	0.13	3%	Milk: Cattle		1%	Swine: Muscle/meat		0.6%	Rye		
	10%	UK adult	0.12	2%	Milk: Cattle		1%	Bovine: Muscle/meat		1%	Wheat		
	8%	FI6 vr	0.10	1%	Currants (red, black and white)		0.8%	Potatoes		0.8%	Oat		
	7%	IT toddler	0.09	4%	Wheat		0.6%	Tomatoes		0.3%	Oranges		1
	6%	IE child	0.08	3%	Milk: Cattle		0.9%	Currants (red, black and white)		0.7%	Wheat		1
	5%	IT adult	0.07	2%	Wheat		0.5%	Tomatoes		0.3%	Rice		
ų –	4%	PL general	0.04	1%	Gooseberries (green, red and yellow)		0.7%	Potatoes		0.4%	Tomatoes	1	

Acute risk assessment /children

Acute risk assessment / adults / general population

e risk assessment/adu

nsk assessment/adu

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

		She	ow result	ts for all crop	S S		
Results for children				Results for adults			
	ARfD/ADI is exceeded (IESTI):		4		or which ARfD/ADI is exceeded (IESTI):		4
ESTI		MRL / input		IESTI		MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
	modities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
806% Avor 279% Curr	ados ants (red, black and white)	0.5/0.2 1.5/0.44	10 3.5	322% 240%	Blueberries Avocados	1.5 / 0.44 0.5 / 0.2	4.0 3.0
	perries	1.5 / 0.44	2.6	233%	Currants (red, black and white)	1.5/0.44	2.
	eberries (green, red and yellow)	1.5 / 0.44	2.6	159%	Gooseberries (green, red and yellow)	1.5 / 0.44	2.
99% Milk:	Cattle	0.02 / 0.01	1.2	78%	Rose hips	1.5 / 0.44	0.9
	ermelons	0.07 / 0.01 0.05 / 0.01	1.2 1.2	71% 70%	Equine: Muscle/meat Sheep: Muscle/meat	0.05 / 0.18 0.05 / 0.18	3.0 3.0
92% Pota 89% Carr		0.05/0.01	1.2	67%	Sheep: Muscle/meat Head cabbages	0.05 / 0.18 0.15 / 0.02	3.0 3.0
	ne: Muscle/meat	0.05/0.18	1.1	64%	Red mustards	1.5 / 0.15	0.8
88% Oran	ges	0.3 / 0.01	1.1	50%	Parsley	5 / 0.53	0.6
	grapes	0.15/0.02	1.1	48%	Swedes/rutabagas	0.1/0.02	0.6
	ls (fresh) p: Muscle/meat	0.7/0.18	1.0 1.0	48% 46%	Watercress	4/0.5 07/018	0.6
80% Sneet		0.05/0.18	1.00	46%	Aubergines/egg plants	0.07 / 0.02	0.6
	iacs/turnip rooted celeries	0.1/0.02	0.97	41%	Globe artichokes	0.1 / 0.04	0.6
	ragus	0.4 / 0.05	0.96	41%	Table grapes	0.15 / 0.02	0.
	des/rutabagas	0.1/0.02	0.91	37%	Grape leaves and similar species	0.7 / 0.52	0.4
	l cabbages mbolas	0.15/0.02	0.88	37% 32%	Strawberries Watermelons	0.07 / 0.05	0.4
	vberries	0.07 / 0.02	0.82	32%	Beetroots	0.1 / 0.02	0.4
61% Bear		0.05 / 0.04	0.76	31%	Milk: Cattle	0.02 / 0.01	0.3
	e artichokes	0.1 / 0.04	0.70	31%	Asparagus	0.4 / 0.05	0.3
54% Cher		5/0.53	0.68	30%	Carambolas	0.2 / 0.02	0.:
53% Sorg 52% Grap	num efruits	0.8/0.21	0.67	29% 28%	Coconuts Wine grapes	0.05 / 0.04	0.3
51% Pars		0.1 / 0.02	0.63	28%	Carrots	0.1/0.02	0.:
50% Turn		0.1/0.02	0.63	24%	Quinces	0.15 / 0.02	0.3
48% Coco		0.05 / 0.04	0.60	24%	Gherkins	0.2 / 0.05	0.3
47% Tom		0.07 / 0.01	0.58	24%	Broccoli	0.1 / 0.01	0.
46% Pars 43% Sals		5/0.53 0.1/0.02	0.57	24% 23%	Cardamom Goat: Muscle	3 / 2.97 0.05 / 0.18	0.
43% Sals		0.1/0.02	0.54	23%	Yams	0.01 / 0.01	0.1
	rgines/egg plants	0.07 / 0.02	0.50	23%	Lamb's lettuce/corn salads	1.5 / 0.15	0.3
40% Man	darins	0.3 / 0.01	0.49	22%	Poultry: Muscle	0.05 / 0.02	0.
39% Quin		0.15 / 0.02	0.49	22%	Soyabeans	0.1/0.05	0.
37% Cele 37% Rhul		0.05 / 0.01 0.05 / 0.01	0.47	22% 20%	Beans Lentils	0.05 / 0.04 0.05 / 0.04	0.
34% Chiv		5 / 0.53	0.47	20%	Oranges	0.3 / 0.04	0.1
34% Radi		0.1/0.02	0.43	20%	Parsnips	0.1/0.02	0.
	o's lettuce/corn salads	1.5 / 0.15	0.42	19%	Rice	0.2 / 0.03	0.3
	ne: Fat tissue an rocket/rucola	0.2 / 0.2 1.5 / 0.15	0.42 0.40	19% 18%	Florence fennels Potatoes	0.05 / 0.01 0.05 / 0.01	0. 0.
	n rocket/rucola ry: Muscle/meat	0.05/0.02	0.40	18%	Onions	0.09/0.02	0.
32% Four		5/0.53	0.40	17%	Bovine: Muscle	0.03 / 0.02	0.
31% Basi	and edible flowers	5/0.53	0.38	17%	Beans (with pods)	0.2 / 0.03	0.
	et corn	0.05 / 0.01	0.36	17%	Celeriacs/turnip rooted celeries	0.1/0.02	0.
28% Rice		0.2/0.03	0.35	16%	Milk: Goat	0.05 / 0.01	0.
27% Onio 26% Melo		0.09 / 0.02 0.04 / 0	0.34 0.33	16% 16%	Celeries Turnips	0.05 / 0.01 0.1 / 0.02	0. 0.
	ns ne: Liver	0.04 / 0	0.33	16%	Bovine: Fat tissue	0.2 / 0.2	0.
25% Bear	s (with pods)	0.2 / 0.03	0.31	15%	Cress and other sprouts and shoots	4 / 0.5	0.
25% Yam		0.01/0.01	0.31	15%	Chestnuts	0.05 / 0.04	0.
23% Caul 23% Lem	flowers	0.04 / 0.01 0.3 / 0.01	0.29 0.29	15% 15%	Salsifies Radishes	0.1/0.02 0.1/0.02	0.1
23% Lem 22% Lent		0.05 / 0.04	0.29	15%	Radisnes Parsley roots/Hamburg roots parsley	0.1/0.02	0.1
22% Med		0.15/0.02	0.28	14%	Roman rocket/rucola	1.5 / 0.15	0.
22% Peas		0.05 / 0.04	0.27	14%	Celery leaves	5 / 0.53	0.
	ne: Muscle/meat	0.03 / 0.04 0.07 / 0.01	0.27 0.27	13%	Milk: Sheep Jerusalem artichokes	0.05 / 0.01 0.1 / 0.02	0.1
21% Pum 21% Milk:		0.07 / 0.01 0.05 / 0.01	0.27	13%	Jerusalem artichokes Bovine: Liver	0.1/0.02 0.05/0.04	0.1
	la pods	0.5 / 0.43	0.27	13%	Tomatoes	0.07 / 0.04	0.
21% Swin	e: Muscle/meat	0.03 / 0.02	0.26	12%	Mandarins	0.3 / 0.01	0.
	y leaves	5/0.53	0.25	12%	Grapefruits	0.5 / 0.01	0.
	chios quats	0.05 / 0.04 0.3 / 0.13	0.24 0.24	12% 12%	Pumpkins Barley	0.07 / 0.01 0.4 / 0.03	0.1
	quats e/corn	0.3/0.13	0.24	12%	Peas	0.470.03	0.1
	rcress	4 / 0.5	0.23	11%	Swine: Fat tissue	0.15 / 0.07	0.1
18% Peas	(with pods)	0.2 / 0.03	0.22	11%	Medlar	0.15 / 0.02	0.
	nce fennels	0.05 / 0.01	0.20	11%	Sweet corn	0.05 / 0.01	0.
	g onions/green onions and Welsh onions	0.05 / 0.01 0.4 / 0.05	0.20	10% 10%	Cardoons Horseradishes	0.05 / 0.01	0.1
	eolives	0.4/0.05	0.18	10%	Horseradishes Buckwheat and other pseudo-cereals	0.1/0.02	0.1
	wheat and other pseudo-cereals	0.3 / 0.04	0.17	10%	Other farmed animals: Muscle/meat	0.03 / 0.02	0.1
13% Barle	y .	0.4 / 0.03	0.17	9%	Rhubarbs	0.05 / 0.01	0.1
13% Lime	s imbers	0.3 / 0.01 0.01 / 0	0.17 0.16	9%	Cauliflowers	0.04 / 0.01	0.1
13% Cuci				9%	Peanuts/groundnuts	0.1 / 0.05	0.1

13%	Sunflower seeds	0.1/0.05	0.16	9%	Sweet potatoes	0.03 / 0.01	0.1
12%	Grape leaves and similar species	0.7 / 0.52	0.16	9%	Sheep: Liver	0.05 / 0.04	0.1
12%	Bovine: Kidney	0.05 / 0.04 0.03 / 0.02	0.15	9%	Pistachios	0.05 / 0.04	0.1
12%	Other farmed animals: Muscle/meat	4/0.5	0.15 0.15	8% 8%	Sage	5 / 0.53 0.03 / 0.02	0.1
12%	Cress and other sprouts and shoots	4/0.5			Swine: Muscle/meat	0.03/0.02	
12%	Peanuts/groundnuts	011110100	0.15	8%	Poultry: Liver		0.1
11%	Gherkins Walnuts	0.2 / 0.05 0.05 / 0.04	0.14	8%	Pecans	0.05 / 0.04 0.2 / 0.03	0.0
11%		0.05 / 0.04	0.14	8%	Peas (with pods)	0.05 / 0.04	0.0
11%	Wine grapes Hazelnuts/cobnuts	0.15/0.02	0.14	7% 7%	Walnuts	0.05/0.04	0.
11% 10%		0.05 / 0.04	0.14	7%	Brussels sprouts Chives	5/0.53	0.
10%	Brussels sprouts	0.15/0.02	0.13	7%	Swine: Kidnev	0.05/0.04	0.
	Eggs: Chicken Almonds	0.05 / 0.04	0.12	7%	Macadamia	0.05 / 0.04	0.
10% 9%	Courgettes	0.01/0	0.12	7%	Bovine: Kidnev	0.05/0.04	0.
9% 9%	Swine: Fat tissue	0.15 / 0.07	0.12	7%	Melons	0.04 / 0	0.
9%	Sovabeans	0.1/0.05	0.12	6%	Maize/com	0.3/0.04	0.
9%	Pecans	0.05 / 0.04	0.12	6%	Lemons	0.3 / 0.01	0.
9%	Kales	0.01/0	0.11	6%	Cashew nuts	0.05 / 0.04	0.
9%	Wheat	0.08 / 0.01	0.11	6%	Cucumbers	0.01/0	0.
8%	Cashew nuts	0.05/0.04	0.11	5%	Basil and edible flowers	5/0.53	0.
8%	Witloofs/Belgian endives	0.01/0	0.10	5%	Chinese cabbages/pe-tsai	0.01/0	0.
6%	Chinese cabbages/pe-tsai	0.01/0	0.08	5%	Wheat	0.08 / 0.01	0.
6%	Cassava roots/manioc	0.01/0.01	0.08	5%	Sorghum	0.8 / 0.21	0.
6%	Parsley roots/Hamburg roots parsley	0.1/0.02	0.08	5%	Sorghum	0.8/0.21	0.
6%	Sesame seeds	0.1/0.02	0.07	5%	Almonds	0.05 / 0.04	0.
6%	Rapeseeds/canola seeds	0.1/0.05	0.07	5%	Limes	0.3 / 0.01	0.
5%	Coffee beans	0.1/0.08	0.06	5%	Courgettes	0.01/0	0.
3% 4%	Linseeds	0.1/0.05	0.05	5%	Swine: Liver	0.05 / 0.04	0.
4%	Garlic	0.09 / 0.02	0.05	4%	Spring onions/green onions and Welsh onions	0.05 / 0.01	0.
4%	Mustard seeds	0.1/0.05	0.05	4%	Rosemary	5/0.53	0.
4%	Swine: Kidney	0.05 / 0.04	0.05	4%	Rosemary	5 / 0.53	0.
4%	Swine: Liver	0.05 / 0.04	0.05	4%	Rosemary	5 / 0.53	0.
4%	Common millet/proso millet	0.3 / 0.04	0.05	4%	Rosemary	5 / 0.53	0.
4%	Rve	0.08 / 0.01	0.05	4%	Table olives	0.4 / 0.05	0.
3%	Juniper berry	0.5 / 0.43	0.04	4%	Sunflower seeds	0.1/0.05	0.
3%	Milk: Sheep	0.05 / 0.01	0.04	4%	Hazelnuts/cobnuts	0.05 / 0.04	0.
3%	Brazil nuts	0.05 / 0.04	0.04	4%	Kales	0.01/0	0.
3%	Olives for oil production	0.4 / 0.03	0.03	4%	Witloofs/Belgian endives	0.01/0	0.
3%	Oat	0.4 / 0.03	0.03	3%	Vanilla pods	0.5/0.43	0.
3%	Thyme	5 / 0.53	0.03	3%	Eggs: Chicken	0.01 / 0.01	0.
2%	Cardamom	3 / 2.97	0.03	3%	Chervil	5/0.53	0.
2%	Sweet potatoes	0.03 / 0.01	0.03	3%	Pine nut kernels	0.05 / 0.04	0.
2%	Sugar canes	0.2/0.14	0.03	3%	Shallots	0.09 / 0.02	0.
2%	Poultry: Liver	0.05 / 0.02	0.02	3%	Rye	0.08 / 0.01	0.
2%	Macadamia	0.05 / 0.04	0.02	3%	Poppy seeds	0.1/0.05	0.
2%	Bamboo shoots	0.05 / 0.01	0.02	3%	Poppy seeds	0.1/0.05	0.
2%	Peas (without pods)	0.01/0	0.02	3%	Sesame seeds	0.1/0.05	0.
2%	Beans (without pods)	0.01/0	0.02	3%	Common millet/proso millet	0.3 / 0.04	0.
1%	Peppercorn (black, green and white)	0.5 / 0.43	0.02	2%	Cassava roots/manioc	0.01 / 0.01	0.
1%	Rosemary	5 / 0.53	0.02	2%	Bamboo shoots	0.05 / 0.01	0.
1%	Pine nut kernels	0.05 / 0.04	0.01	2%	Brazil nuts	0.05 / 0.04	0.
0.8%	Allspice/pimento	0.5 / 0.43	0.01	2%	Rapeseeds/canola seeds	0.1/0.05	0.
0.7%	Ginger	0.2/0.11	0.01	2%	Kumquats	0.3/0.13	0.
0.7%	Caraway	0.5 / 0.43	0.01	2%	Linseeds	0.1/0.05	0.
0.6%	Horseradishes	0.1/0.02	0.01	2%	Olives for oil production	0.4 / 0.03	0.
0.4%	Laurel/bay leaves	5/0.53	0.01	2%	Tamarind	0.5 / 0.43	0.
0.4%	Strawberry leaves	0.1/0.03	0.01	2%	Oat	0.4 / 0.03	0.
0.4%	Strawberry leaves	0.1/0.03	0.01	1%	Strawberry leaves	0.1/0.03	0.
0.4%	Strawberry leaves	0.1/0.03	0.01	1%	Strawberry leaves	0.1/0.03	0.
0.4%	Strawberry leaves	0.1/0.03	0.01	1%	Palm hearts	0.05 / 0.01	0.
0.4%	Shallots	0.09 / 0.02	0.00	1%	Eggs: Quail	0.01 / 0.01	0
0.3%	Poultry: Fat tissue	0.1/0.04	0.00	1%	Peas (without pods)	0.01/0	0
0.2%	Turmeric/curcuma	0.2 / 0.12	0.00	1%	Peppercorn (black, green and white)	0.5 / 0.43	0
0.06%	Hemp seeds	0.05 / 0.01	0.00	1.0%	Liquorice	0.2 / 0.12	0
0.05%	Liquorice	0.2/0.12	0.00	1.0%	Liquorice	0.2 / 0.12	0
				0.9%	Poultry: Fat tissue	0.1/0.04	0
				0.8%	Rooibos	0.1/0.03	0
				0.8%	Rooibos	0.1 / 0.03	0
				0.8%	Beans (without pods)	0.01/0	0
				0.8%	Garlic	0.09 / 0.02	0
				0.7%	Caraway	0.5 / 0.43	0.
				0.4%	Eggs: Goose	0.01 / 0.01	0.
				0.3%	Allspice/pimento	0.5 / 0.43	0.
				0.3%	Sheep: Kidney	0.05 / 0.04	0.
				0.3%	Borage seeds	0.05 / 0.01	0.
				0.2%	Chicory roots	0.03 / 0.01	0
				0.05%	Juniper berry	0.5 / 0.43	0.
				0.04%	Hemp seeds	0.05 / 0.01	0
d/collanse list							
d/collapse list	mmodities exceeding the ARfD/ADI in child						

Results for childre No of processed co	mmodities for which ARfD/ADI is exceeded (IESTI):		1	Results for adults No of processed corr	modities for which ARfD/ADI is exceeded (IESTI):		1
IESTI				IESTI			
Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL / input for RA (mg/kg)	Exposur (µg/kg by
762%	Currants (red, black and white) / juice	1.5 / 0.33	9.5	340%	Currants (red, black and white) / juice	1.5 / 0.33	4.3
88%	Sugar beets (root) / sugar	0.1/0.12	1.1	54%	Beetroots / boiled	0.1/0.02	0.68
81%	Rose hips / jam	1.5 / 0.33	1.0	44%	Pumpkins / boiled	0.07 / 0.01	0.55
79%	Gherkins / pickled	0.2 / 0.04	0.99	36%	Maize / oil	0.3 / 0.88	0.44
79%	Broccoli / boiled	0.1/0.01	0.98	35%	Sugar beets (root) / sugar	0.1/0.12	0.44
71%	Turnips / boiled	0.1/0.02	0.89	35%	Grape leaves / canned	0.7 / 0.52	0.43
71%	Parsnips / boiled	0.1/0.02	0.89	34%	Rice / milling (polishing)	0.2 / 0.04	0.43
71%	Pumpkins / boiled	0.07 / 0.01	0.89	34%	Celeries / boiled	0.05 / 0.01	0.42
65%	Maize / oil	0.3 / 0.88	0.81	33%	Rose hips / jam	1.5 / 0.33	0.42
62%	Beetroots / boiled	0.1/0.02	0.78	32%	Coffee beans / extraction	0.1/0.02	0.40
56%	Potatoes / fried	0.05 / 0.01	0.70	30%	Parsnips / boiled	0.1/0.02	0.37
54%	Rice / milling (polishing)	0.2/0.04	0.67	27%	Turnips / boiled	0.1/0.02	0.33
45%	Florence fennels / boiled	0.05 / 0.01	0.57	25%	Celeriacs / boiled	0.1/0.02	0.32
37%	Rhubarbs / sauce/puree	0.05 / 0.01	0.47	24%	Broccoli / boiled	0.1/0.01	0.30
36%	Salsifies / boiled	0.1/0.02	0.45	24%	Beans / canned	0.05 / 0.04	0.30

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 4 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases.

Comments:

1	Diflubenzuron	Input values			
LOQs (mg/kg) range from:	0.01	to:	0.05	Details - chronic risk	Supplementary results -
T	oxicological reference v	alues		assessment	chronic risk assessment
ADI (mg/kg bw/day):	0.1	ARfD (mg/kg bw):	not necessary		
Source of ADI:	EC	Source of ARfD:	EC	Details - acute risk assessment/children	Details - acute risk assessment/adults
Year of evaluation:	2017	Year of evaluation:	2017	assessment/children	assessment/addits

					No	mal mode					
					Chronic risk assessn	ent: JMPR method	ology (IEDI/TMDI)				
				No of diets exceeding	the ADI :					Exposure	resulting from
	Calculated exposure (% of ADI)	MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity / group of commodities	2nd contributor to MS diet (in % of ADI)	Commodity / group of commodities	3rd contributor to M diet (in % of ADI)	S Commodity / group of commodities	MRLs set at the LOQ (in % of ADI)	under assessme (in % of ADI)
TMDI/NEDI/IEDI calculation (based on average food consumption)	2 2% 2 % 2 % 1 % 1 % 0 8% 0 8% 0 8% 0 8% 0 7% 0 7% 0 7% 0 7% 0 7% 0 7% 0 6% 0 6% 0 6% 0 6% 0 6% 0 6% 0 6% 0 6	III E soluti IIE soluti IIE soluti FR adult NL loddler UK Inifant GEMMS/Food G06 GEMS/Food G07 NL child GEMS/Food G11 DE child UK totdler GEMS/Food G11 DE women 14-50 yr GEMS/Food G08 DE general UK dadult NL general UK dadult NL general GEMS/Food G15 DK child RC general ES child SE general ES child SE general ES child FR Infant DK dadut FI 3 yr FI toddler LT adult FI 6 yr	0.56 1.56 1.53 1.34 1.53 1.34 0.88 0.84 0.82 0.77 0.73 0.77 0.73 0.70 0.66 0.65 0.65 0.65 0.65 0.64 0.63 0.61 0.38 0.37 0.35 0.38 0.37 0.35 0.39 0.21 0.21 0.16 0.16 0.16	(i), 1%, 1%, 1%, 1%, 1%, 1%, 1%, 1%, 1%, 1%	Joby Unonincluster Tea (drid leaves of Camellia sinensis) Tea (drid leaves of Camellia sinensis) Milk: Cattle Milk: Cattle Milk: Cattle Milk: Cattle Milk: Cattle Milk: Cattle Potatoes Wheat	0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.1% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Milic Cattle Milic Cattle Milic Cattle Cattle Cattle Cattle Cattle Cattle Cattle Cattle Milic Cattle Milic Cattle Wheat Bovne: Muscle/meat Potatoes	(1) 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Super portations Wine grappes Tea (drivel leaves of Carnellia sinens Potatoes Tomatoes Wheat Sugar beet roots Wheat Potatoes Sugar beet roots Wheat Sugar beet roots Wheat Sugar beet roots Wheat Sugar beet roots Wheat Apples Wheat Potatoes Cocco beans Potatoes Cocco beans Potatoes Rye Potatoes Rye Potatoes Rye Potatoes Rye Potatoes Cocco beans Potatoes Rye Potatoes Cocco beans Potatoes Rye Potatoes Cocco beans Potatoes Cocco beans Potatoes Cocco beans Potatoes Cocco beans Potatoes Rye Potatoes Cocco beans Potatoes Cocco beans Potatoes Cocco beans Potatoes Cocco beans Potatoes Cocco beans Potatoes Potatoes Wheat Tomatoes Apples Wheat Potatoes	0.6% 0.4% 0.4% 0.7% 0.6% 0.4%	1% 1% 0.1% 0.5% 0.5% 0.2% 0.2% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3

	*				Del	tamethrin (F)				Input	t values		
+	ים • • •	fsa		LOQs (mg/kg) range fr	om:	ogical reference values	to:	0.10	Details - cl asses	hronic risk sment	Supplementary resu chronic risk assessm		
Eu	Ironean Food	Safety Authority		ADI (mg/kg bw/day):		0.01	ARfD (mg/kg bw):	0.01	Details - a	acute risk	Details - acute ris	k	
		rision 3.1: 2021/01/06		Source of ADI: Year of evaluation:		EC 2003	Source of ARfD: Year of evaluation:	EC 2003	assessmer	nt/children	assessment/adult	ts)
nt	s:	,											
					Ref	ined calculation mode							
_					Chronic risk as	sessment: JMPR method	ology (IEDI/TMD	1)					-
				No of diets exceeding	the ADI :							Exposur	
	Calculated exposure	3	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	S Commodity /		3rd contributor to MS diet	Commodity /	MRLs set al the LOQ (in % of ADI	und
	(% of ADI) 96%	MS Diet NL toddler	day) 9.64	(in % of ADI) 49%	group of commodities Maize/corn		(in % of ADI) 18%	group of commodities Wheat		(in % of ADI) 10%	group of commodities Milk: Cattle		+
	69% 57%	DK child GEMS/Food G06	6.89 5.68	39% 33%	Rye Wheat		20% 9%	Wheat Maize/com		3% 7%	Oat Rice		
	43% 41% 41%	GEMS/Food G08 GEMS/Food G10 GEMS/Food G15	4.25 4.06 4.06	18% 18% 20%	Wheat Wheat Wheat		6% 6% 5%	Barley Rice Barley		4% 5% 4%	Rye Maize/com Maize/com		
	40% 37%	DE child FR child 3 15 yr	4.01 3.68	19% 21% 19%	Wheat Wheat		6% 4% 4%	Rye Milk: Cattle		4% 3%	Apples Maize/com		
	36% 36% 34%	GEMS/Food G07 RO general UK infant	3.65 3.64 3.41	23% 12%	Wheat Wheat Wheat		7% 7%	Barley Maize/com Maize/com		2% 2% 7%	Maize/com Milk: Cattle Milk: Cattle		
	34% 33% 33%	ES child NL child IT toddler	3.38 3.34 3.29	20% 19% 30%	Wheat Wheat Wheat		2% 4% 0.9%	Rice Milk: Cattle Rice		2% 2% 0.4%	Milk: Cattle Maize/com Tomatoes		
	32% 29% 28%	GEMS/Food G11 PT general UK toddler	3.20 2.91 2.79	16% 18% 18%	Wheat Wheat Wheat		5% 4% 4%	Barley Rice Milk: Cattle		1% 3% 3%	Milk: Cattle Maize/com Rice		
	27% 27% 25%	IE adult FR toddler 2 3 yr	2.74 2.74	10% 14% 14%	Wheat Wheat		3% 5% 2%	Tea (dried leaves of Carnellia si Milk: Cattle	nensis)	2% 3% 2%	Buckwheat and other pseudo-cereals Rice Milk: Cattle		
	24% 22%	SE general DE general DE women 14-50 yr	2.51 2.38 2.21	8% 10%	Wheat Wheat Wheat		4% 3%	Bovine: Muscle/meat Rye Rye		4% 2%	Barley Milk: Cattle		
	21% 21% 19%	ES adult IT adult FI 3 vr	2.14 2.14 1.90	11% 19% 5%	Wheat Wheat Wheat		3% 0.8% 5%	Barley Rice Rye		1% 0.3% 4%	Rice Tomatoes Oat		
	19% 19% 18%	FR adult LT adult NL general	1.89 1.86 1.83	10% 8% 9%	Wheat Rye Wheat		3% 5% 2%	Tea (dried leaves of Carnellia si Wheat Barley	nensis)	0.9% 1% 1%	Wine grapes Buckwheat and other pseudo-cereals Milk: Cattle		
	15% 15%	UK vegetarian FI 6 yr	1.50 1.49	9% 4%	Wheat Wheat		2% 4%	Rice Rye		1% 2%	Tea (dried leaves of Carnellia sinensis Oat		
	13% 13% 9%	UK adult DK adult Fl adult	1.30 1.29 0.93	8% 5% 5%	Wheat Wheat Rye		2% 4% 1%	Rice Rye Wheat		1% 0.9% 0.9%	Tea (dried leaves of Camellia sinensis Milk: Cattle Oat		
	9% 8% 2%	FR infant IE child PL general	0.91 0.81 0.16	4% 5% 0.6%	Wheat Wheat Apples		3% 1% 0.3%	Milk: Cattle Rice Tomatoes		0.5% 0.6% 0.1%	Apples Milk: Cattle Table grapes		

Acute risk assessment /children	Acute risk assessment / adults / general population
Details - acute risk assessment /children	Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

	n for which ARfD/ADI is exceeded (IESTI):				or which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposur (µg/kg bv
97%	Pears	0.09 / 0.07	9.7	55%	Chamomille	9/9.1	5.5
86%	Apples	0.2 / 0.08	8.6	55%	Chamomille	9/9.1	5.5
85%	Lettuces	0.4 / 0.22	8.5	55%	Chamomille	9/9.1	5.5
84%	Wheat	1 / 0.58	8.4	55%	Chamomille	9/9.1	5.5
77%	Leeks	0.3 / 0.13	7.7	55%	Chamomille	9/9.1	5.5
76%	Peaches	0.15 / 0.08	7.6	54%	Aubergines/egg plants	0.4 / 0.2	5.4
75%	Celeries	0.3/0.2	7.5	53%	Rye	2 / 1.1	5.3
74%	Rhubarbs	0.3/0.2	7.4	53%	Barley	2 / 1.1	5.3
74%	Maize/com	2/1.1	7.4	53%	Red mustards	2/1	5.3
73%	Rice	1 / 0.58	7.3	52%	Lentils	1 / 0.85	5.2
72%	Kales	0.15 / 0.16	7.2	49%	Rice	1 / 0.58	4.9
70%	Rye	2/1.1	7.0	49%	Wheat	1 / 0.58	4.9
66%	Table grapes	0.2 / 0.09	6.6	38%	Buckwheat and other pseudo-cereals	2 / 1.1	3.8
62%	Barley	2 / 1.1	6.2	37%	Florence fennels	0.3 / 0.2	3.7
59%	Cucumbers	0.2 / 0.09	5.9	36%	Rooibos	9/9.1	3.6

Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)

-071				IFOTI			
ESTI		MRL / input		IESTI		MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg
91%	Florence fennels / boiled	0.3/0.2	9.1	79%	Barley / beer	2/0.22	7.
80%	Pumpkins / boiled	0.2/0.09	8.0	68%	Celeries / boiled	0.3/0.2	6.
75%	Rhubarbs / sauce/puree	0.3/0.2	7.5	50%	Pumpkins / boiled	0.2 / 0.09	5.
74%	Leeks / boiled	0.3/0.13	7.4	39%	Florence fennels / boiled	0.3/0.2	3.
70%	Wheat / milling (flour)	1/0.58	7.0	35%	Maize / oil	2/6.93	3
69%	Lentils / boiled	1/0.85	6.9	29%	Rhubarbs / sauce/puree	0.3/0.2	2
65%	Maize / oil	2/6.93	6.5	25%	Wheat / bread/pizza	1/0.58	2
61%	Peas / canned	1/0.34	6.1	25%	Millet / boiled	2/0.44	2
60%	Millet / boiled	2/0.44	6.0	23%	Leeks / boiled	0.3/0.13	2
59%	Buckwheat / bulgur and grits	2/1.1	5.9	23%	Peas / canned	1/0.34	2
45%	Kales / boiled	0.15/0.16	4.5	22%	Rice / milling (polishing)	1/0.23	2
40%	Rve / boiled	2/1.1	4.0	22%	Wheat / pasta	1/0.58	2
40%	Oat / boiled	2/1.1	4.0	21%	Courgettes / boiled	0.2 / 0.09	2
40%	Buckwheat / boiled	2/1.1	4.0	20%	Wheat / bread (wholemeal)	1/0.58	2
40%	Barley / cooked	2/1.1	4.0	17%	Oat / boiled	2/1.1	1.
39%	Rye / milling (wholemeal)-baking	2/1.1	3.9	17%	Cauliflowers / boiled	0.1/0.04	1.
35%	Rice / milling (polishing)	1/0.23	3.5	10%	Currants (red, black and white) / juice	0.6 / 0.08	1.
33%	Oat / milling (flakes)	2/1.1	3.3	10%	Apples / juice	0.2 / 0.03	1/
32%	Wheat / milling (wholemeal)-baking	1/0.58	3.2	10%	Broccoli / boiled	0.1/0.04	0.
32%	Courgettes / boiled	0.2 / 0.09	3.2	9%	Wine grapes / wine	0.2/0.09	0.
32%	Broccoli / boiled	0.1/0.04	3.2	8%	Grape leaves / canned	2/1	0.
28%	Cauliflowers / boiled	0.1/0.04	2.8	8%	Wine grapes / juice	0.2/0.04	0.
23%		2/1.1	2.8		Beetroots / boiled	0.02 / 0.04	0.
	Maize / processed (not specified)		2.3	8%		0.6/0.08	0.
23%	Currants (red, black and white) / juice	0.6/0.08	2.3	7%	Elderberries / juice		0.
21% 21%	Peaches / canned Gherkins / pickled	0.15 / 0.08 0.2 / 0.09	2.1	7% 7%	Beans (without pods) / boiled Peaches / canned	0.2 / 0.14 0.15 / 0.08	0.
21%		2/1.1	2.1	5%	Table grapes / raisins	0.2/0.42	0.
20%	Barley / milling (flour)	2/1.1 0.2/0.14	2.0	5%		0.2/0.42	0.
	Beans (with pods) / boiled	0.2/0.14	1.0		Peas (with pods) / boiled Tea (dried leaves of Camellia sinensis) / infusion	5/0.02	0.
17%	Wine grapes / juice			4%			
16%	Apples / juice	0.2/0.03	1.6	4%	Peas (without pods) / boiled	0.2/0.14	0.
13%	Elderberries / juice	0.6 / 0.08	1.3	4%	Parsnips / boiled	0.02 / 0.02	0.
10%	Turnips / boiled	0.02 / 0.02	1.0	4%	Turnips / boiled	0.02 / 0.02	0.
10%	Parsnips / boiled	0.02 / 0.02	1.0	4%	Onions / boiled	0.06 / 0.04	0.
9%	Beetroots / boiled	0.02 / 0.02	0.89	4%	Celeriacs / boiled	0.02 / 0.02	0.
8%	Tea (dried leaves of Camellia sinensis) / infusion	5/0.02	0.77	3%	Carob (st johns bread) / flour	0.7 / 0.37	0.
7%	Pears / juice	0.09 / 0.02	0.65	3%	Table olives / canned	1/0.21	0.
6%	Shallots / boiled	0.06 / 0.04	0.65	2%	Shallots / boiled	0.06 / 0.04	0.
6%	Tomatoes / juice	0.1/0.03	0.57	2%	Tomatoes / sauce/puree	0.1/0.03	0.
5%	Oranges / juice	0.02 / 0.01	0.53	2%	Salsifies / boiled	0.02 / 0.02	0.
5%	Salsifies / boiled	0.02 / 0.02	0.52	2%	Jerusalem artichokes / boiled	0.02 / 0.02	0.
5%	Jerusalem artichokes / boiled	0.02 / 0.02	0.51	2%	Oranges / juice	0.02 / 0.01	0.
5%	Peaches / juice	0.15 / 0.03	0.50	1%	Okra, lady's fingers / boiled	0.15 / 0.07	0.
5%	Cranberries / juice	0.6 / 0.08	0.46	1%	Grapefruits / juice	0.02 / 0.01	0.
4%	Azarole (mediteranean medlar) / juice	0.6 / 0.08	0.44	1%	Rose hips / jam	0.6 / 0.08	0.
4%	Olives for oil production / oils	0.6 / 0.48	0.44	0.8%	Carrots / canned	0.02 / 0.01	0.
4%	Carrots / juice	0.02 / 0.01	0.36	0.6%	Ginger / jam	0.5 / 0.05	0.
4%	Raspberries / juice	0.08 / 0.03	0.35	0.6%	Cranberries / dried	0.6 / 0.08	0.
3%	Celeriacs / juice	0.02 / 0.02	0.29	0.4%	Quinces / jam	0.1 / 0.03	0.
3%	Tomatoes / sauce/puree	0.1 / 0.03	0.29	0.2%	Rooibos leaves / infusion	9 / 0.01	0.
2%	Rose hips / jam	0.6 / 0.08	0.24	0.2%	Camomille flowers / infusion	9 / 0.01	0.
2%	Table olives / canned	1/0.21	0.24	0.2%	Lemons / juice	0.02 / 0.01	0.
2%	Cultivated fungi / fried	0.05 / 0.03	0.16	0.05%	Turmeric (Curcuma) / boiled	0.5 / 0.33	0.
2%	Ginger / jam	0.5 / 0.05	0.15	0.05%	Hybiscus flowers / infusion	9/0.01	0.
0.9%	Plums / juice	0.1 / 0.01	0.09	0.03%	Chicory roots / processed (not specified)	0.04 / 0.01	0.
0.9%	Quinces / jam	0.1 / 0.03	0.09	0.00%	Valerian root / infusion	0.3/0	0.
0.8%	Peas (without pods) / canned	0.2 / 0.01	0.08				
0.5%	Camomille flowers / infusion	9 / 0.01	0.05				
0.5%	Camomille flowers / infusion	9/0.01	0.05				
0.4%	Rapeseeds / oils	0.2/0.14	0.04				
0.3%	Lemons / jam	0.02 / 0.01	0.03				
0.1%	Hybiscus flowers / infusion	9/0.01	0.01				
0.1%	Chicory roots / processed (not specified)	0.04 / 0.01	0.01				
0.0%	Limes / juice	0.02 / 0.01	0.00				
0.0%	Valerian root / infusion	0.3/0	0.00				
	valonari rout/ initiation	0.010	0.00	1			

Expand/collapse list

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Deltamethrin (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARTD/ADI was identified.

K T I	*				Carbo	osulfan			Inp	ut values		
K.	*	f		LOQs (mg/kg) range			to:	0.05	Details - chronic risk	Supplementary	results -	
*	• e	fsa Safety Authority				reference value	s		assessment	chronic risk ass		
				ADI (mg/kg bw/day):		0.005	ARfD (mg/kg bw):	0.005	Details - acute risk	Details - acut	o rick	
				Source of ADI:		EFSA	Source of ARfD:	EFSA	assessment/children	assessment/		
EFSA P nts:	PRIMo rev	vision 3.1; 2021/01/06		Year of evaluation:		2009	Year of evaluation:	2009				
						Normal mod						
					Chronic risk asse	essment: JMPR	methodology (II	EDI/TMDI)			<u> </u>	
				No of diets exceeding	the ADI :						MRLs set at	
Celculate	ed exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /	3rd contributor to diet	//S Commodity /	the LOQ (in % of ADI)	(in % of A
(%)	of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		
	11% 9%	NL toddler GEMS/Food G06	0.54 0.45	1% 2%	Maize/corn Aubergines/egg plants		1%	Milk: Cattle Wheat	1% 0.6%	Bananas Cotton seeds	10% 5%	0.9%
	9% 7%	NL child	0.45	2%	Sugar beet roots		0.8%	Wheat	0.6%	Milk: Cattle	7%	0.49
	7%	IE adult	0.35	2%	Aubergines/egg plants		1%	Mangoes	0.5%	Wheat	4%	3%
	6%	GEMS/Food G11	0.32	1%	Soyabeans		0.7%	Wheat	0.4%	Sugar canes	6%	0.5%
	6%	Fladult	0.32	6%	Coffee beans		0.1%	Rye	0.1%	Oranges	6%	0.0
	6%	GEMS/Food G10	0.31	1%	Soyabeans		0.8%	Wheat	0.4%	Aubergines/egg plants	6%	0.5
	6%	FR child 3 15 yr	0.30	0.9%	Wheat		0.7%	Sugar beet roots	0.7%	Oranges	6%	0.29
	6%	GEMS/Food G07	0.29	0.8%	Wheat		0.7%	Soyabeans	0.4%	Cotton seeds	5%	0.39
	6%	GEMS/Food G08	0.29	0.8%	Wheat		0.8%	Soyabeans	0.4%	Swine: Muscle/meat	5%	0.3
	5%	DE child	0.27	0.8%	Wheat		0.8%	Oranges	0.4%	Milk: Cattle	5%	0.2
	5%	GEMS/Food G15	0.27	0.9%	Wheat		0.7%	Soyabeans	0.5%	Aubergines/egg plants	5%	0.5
	5% 5%	RO general	0.25	2% 0.6%	Aubergines/egg plants Wheat		1%	Wheat Milk: Cattle	0.3%	Sunflower seeds	3% 4%	2%
	5% 4%	FR toddler 2 3 yr ES child	0.24	0.9%	Wheat		0.5%	Cocoa beans	0.4%	Sugar beet roots Oranges	4%	0.4
	4%	DE women 14-50 vr	0.22	0.9%	Sugar beet roots		0.5%	Coffee beans	0.4%	Wheat	4%	0.15
	4%	DK child	0.21	1%	Rve		0.9%	Wheat	0.4%	Swine: Muscle/meat	4%	0.43
	4%	DE general	0.20	0.8%	Sugar beet roots		0.5%	Coffee beans	0.4%	Wheat	4%	0.39
	4%	SEgeneral	0.20	0.9%	Bovine: Muscle/meat		0.6%	Wheat	0.5%	Aubergines/egg plants	3%	0.69
	4%	UK toddler	0.19	0.8%	Wheat		0.6%	Sugar beet roots	0.4%	Milk: Cattle	4%	0.19
	4%	UK infant	0.19	0.8%	Milk: Cattle		0.5%	Wheat	0.3%	Bananas	4%	
	4%	NL general	0.18	0.6%	Sugar beet roots		0.4%	Wheat	0.3%	Coffee beans	3%	0.1
	3%	IT toddler	0.15	1%	Wheat		0.7%	Aubergines/egg plants	0.3%	Other cereals	2%	0.7
	3%	FR adult	0.14	0.4%	Wheat		0.4%	Coffee beans	0.2%	Aubergines/egg plants	3%	0.2
	3%	ES adult	0.14	0.5%	Wheat		0.3%	Aubergines/egg plants	0.3%	Oranges	2%	0.3
	2%	IT adult	0.12	0.8%	Wheat		0.8%	Aubergines/egg plants	0.1%	Other cereals	2%	0.8
	2%	PT general	0.11	0.8%	Wheat		0.2%	Rice	0.1%	Oranges	2%	
	2%	FR infant	0.09	0.3%	Milk: Cattle Bananas		0.3%	Sugar beet roots	0.2%	Aubergines/egg plants	2%	0.2
	2% 2%	FI3 yr UK vegetarian	0.09	0.3%	Wheat		0.2%	Wheat Aubergines/egg plants	0.2%	Cocoa beans Oranges	2%	0.39
	2%	FI 6 vr	0.09	0.2%	Cocoa beans		0.2%	Wheat	0.2%	Bananas	2%	0.0
	2%	UK adult	0.08	0.2%	Wheat		0.1%	Bovine: Muscle/meat	0.2%	Oranges	1%	0.0
	1%	DK adult	0.07	0.2%	Wheat		0.2%	Swine: Muscle/meat	0.1%	Bovine: Muscle/meat	1%	0.1
	1%	LT adult	0.07	0.2%	Rye		0.2%	Wheat	0.2%	Swine: Muscle/meat	1%	0.2
	0.7%	IE child	0.03	0.2%	Wheat		0.1%	Milk: Cattle	0.1%	Rice	0.7%	0.0

Lonclusion: The scimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of Carlosalfan is unfikely to present a public health concern. DISCLAIMER: Detary data form the UK ware included in PRIMO when the UK was a member of the European Union.

Acute risk assessment / adults / general population

185 of 223

	_
Details - acute risk assessment /children	

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

Results for children	which AD(D) AD() which do () (COT)			Results for adults	Constant AD(D) AD(In constant of (COT))		~
No. of commodities fo	or which ARfD/ADI is exceeded (IESTI):		2	No. of commodities	for which ARfD/ADI is exceeded (IESTI):		2
IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/k
2044%	Mangoes	0.1 / 1.3	102	673%	Mangoes	0.1 / 1.3	34
455%	Aubergines/egg plants	0.15 / 0.91	23	493%	Aubergines/egg plants	0.15 / 0.91	2
30%	Melons	0.01 / 0.01	1.5	8%	Watermelons	0.01 / 0.01	0.4
27%	Oranges	0.01 / 0.01	1.3	8%	Melons	0.01 / 0.01	0.3
24%	Watermelons	0.01 / 0.01	1.2	6%	Oranges	0.01 / 0.01	0.3
20%	Pineapples	0.01 / 0.01	1.0	6%	Pineapples	0.01 / 0.01	0.3
19%	Bananas	0.01 / 0.01	0.97	4%	Bananas	0.01 / 0.01	0.2
16%	Grapefruits	0.01 / 0.01	0.79	4%	Mandarins	0.01 / 0.01	0.1
12%	Kiwi fruits (green, red, yellow)	0.01 / 0.01	0.62	4%	Grapefruits	0.01 / 0.01	0.1
12%	Mandarins	0.01 / 0.01	0.59	4%	Guavas	0.01 / 0.01	0.1
11%	Granate apples/pomegranates	0.01 / 0.01	0.55	4%	Granate apples/pomegranates	0.01 / 0.01	0.1
10%	Avocados	0.01 / 0.01	0.50	3%	Coconuts	0.02 / 0.02	0.1
8%	Papayas	0.01/0.01	0.42	3%	Avocados	0.01 / 0.01	0.1
8%	Carobs/Staint John's bread	0.05 / 0.05	0.39	3%	Pumpkins	0.01 / 0.01	0.
						0.017 0.01	
7% Expand/collapse list	Lemons	0.01 / 0.01	0.34	3%	Papayas	0.01 / 0.01	0.1
7% Expand/collapse list			0.34	3%	Papayas	0.01 / 0.01	0.1
7% Expand/collapse list	Lemons		0.34	3%	Papayas	0.01 / 0.01	0.1
7% Expand/collapse list Total number of cor			0.34	3%	Papayas	0.01 / 0.01	0.1
7% Expand/collapse list Total number of cor adult diets (IESTI calculation)	mmodities exceeding the ARfD/ADI in a				Papayas	0.01 / 0.01	0.1
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children	mmodities exceeding the ARfD/ADI in e			Results for adults		0.01 / 0.01	0.1
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com	mmodities exceeding the ARfD/ADI in a		2	Results for adults No of processed cor	Papayas	0.01 / 0.01	
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children	mmodities exceeding the ARfD/ADI in e			Results for adults		0.01 / 0.01	
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com	mmodities exceeding the ARfD/ADI in e		2	Results for adults No of processed cor		0.01 / 0.01	
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed corr exceeded (IESTI): IESTI	mmodities exceeding the ARfD/ADI in e	children and	2	Results for adults No of processed cor (IESTI): IESTI		MRL / input	
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed corr exceeded (IESTI): IESTI Highest % of	mmodities exceeding the ARfD/ADI in o	MRL / input for RA	2 Exposure	Results for adults No of processed cor (IESTI): IESTI Highest % of	nmodities for which ARfD/ADI is exceeded	MRL / input for RA	 Expo
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com exceeded (IESTI): IESTI Highest % of ARTD/ADI	mmodities exceeding the ARfD/ADI in o	MRL / input for RA (mg/kg)	2 Exposure (µg/kg bw)	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI	nmodities for which ARfD/ADI is exceeded Processed commodities	MRL / input for RA (mg/kg)	Expo (µg/kį
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed corr exceeded (IESTI): IESTI Highest % of	mmodities exceeding the ARfD/ADI in o	MRL / input for RA	2 Exposure	Results for adults No of processed cor (IESTI): IESTI Highest % of	nmodities for which ARfD/ADI is exceeded	MRL / input for RA	Expo (µg/kį
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com exceeded (IESTI): IESTI Highest % of ARTD/ADI	mmodities exceeding the ARfD/ADI in o	MRL / input for RA (mg/kg)	2 Exposure (µg/kg bw)	Results for adults No of processed cor (IESTI): ESTI Highest % of ARTD/ADI 11% 9%	nmodities for which ARfD/ADI is exceeded Processed commodities	MRL / input for RA (mg/kg)	Ехро (µg/kg 0.t
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com exceeded (IESTI): IESTI Highest % of ARTD/ADI 22%	mmodities exceeding the ARfD/ADI in o	MRL / input for RA (mg/kg) 0.01 / 0.12	2 Exposure (µg/kg bw) 1.1	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 11%	nmodities for which ARfD/ADI is exceeded Processed commodities Pumpkins / boiled	MRL / input for RA (mg/kg) 0.01 / 0.01	Expo (µg/kg 0.t
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18%	mmodities exceeding the ARfD/ADI in o	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01	2 —- (µg/kg bw) 1.1 0.89	Results for adults No of processed cor (IESTI): ESTI Highest % of ARTD/ADI 11% 9%	nmodities for which ARfD/ADI is exceeded Processed commodities Pumpkins / boiled Sugar beets (root) / sugar	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.12	Expo (µg/kg 0.{ 0.2
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed com- exceeded (IESTI): IESTI Highest % of AR(D/AD) 22% 18% 11%	mmodities exceeding the ARfD/ADI in o mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01	2 Exposure (µg/kg bw) 1.1 0.89 0.53	Results for adults No of processed cor (IESTI): Highest % of ARTD/ADI 11% 9% 5%	Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.01 0.05 / 0.01	Expo (µg/kg 0.{ 0.2 0.2
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI 22% 18% 11% 8%	mmodities exceeding the ARfD/ADI in o modities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41	Results for adults No of processed cor (IESTI): IESTI Highest % of ARtD/ADI 11% 9% 5% 3%	nmodities for which ARfD/ADI is exceeded Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.12 0.05 / 0.01 0.01 / 0.02	Expo (µg/kg 0.2 0.2 0.1 0.1
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18% 11% 8% 6%	mmodities exceeding the ARfD/ADI in o mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41 0.29	Results for adults No of processed cor (IESTI): IESTI Highest % of ARtD/ADI 11% 9% 5% 3% 3% 3%	Processed commodities Processed commodities Sugar best (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.12 0.05 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.2 0.1 0.1 0.1
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI 22% 18% 11% 8% 6% 5% 5%	mmodities exceeding the ARfD/ADI in o modities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 11% 9% 5% 3% 3% 3% 3%	Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25	Expo (µg/kg 0.5 0.2 0.7 0.7 0.7
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18% 11% 8% 5% 4%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25 0.01 / 0.0 0.01 / 0.0	2 Exposure (µg/kg bw) 1.1 0.53 0.41 0.29 0.23 0.18 0.18	Results for adults No of processed cor (IESTI): IESTI Highest % of ARtD/ADI 11% 9% 5% 3% 3% 3% 3% 3% 3% 2%	Processed commodities Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.4 0.2 0.7 0.7 0.7
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18% 11% 8% 6% 5% 4% 4% 4% 4% 3%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled Coconuts / drink	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25 0.01 / 0.01 0 / 0.02	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18 0.18 0.17	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 11% 9% 5% 3% 3% 3% 3% 3% 3% 2%	Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25 0.01 / 0.25 0.01 / 0.25	Expc (µg/k) 0.3 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
7% Expand/collapse list Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI 22% 18% 11% 8% 6% 5% 6% 5% 4% 4% 4% 3%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Miaże / oil Kiwi fruits / juice Witloofs / boiled Coconuts / drink Elderberries / juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25 0.01 / 0.01 0.02 / 0.02 0.01 / 0.01	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18 0.18 0.18 0.17 0.16	Results for adults No of processed cor (IESTI): IESTI Highest % of ARtD/ADI 11% 9% 5% 3% 3% 3% 3% 3% 2% 2%	Processed commodities Processed commodities Pumpkins / boiled Sugar beck (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.25 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18% 11% 8% 6% 5% 4% 4% 3% 3%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled Coconuts / drink Elderberries / juice Broccoli / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.02 / 0.02 0.02 / 0.02 0.01 / 0.01	2 Exposure (µg/kg bw) 1.1 0.89 0.53 0.41 0.23 0.18 0.17 0.16	Results for adults No of processed cor (IESTI): Highest % of ARTD/ADI 11% 9% 3% 3% 3% 3% 3% 3% 3% 2% 2% 2%	Processed commodities Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice Pineapples / juice Cauliflowers / boiled	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01	Expo (µg/k/m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI 22% 18% 11% 5% 5% 5% 4% 4% 4% 4% 3% 3%	mmodities exceeding the ARfD/ADI in of modities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled Coconuts / drink Elderberries / juice Broccoil / boiled Chards/beet leaves / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.02 / 0.02 0.01 / 0.01 0 / 0 0.01 / 0.01	2 Exposure (μg/kg bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18 0.18 0.17 0.16 0.16	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 11% 9% 5% 3% 3% 3% 3% 3% 2% 2% 2% 2% 2% 2% 2%	Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice Pineapples / juice Pineapples / juice Cauliflowers / boiled Beetroots / boiled	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0 / 0	Expo (µg/kg 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed corr exceeded (IESTI): IESTI Highest % of ARID/ADI 22% 18% 11% 8% 6% 5% 4% 4% 4% 3% 3% 3% 3%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Prineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled Coconuts / drink Elderberries / juice Broccoli / boiled Chards/beet leaves / boiled Prineapples / juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.02 / 0.02 0.02 / 0.02 0.01 / 0.01 0.01 / 0.01	2 Exposure (µg/kg/bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18 0.18 0.17 0.16 0.16 0.14	Results for adults No of processed cor (IESTI): IESTI Highest % of ARID/ADI 11% 9% 5% 3% 3% 3% 3% 3% 3% 3% 2% 2% 2% 2% 2% 2% 2%	Processed commodities Processed commodities Pumpkins / boiled Sugar beets / root / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice Pineapples / juice Cauliflowers / boiled Beetroots / boiled Beetroots / boiled Coconnts / drink	MRL / input for RA (mg/kg) 0.01 / 0.01 0.01 / 0.12 0.05 / 0.01 0.01 / 0.01	Expo (µg/kg 0.9. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0
7% Expand/collapse list_ Total number of cor adult diets (IESTI calculation) Results for children No of processed cor exceeded (IESTI): IESTI Highest % of ARTD/ADI 22% 18% 11% 5% 5% 5% 4% 4% 4% 4% 3% 3%	mmodities exceeding the ARfD/ADI in of modities for which ARfD/ADI is Processed commodities Sugar beets (root) / sugar Pumpkins / boiled Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Kiwi fruits / juice Wittoofs / boiled Coconuts / drink Elderberries / juice Broccoil / boiled Chards/beet leaves / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.02 / 0.02 0.01 / 0.01 0 / 0 0.01 / 0.01	2 Exposure (μg/kg bw) 1.1 0.89 0.53 0.41 0.29 0.23 0.18 0.18 0.17 0.16 0.16	Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 11% 9% 5% 3% 3% 3% 3% 3% 2% 2% 2% 2% 2% 2% 2%	Processed commodities Pumpkins / boiled Sugar beets (root) / sugar Coffee beans / extraction Oranges / juice Pineapples / canned Currants (red, black and white) / juice Maize / oil Grapefruits / juice Elderberries / juice Pineapples / juice Pineapples / juice Cauliflowers / boiled Beetroots / boiled	MRL / input for RA (mg/kg) 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0 / 0	0.1 Expo (µg/kg 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 2 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

	*	-			Pr	opiconazole				Input	values		
	* 0	fsa		LOQs (mg/kg) range		0.01	to:	0.05	Details - cł		Supplementary resu		
	* * E				Toxico	logical reference values			assess		chronic risk assessm	ent	
	_			ADI (mg/kg bw/day):		0.04	ARfD (mg/kg bw):	0.1	Details - a	cute risk	Details - acute ris	k	
E		Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	assessmen		assessment/adult		
		rision 3.1; 2021/01/06		Year of evaluation:		2018	Year of evaluation:	2018		.,			
mer	nts:												
						Normal mode							
					Chronic risk a	ssessment: JMPR metho	dology (IEDI/TMD)))					
				No of diets exceeding	the ADI :	-	-						resulting fro
			Expsoure	Highest contributor to			2nd contributor to MS			3rd contributor to MS			under asser
	Calculated exposure		(µg/kg bw per	MS diet	Commodity /		diet	Commodity /		diet	Commodity /	(in % of ADI)	(in % of
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	11%	NL toddler GEMS/Food G06	4.59 3.69	4% 8%	Milk: Cattle Rice		3% 0.3%	Rice Bovine: Liver		1%	Swine: Liver Milk: Cattle	2% 0.8%	10
	9%	UK infant	3.46	3%	Rice		3%	Milk: Cattle		1.0%	Bovine: Edible offals (other than liver	0.5%	8
	8%	GEMS/Food G10	3.38	6%	Rice		0.4%	Milk: Cattle		0.3%	Bovine: Liver	0.7%	89
	7%	FR toddler 2 3 yr	2.68	3%	Rice		2%	Milk: Cattle		0.3%	Bovine: Liver	0.5%	69
	6%	FR child 3 15 yr	2.36	2%	Rice		2%	Milk: Cattle		0.3%	Bovine: Muscle/meat	0.7%	59
	6%	UK toddler	2.31	3%	Rice		2%	Milk: Cattle		0.2%	Bovine: Edible offals (other than liver	0.5%	5%
	5%	ES child	2.09	2%	Rice		0.9%	Milk: Cattle		0.4%	Swine: Liver	0.5%	59
	5%	NL child	2.03	2%	Milk: Cattle		0.8%	Rice		0.5%	Swine: Liver	0.9%	49
	5%	GEMS/Food G07	2.01	2%	Rice		0.8%	Bovine: Liver		0.5%	Swine: Liver	0.7%	49
	5%	DK child	1.83	1% 1%	Rice Sheep: Liver		0.9% 1%	Milk: Cattle		0.6%	Swine: Liver	0.6%	49
	5% 4%	IE adult DE child	1.80	1%	Sheep: Liver Milk: Cattle		1%	Rice Rice		0.6%	Sheep: Edible offals (other than liver a Apples	0.6% 1%	43
	4%	PT general	1.74	4%	Rice		0.1%	Potatoes		0.1%	Wheat	0.5%	49
	4%	SE general	1.73	2%	Rice		0.9%	Milk: Cattle		0.8%	Bovine: Muscle/meat	0.5%	49
	4%	GEMS/Eood G15	1.73	2%	Rice		0.6%	Swine: Liver		0.5%	Milk: Cattle	0.7%	49
	4%	GEMS/Food G11	1.45	1%	Rice		0.6%	Milk: Cattle		0.2%	Swine: Muscle/meat	0.7%	39
	4%	GEMS/Food G08	1.43	1%	Rice		0.4%	Milk: Cattle		0.3%	Swine: Muscle/meat	0.7%	39
	3%	FI 3 yr	1.27	3%	Rice		0.1%	Potatoes		0.0%	Bananas	0.4%	39
	3%	RO general	1.27	1%	Rice		0.9%	Milk: Cattle		0.2%	Swine: Muscle/meat	0.6%	39
	3%	ES adult	1.05	1%	Rice		0.4%	Milk: Cattle		0.1%	Bovine: Muscle/meat	0.3%	29
	3%	UK adult	1.03	2%	Rice		0.2%	Milk: Cattle		0.1%	Bovine: Muscle/meat	0.2%	29
	2%	NL general	1.00	0.7% 2%	Rice		0.6%	Milk: Cattle		0.2%	Swine: Liver	0.5%	29
	2% 2%	UK vegetarian FI 6 yr	0.99	2%	Rice Rice		0.2%	Milk: Cattle Potatoes		0.1%	Eggs: Chicken Cocoa beans	0.3% 0.3%	29
	2%	FR adult	0.92	0.8%	Rice		0.3%	Milk: Cattle		0.1%	Bovine: Edible offals (other than liver	0.3%	29
	2%	FR infant	0.87	1%	Milk: Cattle		0.3%	Rice		0.1%	Swine: Muscle/meat	0.3%	29
	2%	LT adult	0.87	1%	Rice		0.3%	Milk: Cattle		0.2%	Swine: Muscle/meat	0.2%	29
	2%	DE general	0.80	0.9%	Milk: Cattle		0.2%	Swine: Muscle/meat		0.1%	Sugar beet roots	0.5%	19
	2%	DE women 14-50 yr	0.78	0.9%	Milk: Cattle		0.2%	Swine: Muscle/meat		0.1%	Sugar beet roots	0.6%	19
	2%	IE child	0.78	1%	Rice		0.3%	Milk: Cattle		0.0%	Swine: Fat tissue	0.1%	29
	2%	DK adult	0.71	0.4%	Rice		0.4%	Milk: Cattle		0.2%	Swine: Liver	0.2%	29
	2%	Fladult	0.60	0.7%	Coffee beans		0.6%	Rice		0.0%	Potatoes	0.9%	0.6
	1%	IT toddler	0.54	0.9%	Rice		0.2%	Wheat Wheat		0.0%	Other cereals	0.4%	0.9
	1% 0.2%	IT adult PL general	0.47	0.9%	Rice Potatoes		0.1%	Wheat Apples		0.0%	Tomatoes Tomatoes	0.3% 0.2%	0.9
	0.2.0	r e general	0.10	0.176	1 000000		0.170	Labbarg		0.078	101100000	V.2./0	I 0.0

Acute risk assessment / adults / general population

The acute risk assessment is based on the ARfD, DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

Acute risk assessment /children

Results for childre				Results for adults			
	for which ARfD/ADI is exceeded (IESTI):				or which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI		MRL / input	
Highest % of		MRL / input for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
36%	Bovine: Edible offals (other than liver and kidney)	0.2/5	36	18%	Bovine: Liver	0.2 / 4.5	18
36%	Bovine: Liver	0.2/4.5	36	17%	Rice	4 / 1.95	17
25%	Rice	4 / 1.95	25	17%	Bovine: Edible offals (other than liver and kidney)	0.2/5	15
19%	Bovine: Kidney	0.2/5	19	13%	Swine: Edible offals (other than liver and kidney)	0.2/5	1:
15%	Swine: Edible offals (other than liver and kidney)	0.2/5	15	13%	Sheep: Liver	0.2/4.5	1:
6%	Swine: Kidney	0.2/5	6.3	11%	Swine: Kidney	0.2/5	1
6%	Avocados	0.02/0.12	6.0	11%	Bovine: Kidney	0.2/5	1
6%	Swine: Liver	0.2/4.5	5.5	6%	Swine: Liver	0.2/4.5	6.
4%	Milk: Cattle	0.01/0.03	3.7	3%	Sheep: Edible offals (other than liver and kidney)	0.2/5	3.
2%	Potatoes	0.01/0.01	1.5	2%	Avocados	0.02/0.12	1.
2%	Melons	0.01/0.01	1.5	1%	Milk: Cattle	0.01/0.03	1.
1%	Swine: Muscle/meat	0.01/0.12	1.5	0.7%	Bovine: Muscle	0.01/0.12	0.6
1%	Pears	0.01/0.01	1.4	0.7%	Other farmed animals: Muscle/meat	0.01/0.12	0.0
1%	Oranges	0.01/0.01	1.3	0.6%	Poultry: Muscle	0.01/0.05	0.9
1%	Eggs: Chicken	0.01/0.1	1.2	0.6%	Swine: Muscle/meat	0.01/0.12	0.5
Total number of c	ommodities exceeding the ARfD/ADI in children ar	nd adult diets					
(IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children ar	nd adult diets		Results for adults			
Total number of cr (IESTI calculation) Results for childre No of processed co	ommodities exceeding the ARfD/ADI in children ar	nd adult diets		No of processed cor	nmodilies for which AR(D/ADI is exceeded (IESTI):		
Total number of c (IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children ar				nmodilies for which AR(D/ADI is exceeded (IESTI):	MOL /Janua	
Total number of cr (IESTI calculation) Results for childre No of processed con IESTI	ommodities exceeding the ARfD/ADI in children ar	MRL / input		No of processed cor	nmodities for which ARID/ADI is exceeded (IESTI):	MRL / input	
Total number of co (IESTI calculation) Results for childre No of processed con IESTI Highest % of	mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI):	MRL / input for RA	Exposure	No of processed cor		for RA	Expo
Total number of cr (IESTI calculation) Results for childre No of processed con IESTI Highest % of ARfD/ADI	mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	No of processed cor IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expa (µg/k
Total number of cc (IESTI calculation) Results for childre No of processed con IESTI Highest % of ARTD/ADI 12%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodilies Rice / milling (polishing)	MRL / input for RA (mg/kg) 4 / 0.78	Exposure (µg/kg bw) 12	No of processed cor IESTI Highest % of ARfD/ADI 8%	Processed commodities Rice / milling (polishing)	for RA (mg/kg) 4 / 0.78	Expo (µg/kj 7.
Total number of cr (IESTI calculation) Results for childre No of processed cor IESTI Highest % of ARTD/ADI 12%	mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI); Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.12	Exposure (µg/kg bw) 12 1.1	No of processed cor IESTI Highest % of ARfD/ADI 8% 0.6%	Processed commodilies Rice / milling (polishing) Pumpkins / boiled	for RA (mg/kg) 4 / 0.78 0.01 / 0.01	Expo (µg/k 7.
Total number of ci (IESTI calculation) Results for childre No of processed con IESTI Highest % of ARTD/ADI 12% 1% 0.9%	n n Processed commodilies Rice / milling (polishing) Sugar beels (rou) / sugar Potatoes / fried	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.12 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93	No of processed cor IESTI Highest % of ARfD/ADI 8% 0.6% 0.4%	Processed commodifies Rice / milling (polishing) Pumpkins / boiled Sugar bets (root) / sugar	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.12	Expo (µg/kg 7. 0.8
Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar Potatoes / fried Pumpkins / boiled	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.78 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89	No of processed cor IESTI Highest % of ARID/ADI 8% 0.6% 0.4% 0.4%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.12 0.01 / 0.01	Expo (µg/kg 7. 0.4 0.4
Total number of cr (IESTI calculation) Results for childre No of processed con IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9%	n nmodities exceeding the ARfD/ADI in children ar n modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets / fried Pumpkins / boiled Wittoofs / boiled	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89	No of processed cor IESTI Highest % of ARID/ADI 8% 0.6% 0.4% 0.4% 0.4%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 7. 0.4 0.4 0.4
Total number of cc. (IESTI calculation) Results for childre No of processed coor IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9% 0.9% 0.9% 0.9%	n nmodities exceeding the ARfD/ADI in children ar n nmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar Polatoes / fried Pumpkins / boiled Broccoli / boiled Broccoli / boiled	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89 0.79	No of processed cor IESTI Highest % of ARTD/ADI 8% 0.6% 0.4% 0.4% 0.4% 0.3%	Processed commodities Rice / milling (polishing) Pumpkins / bolied Sugar beets (root) / sugar Caulificevers / bolied Beetroots / bolied Ceteries / bolied	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.4 0.4 0.5
Total number of cr. (IESTI calculation) Results for children No of processed coor IESTI Highest % of ARID(ADI 12% 1% 0.9% 0.9% 0.9% 0.8% 0.8%	mmodities exceeding the ARfD/ADI in children ar mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beels (root) / sugar Polatoes / fried Pumpkins / boiled Wittoofs / boiled Broccoil / boiled Caulificewars / boiled	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89 0.79 0.70	No of processed cor IESTI Highest % of ARID/ADI 8% 0.6% 0.4% 0.4% 0.4% 0.3%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Celeries / boiled Apples / juice	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.4 0.4 0.4 0.5 0.5
Total number of cr. (IESTI calculation) Results for childre No of processed cor IESTI Highest % of ARTD/ADI 12% 0.9% 0.9% 0.9% 0.9% 0.9% 0.7%	n nmodities exceeding the ARfD/ADI in children ar n nmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar Potatoes / fried Pumpkins / boiled Pumpkins / boiled Broccoil / boiled Cauliflowers / boiled Cauliflowers / boiled Cauliflowers / boiled	MRL / input for RA (ng/kg) 4 / 0.78 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89 0.79 0.70 0.66	No of processed cor IESTI Highest % of ARID/ADI 8% 0.6% 0.4% 0.4% 0.3% 0.3% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / bolied Sugar beets (rool) / sugar Cauliflowers / bolied Beetroots / bolied Ceteries / bolied Apples / juice Broccoil / bolied	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.4 0.4 0.4 0.5 0.5 0.5
Total number of cr. (IESTI calculation) Results for childre No of processed coo IESTI Highest % of ARTD/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.7% 0.7% 0.6%	mmodities exceeding the ARfD/ADI in children ar mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodilies Rice / milling (polishing) Sugar beats (root) / sugar Potatoes / fried Pumpkins / boiled Cauliflowers / boiled Escaroles/broad-leaved enlyes / boiled Potatoes / dried (flakes)	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.05	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89 0.79 0.70 0.66 0.59	No of processed cor IESTI Highest % of ARID/ADI 8% 0.6% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Ceteries / boiled Apples / juice Broccoil / boiled Coffee bens / extraction	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.05 / 0.01	Expo (µg/kg 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5
Total number of cr (IESTI calculation) Results for childre No of processed con IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.8% 0.7% 0.6%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar bets (root) / sugar Potatoes / fried Prumpkins / boiled Broccoli / boiled Broccoli / boiled Escaroles/broad-leaved endives / boiled Potatoes / dried (flakes) Leeks / boiled	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.79 0.79 0.70 0.66 0.59 0.57	No of processed cor IESTI Highest % of ARD/ADI 8% 0.6% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Celeries / boiled Apples / juice Broccoil / boiled Coffee beans / extraction Courgettes / boiled	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01	Expo (µg/kg 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Total number of cr. (IESTI calculation) Results for childre No of processed coil EISTI Highest % of ARID/ADI 12% 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.7% 0.6% 0.6% 0.6% 0.5%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar Potatoes / fried Pumpkins / boiled Broccoil / boiled Escaroles/broad-leaved entives / boiled Potatoes / dried (flakes) Leaks / boiled Apples / buice	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.05	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.89 0.79 0.70 0.66 0.59	No of processed cor IESTI Highest % of ARD/ADI 8% 0.6% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Ceteries / boiled Apples / juice Broccoil / boiled Coffee bens / extraction	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.05 / 0.01	Expo (µg/kg 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Total number of cr. (IESTI calculation) Results for children No of processed cou- IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.6% 0.6% 0.5%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beels (root) / sugar Polatoes / fried Pumpkins / boiled Wittoofs / boiled Broccoil / boiled Cauliflowery / boiled Escaroles/broad-leaved endives / boiled Polatoes / dried (flakes) Leeks / boiled Applee / Juice Oranges / Juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.79 0.70 0.66 0.59 0.57 0.54 0.53	No of processed cor IESTI Highest % of ARD/ADI 8% 0.6% 0.4% 0.3% 0.2% 0.2% 0.2% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Caleries / boiled Broccoil / boiled Coffee beans / extraction Courgettes / boiled Parsnips / boiled Kohirabies / boiled	for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Expo (µg/kg 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Total number of cr. (IESTI calculation) Results for childre No of processed colo IESTI Highest % of ARID/ADI 12% 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.8% 0.6% 0.6% 0.6%	n mmodities exceeding the ARfD/ADI in children ar n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Rice / milling (polishing) Sugar beets (root) / sugar Potatoes / fried Pumpkins / boiled Broccoil / boiled Escaroles/broad-leaved entives / boiled Potatoes / dried (flakes) Leaks / boiled Apples / buice	MRL / input for RA (mg/kg) 4 / 0.78 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.05 0.01 / 0.01	Exposure (µg/kg bw) 12 1.1 0.93 0.89 0.79 0.70 0.66 0.59 0.57 0.54	No of processed cor IESTI Highest % of ARD/ADI 8% 0.6% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Rice / milling (polishing) Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Ceteries / boiled Procool / boiled Coffee beans / extraction Courgettes / boiled Parsnips / boiled	for RA (mg/kg) 4/0.78 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Expo (µg/kg 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5% Expand/collapse list

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Propiconazole is unlikely to present a public health risk. For processed commodities, no exceedance of the ARID/ADI was identified.

1	×***				Boscalid (F)				Input	values		
	× 0	Fsa Safety Authority		LOQs (mg/kg) range t	irom: 0.01	to:	0.05		hronic risk	Supplementary resu		
	- C			ADI (mg/kg bw/day):	Toxicological reference v	ARfD (mg/kg bw):	not necessary	asses	sment	chronic risk assessm	ient	
E	uronean Food	Safety Authority					-	Details - :	acute risk	Details - acute ris	k	
		ision 3.1; 2019/03/19		Source of ADI: Year of evaluation:	EC 2008	Source of ARfD: Year of evaluation:	EC 2008	assessmer	nt/children	assessment/adul	ts	
ommen		151011 5.1; 2019/03/19		rear or or and data in.	2000	rear or evaluation.	2000					
					Refined calc	ulation mode						
					Chronic risk assessment:	JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							e resulting from
	Calculated exposure (% of ADI)	MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity / group of commodities	2nd contributor to MS diet (in % of ADI)	Commodity / group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity / group of commodities	MRLs set at the LOQ (in % of ADI)	under assessm
	75%	NL toddler	30.04	11%	Apples	10%	Spinaches		6%	Witloofs/Belgian endives		75%
	50%	DE child	19.90	13% 6%	Apples	5% 4%	Table grapes		3% 4%	Spinaches	0.0%	50%
	40% 37%	NL child IE adult	15.85 14.78		Apples Wine grapes	4%	Table grapes Sweet potatoes		4%	Spinaches Tea (dried leaves of Camellia sinens	0.2%	40% 37%
	35%	GEMS/Food G08	14.02	4%	Wine grapes	3%	Potatoes		3%	Onions	0.270	35%
	35%	GEMS/Food G06	14.00	4%	Onions	4%	Table grapes		4%	Tomatoes		35%
2	34%	GEMS/Food G10	13.76	5%	Lettuces	3%	Onions		2%	Potatoes		34%
consumption)	34% 33%	GEMS/Food G07 GEMS/Food G11	13.56 13.10	5% 4%	Wine grapes Wine grapes	3% 3%	Lettuces Potatoes		3% 2%	Potatoes Barley		34% 33%
Ê	33%	GEMS/Food G15	13.10		Wine grapes	3%	Onions		3%	Potatoes		33%
nsu	29%	SE general	11.74	6%	Lettuces	3%	Potatoes		2%	Onions		29%
8	29%	RO general	11.68	6%	Wine grapes	4%	Onions		4%	Head cabbages		29%
food	27%	PT general	10.71		Wine grapes	4%	Potatoes		2%	Onions		27%
rage fo	27%	FR child 3 15 yr	10.63		Wheat	2%	Apples		2%	Other lettuce and other salad plants	0.1%	27%
eraç	26% 25%	NL general FR adult	10.30 10.14	3% 8%	Witloofs/Belgian endives	2%	Spinaches Tea (dried leaves of Camellia		2% 2%	Wine grapes	0.0%	26% 25%
aver	25%	FR toddler 2 3 yr	9.60	3%	Wine grapes Apples	2% 2%	Spinaches	i sinensis)	2%	Other lettuce and other salad plants Leeks	0.0%	25% 24%
5	24 %	DK child	9.09	3%	Cucumbers	2%	Apples		2%	Rye	0.0%	24%
calculation (based	22%	DE women 14-50 yr	8.99	3%	Wine grapes	3%	Apples		2%	Lettuces	0.0%	22%
pas	22%	DE general	8.97		Wine grapes	3%	Apples		1%	Barley	0.0%	22%
Ξ.	22%	FI 3 yr	8.64	4%	Potatoes	2%	Onions		2%	Cucumbers		22%
ati	21%	IT adult	8.52	5%	Lettuces	2%	Other lettuce and other salad	plants	2%	Wheat		21%
n l	21%	ES adult	8.38	7%	Lettuces	1%	Wine grapes		1%	Barley	0.0%	21%
ca	20% 20%	IT toddler ES child	8.13	4% 6%	Lettuces	3% 2%	Wheat Wheat		2% 1%	Other lettuce and other salad plants Potatoes	0.1%	20% 20%
	19%	UK toddler	7.91	3%	Lettuces Potatoes	2%	Apples		2%	Wheat	0.1%	20%
	18%	UK infant	7.39	2%	Potatoes	2%	Milk: Cattle		2%	Apples		18%
[MDI/NEDI/IEDI	18%	FR infant	7.23	4%	Spinaches	2%	Apples		2%	Leeks	0.0%	18%
ğ	17%	FI 6 yr	6.71	3%	Potatoes	2%	Onions		1%	Strawberries		17%
F	16%	UK vegetarian	6.23	3%	Wine grapes	2%	Lettuces		1%	Onions		16%
	14%	PL general	5.58	3%	Potatoes	2%	Apples		2%	Onions		14%
	14%	UK adult	5.50	4% 3%	Wine grapes	2%	Lettuces		1%	Potatoes		14%
	13% 11%	DK adult El adult	5.31 4.36	3%	Wine grapes Lettuces	1% 1%	Lettuces Wine grapes		1% 0.9%	Apples Potatoes		13% 11%
	11%	LT adult	4.30	2%	Potatoes	2%	Apples		1%	Head cabbages		11%
	4%	IE child	1.55		Wheat	0.5%	Potatoes		0.3%	Apples		4%
		erm dietary intake (TMDI/NEDI/IEDI) of residues of Boscalid (F) is unlike		ealth concern.		1	1		1	1	1	L

European Food EFSA PRIMo rev	fsa a		LOQs (mg/kg) range fr		noconazole	to:	0.05	Details - ch	ronio rick	Supplementary		
EFSA PRIMo rev				Toxicolo	gical reference values		0.05	assess		chronic risk ass		
EFSA PRIMo rev			ADI (mg/kg bw/day):		0.01	ARfD (mg/kg bw):	0.16					
EFSA PRIMo rev	d Safety Authority						EC	Details - a		Details - acu	te risk	
			Source of ADI: Year of evaluation:		EC 2013	Source of ARfD: Year of evaluation:	2013		t/children	assessment,	adults	
105.												_
					Normal mode							
			1	Chronic risk asses	ssment: JMPR methodo	logy (IEDI/TMDI)						
			No of diets exceeding t	he ADI :		-					Exposur	
		Expsoure	Highest contributor to			2nd contributor to MS			3rd contributor to MS		MRLs set a the LOQ	und
Calculated exposure	re	(µg/kg bw per	MS diet	Commodity /		diet	Commodity /		diet	Commodity /	(in % of ADI	0
(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		+
97% 95%	NL toddler IE adult	9.70 9.52	17% 43%	Apples Sweet potatoes		8% 7%	Beans (with pods) Wine grapes		8% 4%	Table grapes Other leafy brassica	2% 1%	
95%	DE child	9.52	43%	Apples		7%	Tomatoes		4%	Table grapes	1%	
72%	GEMS/Food G06	7.21	26%	Tomatoes		14%	Rice		5%	Table grapes	1%	
55%	GEMS/Food G10	5.51	11%	Rice		10%	Tomatoes		3%	Potatoes	1%	
54%	GEMS/Food G11	5.41	7%	Tomatoes		6%	Celeriacs/turnip rooted celeries		5%	Wine grapes	2%	
53%	GEMS/Food G07	5.30	8%	Tomatoes		8%	Wine grapes		4%	Potatoes	2%	
52%	NL child	5.25	9%	Apples		5%	Table grapes		4%	Tomatoes	1%	
51%	PT general	5.07	13%	Wine grapes		7%	Rice		6%	Tomatoes	0.2%	
49%	GEMS/Food G08	4.90	8%	Tomatoes		5%	Wine grapes		4%	Potatoes	2%	
45%	GEMS/Food G15	4.52	9%	Tomatoes		5%	Wine grapes		4%	Potatoes	1%	
44%	FR child 3 15 yr	4.43	6%	Tomatoes		5%	Oranges		5%	Beans (with pods)	1%	
42%	RO general	4.18	14%	Tornatoes		9%	Wine grapes		4%	Potatoes	0.7%	
41%	FR toddler 2 3 yr	4.10	8%	Beans (with pods)		5%	Rice		5%	Apples	0.9%	
37%	SE general	3.70	6%	Tomatoes		4%	Potatoes		4%	Rice	0.6%	
36%	ES child	3.57	7%	Tomatoes		4%	Rice		3%	Oranges	0.7%	
35%	DE women 14-50 yr	3.50	5%	Tomatoes		4%	Wine grapes		4%	Apples	0.7%	
32%	UK toddler	3.21	5%	Rice		4%	Tomatoes		3%	Potatoes	0.6%	
32%	DE general	3.20	5%	Tomatoes		4%	Wine grapes		4%	Apples	0.7%	
32%	FR adult	3.20	12%	Wine grapes		3%	Tomatoes		2%	Beans (with pods)	0.7%	
32%	UK infant	3.17	6%	Peas (without pods)		6%	Rice		3%	Potatoes	0.9%	
31%	NL general	3.08	3%	Wine grapes		3%	Tomatoes		2%	Beans (with pods)	1%	
29%	IT toddler	2.94	10%	Tomatoes		2%	Rice		2% 2%	Lettuces	0.8%	
29% 28%	ES adult	2.88 2.77	6% 8%	Tomatoes		3% 2%	Lettuces		2%	Beans (with pods)	0.4%	
28% 27%	IT adult	2.77	8% 5%	Tomatoes			Lettuces Potatoes			Florence fennels Tomators	0.4%	
27%	FI3 yr DK child	2.66	5% 4%	Rice Tomatoes		5% 4%	Apples		4% 3%	l omatoes Rice	0.5%	
24%	UK child UK vegetarian	2.41 2.30	4%	Tomatoes		4%	Apples Wine grapes		3%	Rice	0.4%	
23%	FI 6 vr	2.30	4%	Potatoes		4%	Rice		3%	Tomatoes	0.4%	
21%	UK adult	2.09	6%	Wine grapes		3%	Rice		3%	Tomatoes	0.3%	
20%	PL general	2.00	6%	Tomatoes		3%	Potatoes		3%	Apples	0.1%	
20%	FR infant	2.00	5%	Beans (with pods)		3%	Apples		2%	Potatoes	0.2%	
19%	DK adult	1.94	5%	Wine grapes		4%	Tomatoes		2%	Apples	0.2%	
17%	FI adult	1.68	4%	Tomatoes		3%	Coffee beans		2%	Wine grapes	3%	
16%	LT adult	1.61	4%	Tomatoes		3%	Potatoes		3%	Apples	0.4%	
7%	IE child	0.73	3%	Rice		0.9%	Beans (without pods)		0.6%	Potatoes	0.1%	

		Acute risk assessment /childro	en		Ac	ute risk assessment / adults / genera	I population	
		etails - acute risk assessment /cł	nildren			Details - acute risk assessment/	adults	
		sment is based on the AR(D. sed on the large portion of the most critical consumer g	roup.					
			Sho	w results	for all crops			
	Results for children No. of commodities f	n or which ARfD/ADI is exceeded (IESTI):		2	Results for adults No. of commodities f	or which ARfD/ADI is exceeded (IESTI):		
5	IESTI				IESTI			
ocessei	Highest % of		MRL / input for RA	Exposure	Highest % of		MRL / input for RA	Exposure
ě.	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
5	168% 123%	Kales Chinese cabbages/pe-tsai	8 / 6.1 8 / 6.1	268 196	97% 73%	Chinese cabbages/pe-tsai Kales	8/6.1 8/6.1	154 117
	123%	Spring onions/green onions and Welsh onions	9/9	190	73% 39%	Florence fennels	5/3.31	62
	87%	Tomatoes	2/2.4	140	34%	Celeries	7/3.4	54
	80%	Celeries	7/3.4	140	32%	Table grapes	3/1.5	51
	69%	Celeriacs/turnip rooted celeries	2/2	111	30%	Chards/beet leaves	4/2.51	47
	68%	Table grapes	3/1.5	109	25%	Witloofs/Belgian endives	4/2.2	40
	61%	Peaches	1.5 / 1.02	97	25%	Spring onions/green onions and Welsh onions	9/9	40
	60%	Rhubarbs	5/2.59	96	25%	Sweet potatoes	4/1.9	39
	60%	Lettuces	4 / 2.51	96	24%	Tomatoes	2/2.4	38
	55%	Witloofs/Belgian endives	4/2.2	87	22%	Wine grapes	3/1.5	36
1	41%	Pears	0.8/0.47	65	22%	Cardoons	7/3.4	35
	41%	Oranges	0.6 / 0.49	65	19%	Lettuces	4/2.51	30
	41% 38%	Oranges Escaroles/broad-leaved endives	0.6 / 0.49		19% 19%	Lettuces Escaroles/broad-leaved endives		
				65			4 / 2.51	30
Ī	38% 34% Expand/collapse list	Escaroles/broad-leaved endives Florence fennels	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60	19%	Escaroles/broad-leaved endives	4 / 2.51 3 / 1.5	30 30
	38% 34% Expand/collapse list	Escaroles/broad-leaved endives	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60	19%	Escaroles/broad-leaved endives	4 / 2.51 3 / 1.5	30 30
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60 54	19% 15% Results for adults	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5	30 30
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children No of processed con	Escaroles/broad-leaved endives Florence fennels mmodifies exceeding the ARfD/ADI in children and	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60 54 2	19% 15% Results for adults No of processed con	Escaroles/broad-leaved endives	4 / 2.51 3 / 1.5	30 30
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60 54 2	19% 15% Results for adults	Escaroles/broad-leaved endives Rhubarbs	4/2.51 3/1.5 5/2.59	30 30
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and	0.6 / 0.49 3 / 1.5 5 / 3.31	65 60 54 2	19% 15% Results for adults No of processed con IESTI Highest % of	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5	30 30 24
	38% 34% Expand/collapse list. Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARTD/ADI	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the AR(D/ADI in children and mmodities for which AR(D/ADI is exceeded (IESTI): Processed commodities	0.6 / 0.49 3 / 1.5 5 / 3.31 d adult diets MRL / input for RA (mg/kg)	65 60 54 2 2 Exposure (µg/kg bw)	19% 15% Results for adults No of processed con IESTI Highest % of ARTD/ADI	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg)	30 30 24
	38% 24% Expand/collapse list Total number of co (IESTI calculation) Results for childrer No of processed con IESTI Highest % of AR(D/ADI 122%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wittorfs / boiled	0.6/0.49 3/1.5 5/3.31 d adult diets MRL / input for RA (mg/kg) 4/2.2	65 60 54 2 2 Exposure (µg/kg bw) 195	19% 15% Results for adults No of processed con IESTI Highest % of ARTD/ADI 72%	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4	30 30 24 (µg/kg bw 115
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for childrer No of processed com IESTI Highest % of ARID/ADI 122% 105%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and immodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled	0.6 / 0.49 3 / 1.5 5 / 3.31 J adult diets MRL / input for RA (mg/kg) 4 / 2.2 8 / 6.1	65 60 54 2 2 Exposure (µg/kg bw) 195 168	19% 15% Results for adults No of processed com IESTI Highest % of ARTD/ADI 72% 40%	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31	30 30 24
	38% 34% Expandicollapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARID/ADI 122% 105% 94%	Escaroles/troad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled Florence fennels / boiled	0.6/0.49 3/1.5 5/3.31 d adult diets MRL / input for RA (mg/kg) 4/2.2 8/6.1 5/3.31	65 60 54 2 2 Exposure (µg/kg bw) 195 168 150	19% 15% Results for adults No of processed con IESTI Highest % of ARTD(AD) 72% 40% 28%	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4	30 30 24 Exposure (µg/kg bw 115 64 41
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for childrer No of processed com IESTI Highest % of AR(D/AD) 122% 94% 94% 62%	Escaroles/troad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and modities for which ARID/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kales / boiled Florence fennels / boiled Florence fennels / boiled	0.6 / 0.49 3 / 1.5 5 / 3.31 d adult diets MRL / input for RA (mg/kg) 4 / 2.2 8 / 6.1 5 / 3.31 3 / 1.5	65 60 54 2 2 Σ 2 εxposure (μg/kg bw) 195 168 150 99	19% 15% No of processed con IESTI Highest % of ARID/ADI 72% 40% 26%	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 4 / 2.2	30 30 24 (µg/kg bw 115 64 41
	38% 34% Expend/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of AR(ID/ADI 122% 105% 94% 62% 60%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and modilies for which ARfD/ADI is exceeded (IESTI): Processed commodities Witteofs / boiled Kates / boiled Florence fennels / boiled Escaroles/broad-leaved endives / boiled Rhubarts' sauce/purce	0.6/0.49 3/1.5 5/3.31 J adult diets MRL / input for RA (mg/kg) 4/2.2 8/6.1 5/3.31 3/1.5 5/2.59	65 60 54 2 2 2 2 2 2 2 5 5 4 50 99 97	19% 15% Results for adults No of processed con IESTI Highest % of ARTD/ADI 72% 40% 25% 25% 24%	Escaroles/broad-leaved endives Rhubarbs modities for which AR/D/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Celeries / boiled Cardoons / boiled Wittofs / boiled Wittofs / boiled Rhubarbs / succepure	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 4 / 2.2 5 / 2.59	30 30 24 Exposure (µg/kg bw 115 64 41 41 38
	38% Expand/collapse list Total number of co (IESTI calculation) Results for childrer No of processed com IESTI Highest % of ART(D/ADI 105% 94% 62% 60%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled Florence fennels / boiled Florence fennels / boiled Rhubarbs / sauce/puree Sweet patioes / boiled	0.6/0.49 3/15 5/3.31 d adult diets MRL/input for RA (mg/kg) 4/2.2 8/6.1 3/1.5 5/3.31 3/1.5 5/2.59 4/1.9	65 60 54 2 2 Ехроѕиге (µgkg bw) 195 168 150 99 99 97 96	19% 15% Results for adults No of processed com IESTI Highest % of ARTD/ADI 26% 26% 24% 23%	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 4 / 2.2 5 / 2.59 2 / 2	30 30 24 Exposure (µg/kg bw 115 64 41 41 38 36
	38% 34% Expend/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of AR(D/ADI 122% 105% 94% 60% 60% 60% 60%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and amodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittofs / boiled Kates / boiled Florence fennels / boiled Florence fennels / boiled Florence fennels / boiled Florence fennels / boiled Catadischer Leaves / boiled Chards/beet leaves / boiled	0.6 / 0.49 3 / 1.5 5 / 3.31 J adult diets MRL / input for RA (mg/kg) 4 / 2.2 8 / 6.1 5 / 3.31 3 / 1.5 5 / 2.59 4 / 1.2	65 60 54 2 2 Exposure (μg/kg bw) 195 166 150 99 97 96 78	19% 15% Results for adults No of processed con IESTI Highest % of ARID/ADI 72% 40% 26% 22% 22% 22% 22%	Escaroles/broad-leaved endives Rhubarbs modities for which AR/D/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Florence fennels / boiled Cardoons / boiled Rhubarbs / sauce/puree Celeriacs / boiled Chards/beal	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 4 / 2.2 5 / 2.59 2 / 2 2 / 2 4 / 2.51	30 30 24 Exposure (µg/kg bw 115 64 41 41 38 36 31
	38% 34% Expend/collapse list. Total number of co (IESTI calculation). Results for childrer International Content IESTI Highest % of ARD/ADI 105% 94% 62% 60% 60% 60% 49% 20%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled Florence fennels / boiled Rhubarbs / sauce/puree Sweet potatoss / boiled Chards/beet leaves / boiled Broccoil / boiled	0.6/0.49 3/15 5/3.31 d adult diets MRL/input for RA (mg/kg) 4/2.2 8/6.1 3/1.5 5/2.59 4/1.9 4/2.51 1/0.41	65 60 54 2 2 Εxposure (μg/kg bw) 195 168 150 99 99 97 8 6 78 22	19% 15% No of processed com IESTI Highest % of ARD/ADI 26% 25% 24% 23% 20% 19%	Escarolos/broad-leaved endives Rhubarbs modifies for which ARfD/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Florence femels / boiled Witloofs / boiled Witloofs / boiled Rhubarbs / sauce/puree Celeriacs / boiled Chards/beet leaves / boiled Chards/beet leaves / boiled	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 5 / 3.31 7 / 3.4 5 / 3.31 7 / 3.4 5 / 2.59 2 / 2 5 / 2.59	30 30 24 Exposure (µg/kg bw 115 64 41 41 41 33 36 31 31
	38% 34% Expend/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARID/ADI 122% 60% 60% 60% 60% 60% 60% 60% 84% 20% 18%	Escaroles/broad-leaved endives Florence femels mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled Florence femels / boiled Escaroles/broad-leaved endives / boiled Florence femels / boiled Chards/beel leaves / boiled Broccoli / boiled Broccoli / boiled Broccoli / boiled	0.6/0.49 3/1.5 5/3.31 d adult diets MRL / input for RA (mg/kg) 4/2.2 8/6.1 5/3.31 3/1.5 5/2.59 4/1.9 4/1.9 4/1.9 4/2.51 1/0.41 2/2	65 60 54 2 2 Exposure (µg/kg bw) 195 168 150 99 97 96 78 32 29	19% 15% 15% Results for adults No of processed con IESTI Highest % of ARID(ADI 72% 26% 26% 26% 26% 24% 23% 20% 19% 18%	Escaroles/broad-leaved endives Rhubarbs modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Florence fermels / boiled Cardoons / boiled Wittods / boiled Cardoons / boiled Chards/beet leaves / boiled Escaroles/broad-leaved endives / boiled Escaroles/broad-leaved endives / boiled	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 4 / 2.2 5 / 2.59 2 / 2 4 / 2.51 3 / 1.5	30 30 24 Exposure (µg/kg bw 64 41 41 38 36 31 31 31 29
	38% Expandicaliasse list. Total number of co (IESTI calculation). Results for children No of processed con IESTI Highest % of ARD/ADI 122% 94% 62% 60% 60% 60% 60% 18% 18%	Escaroles/troad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Florence fennels / boiled Florence fennels / boiled Florence fennels / boiled Chards/beet leaves / boiled Cederacs / luice Peaches / canned	0.6/0.49 3/15 5/3.31 d adult diets MRL/input for RA (mg/kg) 4/2.2 8/6.1 3/1.5 5/2.59 4/1.9 4/2.51 1/0.41 2/2 1.5/1.02	65 60 54 2 2 Ехровите (µg/kg bw) 168 150 99 97 168 150 99 97 78 29 96 78 22 27	19% 15% 15% No of processed con IESTI Highest % of ARD/ADI 77% 40% 26% 26% 26% 26% 23% 23% 23% 19% 18% 9%	Escaroles/broad-leaved endives Rhubarbs modilies for which ARfD/ADI is exceeded (IESTI): Processed commodilies Celeries / boiled Florence femels / boiled Cardoons / boiled Rhubarbs / sauco/puree Celeriacs / boiled Chards/beet leaves / boiled Escaroles/boiled Chards/beet leaves / boiled Sweet potatoes / boiled Sweet	4/2.51 3/15 5/2.59 MRL/input for RA (mg/kg) 7/3.4 5/3.31 7/3.4 4/2.2 5/2.59 2/2 4/2.51 3/1.5 4/1.9 3/1.5	30 30 24 Exposure (µg/kg bw 115 64 41 38 36 31 31 29 14
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARID/ADI 122% 00% 60% 60% 60% 60% 60% 60% 60% 60% 18% 11%	Escarolas/broad-leaved endives Florence fennels mmodities exceeding the AR(D/ADI in children and mmodities for which AR(D/ADI is exceeded (IESTI): Processed commodities Witioofs / boiled Kates / boiled Florence fennels / boiled Florence fennels / boiled Rhubarbs / sauce/puree Sweet potatos / boiled Chards/beel teaves / boiled Ercoreols/puree Sweet potatos / boiled Ercoreols/puree Ercoreols	0.6/0.49 3/1.5 5/3.31 d adult diets MRL / input MRL / input MRL / input MRL / input 8/6.1 5/3.31 3/1.5 5/2.59 4/1.9 4/2.2 1.5/1.02 1.0.41 2/2 1.5/1.041 2/2 0.6/0.4	65 60 54 2 2 Εχροευτε (μg/kg bw) 195 168 150 99 97 96 78 32 29 27 23	19% 15% No of processed con IEST Highest % of ARIDADI 72% 26% 26% 23% 23% 23% 23% 23% 23% 23% 23% 20% 19% 8%	Escaroles/broad-leaved endives Rhubarbs modilies for which ARfD/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Florence fermels / boiled Cardoons / boiled Rhubarbs / sauce/puree Celeriacs / boiled Chards/beet leaves / boiled Escaroles/broad-leaved endives / boiled Escaroles/broad-leaved endives / boiled Wine grapes / wine Spinaches / forcent, boiled	4/2.51 3/15 5/2.59 MRL/input for RA (mg/kg) 7/3.4 5/3.31 7/3.4 4/2.2 5/2.59 2/2 4/2.51 3/1.5 3/1.5	30 30 24 Exposure (µgkg bw 115 64 41 41 38 36 31 31 31 31 31 41 29 14
modities	38% 34% Expand/collapse list. Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARID/ADI 122% 105% 94% 60% 60% 60% 60% 60% 10% 12% 14%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Florence fennels / boiled Florence fennels / boiled Escaroles/broad-leaved endives / boiled Florence fennels / boiled Chards/beet leaves / boiled Broccoli / boiled Broccoli / boiled Ceterias / luice Peaches / canned Leaks / boiled Wine grapes / luice	0.6/0.49 3/15 5/3.31 d adult diets MRL/input for RA (mg/kg) 4/22 8/6.1 5/3.31 3/15 5/2.59 4/1.9 4/2.51 1/0.41 2/2 1.5/1.02 0.6/0.4 3/0.52	65 60 54 2 2 Εxposure (μg/kg bw) 168 150 99 97 168 150 99 97 78 29 99 78 22 29 27 23 23	19% 15% 15% No of processed con IESTI Highest % of ARTD/ADI 72% 40% 25% 24% 22% 22% 19% 18% 9% 8% 7%	Escaroles/broad-leaved endives Rhubarbs modities for which ARID/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Fiorence fennels / boiled Cardoos / boiled Rhubarbs / sauce/puree Celeriacs / boiled Escaroles/broad-leaved endives / boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/broad-leaved endives / boiled Escaroles/broad-leaved endives/boiled Escaroles/boiled Escaroles/boil	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3 / 1.5 7 / 3 / 1.5	30 30 24 Exposure (µg/kg bw 115 64 41 41 38 36 31 31 29 14 12 11
	38% 34% Expand/collapse list Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of AR(D/AD) 122% 60% 60% 60% 60% 60% 60% 18% 12% 12% 12% 13%	Escarales/troad-leaved endives Florence femels mmodities exceeding the AR(D/ADI in children and mmodities for which AR(D/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Kates / boiled Florence femels / boiled Florence femels / boiled Rubarbs / sauce/puree Sweet potates / boiled Chards/beet leaves / boiled Broccoil / boiled Celerias / luice Peaches / canned Leaks / boiled Wing rapes / luice Spinaches / luice Spina	0.6/0.49 3/1.5 5/3.31 d adult diets MRL / input for RA (mg/kg) 4/2.2 8/6.1 5/3.31 3/1.5 5/2.59 4/1.9 4/2.2 1.5/1.02 0.6/0.4 3/0.52 3/1.5	65 60 54 2 2 Εxposure (μg/kg bw) 199 97 96 98 99 97 8 229 27 23 23 23 21	19% 15% 15% No of processed con IESTI Highest % of ARIOADI 72% 26% 26% 26% 26% 26% 26% 26% 26% 26% 2	Escaroles/broad-leaved endives Rhubarbs	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.51 7 / 3.4 4 / 2.2 5 / 2.59 2 / 2 4 / 2.51 3 / 1.5 3 / 1.5 0 .4 / 0.28 3 / 0.52	30 30 24 Exposure (µg/kg bw 115 64 41 41 41 41 38 36 31 31 31 31 29 14 12 11
	38% 34% Expand/collapse list. Total number of co (IESTI calculation) Results for children No of processed con IESTI Highest % of ARID/ADI 122% 105% 94% 60% 60% 60% 60% 60% 10% 12% 14%	Escaroles/broad-leaved endives Florence fennels mmodities exceeding the ARfD/ADI in children and mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Wittoofs / boiled Florence fennels / boiled Florence fennels / boiled Escaroles/broad-leaved endives / boiled Florence fennels / boiled Chards/beet leaves / boiled Broccoli / boiled Broccoli / boiled Ceterias / luice Peaches / canned Leaks / boiled Wine grapes / luice	0.6/0.49 3/15 5/3.31 d adult diets MRL/input for RA (mg/kg) 4/22 8/6.1 5/3.31 3/15 5/2.59 4/1.9 4/2.51 1/0.41 2/2 1.5/1.02 0.6/0.4 3/0.52	65 60 54 2 2 Εxposure (μg/kg bw) 168 150 99 97 168 150 99 97 78 29 99 78 22 29 27 23 23	19% 15% 15% No of processed con IESTI Highest % of ARTD/ADI 72% 40% 25% 24% 22% 22% 19% 18% 9% 8% 7%	Escaroles/broad-leaved endives Rhubarbs modities for which ARID/ADI is exceeded (IESTI): Processed commodities Celeries / boiled Fiorence fennels / boiled Cardoos / boiled Rhubarbs / sauce/puree Celeriacs / boiled Escaroles/broad-leaved endives / boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/boiled Escaroles/broad-leaved endives / boiled Escaroles/broad-leaved endives/boiled Escaroles/boiled Escaroles/boil	4 / 2.51 3 / 1.5 5 / 2.59 MRL / input for RA (mg/kg) 7 / 3.4 5 / 3.31 7 / 3.4 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3.5 7 / 3 / 1.5 7 / 3 / 1.5	30 30 24 Exposure (µg/kg bw 115 64 41 41 38 36 31 31 29 14 12 11

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 2 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases.

1	×***	fsa				Clothianidin				Input	: values		
		faa		LOQs (mg/kg) range	rom:	0.01	to:	0.07	Details - cl		Supplementary	results -	
	** e	Sd			Тох	icological reference value	5		asses		chronic risk asse	ssment	
-				ADI (mg/kg bw/day):		0.097	ARfD (mg/kg bw):	0.1	Details - a	euto rick	Details - acut	a rick	
E	игореан гооц	Salety Authonity		Source of ADI:		EC	Source of ARfD:	EC	assessmer		assessment/a		
ommer		vision 3.1; 2021/01/06		Year of evaluation:		2006	Year of evaluation:	2006					
Jinner	its.												
						Normal mode							
					Chronic I	isk assessment: JMPR me	thodology (IEDI/	(TMDI)					
				No of diets exceeding	the ADI :	-							e resulting fr
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under asses
	Calculated exposure		(µg/kg bw per	MS diet	Commodity /		MS diet	Commodity /		diet	Commodity /	(in % of ADI	1) (in % of .
	(% of ADI)	MS Diet NL toddler	day) 1.28	(in % of ADI) 0.6%	group of commodities Milk: Cattle		(in % of ADI)	group of commodities		(in % of ADI) 0.1%	group of commodities Maize/corn		0.0%
	1% 0.7%	NL toddler NL child	1.28	0.6%	Milk: Cattle Milk: Cattle		0.1%	Apples Sugar beet roots		0.1%	Apples	1% 0.6%	0.0%
	0.7%	DE child	0.66	0.2%	Milk: Cattle		0.1%	Apples		0.0%	Wheat	0.6%	0.0
	0.7%	UK infant	0.63	0.4%	Milk: Cattle		0.0%	Potatoes		0.0%	Wheat	0.6%	0.0
	0.6%	FR child 3 15 yr	0.59	0.2%	Milk: Cattle		0.0%	Wheat		0.0%	Sugar beet roots	0.5%	0.0
	0.6%	FR toddler 2 3 yr	0.59	0.3%	Milk: Cattle		0.0%	Apples		0.0%	Wheat	0.5%	0.
Ē	0.5%	UK toddler	0.47	0.2%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.4%	0.
Imption)	0.5%	DK child GEMS/Food G11	0.46	0.1%	Milk: Cattle Milk: Cattle		0.1%	Rye Potatoes		0.0%	Swine: Muscle/meat	0.4%	0.0
Ę	0.5%	GEMS/Food G11 GEMS/Food G06	0.46	0.1%	Wheat		0.0%	Tomatoes		0.0%	Soyabeans Milk: Cattle	0.4%	0.0
const	0.5%	GEMS/Food G07	0.44	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.3%	0.0
8	0.4%	GEMS/Food G15	0.43	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.4%	0.
food	0.4%	SE general	0.43	0.1%	Milk: Cattle		0.1%	Bovine: Muscle/meat		0.0%	Potatoes	0.3%	0.
e e	0.4%	GEMS/Food G08	0.43	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Swine: Muscle/meat	0.4%	0.
erage	0.4%	RO general	0.43	0.1%	Milk: Cattle		0.1%	Wheat		0.0%	Tomatoes	0.3%	0.
9V6	0.4%	GEMS/Food G10	0.42	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Soyabeans	0.4%	0.
ü	0.4%	ES child	0.42	0.1%	Milk: Cattle		0.05%	Wheat		0.0%	Bovine: Muscle/meat	0.3%	0.
B	0.4%	DE women 14-50 yr	0.39	0.1%	Milk: Cattle		0.0%	Sugar beet roots		0.0%	Apples	0.4%	0.
(base	0.4%	DE general	0.39	0.1%	Milk: Cattle		0.0%	Sugar beet roots		0.0%	Apples	0.3%	0.
	0.4%	IE adult	0.36	0.0%	Milk: Cattle		0.0%	Sweet potatoes		0.0%	Wheat	0.3%	0
5	0.4%	FI adult	0.36	0.3% 0.1%	Coffee beans Milk: Cattle		0.0%	Potatoes		0.0%	Tomatoes Potatoes	0.4%	0.
calculation	0.3%	NL general FR infant	0.32	0.1%	Milk: Cattle		0.0%	Sugar beet roots Potatoes		0.0%	Apples	0.3%	0
aic	0.3%	FR adult	0.30	0.0%	Milk: Cattle		0.0%	Wine grapes		0.0%	Wheat	0.2%	0
	0.2%	ES adult	0.24	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Tomatoes	0.2%	ŏ
<u> </u>	0.2%	PT general	0.22	0.1%	Potatoes		0.0%	Wheat		0.0%	Wine grapes	0.2%	l ó
n.	0.2%	DK adult	0.19	0.1%	Milk: Cattle		0.0%	Swine: Muscle/meat		0.0%	Potatoes	0.1%	0
MDI/NEDI/IEDI	0.2%	LT adult	0.19	0.0%	Milk: Cattle		0.0%	Potatoes		0.0%	Swine: Muscle/meat	0.1%	0
2	0.2%	IT toddler	0.18	0.1%	Wheat		0.0%	Tomatoes		0.0%	Other cereals	0.2%	0
-	0.2%	FI 3 yr	0.18	0.0%	Potatoes		0.0%	Bananas		0.0%	Wheat	0.2%	0
	0.2%	UK vegetarian UK adult	0.15	0.0%	Milk: Cattle Milk: Cattle		0.0%	Wheat Wheat		0.0%	Potatoes Potatoes	0.1%	0
	0.2%	FI 6 yr	0.15	0.0%	Milk: Cattle Potatoes		0.0%	Wheat		0.0%	Tomatoes	0.1%	
	0.1%	IT adult	0.14	0.0%	Wheat		0.0%	Tomatoes		0.0%	Apples	0.1%	0
	0.1%	PL general	0.13	0.0%	Potatoes		0.0%	Apples		0.02%	Tomatoes	0.1%	0.
	0.1%	IE child	0.09	0.0%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.1%	0.0
	The long-term intake	term dietary intake (TMDI/NEDI/IEDI) was belo e of residues of Clothianidin is unlikely to prese ry data from the UK were included in PRIMO	ent a public health concern.	<u> </u>	I		<u> </u>	1		1	1		

Acute risk assessment /children	Αςι	ıte risk	assessment /children	
---------------------------------	-----	----------	----------------------	--

Acute risk assessment / adults / general population

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

Results for childre No. of commodities	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Expos (µg/kg
2%	Sweet peppers/bell peppers	0.05 / 0.03	1.8	0.8%	Aubergines/egg plants	0.05 / 0.03	8.0
2%	Tomatoes	0.05 / 0.03	1.7	0.5%	Sweet peppers/bell peppers	0.05 / 0.03	0.4
2%	Potatoes	0.01 / 0.01	1.5	0.5%	Tomatoes	0.05 / 0.03	0.4
2%	Melons	0.01 / 0.01	1.5	0.4%	Head cabbages	0.01 / 0.01	0.4
1%	Pears	0.01 / 0.01	1.4	0.4%	Watermelons	0.01 / 0.01	0.4
1%	Oranges	0.01 / 0.01	1.3	0.4%	Melons	0.01 / 0.01	0.3
1%	Milk: Cattle	0.01 / 0.01	1.2	0.4%	Milk: Cattle	0.01 / 0.01	0.3
1%	Watermelons	0.01 / 0.01	1.2	0.4%	Florence fennels	0.04 / 0.02	0.3
1%	Apples	0.01 / 0.01	1.1	0.3%	Swedes/rutabagas	0.01 / 0.01	0.3
1%	Pineapples	0.01 / 0.01	1.0	0.3%	Table grapes	0.01 / 0.01	0.3
1.0%	Bananas	0.01 / 0.01	0.97	0.3%	Celeries	0.04 / 0.02	0.3
1.0%	Peaches	0.01 / 0.01	0.95	0.3%	Oranges	0.01 / 0.01	0.3
0.8%	Mangoes	0.01 / 0.01	0.79	0.3%	Pears	0.01 / 0.01	0.3
0.8%	Grapefruits	0.01 / 0.01	0.79	0.3%	Potatoes	0.01 / 0.01	0.3
0.8% Expand/collapse list Total number of co diets (IESTI calculation)	Aubergines/egg plants	0.05 / 0.03	0.75	0.3%	Pineapples	0.01 / 0.01	0.3
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre	n		0.75	0.3%		0.01 / 0.01	0.3
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre	mmodities exceeding the ARfD/ADI in child		0.75	0.3%	Pineapples	0.01 / 0.01	
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed con	n	dren and adult		0.3% Results for adults No of processed cor			
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI	n	fren and adult		0.3% Results for adults No of processed cor (IESTI): IESTI		MRL / input	
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI) IESTI Highest % of	n which ARID/ADI is exceeded	Iren and adult	Exposure	0.3% Results for adults No of processed cor (ICESTI): IESTI Highest % of	nmodities for which ARID/ADI is exceeded	MRL / input for RA	 Expo
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed con (IESTI): IESTI Highest % of ARID/ADI	n mmodities for which ARfD/ADI is exceeded Processed commodities	Iren and adult MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	0.3% Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI	nmodities for which ARfD/ADI is exceeded Processed commodities	MRL / input for RA (mg/kg)	Expo (µg/kg
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 1%	n mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar	MRL / input for RA (mg/kg) 0.01 / 0.12	Exposure (µg/kg bw) 1.1	0.3% Results for adults No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 0.7%	nmodities for which ARfD/ADI is exceeded Processed commodities Celeries / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02	Ехро (µg/kg 0.6
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARID/ADI 1% 0.9%	n mmodities exceeding the ARfD/ADI in child n mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried	MRL / input for RA (mg/kg) 0.01 / 0.12	 Ехроѕиге (µg/kg bw) 1.1 0.93	0.3% Results for adults No of processed cor (IESTI): IESTI Highest % of ARD/ADI 0.7% 0.6%	nmodities for which ARfD/ADI is exceeded Processed commodities Celeries / boiled Pumpkins / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01	Expo (µg/kg 0.6
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed con (IEST): IESTI Highest % of ARID/ADI 1% 0.9%	n mmodities exceeding the ARfD/ADI in child n mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Fiorence fennels / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02	Exposure (µg/kg bw) 1.1 0.93 0.91	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4%	nmodities for which ARfD/ADI is exceeded Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.12	Expo (µg/kg 0.6 0.5
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARID/AD 1% 0.9% 0.9%	rocessed commodities Sugar beets (root) / sugar Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Pumpkins / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.04 / 0.02 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89	0.3%	nmodities for which ARfD/ADI is exceeded Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.02 0.01 / 0.01	Expo (µg/kg 0.6 0.4 0.4
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 1% 0.9% 0.9% 0.9%	n mmodities exceeding the ARfD/ADI in child n mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Wittoofs / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89 0.89	0.3%	Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.12 0.01 / 0.01	Ехро (µg/kg 0.6 0.4 0.4 0.4
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARID/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9%	n mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / bolled Pumpkins / bolled Broccoli / bolle Broccoli /	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89 0.89 0.79	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4% 0	Processed commodities Celeries / boiled Sugar beets (root) / sugar Caulifowers / boiled Beetroots / boiled Florence fennels / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02	Ехро (µg/kg 0.6 0.4 0.2 0.2 0.3
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed col (IESTI): IESTI Highest % of ARID/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.8% 0.7%	n mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Wittoofs / boiled Broccoli / boiled Broccoli / boiled Broccoli / boiled Broccoli / succe/puree	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02	 Exposure (μg/kg bw) 1.1 0.93 0.91 0.89 0.89 0.79 0.75	0.3% Results for adults No of processed cor (IESTI): IESTI Highest % of ARID/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3%	Processed commodities Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflower / boiled Beetroots / boiled Florence fennels / boiled Apples / juice	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01	Expo (µg/kg 0.6 0.4 0.2 0.3 0.3
Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed cor (IESTI): Highest % of ARID/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.7% 0.7%	n mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fernels / boiled Pvitto/sr / boiled Broccoii / boi	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01	 Exposure (µg/kg bw) 1.1 0.91 0.91 0.89 0.79 0.75 0.70	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.3%	Processed commodities Celeries / boiled Sugar beets (root) / sugar Calliflowers / boiled Beetroots / boiled Florence fennels / boiled Applee / juice Rhubarbs / sauce/puree	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02	Expo (µg/kg 0.6 0.4 0.2 0.3 0.3 0.3
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARTD/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9	rommodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Fiorence fennels / boiled Prumpkins / boiled Rhubarbs / sauce/puree Cauliflowers / boiled Rhubarbs	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01	Ехрозиге (µg/kg bw) 1.1 0.93 0.91 0.89 0.79 0.75 0.75 0.70 0.66	0.3% Results for adults No of processed cor (IESTI): IESTI Highest % of ARD/ADI 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.2%	nmodities for which ARfD/ADI is exceeded Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Florence frennels / boiled Apples / juice Rnubarbs / sauce/puree Cardoons / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02	Expo (µg/kg 0.6 0.4 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed cor (IESTI): Highest % of ARID/ADI 1% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7%	n mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Pumpkins / boiled Writtoofs / boiled Broccoli / boiled Broccoli / boiled Broccoli / boiled Broccoli / boiled Putatoss / boiled Escaroles/broad-leave endives / boiled Potatoes / dried (flakes)	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.05	Exposure (µg/kg bw) 1.1 0.91 0.89 0.79 0.75 0.70 0.66 0.59	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Celeries / boiled Sugar beets (root) / sugar Cauliflowers / boiled Betroots / boiled Florence fennels / boiled Apples / juice Rhubarbs / sauce/puree Cardoons / boiled Broccoli / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02	Expo (µg/kg 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Expand/collapse list Total number of cc diets (IEST) calculation) Results for childre No of processed co (IEST): IEST) Highest % of ARTD/AD 1% 0.9% 0.7% 0.7% 0.7% 0.6%	rocessed commodities Sugar beets (root) / sugar Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence femels / boiled Pumpkins / boiled Rhubarbs / sauce/puree Cauliflowers / boiled Escaroles/broad-leaved endives / boiled Escaroles/broad-leaved endives / boiled Potatoes / dried (falkes) Leeks / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (μg/kg bw) 1.1 0.93 0.91 0.89 0.79 0.75 0.70 0.66 0.59 0.57	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0	Processed commodities Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Betroots / boiled Florence frennels / boiled Apples / juice Rhubards / sauce/puree Cardoons / boiled Broccoli / boiled Coffee bean / extraction	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.01 / 0.01	Expor (µg/kg 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed col (IEST): Highest % of ARID/ADI 1% 0.9% 0.8% 0.6% 0.6% 0.6% 0.5%	n mmodities exceeding the ARfD/ADI in child mmodities exceeding the ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Wittoofs / boiled Wittoofs / boiled Broccoil / boiled Escaroles/Proad-leaved endives / boiled Potatoes / dried (flakes) Leeks / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.05 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89 0.79 0.75 0.70 0.60 0.59 0.57 0.54	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARID/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.2% 0	Processed commodities Celeries / boiled Pumpkins / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Florence fennels / boiled Apples / juice Rhubarbs / sauce/puree Cardoons / boiled Broccoii / boiled Coffee beans / extraction Courgettes / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02	 Ехро (µg/kg 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed cor (IESTI): Highest % of ARID/ADI 1% 0.9% 0.5% 0.5%	n mmodities exceeding the ARfD/ADI in child mmodities for which ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoss / fried Florence fennels / boiled Pvintofs / boiled Broccoli / boiled Broccoli / boiled Cauliflowers / boiled Cauliflowers / boiled Escaroles/broad-leaved endives / boiled Potatoss / fuice Apples / juice	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89 0.79 0.75 0.70 0.66 0.59 0.57 0.54	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARTD/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2	Processed commodities Celeries / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Florence fennels / boiled Apples / juice Rhubarbs / sauce/puree Cardoons / boiled Broccoil / boiled Coffee beans / extraction Courgettes / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.01 / 0.01 0.05 / 0.01 0.01 / 0.01	Expo (μg/kg 0.8. 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed col (IEST): Highest % of ARID/ADI 1% 0.9% 0.8% 0.6% 0.6% 0.6% 0.5%	n mmodities exceeding the ARfD/ADI in child mmodities exceeding the ARfD/ADI is exceeded Processed commodities Sugar beets (root) / sugar Potatoes / fried Florence fennels / boiled Wittoofs / boiled Wittoofs / boiled Broccoil / boiled Escaroles/Proad-leaved endives / boiled Potatoes / dried (flakes) Leeks / boiled	MRL / input for RA (mg/kg) 0.01 / 0.12 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.05 0.01 / 0.01 0.01 / 0.01	Exposure (µg/kg bw) 1.1 0.93 0.91 0.89 0.79 0.75 0.70 0.60 0.59 0.57 0.54	0.3% Results for adults No of processed cor (IEST): IESTI Highest % of ARID/ADI 0.7% 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.2% 0	Processed commodities Celeries / boiled Pumpkins / boiled Pumpkins / boiled Sugar beets (root) / sugar Cauliflowers / boiled Beetroots / boiled Florence fennels / boiled Apples / juice Rhubarbs / sauce/puree Cardoons / boiled Broccoii / boiled Coffee beans / extraction Courgettes / boiled	MRL / input for RA (mg/kg) 0.04 / 0.02 0.01 / 0.01 0.01 / 0.01 0.04 / 0.02 0.01 / 0.01 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02 0.04 / 0.02	0.3 Expos (µg/kg/kg/ 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Clothianidin is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

Fluopyram – Scenario 1

	****				F	luopyram				Input	values		
*		f		LOQs (mg/kg) range f		0.01	to:	0.05	Details - cl	hronic risk	Supplementary r	esults -	1
	* * e	fsa d Safety Authority				ogical reference values					chronic risk asse		
-				ADI (mg/kg bw/day):		0.012	ARfD (mg/kg bw):	0.5	Details - a	auto rick	Details - acute	wick	1
				Source of ADI:		EC	Source of ARfD:	EC	assessmer		assessment/a		
		evision 3.1; 2021/01/06		Year of evaluation:		2013	Year of evaluation:	2013					<u> </u>
ent	s:												
					Refin	ed calculation mode							
	<u></u>			<u></u>	Chronic risk asse	essment: JMPR methodol	ogy (IEDI/TMDI)		<u></u>				-
_				No of diets exceeding			7					Exposur	ure resultir
Τ												MRLs set at	at comn
	Colordated are	-	Expsoure	Highest contributor to MS diet	Common the L		2nd contributor to MS			3rd contributor to MS	Commentities (the LOQ (in % of ADI)	
l	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	Commodity / aroup of commodities		diet (in % of ADI)	Commodity / group of commodities		diet (in % of ADI)	Commodity / group of commodities		Ĩ
	331%	NL toddler	39.77	239%	Milk: Cattle		18%	Apples		9%	Bananas		-
	189%	UK infant	22.66	155%	Milk: Cattle		5%	Bovine: Muscle/meat		5%	Eggs: Chicken		
	157%	FR toddler 2 3 yr	18.88	117%	Milk: Cattle		5%	Apples		5%	Bovine: Muscle/meat		
	156%	NL child	18.70	98% 79%	Milk: Cattle Milk: Cattle		10% 21%	Apples		5% 7%	Table grapes		
	145% 140%	DE child FR child 3 15 vr	17.35 16.83	79% 91%	Milk: Cattle		21% 6%	Apples Bovine: Muscle/meat		6%	Table grapes Swine: Muscle/meat		
	113%	UK toddler	13.57	83%	Milk: Cattle		5%	Bovine: Muscle/meat		3%	Eggs: Chicken		
	94%	SE general	11.28	50%	Milk: Cattle		19%	Bovine: Muscle/meat		5%	Lettuces		
	93%	DK child	11.19	51%	Milk: Cattle		9%	Swine: Muscle/meat		6%	Bovine: Muscle/meat		
	91%	ES child	10.88	50%	Milk: Cattle		6%	Bovine: Muscle/meat		5%	Swine: Muscle/meat		
	84%	FR infant	10.11	67%	Milk: Cattle		3%	Apples		2%	Beans (with pods)		
	81%	DE women 14-50 yr	9.72	50%	Milk: Cattle		4%	Apples		4%	Swine: Muscle/meat		
	81%	DE general	9.70	49%	Milk: Cattle		5%	Swine: Muscle/meat		4%	Apples		
	78%	GEMS/Food G07	9.41	26%	Milk: Cattle		6%	Wine grapes		5%	Swine: Muscle/meat		
	78%	RO general	9.33	46%	Milk: Cattle		6%	Wine grapes		5%	Swine: Muscle/meat		
	74%	GEMS/Food G11	8.93	31%	Milk: Cattle		7%	Celeries		5%	Swine: Muscle/meat		
	72%	IE adult	8.62	17%	Milk: Cattle		7%	Sheep: Liver		5%	Basil and edible flowers		
	72%	GEMS/Food G15	8.59	28%	Milk: Cattle		6%	Swine: Muscle/meat		4%	Wine grapes		
	65% 63%	GEMS/Food G08	7.85	22% 34%	Milk: Cattle Milk: Cattle		8% 4%	Swine: Muscle/meat Swine: Muscle/meat		4% 3%	Wine grapes Bovine: Muscle/meat		
	62%	NL general GEMS/Food G10	7.49	22%	Milk: Cattle		4%	Lettuces		4%	Bovine: Muscle/meat		
	50%	ES adult	6.06	22%	Milk: Cattle		4%	Lettuces		4%	Bovine: Muscle/meat		
	49%	FR adult	5.91	18%	Milk: Cattle		9%	Wine grapes		3%	Swine: Muscle/meat		
	46%	GEMS/Food G06	5.55	10%	Milk: Cattle		5%	Table grapes		4%	Tomatoes		
	45%	DK adult	5.37	21%	Milk: Cattle		4%	Swine: Muscle/meat		4%	Wine grapes		
	33%	LT adult	3.95	16%	Milk: Cattle		4%	Swine: Muscle/meat		3%	Apples		
	30%	UK adult	3.62	12%	Milk: Cattle		4%	Wine grapes		3%	Bovine: Muscle/meat		
	29%	UK vegetarian	3.42	13%	Milk: Cattle		3%	Wine grapes		2%	Lettuces	1	
	23%	PT general	2.73	10%	Wine grapes		2%	Apples		1%	Table grapes	1	
	20%	IE child	2.39	14%	Milk: Cattle		0.7%	Swine: Fat tissue		0.7%	Swine: Muscle/meat		
	17%	IT toddler	2.06	4%	Lettuces		2%	Wheat		2%	Tomatoes	1	
	17%	FI 3 yr	2.01	2%	Bananas		2%	Raspberries (red and yellow)		2%	Apples		
	16% 13%	IT adult FI 6 yr	1.95 1.54	5% 1%	Lettuces		1% 1%	Tomatoes Bananas		1% 1%	Apples Lettuces		
	13%	PL general	1.54	1%	Raspberries (red and yellow) Apples		1%	Bananas Table grapes		1%	Tomatoes		
	9%	Fl adult	1.13	2%	Lettuces		1%	Wine grapes		1.0%	Apples		
							1			1		1	1

Acute risk assessment / adults / general population

tans - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

Results for children				Results for adults			
	which ARfD/ADI is exceeded (IESTI):				or which ARfD/ADI is exceeded (IESTI):		
ESTI		MRL / input		IESTI		MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/ł
	Lettuces	15 / 10	381	31%	Celeries	20 / 9.74	1
	Celeries	20/9.74	364 90	24%	Lettuces	15 / 10	1
	Peaches Pears	1.5 / 0.95 0.8 / 0.6	90 83	8% 7%	Blueberries Table grapes	7 / 4.33 2 / 1	:
	Sweet peppers/bell peppers	2/1.23	73	6%	Bovine: Liver	8/7.4	
	Table grapes	2/1	73	5%	Bovine: Edible offals (other than liver and kidney)	8/7.4	
13%	Apples	0.8 / 0.6	65	5%	Swine: Other products	8/7.4	
	Bovine: Liver	8 / 7.4	60	5%	Wine grapes	1.5 / 0.95	
	Milk: Cattle	0.8 / 0.48	60	4%	Chinese cabbages/pe-tsai	2/0.84	
	Bovine: Edible offals (other than liver and kidney) Bananas	8 / 7.4 0.8 / 0.52	54 50	4% 4%	Sheep: Liver Sweet peppers/bell peppers	8/7.4 2/1.23	
	Oranges	0.6/0.52	50 42	4%	Escaroles/broad-leaved endives	2/1.23	
	Escaroles/broad-leaved endives	2/0.98	39	4%	Blackberries	5/2.39	
	Apricots	1.5 / 0.95	33	4%	Swine: Edible offals (other than liver and kidney)	8/7.4	
6%	Lamb's lettuce/corn salads	20 / 10	28	4%	Purslanes	20 / 10	
	Bovine: Kidney	8/7.4	28	4%	Lamb's lettuce/corn salads	20 / 10	
	Chinese cabbages/pe-tsai	2/0.84	27	4%	Chards/beet leaves	2/0.98	
	Roman rocket/rucola	20 / 10 7 / 4.33	27 26	4%	Milk: Cattle Pears	0.8 / 0.48 0.8 / 0.6	
	Blueberries Blackberries	7/4.33 5/2.39	26 26	4% 4%	Pears Peaches	0.8/0.6	
	Grapefruits	0.5/0.32	25	4%	Globe artichokes	4/1.37	
	Globe artichokes	4/1.37	24	3%	Apples	0.8 / 0.6	
	Swine: Edible offals (other than liver and kidney)	8/7.4	22	3%	Swine: Kidney	8/7.4	
4%	Spinaches	2 / 0.98	22	3%	Bovine: Kidney	8/7.4	
	Raspberries (red and yellow)	5 / 2.39	22	3%	Chamomille	40 / 25.2	
	Basil and edible flowers	60 / 30	22	3%	Chamomille	40 / 25.2	
	Cucumbers Mandarins	0.6 / 0.3	20 19	3%	Chamomille Chamomille	40 / 25.2 40 / 25.2	
	Mandarins Spring onions/green onions and Welsh onions	3/1.22	19	3% 3%	Chamomille	40/25.2	
	Leeks	0.8/0.32	19	3%	Bovine: Other products	8/7.4	
	Beans (with pods)	3/1.65	19	3%	Poultry: Liver	4/3.1	
4%	Eggs: Chicken	2/1.5	19	3%	Currants (red, black and white)	4/2.1	
3%	Currants (red, black and white)	4 / 2.1	17	3%	Raspberries (red and yellow)	5/2.39	
	Strawberries	2 / 1.01	17	3%	Beans (with pods)	3 / 1.65	
	Poultry: Muscle/meat	1.5 / 0.97	16	2%	Roman rocket/rucola	20 / 10	
	Chards/beet leaves	2/0.98	15	2%	Poultry: Muscle	1.5 / 0.97	
	Quinces Watermelons	0.8/0.6	15 15	2% 2%	Cherries (sweet) Bananas	2/1.1 0.8/0.52	
	Tomatoes	0.5 / 0.24	14	2%	Swine: Liver	8/7.4	
	Courgettes	0.6 / 0.3	14	2%	Apricots	1.5 / 0.95	
	Peas (with pods)	3 / 1.65	13	2%	Rooibos	40 / 25.2	
	Cherries (sweet)	2/1.1	13	2%	Rooibos	40 / 25.2	
	Gooseberries (green, red and yellow)	4 / 2.1	12	2%	Oranges	0.5 / 0.32	\$
	Swine: Muscle/meat	1.5 / 1	12	2%	Gooseberries (green, red and yellow)	4/2.1	9
	Milk: Goat Plums	0.8 / 0.48 0.6 / 0.27	12 11	2% 2%	Strawberries Quinces	2 / 1.01 0.8 / 0.6	9
	Carrots	0.4 / 0.18	11	2%	Milk: Goat	0.8/0.48	1
	Lemons	0.9/0.32	11	2%	Cucumbers	06/03	
	Potatoes	0.08 / 0.07	11	2%	Hybiscus/roselle	40 / 25.2	-
	Celeriacs/turnip rooted celeries	0.4 / 0.18	10.0	1%	Milk: Sheep	0.8 / 0.48	
2%	Broccoli	0.5 / 0.23	9.6	1%	Head cabbages	0.3 / 0.17	
	Cranberries	4/2.1	9.4	1%	Courgettes	0.6 / 0.3	
	Swine: Kidney Swedes/rutabagas	8/7.4 0.4/0.18	9.4 9.3	1% 1%	Eggs: Chicken Aubergines/egg plants	2 / 1.5 0.4 / 0.23	(
	Swedes/rutabagas Swine: Liver	0.4/0.18 8/7.4	9.3 9.1	1%	Aubergines/egg plants Swedes/rutabagas	0.4 / 0.23	6
	Wine grapes	1.5 / 0.95	8.8	1%	Mandarins	0.9 / 0.32	
	Melons	0.9 / 0.06	8.7	1%	Grapefruits	0.5 / 0.32	į
2%	Medlar	0.8 / 0.6	8.3	1%	Bovine: Muscle	1.5 / 1	:
2%	Cauliflowers	0.3 / 0.14	8.1	1%	Peas (with pods)	3 / 1.65	
	Head cabbages	0.3 / 0.17	7.5	1%	Other farmed animals: Muscle/meat	1.5 / 1	-
	Bovine: Muscle/meat	1.5 / 1	7.2	1%	HOPS (dried)	60 / 30.48	1
1%	Other farmed animals: Muscle/meat	1.5/1	6.9 6.5	1%	Spring onions/green onions and Welsh onions Broccoli	3 / 1.22 0.5 / 0.23	-
	Parsnips Turnips	0.4 / 0.18 0.4 / 0.18	6.5 6.5	1% 1%	Broccoli Red mustards	0.5 / 0.23 2 / 0.98	1
	Equine: Muscle/meat	0.4/0.18	6.0	1%	Red mustards Sheep: Edible offals (other than liver and kidney)	2/0.98	
	Aubergines/egg plants	0.4 / 0.23	5.8	1.0%	Watermelons	0.4 / 0.12	2
	Beetroots	0.2 / 0.1	5.6	1.0%	Swine: Muscle/meat	1.5 / 1	
1%	Salsifies	0.4 / 0.18	5.6	1.0%	Plums	0.6 / 0.27	
1%	Witloofs/Belgian endives	0.3 / 0.14	5.6	1.0%	Equine: Muscle/meat	1.5 / 1	
	Sheep: Muscle/meat	1.5 / 1	5.4	0.9%	Sheep: Muscle/meat	1.5 / 1	
	Chamomille	40 / 25.2	5.0	0.9%	Parsley	6 / 3.64	
	Chamomille	40 / 25.2	5.0	0.8%	Leeks	0.8 / 0.32	4
	Chamomille	40 / 25.2	5.0	0.8%	Mediar	0.8/0.6	4
	Chamomille	40 / 25.2	5.0	0.8%	Poultry: Kidney	4/3.1	4
	Chamomille Chamomille	40 / 25.2 40 / 25.2	5.0 5.0	0.8%	Spinaches Tomatoes	2 / 0.98 0.5 / 0.24	3
	Chamomille	40 / 25.2 40 / 25.2	5.0	0.8%	I omatoes Cress and other sprouts and shoots	20 / 10	3
1%							

IESTI		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exp
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/)
13%	Escaroles/broad-leaved endives / boiled	2 / 0.98	65	66%	Celeries / boiled	20 / 9.74	3
6%	Chards/beet leaves / boiled	2 / 0.98	30	8%	Purslanes / boiled	20 / 10	4
5%	Peaches / canned	1.5 / 0.95	25	4%	Escaroles/broad-leaved endives / boiled	2 / 0.98	2
4%	Currants (red, black and white) / juice	4 / 0.78	22	2%	Chards/beet leaves / boiled	2 / 0.98	
4%	Beans (with pods) / boiled	3 / 1.65	21	2%	Currants (red, black and white) / juice	4 / 0.78	g
4%	Leeks / boiled	0.8 / 0.32	18	2%	Spinaches / frozen; boiled	2 / 0.98	8
4%	Broccoli / boiled	0.5 / 0.23	18	2%	Peaches / canned	1.5 / 0.95	7
3%	Spinaches / frozen; boiled	2 / 0.98	14	1%	Elderberries / juice	4 / 0.78	7
3%	Raspberries / juice	5 / 1.12	13	1%	Courgettes / boiled	0.6 / 0.3	6
2%	Elderberries / juice	4 / 0.78	12	1%	Pumpkins / boiled	0.4 / 0.12	6
2%	Witloofs / boiled	0.3 / 0.14	12	1%	Wine grapes / wine	1.5 / 0.67	6
2%	Pumpkins / boiled	0.4 / 0.12	11	1%	Cauliflowers / boiled	0.3 / 0.14	5
2%	Courgettes / boiled	0.6 / 0.3	11	1%	Peas (with pods) / boiled	3 / 1.65	5
2%	Cauliflowers / boiled	0.3 / 0.14	9.7	1%	Leeks / boiled	0.8 / 0.32	5
2%	Turnips / boiled	0.4 / 0.18	9.1	1%	Broccoli / boiled	0.5 / 0.23	5

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Fluopyram is unlikely to present a public health risk. For processed commodities, no exceedance of the ARID/ADI was identified.

Fluopyram – Scenario 2

1	*	~			F	luopyram					: values		
	×Δ'	fsa Safety Authority		LOQs (mg/kg) range f		0.01 ogical reference values	to:	0.05		hronic risk sment	Supplementary chronic risk ass		
	L			ADI (mg/kg bw/day):		0.012	ARfD (mg/kg bw):	0.5				essilient	
E	uropean Food	Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	Details - a		Details - acu		
	EFSA PRIMo rev	vision 3.1: 2021/01/06		Year of evaluation:		2013	Year of evaluation:	2013	assessmer	nt/children	assessment/	adults	
ner	ts:	Scenario in which the existing EU MRLs for a The proposed modifications of EU MRLs (EF	nimal products (and the correlated HR/S SA, 2023) have not been taken on board	TMRs) except for eggs in this scenario.	were used; for plant commodities and for eggs,	he MRL proposals of JMPR were incl	uded.						
					<u>Refir</u>	ed calculation mode							
				r	Chronic risk ass	essment: JMPR methodol	ogy (IEDI/TMDI)						
				No of diets exceeding	the ADI :		-						re resulting
			E	Highest contributor to			2nd contributor to MS			3rd contributor to MS		MRLs set a the LOQ	under ass
	Calculated exposure		Expsoure (µg/kg bw per	MS diet	Commodity /		diet	6 Commodity /		diet	Commodity /	(in % of AD	
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	96% 68%	NL toddler DE child	11.52 8.15	21% 21%	Milk: Cattle Apples		18% 7%	Apples Milk: Cattle		9% 7%	Bananas Table grapes		91
	53%	NL child	6.15	10%	Apples		9%	Milk: Cattle		5%	Table grapes		5
	40%	IE adult	4.83	5%	Basil and edible flowers		5%	Wine grapes		3%	Celeries		4
	37%	FR child 3 15 yr	4.48	8%	Milk: Cattle		5%	Eggs: Chicken		3%	Oranges	0.0%	3
	37%	GEMS/Food G07	4.40	6%	Wine grapes		3%	Celeries		3%	Lettuces		3
	35%	FR toddler 2 3 yr	4.20	10%	Milk: Cattle		5%	Apples		3%	Beans (with pods)	0.0%	3
	34%	UK infant	4.11	14%	Milk: Cattle		5%	Eggs: Chicken		3%	Apples		3
	34%	GEMS/Food G11	4.04	7%	Celeries		4%	Wine grapes		3%	Milk: Cattle		
	33%	SE general	3.93	5%	Lettuces		4%	Milk: Cattle		3%	Eggs: Chicken		3
	31%	GEMS/Food G06	3.73	5%	Table grapes		4%	Tomatoes		2%	Wheat		1
	30%	GEMS/Food G08	3.62	4%	Wine grapes		2%	Lettuces		2%	Apples		3
	30% 29%	UK toddler GEMS/Food G15	3.58 3.54	7% 4%	Milk: Cattle		3% 2%	Eggs: Chicken Milk: Cattle		3% 2%	Apples Celeries		3
	29%	GEMS/Food G15 GEMS/Food G10	3.54	4%	Wine grapes Lettuces		2%	Milk: Cattle		2%	Tomatoes		
	29%	ES child	3.54 3.46	4%	Lettuces		4%	Milk: Cattle		2%	Eggs: Chicken		
	29%	DE women 14-50 vr	3.40	4%	Milk: Cattle		4%	Apples		3%	Wine grapes	0.0%	
	29%	DK child	3.44	4%	Milk: Cattle		4%	Apples		3%	Eggs: Chicken	0.076	2
	28%	RO general	3.40	6%	Wine grapes		4%	Milk: Cattle		2%	Eggs: Chicken		
	27%	DE general	3.27	4%	Milk: Cattle		4%	Apples		3%	Wine grapes	0.0%	
	23%	ES adult	2.82	7%	Lettuces		2%	Eggs: Chicken		2%	Milk: Cattle		
	23%	FR adult	2.76	9%	Wine grapes		2%	Eggs: Chicken		2%	Milk: Cattle	0.0%	
	23%	NL general	2.74	3%	Milk: Cattle		2%	Apples		2%	Wine grapes		1 2
	23%	PT general	2.73	10%	Wine grapes		2%	Apples		1%	Table grapes		1 2
	19%	FR infant	2.27	6%	Milk: Cattle		3%	Apples		2%	Beans (with pods)	0.0%	1
	17%	IT toddler	2.06	4%	Lettuces		2%	Wheat		2%	Tomatoes		1
	17%	FI 3 yr	2.01	2%	Bananas		2%	Raspberries (red and yellow)		2%	Apples		1
	16%	DK adult	1.97	4%	Wine grapes		2%	Milk: Cattle		2%	Apples		1
	16%	UK vegetarian	1.97	3%	Wine grapes		2%	Lettuces		1%	Eggs: Chicken		
	16% 15%	IT adult UK adult	1.95 1.81	5% 4%	Lettuces Wine grapes		1% 1%	Tomatoes Lettuces		1% 1%	Apples Eggs: Chicken	0.0%	1
	15%	FI 6 vr	1.81	4%	Raspberries (red and vellow)		1%	Bananas		1%	Eggs: Chicken Lettuces	0.0%	
	13%	LT adult	1.04	3%	Apples		1%	Milk: Cattle		1%	Eggs: Chicken		
	11%	PL general	1.37	3%	Apples		2%	Table grapes		1%	Tomatoes		1
	9%	Fladult	1.13	2%	Lettuces		1%	Wine grapes		1.0%	Apples		
	5%	IE child	0.59	1%	Milk: Cattle		0.6%	Eggs: Chicken		0.5%	Apples		

Fluopyram – Scenario 3

***	*			El	Jopyram				Input	values		
K			LOQs (mg/kg) range fr		0.01	to:	0.05	Details - c	aronic risk	Supplementary	roculte -	
***	efsa Food Safety Authority		Local (nging/ tange n		ical reference values		0.05		sment	chronic risk ass		
	CIJUM		ADI (mg/kg bw/day):		0.012	ARfD (mg/kg bw):	0.5					
ropean	Food Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	Details - a assessmer		Details - acu assessment/		
	Mo revision 3.1; 2021/01/06		Year of evaluation:		2013	Year of evaluation:	2013	assessiner	i y children	assessmenty	audits	
ents:				gs were used; for plant commodities and eggs, th 0.6, new MRLs for some stem vegetables, kiwi, s								
				Refine	d calculation mode							
				Chronic risk asses	sment: JMPR method	ology (IEDI/TMD	l)					
			No of diets exceeding	the ADI :								re resulting fr
		Expsoure	Highest contributor to			2nd contributor to MS			3rd contributor to MS		MRLs set a the LOQ	under ass
Calculated		(µg/kg bw per	MS diet	Commodity /		diet	Commodity /		diet	Commodity /	(in % of ADI	(in % of
(% of		day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
88		10.58 7.65	21% 14%	Milk: Cattle Apples		12% 7%	Apples Milk: Cattle		9% 7%	Bananas Table grapes		88' 64'
49		5.93	9%	Appes Mik: Cattle		7%	Apples		5%	Table grapes		49
40		4.86	5%	Basil and edible flowers		5%	Wine grapes		3%	Celeries		40
37		4.46	6%	Wine grapes		3%	Celeries		3%	Lettuces		37
36		4.32	8%	Milk: Cattle		5%	Eggs: Chicken		3%	Oranges	0.0%	36
35		4.23	7%	Celeries		4%	Wine grapes		3%	Milk: Cattle		35
33	% UK infant	3.99	14%	Milk: Cattle		5%	Eggs: Chicken		2%	Bananas		33
33	% FR toddler 2 3 yr	3.99	10%	Milk: Cattle		4%	Apples		3%	Beans (with pods)	0.0%	33
32	% SE general	3.85	5%	Lettuces		4%	Milk: Cattle		3%	Eggs: Chicken		32
31	% GEMS/Food G06	3.77	5%	Table grapes		4%	Tomatoes		2%	Wheat		31
31		3.70	4%	Wine grapes		2%	Lettuces		2%	Milk: Cattle		31
31		3.66	4%	Lettuces		2%	Milk: Cattle		2%	Tomatoes		31
30		3.58	4%	Wine grapes		2%	Milk: Cattle		2%	Celeries		30
29		3.46	7%	Milk: Cattle		3%	Eggs: Chicken		2%	Oranges		29
28		3.36	5%	Lettuces		4%	Milk: Cattle		3%	Eggs: Chicken		28
27		3.30	6%	Wine grapes		4%	Milk: Cattle		2%	Eggs: Chicken		27
27		3.28	4%	Milk: Cattle		3%	Wine grapes		3%	Apples	0.0%	27
27		3.25	4%	Milk: Cattle		3%	Eggs: Chicken		3%	Apples		27
26		3.11 2.75	4% 7%	Milk: Cattle Lettuces		3% 2%	Wine grapes Eggs: Chicken		3% 2%	Apples Milk: Cattle	0.0%	26 23
23		2.75	10%	Lettuces Wine grapes		2%	Eggs: Unicken Table grapes		2%	Potatoes		23
22		2.65	3%	Wine grapes Milk: Cattle		2%	Wine grapes		2%	Apples		22
22		2.65	9%	Wine grapes		2%	Eggs: Chicken		2%	Milk: Cattle	0.0%	22
18		2.04	6%	Milk: Cattle		2%	Apples		2%	Beans (with pods)	0.0%	18
17		2.01	4%	Lettuces		2%	Wheat		2%	Tomatons	0.078	17
16		1.94	2%	Bananas		2%	Raspberries (red and yellow)		1%	Strawberries		16
16		1.93	3%	Wine grapes		2%	Lettuces		1%	Eggs: Chicken		16
16		1.92	5%	Lettuces		1%	Tomatoes		1%	Wheat		16
16		1.89	4%	Wine grapes		2%	Milk: Cattle		1%	Eggs: Chicken		16
15		1.78	4%	Wine grapes		1%	Lettuces		1%	Eggs: Chicken	0.0%	15
12		1.50	1%	Raspberries (red and yellow)		1%	Bananas		1%	Lettuces		12
10		1.24	2%	Apples		1%	Milk: Cattle		1%	Eggs: Chicken		10
9		1.12	2%	Apples		2%	Table grapes		1%	Tomatoes		94
9		1.09	2%	Lettuces		1%	Wine grapes		0.7%	Tomatoes		99
5	6 IE child	0.57	1%	Milk: Cattle		0.6%	Eggs: Chicken		0.4%	Apples		59

Thiamethoxam

Longen Control (not by marked) Longen Disclose (not find) Longen Disclose (not find) Longen Longen <thlongen< th=""></thlongen<>		****				This	methoxan	n			Input	: values		
EFGA PMM projector 3, 1; 202101/06 Year of owname. Year of evaluation. 2007 Descrimentary (March Call Descrimentary (March Call <th>+</th> <th>K *</th> <th>C</th> <th></th> <th>LOOs (mo/ko) range f</th> <th></th> <th></th> <th></th> <th>0.07</th> <th>Dotails o</th> <th>bronic rick</th> <th>Supplementary</th> <th>culte</th> <th></th>	+	K *	C		LOOs (mo/ko) range f				0.07	Dotails o	bronic rick	Supplementary	culte	
EFGA PMM projector 3, 1; 202101/06 Year of owname. Year of evaluation. 2007 Descrimentary (March Call Descrimentary (March Call <th></th> <th>*<u>*</u> • A</th> <th>TSA</th> <th></th> <th>Lo do (riging) rango r</th> <th></th> <th></th> <th></th> <th>0.01</th> <th></th> <th></th> <th></th> <th></th> <th></th>		* <u>*</u> • A	TSA		Lo do (riging) rango r				0.01					
Effect Problem 21, 2021(0106 Year of evaluation 2007 Descrimentation Descrimentation International Colspan="4">International Colspan="4"					ADI (mg/kg bw/day):		0.026	ARfD (mg/kg bw):	0.5					
EFEARING revision 31, 2021/0106 Year of exalutors 2007 Year of exalutors 2007 Note of exalutors Note of exalutors Second High and	Eι	Iropean Food	Safety Authority											
branchesis Chronit six sassessent: JMC methodology (EDUTMO) Chronit six sassessent: JMC methodology (EDUTMO) brance concording// (% 6/AD) brance brance concording// (% 6/AD) brance	_		vision 3.1; 2021/01/06		Year of evaluation:		2007	Year of evaluation:	2007	dissessifier	rty enniur en	assessmenty ad	uits	
Under die kassessmet: JWRP methodology (ED/TMD); Leister die seesting the AD: Methodology (ED/TMD); Leister die seesting the AD: Methodology (ED/TMD); Control die seesting the AD: Methodology (ED/TMD); Control die seesting the AD: Operation of the Soft (In Strict AD) Methodology (ED/TMD); Control die seesting the AD: Operation of control die seesting the AD: Operation of control die seesting the AD: Operation of control die seesting the AD: Methodology (ED/TMD); Control die seesting the AD: Operation of control die seesting the AD: Operation of control die seesting the AD: 3% ME did 0.74 ME. Catile 0.5% Methodology (ED/TMD); ME. Catile 0.5% Methodology (ED/TMD); Methodology (ED/TMD); <t< td=""><td>ient</td><td>ts:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ient	ts:												
No d'atte according the ADI: Espectration Mail Mail Califier Mail							Normal	mode						
Calculated appearse Hypect contributor to (up/G y/m) Hypect contributor to (up/G y/m) Produce (up/G y/m) Hypect contributor (up/G y/m) Produce (up/G y/m) Hypect contributor (up/G y/m) Mile: calls Hypect contributor (up/G y/m) Hypect contributor (up/G y/m) <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Chronic r</td><td>isk assessment:</td><td>JMPR methodol</td><td>ogy (IEDI/TMDI)</td><td></td><td></td><td></td><td></td><td></td></th<>						Chronic r	isk assessment:	JMPR methodol	ogy (IEDI/TMDI)					
Encluded space Epsone of the set of monotity / grade of monotity /					No of diets exceeding	the ADI :							Exposure	e resulting
Object Operation O	Τ												MRLs set at	t commod under ass
Understand Hyper Hyper Hyper Constraint Operation Operation Operation Operation 5% NL bolder 1.34 0.74 0.78 Mile Cattle 0.96 0.78 Tomators 2% 3% DE child 0.74 0.78 Mile Cattle 0.5% Apples 0.3% Apples 2% 3% DE child 0.73 0.9% Mile Cattle 0.5% Apples cross 0.3% Apples 2% 3% GEMS/Food Gd6 0.72 1% Tomators 0.3% Vitent 0.1% Sweet propers bell propers 1% 3% GEMS/Food Gd6 0.22 1% Mile Cattle 0.1% Apples 2% 2% RE proval 0.68 0.9% Mile Cattle 0.1% Apples 2% 2% RE based of 15 0.68 0.9% Tomators 0.4% Mile: Cattle 0.2% Winet 2% 2% GEMS/Food G10 0.53 0		Coloulated ave				Commodite (Commodity (Commodity ((in % of ADI	
9% N. tooder 1.34 2% Mic Cutle 0.4% Apples 0.3% Tomatose 9% 3% N. child 0.73 0.9% Mic Cutle 0.3% Sugar bet rots 0.3% Tomatose 2% 3% R. child 0.73 0.9% Mic Cutle 0.3% Sugar bet rots 0.2% Apples 3% 3% GEMS/Food G6B 0.72 1% Tomatose 0.3% Wheat 0.1% Sweet pepers/ubl pepeer 2% 3% JK (rinnt 0.68 1% Mic Cutle 0.3% Tomatos 0.1% Tomatos 0.1% Tomatos 0.2% Wheat 2% 2% GEMS/Food G16 0.68 0.4% Tomatos 0.1% Tomatos 0.1% Apples 2% 2% GEMS/Food G15 0.54 0.4% Tomatos 0.2% Wheat 2% 2% GEMS/Food G16 0.54 0.4% Tomatos 0.2% Wheat 2% 2% GEMS/Food G15 0.54									aroup of commodities				ľ	
9% NL.ohl 0.73 0.9% Mile: Cattle 0.3% Super best noise 0.2% Appels 9% 3% GEMSPS-od GOG6 0.72 1% Mile: Cattle 0.1% Patatos 0.1% Tomatos 2% 3% UK infant 0.66 1% Mile: Cattle 0.1% Patatos 0.1% Tomatos 2% 2% FR bidd 15 yr 0.62 1% Mile: Cattle 0.1% Tomatos 0.1% Apples 2% 2% GEMSP-od G11 0.61 0.3% Mile: Cattle 0.1% Tomatos 0.2% Apples 2% 2% GEMSP-od G11 0.61 0.3% Mile: Cattle 0.2% Wheat 2% 2% GEMSP-od G2 0.4% Tomatos 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMSP-od G10 0.53 0.4% Tomatos 0.2% Mile: Cattle 0.2% Mile: Cattle 0.2% Mile: Cattle 0.2% Mile: C	t												5%	0.
9% GEMS/Food G06 0.72 1% Tonatos 0.3% Wheat 0.1% Sweet peopretail peopres 1% 3% FR bidla 31 Syr 0.65 0.0% Mik: Cattle 0.3% Tonatos 0.2% Wheat 2% 2% FR bidla 23 Syr 0.65 0.0% Mik: Cattle 0.3% Tonatos 0.2% Wheat 2% 2% GEMS/Food G11 0.61 0.3% Mik: Cattle 0.3% Tonatos 0.2% Wheat 1% 2% GEMS/Food G6B 0.44 0.4% Tonatos 0.3% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food G6B 0.44 0.4% Tonatos 0.2% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food G10 0.33 0.4% Tonatos 0.2% Mik: Cattle 0.2% Wheat 1% 2% GEMS/Food G10 0.33 0.4% Tonatos 0.2% Notatos 0.2% Notatos 1%	l													0.
9% UK infant 0.66 1% Mik: Cattle 0.1% Potatos 0.1% Tomatos 2% 3% FR huld 31 Syr 0.62 1% Mik: Cattle 0.3% Tomatos 0.1% Apples 2% 2% FR buld 31 Syr 0.62 1% Mik: Cattle 0.3% Tomatos 0.1% Apples 2% 2% R Gentral 0.62 1% Mik: Cattle 0.3% Tomatos 0.3% Tomatos 0.1% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food G15 0.56 0.4% Tomatos 0.3% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food G10 0.51 0.5% Tomatos 0.2% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food G10 0.51 0.5% Mik: Cattle 0.2% Netato 2% 2% DK hold 0.51 0.5% Mik: Cattle 0.2% Netatota 2%	L													0.
9% FR bidler 3 by 0.65 0.9% Mit: Cattle 0.3% Tomates 0.2% Wheat 2% 2% GEMS/Food G11 0.61 0.3% Mit: Cattle 0.3% Tomates 0.2% Celorisa 2% 2% GEMS/Food G15 0.61 0.3% Mit: Cattle 0.3% Tomates 0.2% Wheat 2% 2% GEMS/Food G15 0.56 0.4% Tomates 0.3% Mit: Cattle 0.2% Wheat 2% 2% GEMS/Food G068 0.54 0.4% Tomates 0.2% Mit: Cattle 0.2% Wheat 2% 2% GEMS/Food G10 0.53 0.4% Tomates 0.2% Mit: Cattle 0.2% Wheat 2% 2% Uktoder 0.52 0.4% Mit: Cattle 0.2% Mit: Cattle 0.2% Wheat 2% 2% Uktoder 0.52 0.4% Mit: Cattle 0.2% Mit: Cattle 0.4% 0.5% Mit: Cattle	L													1
PR PR Odd/dr 1% Mile: Cattle 0.1% Tomatoes 0.1% Apples 2% 2% RO general 0.58 0.6% Tomatoes 0.4% Mile: Cattle 0.2% Wheat 1% 2% RO general 0.58 0.6% Tomatoes 0.3% Mile: Cattle 0.2% Wheat 2% 2% GEMS/Food C05 0.54 0.4% Tomatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMS/Food C10 0.54 0.4% Tomatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMS/Food C10 0.53 0.4% Tomatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMS/Food C10 0.51 0.5% Mile: Cattle 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMS/Food C11 0.48 0.5% Mile: Cattle 0.2% Tomatoes 0.2% Wheat 2%	I													0.1
2% GEMSProd G11 0.61 0.3% Mik: Cattle 0.2% Certries 2% 2% GEMSProd G15 0.56 0.4% Tomatos 0.3% Mik: Cattle 0.2% Wheat 1% 2% GEMSProd G05 0.54 0.4% Tomatos 0.3% Mik: Cattle 0.2% Wheat 2% 2% GEMSProd G05 0.54 0.3% Tomatos 0.2% Mik: Cattle 0.2% Wheat 2% 2% GEMSProd G10 0.52 0.3% Tomatos 0.2% Mik: Cattle 0.2% Wheat 2% 2% UK todder 0.52 0.8% Mik: Cattle 0.2% Mik: Cattle 0.2% Wheat 2% 2% SE general 0.50 0.5% Mik: Cattle 0.3% Borine Machiment 0.2% Supar bet roots 1% 2% Es duit 0.48 0.5% Mik: Cattle 0.3% Tomatos 0.2% Supar bet roots 1% 2%	l													0.
2% R0 general 0.88 0.9% Tornatoes 0.4% Mile: Cattle 0.2% Wheat 2% 2% GEMSFood G15 0.64 0.4% Tornatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMSFood G07 0.54 0.4% Tornatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMSFood G07 0.53 0.4% Tornatoes 0.2% Mile: Cattle 0.2% Wheat 2% 2% GEMSFood G07 0.51 0.5% Mile: Cattle 0.2% Mile: Cattle 0.2% Wheat 2% 2% OK child 0.51 0.5% Mile: Cattle 0.2% Rymer 0.2% Swine: Muscle/meat 2% 2% IE adult 0.48 0.5% Mile: Cattle 0.2% Rymer 0.2% Wheat 2% 2% DE general 0.46 0.5% Mile: Cattle 0.3% Tornatoes 0.2% Wheat 2%	L													0.
2% GEMS/Food G45 0.56 0.4% Tomatoes 0.3% Milk: Cattle 0.2% Wheat 2% 2% GEMS/Food G60 0.54 0.3% Tomatoes 0.2% Milk: Cattle 0.2% Wheat 2% 2% GEMS/Food G61 0.53 0.4% Tomatoes 0.2% Milk: Cattle 0.2% Wheat 2% 2% UK toddier 0.52 0.8% Milk: Cattle 0.2% Tomatoes 0.2% Wheat 2% 2% UK toddier 0.52 0.8% Milk: Cattle 0.2% Tomatoes 0.2% Wheat 2% 2% UK toddier 0.50 0.5% Milk: Cattle 0.3% Bovine: Muscle/meat 0.1% Sweine: Muscle/mat 2% 2% Es child 0.48 0.5% Milk: Cattle 0.3% Tomatoes 0.2% Wheat 2% 2% DE worm 14-50 yr 0.45 0.5% Milk: Cattle 0.3% Tomatoes 0.2% Sugar bed rotots	L													0.
2% GRMS/Food G08 0.54 0.4% Tomatoes 0.2% Milk: Cattle 0.2% Wheat 2% 2% GRMS/Food G07 0.53 0.4% Tomatoes 0.2% Milk: Cattle 0.2% Wheat 1% 2% GRMS/Food G10 0.53 0.4% Tomatoes 0.2% Milk: Cattle 0.2% Wheat 2% 2% UK todder 0.51 0.5% Milk: Cattle 0.2% Rye 0.2% Wheat 2% 2% SE general 0.50 0.5% Milk: Cattle 0.2% Rye 0.2% None: Muscle/meat 2% 2% IE actult 0.49 0.2% Rhuberts 0.2% Milk: Cattle 0.3% Tomatoes 0.2% Wheat 2% 2% DE worne 14-50 yr 0.45 0.5% Milk: Cattle 0.3% Tomatoes 0.2% Ymatoes 0.2% Ymatoes 1% 2% DE worne 14-50 yr 0.44 0.5% Milk: Cattle 0.3														0.
2% GEMS/Food 017 0.54 0.3% Tomatoes 0.2% Mik: Cattle 0.2% Wheat 2% 2% GEMS/Food 010 0.53 0.4% Tomatoes 0.2% Mik: Cattle 0.2% Wheat 1% 2% UK todder 0.52 0.8% Mik: Cattle 0.2% Tomatoes 0.2% Wheat 2% 2% DK child 0.51 0.5% Mik: Cattle 0.2% Route 2% 2% SE general 0.50 0.5% Mik: Cattle 0.2% Mix: Cattle 0.2% Tomatoes 2% 2% E Schild 0.48 0.5% Mik: Cattle 0.2% Mik: Cattle 0.3% Mik: Cattle 0.2% Tomatoes 0.2% Sugar bet rots 1% 2% DE general 0.44 0.5% Mik: Cattle 0.2% Tomatoes 0.2% Sugar bet rots 1% 2% Fladut 0.39 0.5% Mik: Cattle 0.2% Tomatoes 0.2% <td></td> <td>0.6</td>														0.6
2% GBMS/Food G10 0.53 0.4% Tomatos 0.2% Mik: Cattie 0.2% Miket 1% 2% UK todider 0.52 0.8% Mike: Cattie 0.2% Normation 0.2% Wheat 2% 2% DK child 0.51 0.5% Mike: Cattie 0.2% Rye 0.2% Symme Muscle/meat 2% 2% Espenial 0.49 0.5% Mike: Cattie 0.2% Mixe: Cattie 0.2% Symme Muscle/meat 0.1% Symme Muscle/meat <th< td=""><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.6</td></th<>	L													0.6
2%Uk toddier0.520.8%Mik: Catile0.2%Tomatoes0.2%Wheat2%2%DK child0.510.5%Mik: Catile0.2%Bovine: Muscle/meat0.2%Swine: Muscle/meat2%2%SE general0.500.5%Mik: Catile0.3%Bovine: Muscle/meat0.2%Tomatoes2%2%IE doult0.490.2%Rhubarbs0.2%Mik: Catile0.3%Bovine: Muscle/meat0.1%Swet potatoes1%2%ES child0.480.5%Mik: Catile0.2%Tomatoes0.2%Sugar beet roots1%2%DE general0.440.5%Mik: Catile0.2%Tomatoes0.2%Sugar beet roots1%2%F ladut0.391%Coffee beans0.2%Tomatoes0.1%Sugar beet roots1%1%N. general0.360.3%Mik: Catile0.1%Potatoes0.1%Apples torts1%1%F. Ir lant0.330.6%Mik: Catile0.1%Potatoes0.1%Apples1%1%F. Ir lant0.330.6%Mik: Catile0.1%Potatoes0.1%Apples1%1%F. Ir doult0.380.6%Mik: Catile0.1%Potatoes0.1%Apples0.8%1%F. Ir doult0.380.6%Mik: Catile0.1%Potatoes0.1%Apples0.8%1%F. Ir doult0.380.6%Mik: Catil	L													0.
2% DK child 0.51 0.5% Mik: Cattle 0.2% Fyen 0.2% Syme: Mucde/meat 2% 2% SE general 0.50 0.5% Mik: Cattle 0.3% Bowine: Mucde/meat 0.2% Tomatos 2% 2% Es child 0.48 0.2% Mike: Cattle 0.3% Mice: Cattle 0.3% Mice: Cattle 0.3% Yheat 2% 2% DE general 0.48 0.5% Mike: Cattle 0.2% Tomatos 0.2% Sugar beet nots 1% 2% DE general 0.44 0.5% Mike: Cattle 0.2% Tomatos 0.2% Sugar beet nots 1% 2% Fl adutl 0.38 0.3% Mike: Cattle 0.2% Tomatos 0.0% Potatos 1% 1% N. general 0.38 0.3% Mike: Cattle 0.1% Potatos 0.1% Magar bet nots 1% 1% F. Badut 0.38 0.3% Mike: Cattle 0.1% Magar bet														0.
2%SE general0.500.5%Mik: Cattle0.3%Boine: Muscle/meat0.2%To matoes0.2%To matoes0.2%To matoes0.2%To matoes0.2%To matoes0.2%To matoes0.2%Mike: Cattle0.3%To matoes0.2%Mike: Cattle0.3%To matoes0.2%Mike: Cattle0.3%To matoes0.2%Mike: Cattle0.2%Mike: Cattle0.3%To matoes0.2%Mike: Cattle0.3%Mike: Cattle0.2%To matoes0.2%Sugar beat notis1%2%F ladut0.391%Coffee beans0.2%To matoes0.1%Sugar beat notis1%1%R Iriant0.330.6%Mike: Cattle0.1%Potacos0.1%Sugar beat notis1%1%F Iriant0.330.6%Mike: Cattle0.1%Potacos0.1%Apples1%1%F Iriant0.300.2%To matoes0.2%Mike: Cattle0.1%Potacos0.1%Apples0.8%1%F Iriant0.300.4%To matoes0.2%Mike: Cattle0.1%Potacos0.1%Potacos0.1%Potacos0.6%1%F Radut0.300.4%To matoes0.2%Mike: Cattle0.1%Potacos0.1%Potacos0.6%1%F Radut0.3%0.4%To matoes0.2%Mike: Cattle0.1%To matoes0.1%Potacos0.6%0.6%M Re dut <td< td=""><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.</td></td<>	L													0.
2%IE dult0.490.2%Rhubarbs0.2%Mik: Cattle0.2%Mik: Cattle0.1%Swetpolatoes1%2%Es ohilo0.480.5%Mik: Cattle0.3%Tomatoes0.2%Wheat2%2%DE general0.440.5%Mik: Cattle0.2%Tomatoes0.2%Sugar beet roots1%2%DE general0.380.5%Mik: Cattle0.2%Tomatoes0.2%Sugar beet roots1%2%F ladit0.390.3%Mik: Cattle0.2%Tomatoes0.0%Patoes1%1%N. general0.330.3%Mik: Cattle0.1%Tomatoes0.1%Sugar beet roots1%1%F R infant0.330.3%Mik: Cattle0.1%Tomatoes0.1%Motatoes1%1%ES adult0.300.2%Tomatoes0.2%Mik: Cattle0.3%Mik: Cattle0.3%0.1%Motatoe0.5%1%F general0.280.2%Tomatoes0.2%Mike Cattle0.3%Mike Cattle0.5%0.5%0.5%0.5%1%F general0.280.3%Tomatoes0.2%Mike Cattle0.4%0.5% <td>L</td> <td></td> <td>0.</td>	L													0.
2%ES schild0.480.5%Mik: Cattle0.3%Tomatoes0.2%Wheat2%2%DE wonn 14-50 yr0.440.5%Mik: Cattle0.2%Tomatoes0.2%Sugar beet nots1%2%DE general0.340.5%Mik: Cattle0.2%Tomatoes0.2%Sugar beet nots1%2%F1 adut0.391%Coffee bears0.2%Tomatoes0.0%Platoes1%1%R1 infant0.360.3%Mik: Cattle0.1%Platoes0.1%Apples for tots1%1%F1 adut0.300.6%Mik: Cattle0.1%Platoes0.1%Apples1%1%F1 adut0.300.6%Mik: Cattle0.1%Platoes0.1%Apples0.8%1%T1 toddler0.300.4%Tomatoes0.3%Wheat0.1%Platoes0.8%1%F1 adut0.280.3%Tomatoes0.3%Wheat0.8%0.6%0.1%Fioreor fernels0.8%1%F1 adut0.280.2%Mik: Cattle0.1%Tomatoes0.1%Fioreor fernels0.4%0.9%IT adut0.280.2%Mik: Cattle0.2%Tomatoes0.1%Fioreor fernels0.4%0.9%IT adut0.230.2%Mik: Cattle0.2%Tomatoes0.1%Fioreor fernels0.4%0.9%IT adut0.230.2%Mik: Cattle0.2%Mik: Cattle0														0.3
2%DE general0.45Mik: Cattle0.2%Tomatos0.2%Sugar best roots1% $2%$ DE general0.440.5%Mik: Cattle0.2%Tomatos0.2%Sugar best roots1% $2%$ F1 adut0.380.3%Mik: Cattle0.2%Tomatos0.0%Pataos1% $1%$ NL general0.380.3%Mik: Cattle0.1%Pataos0.1%Autos1% $1%$ F1 afant0.330.6%Mik: Cattle0.1%Pataos0.1%Appets roots1% $1%$ F1 afant0.300.2%Tomatos0.2%Mik: Cattle0.1%Pataos0.1%Appets roots1% $1%$ F1 adut0.300.4%Tomatos0.2%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.1%Mik: Cattle0.5%Mik: Cattle0.1%Mik: Cattle0.5%0.5%Mik: Cattle0.1%Mik: Cat														0.
2% DE general 0.44 0.5% Mik: Cattle 0.2% Tomatoes 0.2% Statutos 1% 2% Fladut 0.39 1% Coffee beans 0.2% Tomatoes 0.0% Statoes 1% 1% NL general 0.36 0.3% Mik: Cattle 0.1% Tomatoes 0.1% Sugar beat nots 1% 1% FR Infant 0.30 0.6% Mik: Cattle 0.1% Potatoes 0.1% Apples 1% 1% FR Infant 0.30 0.6% Mik: Cattle 0.1% Potatoes 0.1% Apples 0.1% Apples 0.8% 1% IT toddler 0.30 0.4% Tomatoes 0.3% Wheat 0.1% Potatoes 0.8% 1% IT toddler 0.28 0.3% Tomatoes 0.2% Potatoes 0.1% Floature 0.8% 0.9% IT adult 0.28 0.2% Mik: Cattle 0.1% Tomatoes 0.1% Sw	I													0.
Pia Fladut 0.39 1% Coffee bensity 0.2% Tomatoes 0.0% Potatoes 1% 1% NL general 0.38 0.3% Mik: Cattle 0.1% Tomatoes 0.1% Sugar best nots 1% 1% Findant 0.33 0.6% Mik: Cattle 0.1% Potatoes 0.1% Apples totts 1% 1% ES adut 0.30 0.2% Tomatoes 0.2% Mik: Cattle 0.1% Apples 0.1% Apples 0.8% 1% IT toddler 0.30 0.2% Tomatoes 0.2% Mik: Cattle 0.8% 0.5% 0.1% Potatoes 0.1% Potatoe 0.8% 0.5% 0.3% Wheat 0.1% 0.8% 0.6% 0.5% 0.1% Tomatoes 0.1% Potatoes 0.1% Poteore fernels 0.6% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% </td <td>L</td> <td></td> <td>0.</td>	L													0.
1%N.general0.380.3%Mik: Cattle0.1%Tomatoes0.1%Sup abest roots1%1%FR infant0.330.6%Mik: Cattle0.1%Potatoes0.1%Apples1%1%ES adult0.300.2%Timatoes0.2%Mik: Cattle0.1%Potatoes0.1%Wheat0.8%1%IT loddler0.300.2%Timatoes0.2%Mik: Cattle0.1%Vineat0.8%1%FT general0.300.4%Tomatoes0.2%Mik: Cattle0.1%Vineat0.8%1%FT general0.280.3%Mik: Cattle0.1%Tomatoes0.1%Wheat0.8%0.9%IT adult0.280.2%Mik: Cattle0.1%Tomatoes0.1%Wine: Austle/meat0.9%0.9%IT adult0.230.2%Tomatoes0.2%Tomatoes0.1%Wine: Austle/meat0.7%0.9%IT adult0.230.2%Tomatoes0.2%Tomatoes0.1%Wine: Austle/meat0.7%0.9%IT adult0.230.2%Tomatoes0.2%Tomatoes0.1%Wine: Austle/meat0.7%0.9%IT adult0.230.2%Tomatoes0.2%Tomatoes0.1%Wine: Austle/meat0.7%0.9%IT adult0.230.2%Tomatoes0.2%Tomatoes0.1%Wine: Austle/meat0.7%0.9%IT adult0.210.2%Tomatoes0.2%	L													0.
1% FR infant 0.33 0.6% Mik: Cattle 0.1% Potatons 0.1% Apples 1% 1% ES adult 0.30 0.2% Tomatoes 0.2% Mik: Cattle 0.1% Moreat 0.8% 1% If toddler 0.30 0.2% Tomatoes 0.2% Mik: Cattle 0.1% Wheat 0.8% 1% PT general 0.28 0.3% Tomatoes 0.2% Wheat 0.1% Wheat 0.8% 1% FR adult 0.28 0.3% Tomatoes 0.2% Wheat 0.1% Wine grapes 0.8% 0.9% If tault 0.28 0.2% Mik: Cattle 0.1% Tomatoes 0.1% Wine grapes 0.9% 0.9% D/4 dutt 0.24 0.4% Tomatoes 0.1% Tomatoes 0.1% Proteore formetis 0.4% 0.9% D/4 dutt 0.23 0.2% Tomatoes 0.1% Tomatoes 0.1% Proteore formetis 0.7%														0.
1%ES adult0.300.2%Tomatos0.2%Mik: Cattle0.1% V_{mat} 0.8%1%17 toddler0.300.4%Tomatos0.3%0.3%Wheat0.1%Florence fennels0.6%1%PT general0.280.3%Tomatos0.2%N/hcat0.2%0.1%Vineat0.8%1%PT general0.280.2%Mik: Cattle0.1%Tomatos0.2%Wheat0.8%0.9%Fladut0.280.2%Mik: Cattle0.1%Tomatos0.1%Winegrapes0.9%0.9%Dr Adult0.240.4%Tomatos0.2%Wheat0.1%Florence fennels0.4%0.9%Dr Adult0.230.2%Mik: Cattle0.2%Tomatos0.1%Sinze-Muscle/meat0.7%0.9%LT adult0.230.2%Potatos0.2%Tomatos0.1%Sinze-Muscle/meat0.7%0.9%Fl 3 yr0.220.2%Potatos0.2%Tomatos0.1%Banans0.6%0.6%UK vegetarian0.210.2%Tomatos0.1%Mik: Cattle0.1%Wheat0.5%0.7%VK adut0.190.1%Potatos0.1%Mik: Cattle0.1%Wheat0.5%0.7%VK adut0.1%0.1%Potatos0.1%Tomatos0.1%Wheat0.5%0.7%VK adut0.1%0.1%Potatos0.1%Tomatos0.1%Mik: Cattle	L													0.
1% Itodder 0.30 0.4% Tomatos 0.3% Wheat 0.1% Forece femels 0.6% 1% PT general 0.28 0.3% Tomatos 0.2% Polatos 0.4% Wheat 0.8% 0.6% 1% FR adult 0.28 0.3% Tomatos 0.2% Polatos 0.4% Wheat 0.8% 0.8% 0.% IT adult 0.28 0.2% Mik: Cattle 0.1% Tomatos 0.1% Wine grapes 0.9% 0.9% DK adult 0.24 0.4% Tomatos 0.2% Wheat 0.1% Wine grapes 0.9% 0.9% DK adult 0.24 0.4% Tomatos 0.2% Tomatos 0.1% Swine: Muscle/meat 0.7% 0.9% Fl 3yr 0.23 0.2% Tomatos 0.2% Tomatos 0.1% Polatos 0.7% 0.8% Fl 3yr 0.23 0.2% Tomatos 0.1% Minscle/meat 0.5%	L													0.
1% PT general 0.28 0.3% Tomatos 0.2% Pdatos 0.2% Wheat 0.8% 1% FR adult 0.28 0.2% Mik: cattle 0.1% Tomatos 0.1% Wine rapes 0.9% 0.9% IT adult 0.24 0.4% Tomatos 0.2% Wheat 0.1% Wine rapes 0.9% 0.9% IT adult 0.23 0.2% Mik: Cattle 0.2% Wheat 0.1% Florence femnels 0.4% 0.9% LT adult 0.23 0.2% Mik: Cattle 0.2% Tomatos 0.1% Sine: Musiclement 0.7% 0.9% LT adult 0.23 0.2% Potatos 0.2% Tomatos 0.1% Sine: Musiclement 0.7% 0.9% LT adult 0.23 0.2% Potatos 0.2% Tomatos 0.1% Mik: Cattle 0.1% Mist 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5%	L													0.
1% FR adult 0.28 0.2% Mik: Catile 0.1% Tomatoes 0.1% Wine grapes 0.9% 0.9% IT adult 0.24 0.4% Tomatoes 0.2% Wheat 0.1% Wine grapes 0.9% 0.9% IT adult 0.23 0.2% Mik: Catile 0.2% Tomatoes 0.1% Swine: Muscle/meat 0.7% 0.9% LT adult 0.23 0.2% Tomatoes 0.2% Mik: Catile 0.1% Swine: Muscle/meat 0.7% 0.9% F1 adut 0.23 0.2% Tomatoes 0.2% Mik: Catile 0.1% Swine: Muscle/meat 0.7% 0.9% F1 adut 0.23 0.2% Tomatoes 0.2% Tomatoes 0.1% Swine: Muscle/meat 0.7% 0.9% F1 adut 0.23 0.2% Tomatoes 0.2% Tomatoes 0.1% Wheat 0.5% 0.6% UK seglarian 0.21 0.2% Tomatoes 0.1% Mik: Catile 0.1%	l													0.
0.9% IT adult 0.24 0.4% Tomatoes 0.2% Wheat 0.1% Florence fernels 0.4% 0.9% DK adult 0.23 0.2% Milk: Cattle 0.2% Tomatoes 0.1% Svine: Muscle/meat 0.7% 0.9% LT adult 0.23 0.2% Tomatoes 0.2% Tomatoes 0.1% Svine: Muscle/meat 0.7% 0.9% LT adult 0.23 0.2% Tomatoes 0.2% Tomatoes 0.1% Potatoes 0.7% 0.9% F1 3yr 0.22 0.2% Potatoes 0.2% Tomatoes 0.1% Benanas 0.6% 0.8% UK vegetarian 0.1% 0.2% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.6% 0.7% UK vegetarian 0.18 0.1% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.6% 0.7% UK vegetarian 0.18 0.1% Potatoes 0.1% Tomatoes 0.1% 0.1% <td>L</td> <td></td> <td>0.</td>	L													0.
0.9% DK adult 0.23 0.2% Mik: Catile 0.2% Tomatos 0.1% Swine-Muscle/meat 0.7% 0.9% LT adut 0.23 0.2% Tomatoes 0.2% Mik: Catile 0.1% Potatoes 0.7% 0.9% F1 3 yr 0.22 0.2% Tomatoes 0.2% Mik: Catile 0.1% Bananis 0.6% 0.8% UK vegetarian 0.21 0.2% Tomatoes 0.1% Mik: Catile 0.1% Whet 0.5% 0.7% UK adut 0.19 0.1% Tomatoes 0.1% Mik: Catile 0.1% Whet 0.6% 0.7% F1 6 yr 0.18 0.1% Potatoes 0.1% Tomatoes 0.1% Whet 0.6% 0.6% P.L general 0.18 0.1% Potatoes 0.1% Tomatoes 0.1% Apples 0.3%	l													0.
0.9% LT adult 0.23 0.2% Tomatoes 0.2% Milk: Cattle 0.1% Potatoes 0.7% 0.9% F13 yr 0.22 0.2% Potatoes 0.2% Tomatoes 0.1% Bananas 0.6% 0.8% UK vogetarian 0.21 0.2% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.5% 0.7% UK adult 0.19 0.1% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.5% 0.7% F16 yr 0.18 0.1% Potatoes 0.1% Tomatoes 0.1% Wheat 0.5% 0.6% P.L general 0.17 0.3% Tomatoes 0.1% Tomatoes 0.1% Apples 0.3%	L													0.
0.9% Fl 3yr 0.22 0.2% Polatoes 0.2% Tomatoes 0.1% Bananas 0.6% 0.8% UK vegetarian 0.21 0.2% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.5% 0.7% UK adult 0.19 0.1% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.5% 0.7% Fl 6yr 0.18 0.1% Polatoes 0.1% Tomatoes 0.1% Wheat 0.5% 0.6% P.L general 0.17 0.3% Tomatoes 0.1% Tomatoes 0.1% Apples 0.3%	L													0.
0.8% UK vegetarian 0.21 0.2% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.5% 0.7% UK adult 0.19 0.1% Tomatoes 0.1% Milk: Cattle 0.1% Wheat 0.6% 0.7% Fl 6 yr 0.18 0.1% Potatoes 0.1% Tomatoes 0.1% Wheat 0.5% 0.6% PL general 0.17 0.3% Tomatoes 0.1% Potatoes 0.1% Apples 0.3%	L													0.
0.7% UK adult 0.19 0.1% Tomatoes 0.1% Mik: Cattle 0.1% Wheat 0.6% 0.7% F1 6 yr 0.18 0.1% Potatoes 0.1% Tomatoes 0.0% Wheat 0.5% 0.6% FL general 0.17 0.3% Tomatoes 0.1% Potatoes 0.1% Apples 0.3%	l													0.
0.7% FI 6 yr 0.18 0.1% Potaloes 0.1% Tomatoes 0.0% Wheat 0.5% 0.6% PL general 0.17 0.3% Tomatoes 0.1% Potaloes 0.1% Apples 0.3%	l													0.
0.6% PL general 0.17 0.3% Tomatoes 0.1% Potatoes 0.1% Apples 0.3%	1													0.
	1													0.
0.4% IE child 0.09 0.1% Milk: Cattle 0.0% Wheat 0.0% Potatoes 0.3%		0.4%	IE child	0.09	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.3%	0.0

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

etails - acute risk assessment /children

Acute risk assessment / adults / general population

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union The calculation is based on the large portion of the most critical consumer group.

Results for children No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposur (µg/kg b)
3%	Celeries	0.8 / 0.4	15	1%	Florence fennels	0.8 / 0.4	7.5
3%	Rhubarbs	0.8 / 0.4	15	1%	Celeries	0.8 / 0.4	6.4
1%	Florence fennels	0.8 / 0.4	6.5	0.8%	Cardoons	0.8 / 0.4	4.2
1.0%	Sweet peppers/bell peppers	0.7 / 0.08	4.8	0.7%	Rhubarbs	0.8 / 0.4	3.7
0.9%	Tomatoes	0.7 / 0.08	4.7	0.4%	Aubergines/egg plants	0.7 / 0.08	2.2
0.4%	Aubergines/egg plants	0.7 / 0.08	2.0	0.3%	Sweet peppers/bell peppers	0.7 / 0.08	1.3
				0.3%	Tomatoes	0.7 / 0.08	1.3
(IESTI calculation)							
	nmodities for which ARfD/ADI				nmodities for which ARfD/ADI is		
Results for children No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI			No of processed cor exceeded (IESTI):	nmodities for which ARfD/ADI is		
Results for children No of processed con is exceeded (IESTI): IESTI Highest % of	modities for which ARfD/ADI	MRL / input for RA (mg/kg)	Exposure	No of processed cor exceeded (IESTI): IESTI Highest % of		MRL / input for RA (mor/ka)	Exposur
Results for children No of processed con is exceeded (IESTI): IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposur (µg/kg b)
Results for children No of processed con is exceeded (IESTI): IESTI Highest % of ARfD/ADI 4%	Processed commodities Florence fennels / boiled	for RA (mg/kg) 0.8 / 0.4	Exposure (µg/kg bw) 18	No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 3%	Processed commodities Celeries / boiled	for RA (mg/kg) 0.8 / 0.4	Exposur (µg/kg b 14
Results for children No of processed con is exceeded (IESTI): IESTI Highest % of ARID/ADI 4% 3%	Processed commodities Florence fennels / boiled Rhubarbs / sauce/puree	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4	Exposure (µg/kg bw) 18 15	No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 3% 2%	Processed commodities Celeries / boiled Florence fennels / boiled	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4	Exposur (µg/kg by 14 7.8
Results for childred No of processed con is exceeded (IESTI): IESTI Highest % of ARfD/ADI 4% 3% 0.3%	Processed commodities Florence fennels / boiled Rhubarbs / sauce/puree Tomatoes / juice	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4 0.7 / 0.08	Exposure (µg/kg bw) 18 15 1.5	No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 3% 2% 1%	Processed commodities Celeries / boiled Florence fennels / boiled Rhubarbs / sauce/puree	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4 0.8 / 0.4	Exposu (µg/kg b 14 7.8 5.8
Results for children No of processed con is exceeded (IESTI): IESTI Highest % of ARID/ADI 4% 3%	Processed commodities Florence fennels / boiled Rhubarbs / sauce/puree	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4	Exposure (µg/kg bw) 18 15	No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 3% 2% 1% 1.0%	Processed commodities Celeries / boiled Florence fennels / boiled Rhubarbs / sauce/puree Cardoons / boiled	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4 0.8 / 0.4 0.8 / 0.4	Exposu (μg/kg b 14 7.8 5.8 4.9
Results for childred No of processed con is exceeded (IESTI): IESTI Highest % of ARfD/ADI 4% 3% 0.3%	Processed commodities Florence fennels / boiled Rhubarbs / sauce/puree Tomatoes / juice	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4 0.7 / 0.08	Exposure (µg/kg bw) 18 15 1.5	No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 3% 2% 1%	Processed commodities Celeries / boiled Florence fennels / boiled Rhubarbs / sauce/puree	for RA (mg/kg) 0.8 / 0.4 0.8 / 0.4 0.8 / 0.4	Exposu (µg/kg b 14 7.8 5.8

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Thiamethoxam is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

	*	-			Ac	etamiprid				Input	values		
1		Faa		LOQs (mg/kg) range fr		0.01	to:	0.10	Details - c		Supplementary res	ults -	
	**e	fsa			Toxicolog	ical reference values					chronic risk assess	nent	
_				ADI (mg/kg bw/day):		0.025	ARfD (mg/kg bw):	0.025	Dotails -	acute risk	Details - acute r	ck	
	aropean rood	Surcey Authoney		Source of ADI:		EC	Source of ARfD:	EC		nt/children	assessment/adu		
	EFSA PRIMo rev ts:	ision 3.1; 2019/03/19		Year of evaluation:		2018	Year of evaluation:	2018		<u> </u>			
					<u>Refine</u>	ed calculation mode							
					Chronic risk asse	ssment: JMPR method	ology (IEDI/TMD)					
				No of diets exceeding	he ADI :		-				1	Exposure MRLs set at	e resulting
	Calculated exposure (% of ADI)	MS Diet	Expsoure (µg/kg bw per dav)	Highest contributor to MS diet (in % of ADI)	Commodity / group of commodities		2nd contributor to MS diet (in % of ADI)	Commodity / group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity / aroup of commodities	the LOQ (in % of ADI)	under as
1	16%	NL toddler	4.08	5%	Milk: Cattle		3%	Apples		1%	Pears	0.2%	1
i	11% 9%	DE child NL child	2.72	3% 2%	Apples Milk: Cattle		2% 2%	Milk: Cattle Apples		0.7%	Cherries (sweet) Currants (red, black and white)	0.3%	1
	7%	GEMS/Food G08	1.86	3%	Olives for oil production		0.6%	Tomatoes		0.4%	Milk: Cattle	0.2%	
	7%	ES child	1.79	2%	Olives for oil production		1.0%	Milk: Cattle		0.8%	Lettuces	0.2%	
	7%	GEMS/Food G06	1.74	2%	Tomatoes		1%	Olives for oil production		0.4%	Table grapes	0.1%	
	6%	UK infant	1.57	3%	Milk: Cattle		0.6%	Bovine: Edible offals (other than liver a	nd ki	0.4%	Apples	0.3%	
	6%	GEMS/Food G10	1.48	1%	Olives for oil production		0.7%	Tomatoes		0.6%	Lettuces	0.2%	
	6% 6%	GEMS/Food G07 FR child 3 15 yr	1.47	0.9%	Olives for oil production Milk: Cattle		0.6%	Tomatoes Apples		0.5%	Wine grapes Tomatoes	0.3%	
	5%	FR toddler 2 3 vr	1.39	2%	Milk: Cattle		0.9%	Apples		0.4%	Tomatoes	0.2%	
	5%	GEMS/Food G15	1.31	0.6%	Tomatoes		0.6%	Olives for oil production		0.6%	Milk: Cattle	0.2%	
	5%	ES adult	1.28	1%	Olives for oil production		1%	Lettuces		0.4%	Tomatoes	0.1%	
	5%	SE general	1.26	1.0%	Milk: Cattle		0.8%	Lettuces		0.4%	Tomatoes	0.2%	
	5%	GEMS/Food G11	1.25	0.8%	Olives for oil production		0.6%	Milk: Cattle		0.5%	Tomatoes	0.2%	
	5%	IE adult	1.21	0.5%	Wine grapes		0.4%	Sheep: Edible offals (other than liver an	d kit	0.3%	Milk: Cattle	0.1%	
	5%	DE women 14-50 yr	1.19	1.0%	Milk: Cattle		0.7%	Apples		0.4%	Tomatoes	0.1%	
	5%	RO general	1.19	1%	Tomatoes		0.9%	Milk: Cattle		0.6%	Wine grapes	0.3%	
	5%	UK toddler	1.17	2% 1.0%	Milk: Cattle Milk: Cattle		0.5%	Apples		0.3%	Currants (red, black and white)	0.3%	
	5% 4%	DE general DK child	1.13	1.0%	Milk: Cattle Milk: Cattle		0.7%	Apples Apples		0.3%	Tomatoes Cucumbers	0.1%	
	4%	PT general	0.97		Wine grapes		0.8%	Olives for oil production		0.5%	Tomatoes	0.2%	
	3%	NL general	0.83	0.7%	Milk: Cattle		0.4%	Apples		0.2%	Tomatoes	0.2%	
	3%	FR adult	0.80	0.8%	Wine grapes		0.4%	Milk: Cattle		0.2%	Tomatoes	0.1%	
	3%	FR infant	0.76	1%	Milk: Cattle		0.5%	Apples		0.2%	Spinaches	0.1%	
	3%	IT toddler	0.75	0.7%	Tomatoes		0.6%	Lettuces		0.3%	Wheat	0.0%	
	3%	FI3 yr	0.72	0.5%	Raspberries (red and yellow)		0.3%	Tomatoes		0.3%	Bananas	0.2%	
	3%	IT adult	0.71	0.7%	Lettuces		0.6%	Tomatoes		0.2%	Apples	0.0%	
	2%	DK adult	0.58	0.4%	Milk: Cattle		0.3%	Wine grapes		0.3%	Tomatoes	0.1%	
	2% 2%	FI 6 yr UK vegetarian	0.53	0.3%	Raspberries (red and yellow) Tomatoes		0.2%	Tomatoes Wine grapes		0.2%	Cucumbers Lettuces	0.2%	
	2%	LT adult	0.52	0.5%	Apples		0.3%	Tomatoes		0.3%	Milk: Cattle	0.1%	
	2%	PL general	0.48	0.6%	Apples		0.5%	Tomatoes		0.2%	Cherries (sweet)	0.1%	
	2%	UK adult	0.47	0.4%	Wine grapes		0.2%	Milk: Cattle		0.2%	Lettuces	0.1%	
	1%	FI adult	0.37	0.3%	Tomatoes		0.3%	Lettuces		0.2%	Apples	0.0%	
	0.8%	IE child	0.20	0.3%	Milk: Cattle		0.1%	Apples		0.1%	Currants (red, black and white)	0.1%	(

Details - acute risk assessment /children

Acute risk assessment / adults / general population

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children			2	Results for adults			
No. of commodities fo	or which ARfD/ADI is exceeded (IESTI):		2	No. of commodities fo	or which ARfD/ADI is exceeded (IESTI):		
ESII		MRL / input		IESTI		MRL / input	
Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposu (µg/kg b
116%	Pears	0.4 / 0.21	29	42%	Head cabbages	0.4 / 0.25	11
114% 91%	Lettuces Apples	1.5 / 0.75 0.4 / 0.21	29 23	40% 39%	Red mustards Quinces	3 / 1.9 0.8 / 0.64	10 9.7
80%	Apricots	0.8 / 0.57	20	36%	Blueberries	2/1	9.1
73%	Table grapes	0.5 / 0.25	18	36%	Lettuces	1.5 / 0.75	9.1
67%	Melons	0.2 / 0.11	17	35%	Cherries (sweet)	1.5 / 0.88	8.8
65%	Tomatoes	0.5 / 0.28	16	34%	Table grapes	0.5/0.25	8.5 8.2
63% 55%	Quinces Sweet peppers/bell peppers	0.8 / 0.64 0.4 / 0.23	16 14	33% 26%	Blackberries Currants (red, black and white)	2/1 2/1	8.2 6.6
54%	Watermelons	0.2/0.11	13	26%	Pears	0.4/0.21	6.4
52%	Cucumbers	0.4 / 0.2	13	25%	Apricots	0.8 / 0.57	6.2
51%	Cauliflowers	0.4 / 0.22	13	24%	Broccoli	0.4 / 0.25	6.0
44%	Head cabbages	0.4 / 0.25	11	24%	Wine grapes	0.5 / 0.25	5.9
43%	Cherries (sweet)	1.5 / 0.88	11	24%	Apples	0.4 / 0.21	5.9
43% 42%	Blackberries Bananas	2/1 0.4/0.11	11 10	23% 22%	Chards/beet leaves Cucumbers	0.6 / 0.31	5.9 5.6
42%	Bananas Broccoli	0.4/0.11	10	22%	Cucumbers Raspberries (red and vellow)	2/1	5.6
42%	Escaroles/broad-leaved endives	0.4 / 0.25	10	22%	Aubergines/egg plants	0.4 / 0.19	5.4
38%	Peaches	0.2 / 0.1	9.5	20%	Cauliflowers	0.4 / 0.22	5.1
37%	Courgettes	0.4 / 0.2	9.3	20%	Escaroles/broad-leaved endives	0.4 / 0.25	5.0
37%	Raspberries (red and yellow)	2/1	9.2	19%	Courgettes	0.4 / 0.2	4.7
35%	Medlar	0.8/0.64	8.9	18%	Gooseberries (green, red and yellow)	2/1	4.5
35% 33%	Granate apples/pomegranates Asparagus	0.3 / 0.16 0.8 / 0.43	8.8 8.3	18% 18%	Watermelons Tomatoes	0.2 / 0.11 0.5 / 0.28	4.5 4.4
33%	Asparagus Currants (red, black and white)	2/1	8.3 7.9	18%	Mediar	0.8/0.28	4.4
29%	Bovine: Edible offals (other than liver and kidney)	1/1	7.3	17%	Melons	0.2/0.11	4.3
29%	Bovine: Liver	1/0.89	7.2	15%	Sweet peppers/bell peppers	0.4 / 0.23	3.8
28%	Spinaches	0.6 / 0.31	7.0	14%	Lamb's lettuce/corn salads	3 / 1.9	3.6
24%	Blueberries	2/1	6.0	14%	Bovine: Liver	1 / 0.89	3.6
24%	Gooseberries (green, red and yellow)	2/1	5.9	13%	Bovine: Edible offals (other than liver and kidney)	1/1	3.3
21% 20%	Lamb's lettuce/corn salads Roman rocket/rucola	3 / 1.9 3 / 1.9	5.3 5.1	13% 13%	Asparagus Globe artichokes	0.8 / 0.43 0.7 / 0.25	3.3 3.2
20% 19%	Chards/beet leaves	0.6/0.31	4.8	13%	Globe antchokes Granate apples/pomegranates	0.7/0.25	2.8
19%	Aubergines/egg plants	0.4 / 0.19	4.8	11%	Other farmed animals: Muscle/meat	0.5/0.5	2.8
18%	Cranberries	2/1	4.5	10%	Swine: Edible offals (other than liver and kidney)	1/1	2.6
18%	Globe artichokes	0.7 / 0.25	4.4	10%	Sheep: Liver	1 / 0.89	2.5
18%	Table olives	3 / 1.3	4.4	10%	Beans (with pods)	0.6 / 0.32	2.5
16%	Strawberries	0.5 / 0.25	4.1	9%	Strawberries	0.5 / 0.25	2.3
15%	Beans (with pods)	0.6 / 0.32 0.5 / 0.5	3.7 3.5	9% 9%	Bananas Parslev	0.4/0.11 3/1.9	2.3 2.3
14% 13%	Other farmed animals: Muscle/meat Bovine: Kidney	1/0.89	3.5	9%	Parsiey Roman rocket/rucola	3/1.9	2.3
13%	Swine: Muscle/meat	0.5 / 0.27	3.3	9%	Gherkins	0.6 / 0.37	2.2
12%	Swine: Edible offals (other than liver and kidney)	1/1	3.0	9%	Rose hips	2/1	2.2
12%	Pumpkins	0.2 / 0.11	2.9	8%	Swine: Kidney	1 / 0.89	2.0
11%	Oranges	0.9 / 0.02	2.9	7%	Bovine: Kidney	1 / 0.89	1.9
10%	Peas (with pods)	0.6 / 0.32	2.6	7%	Peaches	0.2/0.1	1.9
10%	Milk: Cattle Chervil	0.2/0.02 3/1.9	2.5 2.5	6% 6%	Pumpkins Bovine: Muscle	0.2 / 0.11 0.5 / 0.27	1.6 1.5
10% 9%	Unervil Wine grapes	3/1.9	2.5	6%	Bovine: Muscle Dewberries	2/1	1.5 1.4
9% 8%	Parslev	3/1.9	2.3	5%	Swine: Muscle/meat	0.5/0.27	1.4
8%	Bovine: Muscle/meat	0.5 / 0.27	1.9	5%	Table olives	3/1.3	1.3
7%	Dewberries	2/1	1.8	5%	Equine: Muscle/meat	0.5 / 0.27	1.3
7%	Grapefruits	0.9 / 0.02	1.7	5%	Sheep: Muscle/meat	0.5 / 0.27	1.3
6%	Equine: Muscle/meat	0.5/0.27	1.6	5%	Swine: Liver	1/0.89	1.3
6% 6%	Chives Potatoes	3 / 1.9 0.01 / 0.01	1.6 1.5	5% 5%	Spinaches Cranberries	0.6 / 0.31 2 / 1	1.2 1.1
6%	Potatoes Peas (without pods)	0.01/0.01	1.5	5%	Peas (with pods)	2/1 06/032	1.1
6%	Sheep: Muscle/meat	0.5 / 0.27	1.5	4%	Peas (without pods)	0.3 / 0.18	0.96
6%	Sage	3/1.9	1.4	3%	Milk: Cattle	0.2 / 0.02	0.77
6%	Beans (without pods)	0.3 / 0.18	1.4	3%	Cress and other sprouts and shoots	3/1.9	0.72
6%	Basil and edible flowers	3 / 1.9	1.4	3%	Beans (without pods)	0.3 / 0.18	0.71
5%	Mandarins	0.9/0.02	1.3	3%	Sheep: Edible offals (other than liver and kidney)	1/1	0.68 0.66
5% 5%	Plums Swine: Kidney	0.04 / 0.03 1 / 0.89	1.3 1.1	3% 2%	Oranges Olives for oil production	0.9 / 0.02 3 / 0.8	0.66
5% 4%	Swine: Kidney Swine: Liver	1/0.89	1.1	2%	Celery leaves	3/0.8	0.62
4%	Gherkins	0.6 / 0.37	1.0	2%	Purslanes	0.6 / 0.31	0.59
4%	Olives for oil production	3 / 0.8	1.0	2%	Plums	0.04 / 0.03	0.53
4%	Celery leaves	3/1.9	0.91	2%	Poultry: Liver	0.1/0.1	0.47
3%	Lemons	0.9 / 0.02	0.74	2%	Coconuts	0.07 / 0.05	0.43
3%	Coconuts	0.07 / 0.05	0.72	2%	Goat: Muscle	0.5 / 0.27	0.42
2%	Cress and other sprouts and shoots	3/1.9	0.56	2%	Mandarins	0.9 / 0.02	0.39
2%	Milk: Goat	0.2/0.02	0.48	2%	Grapefruits	0.9/0.02	0.39
2% 2%	Honey and other apiculture products Onions	2 / 0.13 0.02 / 0.02	0.47 0.45	2% 1%	Sage Milk: Goat	3/1.9 0.2/0.02	0.38 0.37
2% 2%	Onions Sweet.com	0.02/0.02	0.45	1%	Milk: Goat Swine: Fat tissue	0.2/0.02	0.37
2%	Limes	0.9/0.02	0.43	1%	Chives	3/1.9	0.32
	Beans	0.15 / 0.02	0.37	1%	Milk: Sheep	0.2 / 0.02	0.30

1% 1%	Poultry: Muscle/meat Bovine: Fat tissue	0.02 / 0.02 0.3 / 0.16	0.34 0.33	1%	Potatoes Onions	0.01 / 0.01 0.02 / 0.02	0
1%	Pistachios	0.370.16	0.33	1% 0.9%	Poultry: Muscle	0.02 / 0.02	
1%	Pistachios Swine: Fat tissue	0.3/0.16	0.29	0.9%	Poultry: Muscle Basil and edible flowers	3/1.9	
		0.05 / 0.03	0.27			0.07 / 0.05	
1%	Brussels sprouts			0.9%	Chestnuts		
1.0%	Eggs: Chicken	0.02 / 0.02	0.25	0.8%	Lemons	0.9 / 0.02	
0.8%	Chestnuts	0.07 / 0.05	0.21	0.8%	Rosemary	3/1.9	1
0.7%	Walnuts	0.07 / 0.05	0.17	0.8%	Rosemary	3/1.9	
0.7%	Hazelnuts/cobnuts	0.07 / 0.05	0.16	0.8%	Rosemary	3/1.9	
0.6%	Almonds	0.07 / 0.05	0.14	0.8%	Rosemary	3/1.9	
0.6%	Wheat	0.1/0.01	0.14	0.7%	Brussels sprouts	0.05 / 0.03	
0.6%	Pecans	0.07 / 0.05	0.14	0.7%	Honey and other apiculture products	2/0.13	
0.5%	Lentils	0.15 / 0.02	0.13	0.6%	Sweet corn	0.01/0.01	
0.5%	Peas	0.15 / 0.02	0.13	0.6%	Bovine: Fat tissue	0.3 / 0.16	
0.5%	Cashew nuts	0.07 / 0.05	0.13	0.6%	Chervil	3/1.9	
0.5%	Figs	0.03 / 0.01	0.12	0.6%	Limes	0.9 / 0.02	
0.5%	Thyme	3 / 1.9	0.11	0.5%	Pistachios	0.07 / 0.05	
0.4%	Poultry: Liver	0.1 / 0.1	0.11	0.5%	Beans	0.15 / 0.02	
0.3%	Milk: Sheep	0.2/0.02	0.07	0.5%	Lentils	0.15 / 0.02	
0.2%	Rosemary	3 / 1.9	0.06	0.5%	Pecans	0.07 / 0.05	
0.2%	Barley	0.05 / 0.01	0.06	0.4%	Figs	0.03 / 0.01	
0.2%	Brazil nuts	0.07 / 0.05	0.04	0.4%	Walnuts	0.07 / 0.05	
0.2%	Rapeseeds/canola seeds	0.4 / 0.03	0.04	0.4%	Macadamia	0.07 / 0.05	
0.1%	Garlic	0.02 / 0.01	0.04	0.4%	Sheep: Kidney	1 / 0.89	
0.1%	Mustard seeds	0.15 / 0.03	0.03	0.3%	Eggs: Chicken	0.02 / 0.02	
0.1%	Macadamia	0.07 / 0.05	0.03	0.3%	Cashew nuts	0.07 / 0.05	
0.09%	Soyabeans	0.01 / 0.01	0.02	0.3%	Wheat	0.1 / 0.01	
0.08%	Laurel/bay leaves	3 / 1.9	0.02	0.3%	Almonds	0.07 / 0.05	
0.07%	Pine nut kernels	0.07 / 0.05	0.02	0.3%	Peas	0.15 / 0.02	
0.04%	Oat	0.05 / 0.01	0.01	0.2%	Hazelnuts/cobnuts	0.07 / 0.05	
0.04%	Linseeds	0.06 / 0.01	0.01	0.2%	Soyabeans	0.01 / 0.01	
0.02%	Peppercorn (black, green and white)	0.1/0.1	0.00	0.2%	Pine nut kernels	0.07 / 0.05	
0.01%	Poultry: Fat tissue	0.02 / 0.02	0.00	0.2%	Barley	0.05 / 0.01	
0.00%	Cardamom	0.1/0.1	0.00	0.1%	Brazil nuts	0.07 / 0.05	
				0.1%	Eggs: Quail	0.02 / 0.02	
				0.08%	Poppy seeds	0.3 / 0.03	
				0.08%	Poppy seeds	0.3 / 0.03	
				0.06%	Rapeseeds/canola seeds	0.4 / 0.03	
				0.04%	Cardamom	0.1/0.1	
				0.04%	Eggs: Goose	0.02 / 0.02	
				0.03%	Garlic	0.02 / 0.01	
				0.03%	Oat	0.05 / 0.01	
				0.02%	Poultry: Fat tissue	0.02 / 0.02	
				0.02%	Linseeds	0.06 / 0.01	
				0.01%	Peppercorn (black, green and white)	0.1 / 0.1	
Expand/collapse list	t						
Total number of c	ommodities exceeding the ARfD/ADI in child	en and adult diets					
(IESTI calculation)			2				
Results for childre	en			Results for adults			
	mmodities for which ARfD/ADI is exceeded (IES				ommodities for which ARfD/ADI is exceeded (IESTI		

IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw
79%	Broccoli / boiled	0.4 / 0.25	20	37%	Cauliflowers / boiled	0.4 / 0.22	9.2
73%	Currants (red, black and white) / juice	2/0.64	18	33%	Currants (red, black and white) / juice	2 / 0.64	8.2
66%	Escaroles/broad-leaved endives / boiled	0.4 / 0.25	17	24%	Pumpkins / boiled	0.2/0.11	6.1
61%	Cauliflowers / boiled	0.4 / 0.22	15	24%	Broccoli / boiled	0.4 / 0.25	6.0
41%	Elderberries / juice	2/0.64	10	24%	Elderberries / juice	2 / 0.64	5.9
40%	Oranges / juice	0.9/0.19	10	20%	Escaroles/broad-leaved endives / boiled	0.4 / 0.25	5.1
39%	Pumpkins / boiled	0.2 / 0.11	9.8	18%	Courgettes / boiled	0.4 / 0.2	4.6
39%	Chards/beet leaves / boiled	0.6 / 0.31	9.6	16%	Chards/beet leaves / boiled	0.6 / 0.31	3.9
34%	Gherkins / pickled	0.6 / 0.37	8.5	11%	Oranges / juice	0.9 / 0.19	2.9
30%	Raspberries / juice	2/0.64	7.5	10%	Spinaches / frozen; boiled	0.6 / 0.31	2.6
28%	Courgettes / boiled	0.4 / 0.2	7.1	9%	Wine grapes / wine	0.5 / 0.25	2.4
17%	Spinaches / frozen; boiled	0.6 / 0.31	4.3	9%	Apples / juice	0.4 / 0.07	2.3
16%	Beans (with pods) / boiled	0.6 / 0.32	4.0	8%	Grapefruits / juice	0.9 / 0.19	2.1
16%	Wine grapes / juice	0.5 / 0.09	3.9	7%	Wine grapes / juice	0.5 / 0.09	1.9
15%	Apples / juice	0.4 / 0.07	3.8	6%	Table grapes / raisins	0.5 / 1.18	1.4

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 2 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

Acetamiprid – new TRVs

****	-			Acetamipri	d				Input	: values		
****	od Safety Authority		LOQs (mg/kg) range f		0.01	to:	0.10	Details - ch assess		Supplementary resu chronic risk assessm		
			ADI (mg/kg bw/day):		0.005	ARfD (mg/kg bw):	0.005					
European Fo	od Safety Authority		Source of ADI:		EFSA	Source of ARfD:	EFSA	Details - a		Details - acute ris		
	revision 3.1; 2019/03/19		Year of evaluation:		2024	Year of evaluation:	2024	assessment	c/children	assessment/adul	ts	
ents:												
				Refined calculation	on mode							
1				Chronic risk assessment: JMP	R methode	ology (IEDI/TM	(וכ					
			No of diets exceeding	the ADI :								e resulting f
											MRLs set at the LOQ	commodi under ass
Calculated expos	sure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /		3rd contributor to MS diet	Commodity /	(in % of ADI)	(in % of
(% of ADI)		(bg) (g) bit point day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
44%	NL toddler	2.21	24%	Milk: Cattle		5%	Apples		3%	Rose hips	1%	44
27%	DE child	1.35	8%	Milk: Cattle		5%	Apples Milk: Cattle		2%	Honey and other apiculture products Wheat	1%	27
25% 24%	GEMS/Food G08 ES child	1.23	13% 12%	Olives for oil production Olives for oil production		2% 5%	Milk: Cattle		0.8% 0.9%	Wheat	1% 1%	25
22%	NL child	1.10	10%	Milk: Cattle		3%	Apples		0.9%	Rose hips	1%	22
22%	UK infant	1.10	15%	Milk: Cattle		0.8%	Honey and other apiculture products		0.7%	Apples	1%	22
20%	FR toddler 2 3 yr	1.02	12%	Milk: Cattle		1%	Apples		0.9%	Beans (with pods)	0.9%	20
20%	FR child 3 15 yr	1.00	9%	Milk: Cattle		2%	Olives for oil production		0.9%	Wheat	1%	20
18% 17%	GEMS/Food G10 GEMS/Food G06	0.89	6% 6%	Olives for oil production		2% 1%	Milk: Cattle Wheat		1% 1.0%	Cress and other sprouts and shoots Milk: Cattle	1% 0.6%	18
17%	GEMS/Food G06 GEMS/Food G07	0.85	5%	Olives for oil production Olives for oil production		1%	Wheat Milk: Cattle		1.0%	Wheat	0.6%	17
15%	GEMS/Food G15	0.03	3%	Olives for oil production		3%	Milk: Cattle		1%	Rose hips	1%	15
15%	GEMS/Food G11	0.76	4%	Olives for oil production		3%	Milk: Cattle		0.8%	Lamb's lettuce/corn salads	1%	15
15%	UK toddler	0.73	8%	Milk: Cattle		0.8%	Wheat		0.8%	Apples	1%	15
14%	ES adult	0.70	7%	Olives for oil production		2%	Milk: Cattle		0.5%	Wheat	0.6%	14
14%	IE adult	0.68	2%	Sheep: Edible offals (other than liver and kidney)		2%	Milk: Cattle		2%	Other farmed animals: Muscle/meat	0.8%	14
13% 13%	DE women 14-50 yr SE general	0.66	5% 5%	Milk: Cattle Milk: Cattle		1% 2%	Olives for oil production Bovine: Muscle/meat		1% 0.8%	Apples Potatoes	0.5%	13
13%	DE general	0.65	5%	Milk: Cattle		1%	Olives for oil production		1%	Apples	0.5%	13
12%	RO general	0.61	5%	Milk: Cattle		1%	Wheat		0.7%	Potatoes	1%	12
12%	DK child	0.59	5%	Milk: Cattle		1%	Apples		0.9%	Swine: Muscle/meat	1%	12
11%	FR infant	0.55	7%	Milk: Cattle		0.7%	Apples		0.6%	Beans (with pods)	0.5%	11
9%	PT general	0.47	4%	Olives for oil production Milk: Cattle		1%	Potatoes		1.0%	Wine grapes Potatoes	1%	99
9% 9%	NL general FR adult	0.46	3% 2%	Milk: Cattle Milk: Cattle		0.6% 1%	Apples Olives for oil production		0.5% 0.9%	Potatoes Wine grapes	0.8%	99
5%	DK adult	0.44	2%	Milk: Cattle		0.4%	Apples		0.4%	Wine grapes	0.5%	5
5%	FI3 yr	0.27	0.9%	Potatoes		0.7%	Strawberries		0.6%	Raspberries (red and yellow)	1.0%	5
5%	LT adult	0.25	2%	Milk: Cattle		0.8%	Apples		0.6%	Potatoes	0.9%	5'
5%	IT toddler	0.23	1%	Wheat		0.4%	Apples		0.4%	Cherries (sweet)	0.2%	5
4% 4%	UK vegetarian UK adult	0.21	1% 1%	Milk: Cattle Milk: Cattle		0.4% 0.4%	Wheat Wine grapes		0.3%	Wine grapes Wheat	0.4%	4
4%	IT adult	0.20	1%	Wheat		0.3%	Apples		0.3%	Cherries (sweet)	0.6%	4
4%	FI6yr	0.20	0.8%	Potatoes		0.6%	Strawberries		0.5%	Raspberries (red and yellow)	0.1%	4
3%	PL general	0.16	0.9%	Apples		0.7%	Potatoes		0.4%	Cherries (sweet)	0.7%	3
3%	IE child	0.13	1%	Milk: Cattle		0.2%	Wheat		0.1%	Apples	0.3%	39
2%	FI adult	0.09	0.3%	Strawberries		0.3%	Apples		0.2%	Potatoes	0.2%	29

Acute risk assessment /children Acute risk assessment / adults / general population Details - acute risk assessment/adults The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group. Show results of IESTI calculation only for crops with GAPs under assessment ults for childre sults for adults No. of commodities for which ARfD/ADI is exceeded (IESTI): No. of commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI Unprocessed MRL / input for RA MRL / inpu for RA Highest % of Exposure Highest % of Exposure Commodities ARfD/ADI Commodities (mg/kg (µg/kg bw) 4 4 ARfD/ADI (mg/kg) 0.8 / 0.33 (µg/kg bw) 3.3 Cherries (sweet) Globe artichtokes Blueberries Other farmed animals: Muscle/meat Swine: Edible offals (other than liver and kidney) Red mustards Shaper Liver 0.7 / 0.25 0.8 / 0.33 0.07 / 0.03 0.08 / 0.04 0.6 / 0.32 0.5 / 0.5 1 / 0.89 0.5 / 0.27 0.07 / 0.03 0 6 / 0.29 Globe artichokes Cherries (sweet) Pears Peaches Beans (with pods 81% 80% 80% 73% 69% 67% 65% 63% 62% 4.0 4.0 3.7 3.5 3.4 3.3 3.1 3.1 3.0 3.0 65% 62% 56% 52% 52% 50% 49% 49% 48% 0.7 / 0.25 3.2 0.7 / 0.25 0.7 / 0.34 0.5 / 0.5 3 2.8 2.6 2.6 Beans (with pods) Other farmed animals: Muscle/meat Bovine: Kidney Swine: Muscle/meat 1/1 0.9/0.49 1/0.89 0.6/0.32 2.5 2.5 2.4 2.4 Sheep: Liver Beans (with pods) Apples Aubergines/egg plants 0.2/0.09 Blackberries 0.6 / 0.29 Blackberries 0.6 / 0.29 Sweet peppers/bell peppers 61% 0.09 / 0.05 46% 45% Parsley Gherkins 3/1.9 2.3 60% 59% 58% Swine: Edible offals (other than liver and kidney) 0.6/0.37 1/1 2.2 0.5/0.18 Strawberries 2.9 44% 39% 37% 31% 31% 29% 28% 27% 27% Rose hips 2/1 2.2 1/0.89 Table grapes 0.08 / 0.04 2.9 Swine: Kidney 2.0 57% 55% 52% 50% 49% 47% 46% 45% 42% 42% 41% Oranges Medlar 0.9/0.02 Bovine: Kidney Strawberries 1/0.89 1.9 1.7 2.9 2.8 2.7 2.6 2.5 2.3 2.3 2.3 2.3 2.1 2.1 0.5/0.18 Medlar Raspberries (red and yellow) Peas (with pods) Milk: Cattle Chervil Tomatoes Cauliflowers Aubergines/egg plants Lamb's lettuce/corn salads Parslev 0.3 / 0.2 0.6 / 0.29 0.6 / 0.32 0.2 / 0.02 3 / 1.9 0.06 / 0.04 0.06 / 0.04 0.2 / 0.09 Strawberries Raspberries (red and yellow) Bovine: Muscle Gooseberries (green, red and yellow) Dewberries Lamb's lettuce/corn salads Madlar 0.6 / 0.29 0.5 / 0.27 0.7 / 0.34 2 / 1 1.6 1.5 1.4 1.4 1.4 1.4 1.3 1.3 1.3 2/1 1.5/0.75 Medlar Table grapes Swine: Muscle/meat Equine: Muscle/meat 0.3 / 0.2 0.08 / 0.04 0.5 / 0.27 0.2 / 0.09 1.5 / 0.75 26% Parsley 3 / 1.9 0.7 / 0.34 26% 0.5/0.27 Blueberries 2.0 26% 25% Sheep: Muscle/meat 0.5/0.27 40% Roman rocket/rucola 1.5/0.75 2.0 Swine: Liver 1/0.89 1.3 40% 39% Gooseberries (green, red and yellow) 0.7 / 0.34 2.0 2.0 22% 22% Peas (with pods) 0.6/0.32 1.1 1.1 Cucumbers 0.05 / 0.03 Quinces 0.15 / 0.07 39% 35% 34% 33% 32% 32% 31% 31% 30% 29% 29% 29% Bovine: Muscle/meat 0.5/0.27 $\begin{array}{c} 1.9\\ 1.8\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.6\\ 1.6\\ 1.6\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.3\\ 1.3\\ 1.1\\ 1.1\\ 1.0\\ 0.03\\ 0.91\\ 0.74 \end{array}$ 19% 19% 19% 18% 18% 17% 17% 16% 16% 15% 14% Peas (without pods) 0.3/0.18 0.96 0.95 Dewberries 2/1 Broccoli 0.06/0.04 Dewberries Quinces Grapefruits Melons Broccoli Equine: Muscle/meat Table olives Chives Potatoes Cranberries 2/1 0.15/0.07 0.9/0.02 0.08/0.01 0.5/0.27 0.9/0.48 3/1.9 0.01/0.01 0.7/0.34 0.3/0.18 0.08/0.04 Broccoli Wine grapes Cauliflowers Roman rocket/ucola Pears Head cabbages Cucumbers Sweet peppers/bell peppers Apples Peaches 0.08/0.04 0.95 0.08 / 0.04 0.06 / 0.04 1.5 / 0.75 0.07 / 0.03 0.03 / 0.02 0.05 / 0.03 0.09 / 0.05 0.07 / 0.03 0.93 0.89 0.89 0.88 0.83 0.83 0.81 0.79 0.77 0.72 Cranberries Peaches Milk: Cattle 0.08 / 0.04 Peas (without pods) 0.2/0.02 Apricots 0.08 / 0.04 Cress and other sprouts and shoots 3/1.9 Sheep: Muscle/meat Beans (without pods) 0.3/0.18 0.5/0.27 14% 0.71 0.70 Sage Beans (without pods) 3/1.9 14% Courgettes 0.05 / 0.03 Sheep: Edible offals (other than liver and kidney) 28% 28% 0.3/0.18 $\begin{array}{c} 14\%\\ 13\%\\ 12\%\\ 12\%\\ 12\%\\ 12\%\\ 9\%\\ 9\%\\ 9\%\\ 9\%\\ 8\%\\ 8\%\\ 8\%\\ 6\%\\ 6\%\\ 6\%\\ 5\%\\ 4\%\\ 4\%\\ 4\%\\ 4\%\\ 4\%\\ 6\%\\ \end{array}$ 1/10.68 0.9/0.02 Courgettes 0.05 / 0.03 Oranges 0.66 Oranges Tomatoes Olives for oil production Celery leaves Purslanes Plums Table olives Poultry: Liver Apricots Watermelons Melons Basil and edible flowers 28% 27% 25% 23% 22% 21% 20% 19% 18% 15% 14% 3/1.9 0.06/0.04 0.63 0.62 Watermelons 0.08 / 0.01 3/0.8 Watermelons Mandarins Plums Swine: Kidney Swine: Liver Gherkins Olives for oil production Head cabbages Celery leaves Lemons 09/002 0.62 0.59 0.48 0.47 0.46 0.45 0.43 3 / 1.9 0.6 / 0.31 0.04 / 0.03 0.9 / 0.48 0.1 / 0.1 0.08 / 0.04 0.08 / 0.01 0.08 / 0.01 0.9/0.02 0.04/0.03 1/0.89 1/0.89 0.6/0.37 3 / 0.8 0.03 / 0.02 3 / 1.9 0.9 / 0.02 Melons 0.43 Lemons Coconuts 0.07 / 0.05 Coconuts 0.07 / 0.05 0.72 Goat: Muscle 0.5/0.27 0.42 Cress and other sprouts and shoots 3/1.9 0.56 Mandarins 0.9/0.02 0.39 0.2/0.02 10% 9% 9% 9% 7% 7% 6% 6% 6% 5% 5% 5% 5% 4% Milk: Goat 0.48 Cranberries 0.7/0.34 0.39 Honey and other apiculture products 2/0.13 0.47 Grapefruits 0.9/0.02 0.39 Onions Sweet corn 0.02/0.02 0.45 0.43 Sage Milk: Goat 3/1.90.38 0.37 0.2/0.02 0.01/0.01 Sweet com Limes Wine grapes Beans Poulty: Muscle/meat Bovine: Fat tissue Pumpkins Bovine: Edble offals (other than liver and kidney) Pistachios Swine: Fat tissue Brussels sorutis 0.2 / 0.02 0.3 / 0.16 3 / 1.9 0.2 / 0.02 0.01 / 0.01 0.02 / 0.02 0.02 / 0.02 3 / 1.9 0.07 / 0.05 0 9 / 0.02 0.9 / 0.02 0.43 0.37 0.34 0.33 0.29 0.29 0.29 0.29 Swine: Fat tissue Chives 0.32 0.30 0.30 0.30 0.23 0.23 0.23 0.08 / 0.04 0.15 / 0.02 0.02 / 0.02 0.3 / 0.16 0.08 / 0.01 0.05 / 0.04 0.07 / 0.05 0.3 / 0.16 Chives Milk: Sheep Potatoes Onions Poultry: Muscle Basil and edible flowers Chestnuts Lemons 0.19 0.19 0.19 0.9/0.02 Lemons Brussels sprouts 0.05 / 0.03 0.25 0.25 Rosemary 3 / 1.9 3 / 1.9 Eggs: Chicken 0.02 / 0.02 Rosemary Bovine: Liver 0.03 / 0.03 0.24 Rosemary 3/1.9 0.19 Chestnuts 0.07 / 0.05 0.21 Rosemary 3/1.9 0.19 Asparadus 0.01/0.01 0.19 Brussels sprouts 0.05/0.03 0.18

IESTI		MRL / input		IESTI		MRL / input	
	ren ommodities for which ARfD/ADI is exceeded (IES	ΓΙ):	2		s mmodities for which ARfD/ADI is exceeded (IESTI):		
Expand/collapse lis Total number of ((IESTI calculation	commodities exceeding the ARfD/ADI in child	ren and adult diets			· opportion (plant) grow and miley		
				0.06%	Peppercorn (black, green and white)	0.1/0.1	0.00
				0.10%	Linseeds	0.06 / 0.01	0.00
				0.1%	Poultry: Fat tissue	0.02 / 0.02	0.01
				0.1%	Oat	0.02/0.01	0.01
				0.2%	Eggs: Goose Garlic	0.02/0.02	0.01
				0.2%	Eggs: Goose	0.02/0.02	0.01
				0.3%	Cardamom	0.4/0.03	0.02
				0.4%	Poppy seeds Rapeseeds/canola seeds	0.3 / 0.03 0.4 / 0.03	0.0
				0.4%	Poppy seeds	0.3/0.03	0.02
				0.6%	Eggs: Quail	0.02/0.02	0.0
0.02%	Cardamom	0.1 / 0.1	0.00	0.7%	Brazil nuts	0.07 / 0.05	0.0
0.04%	Poultry: Fat tissue	0.02/0.02	0.00	1.0%	Barley	0.05 / 0.01	0.05
0.09%	Peppercorn (black, green and white)	0.1/0.1	0.00	1%	Pine nut kernels	0.07 / 0.05	0.0
0.2%	Linseeds	0.06 / 0.01	0.01	1%	Soyabeans	0.01/0.01	0.0
0.2%	Oat	0.05 / 0.01	0.01	1%	Hazelnuts/cobnuts	0.07 / 0.05	0.0
0.3%	Pine nut kernels	0.07 / 0.05	0.02	1%	Peas	0.15 / 0.02	0.0
0.4%	Laurel/bay leaves	3 / 1.9	0.02	1%	Almonds	0.07 / 0.05	0.0
0.5%	Soyabeans	0.01 / 0.01	0.02	2%	Asparagus	0.01 / 0.01	0.0
0.5%	Macadamia	0.07 / 0.05	0.03	2%	Wheat	0.1/0.01	0.0
0.6%	Mustard seeds	0.15 / 0.03	0.03	2%	Cashew nuts	0.07 / 0.05	0.0
0.7%	Garlic	0.02 / 0.01	0.04	2%	Eggs: Chicken	0.02 / 0.02	0.0
0.8%	Rapeseeds/canola seeds	0.4 / 0.03	0.04	2%	Sheep: Kidney	1 / 0.89	0.0
0.9%	Brazil nuts	0.07 / 0.05	0.04	2%	Macadamia	0.07 / 0.05	0.1
1%	Barley	0.05 / 0.01	0.06	2%	Walnuts	0.07 / 0.05	0.1
1%	Rosemary	3 / 1.9	0.06	2%	Figs	0.03 / 0.01	0.1
1%	Milk: Sheep	0.2/0.02	0.07	2%	Pecans	0.07 / 0.05	0.1
2%	Poultry: Liver	0.1/0.1	0.11	2%	Bovine: Liver	0.03 / 0.03	0.1
2%	Thyme	3 / 1.9	0.12	2%	Lentils	0.15 / 0.02	0.1
2%	Figs	0.03 / 0.01	0.12	3%	Beans	0.15/0.02	0.1
3%	Cashew nuts	0.07 / 0.05	0.13	3%	Bovine: Edible offals (other than liver and kidney)		0.1
3%	Peas	0.15/0.02	0.13	3%	Pistachios	0.07 / 0.05	0.1
3%	Lentils	0.15 / 0.02	0.14	3%	Limes	0.9/0.02	0.1
3%	Pecans	0.07 / 0.05	0.14	3%	Chervil	3/1.9	0.1
3%	Wheat	0.1/0.01	0.14	3%	Bovine: Fat tissue	0.3/0.16	0.16
3%	Almonds	0.07 / 0.05	0.10	3%	Sweet corn	0.01/0.01	0.1
3%	Hazelnuts/cobnuts	0.07 / 0.05	0.16	3%	Pumpkins	0.08 / 0.01	0.16

Com	IESTI				IESTI			
			MRL / input				MRL / input	
sed	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
es	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
roces	200%	Oranges / juice	0.9 / 0.19	10	57%	Oranges / juice	0.9 / 0.19	2.9
<u> </u>	170%	Gherkins / pickled	0.6 / 0.37	8.5	41%	Grapefruits / juice	0.9 / 0.19	2.1
	80%	Beans (with pods) / boiled	0.6 / 0.32	4.0	33%	Cauliflowers / boiled	0.06 / 0.04	1.7
	63%	Broccoli / boiled	0.06 / 0.04	3.2	31%	Elderberries / juice	0.5 / 0.17	1.6
	56%	Cauliflowers / boiled	0.06 / 0.04	2.8	26%	Purslanes / boiled	0.6 / 0.31	1.3
	54%	Elderberries / juice	0.5 / 0.17	2.7	22%	Peas (with pods) / boiled	0.6 / 0.32	1.1
	41%	Raspberries / juice	0.6 / 0.18	2.0	19%	Broccoli / boiled	0.06 / 0.04	0.96
	39%	Rose hips / jam	2 / 0.64	1.9	19%	Beans (without pods) / boiled	0.3 / 0.18	0.93
	29%	Olives for oil production / oils	3 / 1.6	1.5	16%	Rose hips / jam	2 / 0.64	0.80
	24%	Apples / juice	0.07 / 0.02	1.2	15%	Apples / juice	0.07 / 0.02	0.73
	24%	Cranberries / juice	0.7 / 0.2	1.2	14%	Courgettes / boiled	0.05 / 0.03	0.69
	22%	Peaches / canned	0.08 / 0.04	1.1	12%	Pumpkins / boiled	0.08 / 0.01	0.61
	21%	Courgettes / boiled	0.05 / 0.03	1.1	11%	Peas (without pods) / boiled	0.3 / 0.18	0.56
	20%	Pumpkins / boiled	0.08 / 0.01	0.98	8%	Wine grapes / juice	0.08 / 0.02	0.42
	19%	Potatoes / fried	0.01 / 0.01	0.93	8%	Wine grapes / wine	0.08 / 0.04	0.38
	Expand/collapse list							

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Acetamiprid is unlikely to present a public health risk. For processed commodities, the toxicological reference value was exceeded in one or several cases

efsa
European Food Safety Authority
EFSA PRIMo revision 3.1; 2021/01/06

	Dinotefuran				Input v	Input values		
LOQs (mg/kg) range from:	0.01	to:	0.01		Details - chronic risk	Supplementary results -		
т	oxicological reference v				assessment	chronic risk assessment		
ADI (mg/kg bw/day):	0.22	ARfD (mg/kg bw):	1.75	ㄱ 凙				
Source of ADI:	JMPR	Source of ARfD:	ECHA		Details - acute risk assessment/children	Details - acute risk assessment/adults		
Year of evaluation:	2014	Year of evaluation:	2014		assessment/ciliuren	assessment/addits		

EFSA PRIMo r	revi	sion	3.1;	2021
Comments:				

						Normal mode					
					Chronic risk a	ssessment: JMPR methodo	logy (IEDI/TMDI)				
				No of diets exceeding	the ADI :			1		Exposure resulting	
	Calculated exposur (% of ADI)	9 MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity / aroup of commodities	2nd contributor to MS diet (in % of ADI)	Commodity / aroup of commodities	3rd contributor to MS diet (in % of ADI)	Commodity / group of commodities	MRLs set at the LOQ (in % of ADI)	commoditie under asses (in % of A
	3%	GEMS/Food G06	6.67	2%	Rice	0.2%	Tomatoes	0.1%	Table grapes	0.1%	0.39
	3%	NL toddler	5.66	1%	Milk: Cattle	0.9%	Rice	0.2%	Table grapes	0.3%	0.19
	2%	GEMS/Food G10	5.19	2%	Rice	0.1%	Milk: Cattle	0.1%	Tomatoes	0.1%	0.1
	2%	UK infant	3.94	0.9%	Rice	0.7%	Milk: Cattle	0.0%	Tomatoes	0.1%	0.0
	2%	PT general	3.63	1%	Rice	0.2%	Wine grapes	0.1%	Tomatoes	0.1%	0.1
	2%	FR toddler 2 3 yr	3.57	0.9%	Rice	0.5%	Milk: Cattle	0.0%	Tomatoes	0.1%	0.0
	1%	UK toddler	3.17	0.9%	Rice	0.4%	Milk: Cattle	0.0%	Tomatoes	0.1%	0.0
	1%	FR child 3 15 yr	3.09	0.7%	Rice	0.4%	Milk: Cattle	0.1%	Tomatoes	0.1%	0.1
	1%	DE child	2.74	0.4%	Rice	0.4%	Milk: Cattle	0.1%	Table grapes	0.2%	0.
	1%	ES child	2.62	0.7%	Rice	0.2%	Milk: Cattle	0.1%	Tomatoes	0.1%	0.
	1%	GEMS/Food G07	2.47	0.5%	Rice	0.1%	Wine grapes	0.1%	Milk: Cattle	0.1%	0.
	1%	SE general	2.40	0.6%	Rice	0.2%	Milk: Cattle	0.1%	Bovine: Muscle/meat	0.1%	0.
I	1%	RO general	2.38	0.4%	Rice	0.2%	Milk: Cattle	0.2%	Wine grapes	0.1%	0
I	1%	NL child	2.34	0.4%	Milk: Cattle	0.3%	Rice	0.1%	Table grapes	0.2%	0
I	1%	GEMS/Food G15	2.28	0.5%	Rice	0.1%	Milk: Cattle	0.1%	Wine grapes	0.1%	0
I	1%	GEMS/Food G08	2.21	0.4%	Rice	0.1%	Wine grapes	0.1%	Milk: Cattle	0.1%	0
I	1%	GEMS/Food G11	2.21	0.4%	Rice	0.1%	Milk: Cattle	0.1%	Wine grapes	0.1%	0.
I	1%	FI 3 yr	2.20	0.8%	Rice	0.0%	Tomatoes	0.0%	Table grapes	0.1%	0
I	0.9%	DK child	2.01	0.4%	Rice	0.2%	Milk: Cattle	0.0%	Tomatoes	0.1%	0
I	0.9%	IE adult	1.91	0.3%	Rice	0.1%	Wine grapes	0.1%	Milk: Cattle	0.1%	0
I	0.8%	UK vegetarian	1.86	0.6%	Rice	0.1%	Wine grapes	0.1%	Milk: Cattle	0.0%	0
I	0.8%	UK adult	1.78	0.5%	Rice	0.1%	Wine grapes	0.1%	Milk: Cattle	0.0%	0
I	0.8%	FI 6 yr	1.67	0.6%	Rice	0.0%	Tomatoes	0.0%	Potatoes	0.1%	0
I	0.7%	FR adult	1.52	0.2%	Rice	0.2%	Wine grapes	0.1%	Milk: Cattle	0.0%	0
I	0.7%	ES adult	1.49	0.4%	Rice	0.1%	Milk: Cattle	0.1%	Tomatoes	0.0%	0
I	0.6%	NL general	1.29	0.2%	Rice	0.2%	Milk: Cattle	0.1%	Wine grapes	0.1%	0
I	0.5%	IE child	1.20	0.4%	Rice	0.1%	Milk: Cattle	0.0%	Table grapes	0.0%	0
I	0.5%	IT toddler	1.16	0.3%	Rice	0.1%	Tomatoes	0.0%	Peaches	0.1%	0
I	0.5%	DE women 14-50 yr	1.15	0.2%	Milk: Cattle	0.1%	Wine grapes	0.1%	Tomatoes	0.1%	0
I	0.5%	DE general	1.11	0.2%	Milk: Cattle	0.1%	Wine grapes	0.0%	Tomatoes	0.1%	0
1	0.5%	LT adult	1.11	0.3%	Rice	0.1%	Milk: Cattle	0.0%	Tomatoes	0.0%	0
1	0.5%	FR infant	1.07	0.3%	Milk: Cattle	0.1%	Rice	0.0%	Potatoes	0.0%	0
1	0.5%	IT adult DK adult	1.04	0.3%	Rice	0.1%	Tomatoes Wine groups	0.0%	Peaches Milk: Cattle	0.0%	0
I	0.3%	Fl adult	0.98	0.1%	Rice	0.1%	Wine grapes Tomatoes	0.1%	Wine grapes	0.0%	0
1	0.3%	PL general	0.73	0.2%	Tomatoes	0.0%	Table grapes	0.0%	Potatoes	0.1%	0.
1										01070	1

Details - acute risk assessment/adults

Acute risk assessment / adults / general population

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

Unprocessed commodities	Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities for which ARfD/ADI is exceeded (IESTI):						
8	IESTI				IESTI						
ocessec	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL / input for RA (mg/kg)	Exposure (µg/kg bw			
Jupr	2%	Sweet peppers/bell peppers	0.5 / 0.55	33	0.9%	Aubergines/egg plants	0.5 / 0.55	15			
_	2% 0.8%	Tomatoes Aubergines/egg plants	0.6 / 0.55 0.5 / 0.55	32 14	0.5% 0.5%	Sweet peppers/bell peppers Tomatoes	0.5 / 0.55 0.6 / 0.55	9.0 8.7			
	Expand/collapse list Total number of co children and adult (IESTI calculation)	ommodities exceeding the ARf	D/ADI in								
odities											
	Results for childre	mmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI					
ommodifies	Results for childre	mmodities for which ARfD/ADI			No of processed cor						
essed commodities	Results for childre No of processed con is exceeded (IESTI)	mmodities for which ARfD/ADI	MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	No of processed cor is exceeded (IESTI)		MRL / input for RA (mg/kg)				
Processed commodities	Results for childre No of processed coi is exceeded (IESTI) IESTI Highest % of	mmodities for which ARfD/ADI	for RA	Exposure	No of processed cor is exceeded (IESTI): IESTI Highest % of	:	for RA	 (µg/kg bw 1.2 0.89			

For processed commodities, no exceedance of the ARfD/ADI was identified.

Cyantraniliprole

	****	-			Cyantranili	orole			Inpu	t values		
-	Κ. *	f		LOQs (mg/kg) range :		01 to:	0.05	Details - cl	aronic risk	Supplementary resu	ilts -	
	** 6	fsa			Toxicological refere	ice values		assess		chronic risk assessn		
-				ADI (mg/kg bw/day):	0	01 ARfD (mg/kg bw):	not necessary	Dataila		Dataila anuta ai		
E	uropean Food	Safety Authority		Source of ADI:		C Source of ARfD:	EC	Details - a assessmen		Details - acute ri assessment/adu		
	EFSA PRIMo re-	vision 3.1; 2021/01/06		Year of evaluation:	2	16 Year of evaluation:	2016	assessmen	t/children	assessment/adu	ts	
ner	its:			•								
					<u>Refine</u>	d calculation mo	<u>de</u>					
					Chronic risk asses	sment: JMPR meth	odology (IEDI/TMDI)					
				No of diets exceeding	the ADI :						Exposure	
											MRLs set at the LOQ	commodi under ass
	Only data dama		Expsoure	Highest contributor to		2nd contributor to			3rd contributor to M		(in % of ADI)	
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity / group of commodities	MS diet (in % of ADI)	Commodity / aroup of commodities		diet (in % of ADI)	Commodity / aroup of commodities		
	20%	FR adult	1.97	13%	Wine grapes	6%	Tea (dried leaves of Camellia sin	ensis)	0.6%	Table grapes		2
	16%	PT general	1.56	14%	Wine grapes	2%	Table grapes	,	0.1%	Soyabeans		1
	15%	IE adult	1.53	7%	Wine grapes	5%	Tea (dried leaves of Camellia sin	ensis)	1%	Table grapes		1
	13%	GEMS/Food G07	1.29	8%	Wine grapes	2%	Tea (dried leaves of Camellia sin	ensis)	2%	Table grapes		1
	11%	NL toddler	1.13	9%	Table grapes	2%	Raspberries (red and yellow)		0.4%	Tea (dried leaves of Camellia sinen		1
	11%	GEMS/Food G11	1.10	6%	Wine grapes	2%	Table grapes		2%	Tea (dried leaves of Camellia sinen		1
	11%	RO general	1.08	9%	Wine grapes	1%	Table grapes		0.3%	Eggs: Chicken		1
	10%	GEMS/Food G08	0.98	6%	Wine grapes	2%	Table grapes		1%	Tea (dried leaves of Camellia sinen		1
	9%	DE child	0.94	8%	Table grapes	0.6%	Raspberries (red and yellow)		0.5%	Eggs: Chicken		9
	9%	GEMS/Food G15	0.91	6%	Wine grapes	2%	Table grapes		0.6%	Tea (dried leaves of Camellia sinen		9
	9%	GEMS/Food G06	0.90	6%	Table grapes	2%	Tea (dried leaves of Camellia sin		0.4%	Soyabeans		
	9% 8%	UK adult NL child	0.89	6%	Wine grapes	2% 1%	Tea (dried leaves of Camellia sin	ensis)	0.3%	Table grapes Tea (dried leaves of Camellia sinen		9
	8% 8%	NL child DE women 14-50 vr	0.84	6% 5%	Table grapes Wine grapes	2%	Raspberries (red and yellow) Table grapes		1%	Tea (dried leaves of Camellia sinen Tea (dried leaves of Camellia sinen		
	8%	DE general	0.80	5%	Wine grapes	2%	Table grapes		1%	Tea (dried leaves of Camellia sinen Tea (dried leaves of Camellia sinen		
	7%	UK vegetarian	0.74	5%	Wine grapes	2%	Tea (dried leaves of Camellia sin	opolo)	0.4%	Table grapes	1	
	7%	DK adult	0.74	5%	Wine grapes	1.0%	Table grapes	Bitaia)	0.4%	Tea (dried leaves of Camellia sinen		
	7%	NL general	0.67	3%	Wine grapes	1%	Tea (dried leaves of Camellia sin	aneie)	1%	Table grapes	1	
	7%	GEMS/Food G10	0.66	2%	Wine grapes	2%	Table grapes	onoloy	1%	Tea (dried leaves of Camellia sinen		
	6%	FR child 3 15 yr	0.59	2%	Wine grapes	2%	Table grapes		1.0%	Tea (dried leaves of Camellia sinen		
	5%	UK toddler	0.47	1%	Table grapes	1%	Tea (dried leaves of Camellia sin	ensis)	1%	Raspberries (red and vellow)		
	4%	UK infant	0.36	2%	Tea (dried leaves of Camellia sinensis)	0.6%	Eggs: Chicken		0.2%	Dewberries		4
	3%	FI 3 yr	0.32	2%	Raspberries (red and yellow)	1%	Table grapes		0.0%	Peas		3
	3%	ES adult	0.29	2%	Wine grapes	0.2%	Table grapes		0.2%	Eggs: Chicken		1 3
ļ	3%	FI adult	0.26	2%	Wine grapes	0.4%	Table grapes		0.4%	Raspberries (red and yellow)		6
	2%	FI6 yr	0.24	1%	Raspberries (red and yellow)	1.0%	Table grapes		0.0%	Beans		2
	2%	FR toddler 2 3 yr	0.21	1%	Wine grapes	0.3%	Eggs: Chicken		0.2%	Raspberries (red and yellow)		4
	2%	PL general	0.19	2%	Table grapes	0.1%	Raspberries (red and yellow)		0.0%	Beans		:
	1%	DK child	0.14	1%	Table grapes	0.4%	Eggs: Chicken		0.0%	Raspberries (red and yellow)		
	1.0%	SE general	0.10	0.4%	Eggs: Chicken	0.3%	Dewberries		0.1%	Blackberries		1
	0.8% 0.7%	IT adult	0.08	0.7%	Table grapes	0.0%	Beans		0.0%	Lentils		0.
	0.7%	ES child IT toddler	0.07	0.3%	Eggs: Chicken Table grapes	0.2%	Table grapes Beans		0.1%	Lentils Raspberries (red and yellow)		0.
	0.5%	II toddler IE child	0.06	0.5%	Table grapes	0.0%	Tea (dried leaves of Camellia sin	aneie)	0.0%	Raspberries (red and yellow) Edgs: Chicken		0.
Į	0.5%	FR infant	0.05	0.3%	Wine grapes	0.1%	Raspberries (red and yellow)	onoioj	0.1%	Eggs: Chicken		0.
	0.3%	LT adult	0.03	0.2%	Eggs: Chicken	0.1%	Raspberries (red and yellow)		0.1%	Table grapes		0.:

	K T T T	-			Imazapyr				Inpu	it values		
1				LOQs (mg/kg) range f		to:	0.05	Details -	chronic risk	Supplementary	results -	
	*** 6	fsa Safety Authority			Toxicological reference				essment	chronic risk ass		
	-			ADI (mg/kg bw/day):	2.5	ARfD (mg/kg bw):	not necessary					
Ει	Iropean Food	Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA		- acute risk ent/children	Details - acut assessment/		
	EFSA PRIMo re	vision 3.1; 2021/01/06		Year of evaluation:	2014	Year of evaluation:	2014	assessiii	ent/children	assessmenty	auults	
nen	s:											
					Norr	nal mode						
					Chronic risk assessme	nt: JMPR method	ology (IEDI/TMDI)					
_				No of diets exceeding	the ADI :					1	Exposure	
			-								MRLs set at the LOQ	under
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /	2nd contributor to MS diet	Commodity /		3rd contributor to M diet	Commodity /	(in % of ADI)	(ir
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
I	0.13%	GEMS/Food G11	3.30	0.1%	Soyabeans	0.01%	Wheat		0.0%	Milk: Cattle	0.0%	
I	0.12%	GEMS/Food G10	3.02	0.1%	Soyabeans	0.0%	Wheat		0.0%	Poultry: Muscle/meat	0.0%	
I	0.09%	GEMS/Food G08	2.16	0.1%	Soyabeans	0.0%	Wheat		0.0%	Swine: Muscle/meat	0.0%	
	0.08% 0.08%	GEMS/Food G07	2.05	0.0%	Soyabeans Milk: Cattle	0.0%	Wheat Maize/com		0.0%	Milk: Cattle Wheat	0.0%	
I	0.08%	NL toddler GEMS/Food G15	2.05	0.0%	Sovabeans	0.0%	Wheat		0.0%	Swine: Muscle/meat	0.1%	
I	0.08%	GEMS/Food G06	1.81	0.0%	Soyabeans	0.0%	Wheat		0.0%	Maize/corn	0.0%	
I	0.05%	NL child	1.22	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Soyabeans	0.0%	
I	0.04%	FR child 3 15 yr	1.07	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Bovine: Muscle/meat	0.0%	
I	0.04%	DE child	1.00	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Apples	0.0%	
I	0.04%	FR toddler 2 3 yr	0.92	0.0%	Milk: Cattle	0.0%	Wheat		0.0%	Bovine: Muscle/meat	0.0%	
I	0.04%	UK infant	0.90	0.0%	Milk: Cattle	0.0%	Wheat		0.0%	Bovine: Muscle/meat	0.0%	
I	0.04%	DK child	0.88	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Swine: Muscle/meat	0.0%	
I	0.03%	ES child	0.86	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Bovine: Muscle/meat	0.0%	
I	0.03%	RO general	0.86	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Swine: Muscle/meat	0.0%	
	0.03%	UK toddler	0.80	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Bovine: Muscle/meat	0.0%	
	0.03%	SE general	0.77	0.0%	Wheat	0.0%	Bovine: Muscle/meat		0.0%	Milk: Cattle	0.0%	
I	0.03%	PT general	0.71	0.0%	Wheat	0.0%	Soyabeans		0.0%	Potatoes	0.0%	
I	0.03%	IT toddler	0.63	0.0%	Wheat	0.0%	Other cereals		0.0%	Tomatoes	0.0%	
I	0.02%	NL general	0.60	0.0%	Wheat	0.0%	Soyabeans		0.0%	Milk: Cattle	0.0%	
I	0.02%	DE women 14-50 yr IE adult	0.59	0.0%	Wheat Wheat	0.0%	Milk: Cattle Milk: Cattle		0.0%	Sugar beet roots Sweet potatoes	0.0%	
1	0.02%	DE general	0.58	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Sweet potatoes Swine: Muscle/meat	0.0%	1
1	0.02%	ES adult	0.57	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Bovine: Muscle/meat	0.0%	1
1	0.02%	FR adult	0.44	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Swine: Muscle/meat	0.0%	1
1	0.02%	IT adult	0.41	0.0%	Wheat	0.0%	Tomatoes		0.0%	Apples	0.0%	
I	0.02%	FR infant	0.39	0.0%	Milk: Cattle	0.0%	Wheat		0.0%	Potatoes	0.0%	
1	0.01%	DK adult	0.32	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Swine: Muscle/meat	0.0%	1
1	0.01%	LT adult	0.30	0.0%	Wheat	0.0%	Swine: Muscle/meat		0.0%	Milk: Cattle	0.0%	1
1	0.01%	UK adult	0.30	0.0%	Wheat	0.0%	Bovine: Muscle/meat		0.0%	Milk: Cattle	0.0%	1
1	0.01%	UK vegetarian	0.29	0.0%	Wheat	0.0%	Milk: Cattle		0.0%	Potatoes	0.0%	1
1	0.01%	FI 3 yr	0.26	0.0%	Wheat	0.0%	Potatoes		0.0%	Bananas	0.0%	1
1	0.01%	FI 6 yr	0.20	0.0%	Wheat	0.0%	Potatoes		0.0%	Bananas	0.0%	1
1	0.01% 0.01%	IE child Fl adult	0.18	0.0%	Wheat Coffee beans	0.0%	Milk: Cattle Wheat		0.0%	Swine: Muscle/meat Soyabeans	0.0%	1
	0.00%	PL general	0.10	0.0%	Potatoes	0.0%	Apples		0.0%	Tomatoes	0.0%	1
												1

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

***efsa
European Food Safety Authority
EFSA PRIMo revision 3.1; 2021/01/06

Comments:

	Cyflumetofe	en		Input values					
LOQs (mg/kg) range from:		to:	0.05		Details - ch assessr			nentary results - risk assessment	
ADI (mg/kg bw/day): Source of ADI: Year of evaluation:	EC	ARfD (mg/kg bw): Source of ARfD: Year of evaluation:	not necessary EC 2019		Details - ac assessment			ils - acute risk sment/adults	Ď
	Norn	nal mode							
Ch	ronic risk assessme	ent: JMPR metho	odology (IEDI/TMDI)						
No of diets exceeding the ADI :									posure resulting
								MRLs	set at comm

	Calculated exposure		Expsoure (µg/kg bw per	No of diets exceeding Highest contributor to MS diet	Commodity /	2nd contributor to MS diet	Commodity /	3rd contributor to MS diet	Commodity /	MRLs set at the LOQ (in % of ADI)	commodities i under assessn (in % of ADI
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		
	2%	NL toddler	3.99	0.8%	Apples	0.4%	Milk: Cattle	0.3%	Pears	0.6%	0.0%
	2%	DE child	3.45	1.0%	Apples		Oranges	0.2%	Table grapes	0.2%	0.1%
	1%	NL child	2.19	0.4%	Apples	0.1%	Milk: Cattle	0.1%	Table grapes	0.3%	0.0%
	1.0%	GEMS/Food G06	1.62	0.3%	Tomatoes	0.1%	Table grapes	0.1%	Oranges	0.2%	0.0%
	0.9%	FR child 3 15 yr	1.58	0.3%	Oranges	0.1%	Milk: Cattle	0.1%	Apples	0.3%	0.0%
	0.8%	FR toddler 2 3 yr	1.44	0.2%	Apples	0.2%	Milk: Cattle	0.1%	Oranges	0.3%	0.0%
_	0.8%	DE women 14-50 yr	1.40	0.2%	Apples		Oranges	0.1%	Wine grapes	0.2%	0.0%
	0.8%	RO general	1.33	0.2%	Wine grapes	0.2%	Tomatoes	0.1%	Apples	0.2%	0.0%
.	0.8%	DE general	1.33	0.2%	Apples	0.1%	Oranges	0.1%	Wine grapes	0.2%	0.0%
	0.8%	GEMS/Food G07	1.30	0.2%	Wine grapes	0.1%	Oranges	0.1%	Tomatoes	0.2%	0.0%
	0.7%	GEMS/Food G11	1.25	0.1%	Apples	0.1%	Wine grapes	0.1%	Tomatoes	0.2%	0.0%
	0.7%	IE adult	1.23	0.1%	Wine grapes	0.1%	Oranges	0.1%	Grapefruits	0.1%	0.0%
	0.7%	GEMS/Food G08	1.16	0.1%	Wine grapes	0.1%	Tomatoes	0.1%	Apples	0.2%	0.0%
	0.7%	GEMS/Food G15	1.16	0.1%	Wine grapes	0.1%	Tomatoes	0.1%	Apples	0.2%	0.0%
•	0.7%	PT general	1.15	0.3%	Wine grapes	0.1%	Tomatoes	0.1%	Apples	0.1%	0.0%
	0.7%	UK toddler	1.15	0.2%	Oranges	0.1%	Apples	0.1%	Milk: Cattle	0.2%	0.0%
	0.7%	UK infant	1.11	0.2%	Milk: Cattle	0.1%	Apples	0.1%	Oranges	0.3%	0.0%
	0.6%	GEMS/Food G10	1.10	0.1%	Tomatoes	0.1%	Oranges	0.1%	Apples	0.2%	0.0%
	0.6%	DK child	1.08	0.2%	Apples	0.1%	Cucumbers	0.1%	Milk: Cattle	0.2%	0.1%
	0.6%	ES child	1.07	0.2%	Oranges	0.1%	Tomatoes	0.1%	Apples	0.2%	0.0%
	0.6%	FR adult	0.98	0.3%	Wine grapes	0.1%	Apples	0.0%	Oranges	0.1%	0.0%
	0.6%	SE general	0.94	0.1%	Apples	0.1%	Milk: Cattle	0.1%	Tomatoes	0.2%	0.0%
	0.5%	NL general	0.91	0.1%	Apples	0.1%	Oranges	0.1%	Wine grapes	0.1%	0.0%
	0.5%	ES adult	0.77	0.1%	Oranges	0.1%	Tomatoes	0.1%	Apples	0.1%	0.0%
	0.4%	IT toddler	0.73	0.1%	Tomatoes	0.1%	Apples	0.0%	Wheat	0.1%	0.0%
	0.4%	DK adult	0.67	0.1%	Wine grapes	0.1%	Apples	0.0%	Tomatoes	0.1%	0.0%
	0.4%	UK vegetarian	0.67	0.1%	Wine grapes		Oranges	0.1%	Tomatoes	0.1%	0.0%
	0.4%	FR infant	0.67	0.1%	Apples	0.1%	Milk: Cattle	0.0%	Courgettes	0.2%	0.070
	0.4%	Fladult	0.66	0.1%	Coffee beans	0.1%	Tomatoes	0.0%	Apples	0.2%	0.2%
	0.4%	FI 3 yr	0.65	0.1%	Apples	0.1%	Tomatoes	0.1%	Cucumbers	0.1%	0.1%
	0.4%	UK adult	0.62	0.1%	Wine grapes	0.0%	Oranges	0.0%	Tomatoes	0.1%	0.0%
	0.4%	PL general	0.61	0.1%	Apples	0.1%	Tomatoes	0.0%	Table grapes	0.0%	0.0%
	0.4%	PL general IT adult	0.60	0.2%	Tomatoes	0.1%	Apples	0.0%	Oranges	0.0%	0.0%
	0.4%	LT adult	0.56	0.1%		0.1%	Tomatoes	0.0%	Oranges Milk: Cattle	0.0%	0.0%
	0.3%	FI 6 yr	0.50	0.1%	Apples Apples	0.1%	Tomatoes	0.0%	Cucumbers	0.1%	0.0%
	0.3%	IE child	0.50	0.0%	Apples	0.0%	Milk: Cattle	0.0%	Wheat	0.0%	0.0%
	Conclusion:	erm dietary intake (TMDI/NEDI/IEC		0.076	Аррез	0.078	Wirk. Gattle	0.078	Wildat	0.078	0.0

	Oxathiapipro	olin		Input values			
LOQs (mg/kg) range from:	0.01	to:	0.05	Details - chronic risk	Supplementary results -		
	Toxicological reference			assessment	chronic risk assessment		
ADI (mg/kg bw/day):	0.14	ARfD (mg/kg bw):	not necessary	Details - acute risk	Details - acute risk		
Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:	EC 2017	assessment/children	assessment/adults		

Comments Normal mode Chronic risk assessment: JMPR methodology (IEDI/TMDI) No of diets exceeding the ADI : Exposure resulting from MRLs set at commodities no the LOQ under assessment Expsoure lighest contributo 2nd contributor to MS 3rd contributor to MS (in % of ADI) (in % of ADI) Calculated exposure (µg/kg bw per day) MS diet Commodity / diet Commodity / diet Commodity / (in % of ADI) (% of ADI) MS Diet (in % of ADI) aroup of commodities (in % of ADI) group of commodities group of commodities NL toddler 4.46 Spinaches 0.4% Milk: Cattle scaroles/broad-leaved endives 0.8% 2% 3% 1% NL child 0.6% Spinaches 0.2% Milk: Cattle 0.1% Escaroles/broad-leaved endives 0.4% 1% 1% 2.00 0.4% 0.4% 0.2% 0.2% SE general Chinese cabbages/pe-tsa Lettuces Spinaches 1% 1% 1.99 0.4% DE child 0.5% Spinaches 0.1% Milk: Cattle 0.1% . Table grapes 1% 1% GEMS/Food G10 1.79 Chinese cabbages/pe-tsa 0.3% 0.1% 0.2% 1% 0.3% Lettuces Spinaches 1% IT adult 1.67 0.4% Lettuces 0.2% Spinaches 0.2% Other spinach and similar 0.1% 1% 0.2% 0.2% 0.2% 0.2% 1% 1% ES adult 1.58 0.5% Lettuces Chards/beet leaves Spinaches 0.1% 1% 0.2% consumption) ES child 1.58 0.4% Lettuces Spinaches Chards/beet leaves 0.9% 1% 1.50 0.2% FR infant 0.6% Spinaches 0.1% Milk: Cattle 0.1% 0.9% Leeks 1% 1.43 Spinaches 0.1% Wine grapes 0.1% 0.2% 0.9% IE adult 0.3% Lettuces 1% GEMS/Food G11 1.42 0.2% Spinaches 0.1% Leeks 0.1% Wine grapes 0.2% 0.8% 1.41 0.2% 0.1% Milk: Cattle 1% FR toddler 2.3 vr 0.4% Spinaches 0.1% Leeks 0.4% 0.6% 1.0% pool 1.38 0.4% Escaroles/broad-leaved endives 0.1% 0.2% 0.8% NL general Spinaches Lettuces 1.36 0.1% 1.0% IT toddler 0.3% Chards/beet leaves 0.1% 0.1% 0.9% Lettuces Spinaches average 1.0% FR child 3 15 yr 1.34 0.3% Spinaches 0.2% Milk: Cattle 0.1% Other lettuce and other salad plants 0.3% 0.6% 0.9% GEMS/Food G06 1.31 0.1% Spinaches 0.1% Tomatoes 0.1% Lettuces 0.2% 0.8% GEMS/Food G07 0.9% 0.9% 1.27 0.2% Lettuces 0.1% Wine grapes 0.1% Spinaches 0.2% 0.7% (based on a 0.2% GEMS/Food G08 0.1% 1.21 0.2% 0.1% 0.7% Lettuces Wine grapes Spinaches 0.7% FR adult 1.05 0.2% Wine grapes 0.1% Other lettuce and other salad plants 0.1% Spinaches 0.1% 0.6% 0.7% DE women 14-50 yr 1.01 0.1% Spinaches 0.1% 0.1% Milk: Cattle 0.2% 0.5% Lettuces 0.7% GEMS/Food G15 0.97 0.1% Lettuces 0.1% Wine grapes 0.1% Head cabbages 0.2% 0.5% calculation 0.2% 0.2% 0.7% DE general 0.96 0.1% Spinaches 0.1% Lettuces 0.1% Milk: Cattle 0.5% 0.6% 0.1% 0.1% Milk: Cattle RO general 0.88 0.1% Wine grapes Head cabbages 0.4% 0.5% 0.76 0.1% 0.1% PT general 0.2% 0.1% 0.5% Wine grapes Lettuces Kales 0.5% DK child 0.75 0.1% Lettuces 0.1% Milk: Cattle 0.0% 0.2% 0.3% Rye rmdi/nedi/iedi 0.5% FI adult 0.73 0.2% Coffee beans 0.1% Lettuces 0.0% Chinese cabbages/pe-tsai 0.2% 0.3% 0.5% 0.5% UK infant 0.71 0.3% Milk: Cattle 0.0% Spinaches 0.0% Potatoes 0.4% 0.1% 0.1% 0.3% Milk: Cattle 0.1% 0.0% UK toddler 0.66 Spinaches Wheat 0.2% 0.5% UK vegetarian 0.66 0.1% Lettuces 0.1% Spinaches 0.1% Wine grapes 0.1% 0.4% 0.5% 0.63 0.2% Spinaches 0.0% Chinese cabbages/pe-tsa 0.0% 0.1% 0.4% FI3 yr Potatoes 0.4% FI6 yr 0.62 0.1% Spinaches 0.1% Lettuces 0.1% Chinese cabbages/pe-tsai 0.1% 0.4% 0.4% UK adult 0.55 0.1% Lettuces 0.1% Wine grapes 0.0% Spinaches 0.1% 0.3% 0.1% 0.0% 0.1% 0.4% DK adult 0.52 0.1% Lettuces Wine grapes Milk: Cattle 0.3% 0.3% PL general 0.35 0.0% Chinese cabbages/pe-tsai 0.0% Head cabbages 0.0% Table grapes 0.0% 0.2% 0.2% LT adult 0.33 0.1% Lettuces 0.0% Head cabbages 0.0% Milk: Cattle 0.1% 0.2% 0.1% IE child 0.13 0.0% Milk: Cattle 0.0% Spinaches 0.0% Wheat 0.0% 0.0% Conclusion: The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI.

The long-term intake of residues of Oxathiapiprolin is unlikely to present a public health concern.

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

**** **• e	fsa
European Food	Safety Authority
EFSA PRIMo rev	ision 3.1; 2021/01/06
Comments:	

****	fsa a			Tetraniliprole				Input	: values		
* *	f		LOQs (mg/kg) range r		to:		Details - ch	ronic risk	Supplementary res	ults -	
·*•• P	TSA			Toxicological reference v			assess		chronic risk assessr		
			ADI (mg/kg bw/day):	2	ARfD (mg/kg bw):	not necessay			·	$ \longrightarrow $	
European Food	d Safety Authority		Source of ADI:	JMPR	Source of ARfD:	JMPR	Details - a		Details - acute ri		
EFSA PRIMo re	evision 3.1; 2021/01/06		Year of evaluation:	2021	Year of evaluation:	2021	assessment	t/children	assessment/adu	lts	
ients:					_	I					
				Refined calculat	ion mode						
				Chronic risk assessment: JM	PR methodology	(IEDI/TMDI)					
			No of diets exceeding	the ADI :						Exposure	resulting from
			Ĭ							MRLs set at the LOQ	commodities not under assessment
Calculated exposu		Expsoure (µg/kg bw pe	Highest contributor to MS diet	Commodity /	2nd contributor to M diet	6 Commodity /		3rd contributor to MS diet	Commodity /	(in % of ADI)	(in % of ADI)
(% of ADI)	MS Diet	(pg/kg bw per day)	(in % of ADI)	aroup of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
0.01%	FR toddler 2 3 yr	0.15	0.01%	Mandarins	(3		(0.0%
0.01%	NL child	0.12	0.01%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	IE adult	0.10	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	SE general	0.08	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	NL toddler DE child	0.08	0.00%	Mandarins Mandarins		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.0%
0.00%	FI 3 yr	0.08	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	FI6yr	0.06	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	GEMS/Food G06	0.06	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	UK toddler	0.05	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	GEMS/Food G08	0.05	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	IT toddler GEMS/Food G07	0.04	0.00%	Mandarins Mandarins		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.0%
0.00%	GEMS/Food G07 GEMS/Food G10	0.04	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	NL general	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	ES child	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	GEMS/Food G11	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	FR child 3 15 yr	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	IT adult	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	GEMS/Food G15 FR infant	0.03	0.00%	Mandarins Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	ES adult	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	Fladult	0.03	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	DK adult	0.02	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	DE women 14-50 yr	0.02	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	DK child	0.02	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	PT general	0.02	0.00%	Mandarins Mandarins		FRUIT AND TREE NUTS					0.0%
0.00%	DE general FR adult	0.02	0.00%	Mandarins		FRUIT AND TREE NUTS FRUIT AND TREE NUTS				1	0.0%
0.00%	UK adult	0.01	0.00%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.0%	RO general	0.01	0.00%	Mandarins		FRUIT AND TREE NUTS				1	0.0%
0.0%	UK vegetarian	0.01	0.0%	Mandarins		FRUIT AND TREE NUTS					0.0%
0.0%	PL general	0.01	0.0%	Mandarins		FRUIT AND TREE NUTS			1		0.0%
0.0%	LT adult	0.00	0.0%	Mandarins Mandarins		FRUIT AND TREE NUTS				1	0.0%
0.0%	IE child UK infant	0.00	0.0%	FRUIT AND TREE NUTS		FRUIT AND TREE NUTS				1	0.0%
	OT HIGH								1		

TMDI/NEDI/IEDI calculation (based on average food consumption)

Conclusion: The estimated long-term dietary intake (TMDI/NED/IEDI) was below the ADI. The long-term intake of residues of Tetranliprole is unlikely to present a public health concern. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

uropean roo	MS Diet NL toddler NL child DE child UK infant	N Expsoure H (ug/kg bw per day) 1.28 0.69	OQs (mg/kg) range fr DI (mg/kg bw/day): ource of ADI: ear of evaluation: of diets exceeding t tighest contributor to MS diet (m % of ADI)	Toxicological reference v 0.4 EFSA 2022 <u>Normal m</u> Chronic risk assessment: JM	ARfD (mg/kg bw): Source of ARfD: Year of evaluation: Ode	0.01 0.1 EFSA 2022	Details - chronic risk assessment Details - acute risk assessment/childrer	chronic risk ass Details - acu	essment te risk	
Calculated expos (% of AD) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	sure MS Diet NL toddler NL toddler UK infant	N Expsoure H (ugRq bw per 1.28 0.69	to of diets exceeding t Mighest contributor to MS diet	0.04 EFSA 2022 <u>Normal m</u> Chronic risk assessment: JM	ARfD (mg/kg bw): Source of ARfD: Year of evaluation: Ode	EFSA 2022	Details - acute risk	Details - acu	te risk	
Calculated expos (% of AD) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	sure MS Diet NL toddler NL toddler UK infant	N Expsoure H (ugRq bw per 1.28 0.69	to of diets exceeding t Mighest contributor to MS diet	EFSA 2022 <u>Normal m</u> Chronic risk assessment: JM	Source of ARfD: Year of evaluation:	EFSA 2022				
Calculated expos (% of AD) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	sure MS Diet NL toddler NL toddler UK infant	Vt Expsoure H (ugRq bw per 1.28 0.69	ear of evaluation:	2022 <u>Normal m</u> Chronic risk assessment: JM	Year of evaluation:	2022				
Calculated expose (% of AD) 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0,9% 0.9% 0.9%	sure MS Diet NL toddler NL child DE child UK irfant	N Expsoure H (ug/kg bw per day) 1.28 0.69	lo of diets exceeding t tighest contributor to MS diet	<u>Normal m</u> Chronic risk assessment: JM	ode		assessment/children	n assessment,	adults	
Calculated exposi (% of ADI) 3% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.99 0.99% 0.99%	MS Diet NL toddler NL child DE child UK infant	Expsoure (µg/kg bw per day) 1.28 0.69	lighest contributor to MS diet	Chronic risk assessment: JM		(IEDI/TMDI)				
(% of ADI) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	MS Diet NL toddler NL child DE child UK infant	Expsoure (µg/kg bw per day) 1.28 0.69	lighest contributor to MS diet	Chronic risk assessment: JM		/ (IEDI/TMDI)				
(% of ADI) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	MS Diet NL toddler NL child DE child UK infant	Expsoure (µg/kg bw per day) 1.28 0.69	lighest contributor to MS diet	Chronic risk assessment: JM		/ (IEDI/TMDI)				
(% of ADI) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	MS Diet NL toddler NL child DE child UK infant	Expsoure (µg/kg bw per day) 1.28 0.69	lighest contributor to MS diet		PR methodology	(IEDI/TMDI)				
(% of ADI) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	MS Diet NL toddler NL child DE child UK infant	Expsoure (µg/kg bw per day) 1.28 0.69	lighest contributor to MS diet	the ADI :						
(% of AD)) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1	MS Diet NL toddler NL child DE child UK infant	(µg/kg bw per day) 1.28 0.69	MS diet		1				Exposun MRLs set a	
(% of ADI) 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	MS Diet NL toddler NL child DE child UK infant	(µg/kg bw per day) 1.28 0.69	MS diet		2nd contributor to		3rd contribu	itor to MS	the LOQ	und
3% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9% 0.9%	NL toddler NL child DE child UK infant	1.28 0.69	(in % of ADI)	Commodity /	MS diet	Commodity /	die	et Commodity /	(in % of ADI	(I) (I
2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	NL child DE child UK infant	0.69		group of commodities	(in % of ADI)	group of commodities	(in % of			+
2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	DE child UK infant			Milk: Cattle Milk: Cattle	0.3%	Apples Sugar beet roots	0.2		3% 2%	
2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%	UK infant	0.65		Milk: Cattle Milk: Cattle	0.2%	Apples	0.2		1%	
1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0.9% 0.9%		0.63		Milk: Cattle	0.1%	Wheat	0.2		1%	
1% 1% 1% 1% 1% 1% 1% 1% 1.0% 0.9% 0.9%	FR child 3 15 vr	0.58		Milk: Cattle	0.2%	Wheat	0.1		1%	
1% 1% 1% 1% 1% 1% 1% 1% 1.0% 0.9% 0.9%	FR toddler 2 3 yr	0.57		Milk: Cattle	0.2%	Wheat	0.1		1%	
1% 1% 1% 1% 1% 1% 1% 1% 1.0% 0.9% 0.9% 0.9%	UK toddler	0.48		Milk: Cattle	0.2%	Wheat	0.1		1%	
1% 1% 1% 1% 1% 1% 1% 1.0% 0.9% 0.9% 0.9%	DK child	0.45		Milk: Cattle	0.2%	Wheat	0.1	% Rve	0.9%	
1% 1% 1% 1% 1% 1.0% 0.9% 0.9% 0.9%	GEMS/Food G06	0.45	0.4%	Wheat	0.1%	Tomatoes	0.1	% Milk: Cattle	0.8%	
1% 1% 1% 1.0% 0.9% 0.9% 0.9%	GEMS/Food G11	0.44		Milk: Cattle	0.2%	Wheat	0.1	% Potatoes	0.9%	
1% 1% 1% 1.0% 0.9% 0.9% 0.9%	RO general	0.43		Milk: Cattle	0.3%	Wheat	0.1		0.8%	
1% 1% 1.0% 0.9% 0.9% 0.9%	GEMS/Food G15	0.42		Wheat	0.2%	Milk: Cattle	0.1		0.8%	
1% 1% 1.0% 0.9% 0.9% 0.9%	GEMS/Food G07	0.42		Wheat	0.2%	Mik: Cattle	0.1		0.8%	
1% 1.0% 0.9% 0.9% 0.9%	GEMS/Food G08	0.41		Wheat	0.1%	Milk: Cattle	0.1		0.8%	
1.0% 0.9% 0.9% 0.9%	SE general	0.41		Milk: Cattle	0.2%	Wheat	0.1		0.9%	
0.9% 0.9% 0.9%	GEMS/Food G10	0.40		Wheat	0.1%	Milk: Cattle	0.1		0.8%	
0.9% 0.9%	ES child	0.40 0.37		Milk: Cattle Milk: Cattle	0.2%	Wheat	0.1		0.8%	
0.9%	DE women 14-50 yr DE general	0.37		Milk: Cattle	0.1%	Sugar beet roots Sugar beet roots	0.14		0.8%	
	IE adult	0.35		Wheat	0.1%	Milk: Cattle	0.1		0.8%	
	NL general	0.31		Milk: Cattle	0.1%	Wheat	0.1		0.7%	
0.7%	FR infant	0.30		Milk: Cattle	0.0%	Potatoes	0.0		0.7%	
0.6%	PT general	0.25		Wheat	0.1%	Potatoes	0.1		0.4%	
0.6%	IT toddler	0.23	0.3%	Wheat	0.0%	Other cereals	0.0		0.2%	
0.6%	ES adult	0.23	0.1%	Milk: Cattle	0.1%	Wheat	0.04	% Oranges	0.4%	
0.5%	FR adult	0.22		Milk: Cattle	0.1%	Wheat	0.1	% Wine grapes	0.4%	
0.4%	FI 3 yr	0.18		Potatoes	0.1%	Wheat	0.0		0.4%	
0.4%	DK adult	0.18		Milk: Cattle	0.1%	Wheat	0.0		0.4%	
0.4%	LT adult	0.17		Milk: Cattle	0.1%	Potatoes	0.1		0.4%	
0.4%	UK vegetarian	0.17		Wheat	0.1%	Milk: Cattle	0.0		0.3%	1
0.4%		0.16		Wheat	0.0%	Tomatoes	0.0		0.2%	
0.4%	IT adult	0.15		Wheat	0.1%	Milk: Cattle Wheat	0.0		0.3%	1
0.4% 0.3%	IT adult UK adult	0.14 0.13		Potatoes Coffee beans	0.0%	Potatoes	0.0		0.3%	
0.3%	IT adult UK adult FI 6 yr			Potatoes	0.0%	Apples	0.0		0.3%	1
0.2%	IT adult UK adult	0.10		Milk: Cattle	0.1%	Wheat	0.0		0.2%	1

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

		Acute risk assessment /chi	ldren		Acute risk	assessment / adults / g	eneral pop	ulation
	Detai	ls - acute risk assessment	/children		Details	s - acute risk assessn	nent/adul	ts
	The acute risk asses	ssment is based on the ARfD. DISCLAIME	R: Dietary data f	rom the UK we	ere included in PRIMC	when the UK was a member of	the European U	nion.
	The calculation is ba	ased on the large portion of the most critica	l consumer grou	ıp.				
		Show results of IESTI of	alculatior	n only for	crops with 0	APs under assessr	nent	
Unprocessed commodities	Results for childre	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
o p	IESTI				IESTI			
sse			MRL / input				MRL / input	
process	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	0	for RA (mg/kg)	Exposure (µg/kg bw)
brdt	0.3%	Wheat	0.05 / 0.02	(µg/kg bw) 0.29	0.2%	Commodities Wheat	0.05 / 0.02	(µg/kg bw) 0.17
5	0.1%	Barley	0.1 / 0.02	0.11	0.10%	Barley	0.1 / 0.02	0.10
	Expand/collapse list							
	Total number of co adult diets (IESTI calculation)	ommodities exceeding the ARfD/ADI in	children and					
Processed commodities	Results for childre No of processed cor (IESTI):	n mmodities for which ARfD/ADI is exceeded	l		Results for adults No of processed cor exceeded (IESTI):	nmodities for which ARfD/ADI is		
L L L	IESTI				IESTI			
ssed co	Highest % of	Decenced energy 4000	MRL / input for RA	Exposure	Highest % of		MRL / input for RA	Exposure
češ	ARfD/ADI 0.2%	Processed commodities Wheat / milling (flour)	(mg/kg) 0.05 / 0.02	(µg/kg bw) 0.24	ARfD/ADI 0.1%	Processed commodities Barley / beer	(mg/kg) 0.1 / 0	(µg/kg bw) 0.14
Pro	0.2%	Wheat / milling (wholemeal)-baking	0.05 / 0.02	0.24	0.09%	Wheat / bread/pizza	0.05/0.02	0.14
-	0.1%	Barley / cooked	0.1/0.02	0.07	0.08%	Wheat / pasta	0.05 / 0.02	0.08
	0.0%	Barley / milling (flour)	0.1 / 0.02	0.04	0.07%	Wheat / bread (wholemeal)	0.05 / 0.02	0.07
	Expand/collapse list							

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Isoflucypram (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

1		fsa		LOQs (mg/kg) range f	1,4-Dimethylnaphtha		0.05	Details - cl	hronic risk	Supplementary	results -	
	**e				Toxicological reference v			assess	sment	chronic risk ass		
F	Ironean Food	Safety Authority		ADI (mg/kg bw/day):	0.1	ARfD (mg/kg bw):	not necessary	Details - a	acute risk	Details - acu	e risk	
		,		Source of ADI:	EC	Source of ARfD:	EC	assessmen	t/children	assessment/	adults	
		vision 3.1; 2021/01/06		Year of evaluation:	2014	Year of evaluation:	2014					
nen	ts:				Newson	l ma da						
					Chronic risk assessment	<u>al mode</u>						
				No of diets exceeding		. own it method					Exposure	e resulting fi
				NO OF GIELS EXCEEDING			1				MRLs set at	commodit
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to MS		the LOQ	under asse (in % of
	Calculated exposure		(µg/kg bw per	MS diet	Commodity /	MS diet	Commodity /		diet	Commodity /	(in % of ADI)) (01 % 01
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		+
	83% 81%	NL toddler	82.69 81.39	64% 80%	Potatoes	13%	Milk: Cattle Wheat		1%	Apples	0.0%	0.1
	81% 72%	PT general FI 3 yr	81.39 71.84	80%	Potatoes Potatoes	0.4%	Wheat Bananas		0.2%	Wine grapes Wheat	0.0%	
	67%	SE general	67.11	62%	Potatoes	3%	Milk: Cattle		0.4%	Bovine: Muscle/meat	0.0%	
	63%	GEMS/Food G11	63.08	59%	Potatoes	2%	Milk: Cattle		0.4%	Soyabeans	0.0 %	0.2
	62%	GEMS/Food G08	62.47	59%	Potatoes	1%	Milk: Cattle		0.4%	Wheat		0.2
	61%	RO general	60.70	56%	Potatoes	2%	Milk: Cattle		0.5%	Wheat	0.0%	0.2
	61%	GEMS/Food G07	60.64	56%	Potatoes	1%	Milk: Cattle		0.4%	Wheat		0.3
	61%	NL child	60.62	52%	Potatoes	5%	Milk: Cattle		0.8%	Sugar beet roots	0.0%	0.1
	59%	UK infant	59.44	49%	Potatoes	8%	Milk: Cattle		0.4%	Eggs: Chicken	0.0%	0.1
	59%	FI 6 yr	59.14	58%	Potatoes	0.1%	Wheat		0.1%	Bananas	0.0%	
	59%	UK toddler	58.99	52%	Potatoes	4%	Milk: Cattle		0.4%	Wheat	0.0%	0.1
	58%	GEMS/Food G15	57.67	53%	Potatoes	1%	Milk: Cattle		0.4%	Wheat		0.2
	52%	PL general	52.07	51%	Potatoes	0.2%	Apples		0.1%	Tomatoes		
	49%	LT adult	49.39	48%	Potatoes	0.8%	Milk: Cattle		0.2%	Apples		0.1
	48%	GEMS/Food G10	48.47	44%	Potatoes	1%	Milk: Cattle		0.4%	Poultry: Muscle/meat		0.4
	47%	DE child	47.22	39%	Potatoes	4%	Milk: Cattle		1%	Apples	0.0%	0.2
	42%	DK child	41.84	36%	Potatoes	3%	Milk: Cattle		0.5%	Rye		0.1
	40% 39%	NL general IE adult	39.99 38.60	36% 34%	Potatoes Potatoes	2% 0.9%	Milk: Cattle Milk: Cattle		0.3%	Sugar beet roots Sheep: Liver	0.0%	0.1
	39%	FR toddler 2 3 vr	36.66	28%	Potatoes	6%	Milk: Cattle		0.3%	Apples	0.0%	0.1
	34%	GEMS/Food G06	33.88	30%	Potatoes	0.7%	Wheat		0.5%	Milk: Cattle	0.0 %	0.1
	33%	FR infant	33.25	29%	Potatoes	4%	Milk: Cattle		0.2%	Apples	0.0%	0.2
	33%	ES child	32.63	28%	Potatoes	3%	Milk: Cattle		0.4%	Wheat	0.0%	0.3
	31%	FR child 3 15 yr	30.76	23%	Potatoes	5%	Milk: Cattle		0.4%	Wheat	0.0%	0.2
	23%	DE general	23.04	18%	Potatoes	3%	Milk: Cattle		0.4%	Sugar beet roots	0.0%	0.1
ļ	23%	UK adult	22.61	21%	Potatoes	0.6%	Milk: Cattle		0.2%	Wheat	0.0%	0.1
	22%	UK vegetarian	22.23	21%	Potatoes	0.7%	Milk: Cattle		0.2%	Wheat		0.0
	21%	DK adult	21.23	19%	Potatoes	1%	Milk: Cattle		0.1%	Wheat		0.1
	21%	DE women 14-50 yr	21.21	16%	Potatoes	3%	Milk: Cattle		0.4%	Sugar beet roots	0.0%	0.1
	19%	FI adult	18.84	18%	Potatoes	0.5%	Coffee beans		0.1%	Rye		
	17%	ES adult	16.55	14%	Potatoes	1%	Milk: Cattle		0.2%	Wheat	0.0%	0.2
	15%	IT toddler	14.91	13%	Potatoes	0.6%	Wheat		0.1%	Other cereals		
	14%	FR adult	13.52	11%	Potatoes	0.9%	Milk: Cattle		0.2%	Wine grapes	0.0%	0.1
	10% 10%	IE child IT adult	10.36 10.09	9% 9%	Potatoes Potatoes	0.8%	Milk: Cattle Wheat		0.1%	Wheat Tomatoes	0.0%	0.0
	10%	ri auuit	10.09	970	rotatoes	0.4%	wneat		U.1%	rumatoes		1

efsa
European Food Safety Authority
EFSA PRIMo revision 3.1; 2021/01/06

Comments:

	Florylpicoxamid (F)		ן ך	Input	values	
LOQs (mg/kg) range from:	0.01 to: Toxicological reference values	0.02		Details - chronic risk assessment	Supplementary result chronic risk assessme	
ADI (mg/kg bw/day): Source of ADI: Year of evaluation:	0.1 ARfD (mg/kg bw) JMPR Source of ARfD: 2023 Year of evaluatio	JMPR		Details - acute risk assessment/children	Details - acute risk assessment/adults	
	Normal mode					
	Chronic risk assessment: JMPR meth	odology (IEDI/TMDI)				
No of diets exceeding the ADI :						Exposi

									MRLs set at the LOQ	commoditi under asses
		Expsoure	Highest contributor to		2nd contributor to MS		3rd contributor to MS		(in % of ADI)	(in % of
Calculated (% of		(µg/kg bw per	MS diet (in % of ADI)	Commodity /	diet (in % of ADI)	Commodity /	diet (in % of ADI)	Commodity / aroup of commodities	(
(% 0		day) 2.42	(III % 0I ADI) 0.8%	group of commodities Milk: Cattle	(III % 01 ADI) 0.6%	group of commodities Table grapes	0.1%	Tomatoes	0.4%	2%
25		1.60	0.5%	Table grapes	0.8%	Milk: Cattle	0.1%	Strawberries	0.4%	23
20		1.59	0.5%	Tomatoes	0.3%	Table grapes	0.1%	Wheat	0.3%	19
25		1.56	0.6%	Wine grapes	0.2%	Tomatoes	0.2%	Milk: Cattle	0.1%	1
19		1.49	0.4%	Table grapes	0.2 %	Milk: Cattle	0.2%	Sugar beet roots	0.2%	1
19		1.41	0.9%	Wine grapes	0.1%	Tomatoes	0.1%	Table grapes	0.1%	1
19		1.35	0.6%	Wine grapes	0.1%	Tomatoes	0.1%	Table grapes	0.2%	1
19		1.28	0.4%	Wine grapes	0.1%	Tomatoes	0.1%	Table grapes	0.2%	1
19		1.28	0.9%	Wine grapes	0.1%	Milk: Cattle	0.1%	Tomatoes	0.1%	1
19		1.25	0.3%	Milk: Cattle	0.1%	Wine grapes	0.1%	Table grapes	0.1%	1
19		1.23	0.4%	Wine grapes	0.1%	Tomatoes	0.1%	Table grapes	0.2%	1
19		1.21	0.4%	Wine grapes	0.2%	Table grapes	0.1%	Tomatoes	0.2%	1.0
15		1.18	0.5%	Wine grapes	0.1%	Table grapes	0.1%	Melons	0.2%	1.0
19	% DE women 14-50 vr	1.06	0.3%	Wine grapes	0.2%	Milk: Cattle	0.1%	Table grapes	0.1%	1.0
19	% DE general	1.01	0.3%	Wine grapes	0.2%	Milk: Cattle	0.1%	Table grapes	0.1%	0.9
19	% GEMS/Food G10	1.00	0.2%	Tomatoes	0.2%	Wine grapes	0.1%	Table grapes	0.2%	0.
1.0	9% FR toddler 2 3 yr	0.96	0.4%	Milk: Cattle	0.1%	Wine grapes	0.1%	Wheat	0.1%	0.3
0.9	9% UK infant	0.94	0.5%	Milk: Cattle	0.1%	Strawberries	0.1%	Wheat	0.1%	0.
0.9	9% DK child	0.89	0.2%	Milk: Cattle	0.1%	Cucumbers	0.1%	Wheat	0.1%	0.1
0.9	9% UK toddler	0.87	0.3%	Milk: Cattle	0.1%	Table grapes	0.1%	Wheat	0.1%	0.0
0.8	3% NL general	0.80	0.2%	Wine grapes	0.1%	Milk: Cattle	0.1%	Table grapes	0.1%	0.7
0.8	3% DK adult	0.77	0.4%	Wine grapes	0.1%	Milk: Cattle	0.1%	Table grapes	0.0%	0.7
0.8	% SE general	0.76	0.2%	Milk: Cattle	0.1%	Bovine: Muscle/meat	0.1%	Tomatoes	0.1%	0.6
0.7	% ES child	0.72	0.2%	Milk: Cattle	0.1%	Tomatoes	0.1%	Wheat	0.1%	0.6
0.7	% UK adult	0.68	0.4%	Wine grapes	0.1%	Tomatoes	0.0%	Milk: Cattle	0.0%	0.6
0.6	i% UK vegetarian	0.63	0.3%	Wine grapes	0.1%	Tomatoes	0.0%	Wheat	0.1%	0.6
0.6		0.61	0.2%	Wine grapes	0.1%	Tomatoes	0.1%	Milk: Cattle	0.1%	0.5
0.5		0.52	0.1%	Strawberries	0.1%	Table grapes	0.1%	Tomatoes	0.1%	0.4
0.5		0.51	0.2%	Tomatoes	0.1%	Wheat	0.0%	Table grapes	0.1%	0.4
0.5		0.49	0.2%	Milk: Cattle	0.0%	Strawberries	0.0%	Sugar beet roots	0.1%	0.4
0.4		0.41	0.1%	Tomatoes	0.1%	Wheat	0.0%	Table grapes	0.1%	0.4
0.4		0.41	0.1%	Strawberries	0.1%	Table grapes	0.1%	Tomatoes	0.1%	0.3
0.4		0.40	0.1%	Wine grapes	0.1%	Tomatoes	0.1%	Coffee beans	0.1%	0.3
0.3		0.34	0.1%	Table grapes	0.1%	Tomatoes	0.0%	Potatoes	0.1%	0.3
0.3		0.33	0.1%	Tomatoes	0.1%	Milk: Cattle Wheat	0.0%	Potatoes	0.1%	0.0
0.2	2% IE child	0.15	0.0%	Milk: Cattle	0.0%	vvneat	0.0%	Table grapes	0.0%	0.
Conclusion	a:		1	1	1	1		1		
	ed long-term dietary intake (TMDI/NEDI/IED	 was below the ADI. 								

Proposure TADI) NS Diet 2% NL todaler 2% NL todaler 2% NL todaler 2% NL todaler	Expsoure (µg/kg bw per day) 2.67	LOOs (mg/kg) range f ADI (mg/kg bw/dsy): Source of ADI: Year of evaluation: No of diets exceeding Highest contributor to MS diet	Toxicological reference value 0.02 JMPR 2023 <u>Normal mode</u> Chronic risk assessment: JMPR me	to: S ARID (mg/kg bw): Source of ARID: Year of evaluation:	0.01 0.08 JMPR 2023	Details - cl asses: Details - a assessmen	oment ocute risk	Supplementary res chronic risk assess Details - acute r assessment/adu	nent isk	
RIMo revision 3.1; 2021/01/06 Jexposure AD0 NS Diet 3% NL loddler 2% DE child	Expsoure (µg/kg bw per day) 2.67	Source of ADI: Year of evaluation: No of diets exceeding. Highest contributor to	0.02 JMPR 2023 <u>Normal mode</u> Chronic risk assessment: JMPR me	ARfD (mg/kg bw): Source of ARfD: Year of evaluation:	JMPR 2023	Details - a	icute risk	Details - acute r	isk	
RIMo revision 3.1; 2021/01/06 Jexposure AD0 NS Diet 3% NL loddler 2% DE child	Expsoure (µg/kg bw per day) 2.67	Source of ADI: Year of evaluation: No of diets exceeding. Highest contributor to	JMPR 2023 <u>Normal mode</u> Chronic risk assessment: JMPR me	Source of ARfD: Year of evaluation:	JMPR 2023					
RIMo revision 3.1; 2021/01/06 Jexposure AD0 NS Diet 3% NL loddler 2% DE child	Expsoure (µg/kg bw per day) 2.67	Year of evaluation:	2023 <u>Normal mode</u> Chronic risk assessment: JMPR me	Year of evaluation:	2023					
Hepposure (AD) NS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67	No of diets exceeding Highest contributor to	<u>Normal mode</u> Chronic risk assessment: JMPR me							
f ADI) MS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67	Highest contributor to	Chronic risk assessment: JMPR me	thodology (IEDI/						
f ADI) MS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67	Highest contributor to	Chronic risk assessment: JMPR me	thodology (IEDI/						
f ADI) MS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67	Highest contributor to		thodology (IEDI/						
f ADI) MS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67	Highest contributor to	the ADI :		I MDI)					
f ADI) MS Diet 3% NL toddler 2% DE child	(µg/kg bw per day) 2.67						1			resulting fro
3% NL toddler 2% DE child	2.67	(in % of ADI)	Commodity /	2nd contributor to MS diet (in % of ADI)	Commodity /		3rd contributor to MS diet (in % of ADI)	Commodity / group of commodities	MRLs set at the LOQ (in % of ADI)	under assess (in % of A
		6%	group of commodities Apples	(in % 0i ADI) 2%	group of commodities Pears		0.7%	Oranges	2%	12%
	2.32	7% 3%	Apples Apples	1% 0.6%	Oranges Pears		0.7%	Cherries (sweet) Oranges	0.9% 1%	11% 6%
% GEMS/Food G06	1.08	2%	Tomatoes	0.5%	Apples		0.4%	Wheat	1%	4%
% FR child 3 15 yr	0.88	1%	Oranges	0.9%	Apples		0.4%	Tornatoes	1.0%	4%
% FR toddler 2 3 yr % DE women 14-50 yr	0.86	2% 1%	Apples Apples	0.5%	Oranges Oranges		0.3%	Mandarins Tomatoes	0.8%	4% 3%
% RO general	0.79	1.0%	Tomatoes	0.7%	Apples		0.3%	Head cabbages	0.9%	3%
% GEMS/Food G11	0.79	0.8%	Apples	0.5%	Tomatoes		0.4%	Soyabeans	1.0%	3%
% GEMS/Food G15 % GEMS/Food G08	0.78	0.6%	Tomatoes Apples	0.6%	Apples Tomatoes		0.3%	Sweet peppers/bell peppers	1.0%	3% 3%
% GEMS/Food G08	0.75	0.6%	Tomatoes	0.6%	Apples			Soyabeans Soyabeans	1.0%	3%
% GEMS/Food G07	0.74	0.5%	Tomatoes	0.5%	Apples		0.4%	Oranges	1%	3%
% IE adult	0.74	0.4%	Apples	0.3%	Oranges		0.2%	Pears	1.0%	3%
% DE general	0.73	1%	Apples	0.5%	Oranges		0.3%	Tomatoes	0.6%	3%
% DK child % ES child	0.73	1% 0.7%	Apples	0.4%	Pears Apples		0.3%	Rye Tomatoes	0.9%	3% 3%
% UK toddler	0.68	0.9%	Oranges Apples	0.6%	Oranges		0.3%	Tomatoes	0.9%	3%
% UK infant	0.64	0.8%	Apples	0.4%	Oranges		0.4%	Milk: Cattle	0.8%	3%
% SE general	0.64	0.6%	Apples	0.4%	Tomatoes			Oranges	0.8%	3%
% IT toddler	0.55	0.7%	Tomatoes	0.5%	Apples		0.3%	Wheat	0.6%	2%
% NL general % PT general	0.54	0.8%	Apples	0.3%	Oranges		0.2%	Tomatoes Potatoes	0.7%	2% 2%
% ES adult	0.48	0.4%	Oranges	0.4%	Apples		0.4%	Tomatoes	0.5%	2%
% PL general	0.47	1%	Apples	0.4%	Tomatoes		0.2%	Potatoes	0.3%	2%
% IT adult	0.45		Tomatoes		Apples			Wheat	0.4%	2%
										2% 2%
										2%
% FR adult	0.37	0.4%	Apples		Tomatoes				0.5%	1%
% UK vegetarian	0.34	0.3%	Tomatoes	0.3%	Apples		0.3%	Oranges	0.4%	1%
% DK adult	0.34	0.5%	Apples		Tomatoes		0.2%	Pears	0.3%	1%
			Apples							1% 1%
	0.29	0.3%	Tomatoes	0.2%			0.3%	Oranges	0.2%	1%
% FI6 yr % FI adult % UK adult		0.2%	Apples	0.1%	Broccoli		0.1%	Wheat	0.2%	0.4%
	% PT opneral % ES adult % FS adult % FI adult % FR infant % FR adult % FR adult % FR adult % FR adult % FK adult % FK adult % FK adult % FI adult % FI adult % FI adult	% PT openral 0.53 % ES adult 0.48 % PL openral 0.47 % TI adult 0.47 % FL infant 0.41 % FR infant 0.41 % FR adult 0.37 % FR adult 0.34 % FR adult 0.34 % DK adult 0.34 % FI 6 yr 0.32 % FI adult 0.32	% PT general 0.53 0.6%, % ES dodt 0.48 0.4% % PL general 0.47 1%, % Ti adult 0.45 0.6%, % Fl ayr 0.43 0.5%, % Fl ayr 0.41 0.9%, % Fl radut 0.41 1.0%, % FR adut 0.37 0.4%, % FR adut 0.37 0.3%, % DK adult 0.32 0.3%, % DK adult 0.32 0.3%, % DK adult 0.29 0.3%, % UK vegeterian 0.29 0.3%, % DK adult 0.27 0.2%, % UK adult 0.27 0.2%, % E child 0.11 0.2%	% PT openeral 0.53 0.6% Apples % ES adult 0.48 0.4% Oranges % PL openeral 0.47 1% Apples % PL openeral 0.47 1% Apples % Fl 3yr 0.43 0.6% Tornatoes % Fl 3yr 0.43 0.5% Apples % Fl adult 0.41 0.9% Apples % LT adult 0.41 0.9% Apples % Fl adult 0.37 0.4% Apples % VK vegetarian 0.34 0.5% Apples % DK adult 0.34 0.5% Apples % Fl 6 yr 0.32 0.3% Apples % Fl f adult 0.29 0.3% Apples % Fl f adult 0.29 0.3% Apples	% PT openeral 0.53 0.6% Apples 0.4% % ES adult 0.48 0.4% Oragoen 0.4% % PL openeral 0.47 1% Apples 0.4% % IT adult 0.47 1% Apples 0.4% % IT adult 0.47 1% Apples 0.4% % IT adult 0.43 0.5% Apples 0.3% % F1 afput 0.41 0.9% Apples 0.2% % LT adult 0.41 0.9% Apples 0.2% % LT adult 0.31 0.5% Apples 0.2% % LT adult 0.37 0.4% Apples 0.2% % UK adult 0.34 0.5% Apples 0.3% % DK adult 0.34 0.5% Apples 0.3% % DK adult 0.29 0.3% Apples 0.2% % F	M PT openeral 0.63 0.6% Apples 0.4% Tomalooes K ES dubt 0.48 0.4% Oragoes 0.4% Apples K ES dubt 0.47 1% Apples 0.4% Apples K If adult 0.47 1% Apples 0.4% Apples K If adult 0.47 0.5% Apples 0.4% Apples K F1 adult 0.43 0.5% Apples 0.3% Tomatoes K F1 adult 0.41 0.9% Apples 0.3% Tomatoes K LT adult 0.41 0.9% Apples 0.3% Tomatoes K LT adult 0.41 0.9% Apples 0.3% Tomatoes K LT adult 0.37 0.4% Apples 0.3% Tomatoes K UK opedarian 0.3 0.3% Apples 0.3% Tomatoes K DK adult 0.2%	% PT general 0.53 0.6% Apples 0.4% Tomatoes % FS adult 0.48 0.4% Apples 0.4% Apples % FS adult 0.47 1% Apples 0.4% Apples % IT adult 0.47 1% Apples 0.4% Apples % IT adult 0.47 0.5% Apples 0.4% Apples % IT adult 0.43 0.5% Apples 0.3% Apples % FR adult 0.41 0.5% Apples 0.3% Tomatoes % FR adult 0.41 0.5% Apples 0.3% Tomatoes % FR adult 0.37 0.4% Apples 0.3% Tomatoes % Vegetarian 0.37 0.4% Apples 0.3% Tomatoes % UK ogetarian 0.34 0.5% Apples 0.3% Tomatoes % FI adult 0.24	$\%$ PT general0.530.6%Apples0.4%Tornatoes0.3% κ ES adult0.480.4%Orges0.4%Apples0.4%Apples0.4% κ PL general0.471%Apples0.4%Tornatoes0.2% κ IT adult0.430.6%Apples0.4%Tornatoes0.2% κ F1 ayr0.430.5%Apples0.3%Apples0.3%0.4% κ F1 ayr0.410.5%Apples0.3%Tornatoes0.2% κ F1 adult0.410.9%Apples0.3%Tornatoes0.2% κ LT adult0.370.4%Apples0.3%Tornatoes0.2% κ LT adult0.370.4%Apples0.3%Tornatoes0.2% κ UK seglaterian0.340.5%Apples0.3%Tornatoes0.2% κ F1 adult0.340.5%Apples0.3%Tornatoes0.2% κ F1 adult0.340.5%Apples0.3%Tornatoes0.2% κ F1 adult0.290.3%Apples0.2%Tornatoes0.2% κ F1 adult0.290.3%Apples0.2%Caffee bears0.2% κ F1 adult0.290.3%Apples0.2%Caffee bears0.3% κ F1 adult0.290.3%Apples0.2%Caffee bears0.2% κ F1	\dot{M} PT general0.530.6%Apples0.4%Tornatoes0.3%Potacos \dot{M} ES dudt0.4%0.4%0.7matoes0.4%Apples0.4%Apples \dot{M} P. general0.471%Apples0.4%Tornatoes0.4%0.2%Potacos \dot{M} Tradut0.471%Apples0.4%Apples0.4%Apples0.2%Mead \dot{M} Tradut0.430.5%Apples0.3%Tornatoes0.2%Mead \dot{M} Tradut0.410.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.410.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.410.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.410.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.410.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Vegetarian0.370.4%Apples0.3%Tornatoes0.2%Potacos \dot{M} Vegetarian0.340.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.340.5%Apples0.3%Tornatoes0.2%Potacos \dot{M} Tradut0.2%0.5%Apples0.2%Tornatoes0.2%Potacos \dot{M} Tradut <td>% PT general 0.53 0.6% Apples 0.4% Tomatoes 0.3% Potances 0.8% % ES duth 0.48 0.4% Oranges 0.4% Apples 0.4% Tomatoes 0.3% Potances 0.3% Yeads 0.3% Potances 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.2% Potatoes 0.3% Yeads 0.2% Wheat 0.4% 0.4% Yeads 0.4% Yeads 0.2% Potatoes 0.4% Yeads 0.4% Yeads 0.2% Potatoes 0.4% Yeads <</td>	% PT general 0.53 0.6% Apples 0.4% Tomatoes 0.3% Potances 0.8% % ES duth 0.48 0.4% Oranges 0.4% Apples 0.4% Tomatoes 0.3% Potances 0.3% Yeads 0.3% Potances 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.3% Yeads 0.2% Potatoes 0.3% Yeads 0.2% Wheat 0.4% 0.4% Yeads 0.4% Yeads 0.2% Potatoes 0.4% Yeads 0.4% Yeads 0.2% Potatoes 0.4% Yeads <

	Acute risk assessment /chi	ldren		Acute	risk assessment / adults / gene	ral populati	on
Deta	ils - acute risk assessment	/children		De	etails - acute risk assessmen	t/adults	
The acute risk assess	ment is based on the ARfD. DISCLAIMER:	Dietary data from t	he UK were in	cluded in PRIMO whe	n the UK was a member of the European Uni	ion.	
The calculation is base	ed on the large portion of the most critical co	insumer group.					
		Sho	w results	for all crops	i		
Results for children				Results for adults			
No. of commodities fo	r which ARfD/ADI is exceeded (IESTI):			No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL / input	_			MRL / input	_
Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Expos (µg/kg
66%	Head cabbages	4 / 1.2	53	63%	Head cabbages	4 / 1.2	50
47%	Pears	0.4 / 0.27	37	14%	Broccoli	0.7 / 0.46	11
36%	Oranges	0.4 / 0.22	29	10%	Pears	0.4 / 0.27	8.2
36%	Apples	0.4 / 0.27	29	9%	Apples	0.4 / 0.27	7.6
31%	Tomatoes	0.5 / 0.43	25	9%	Cauliflowers	0.5 / 0.32	7.4
27%	Peaches	0.3 / 0.23	22	9%	Tomatoes	0.5 / 0.43	6.8
24%	Broccoli	0.7 / 0.46	19	8%	Oranges	0.4 / 0.22	6.7
23%	Cauliflowers	0.5 / 0.32	19	8%	Cherries (sweet)	1/0.62	6.2
19%	Mandarins	0.4 / 0.25	15 13	7%	Kaki/Japanese persimmons	0.4 / 0.27	5.9 5.7
17% 16%	Plums Kaki/Japanese persimmons	0.4 / 0.32 0.4 / 0.27	13	6%	Plums	0.4 / 0.32 0.3 / 0.18	5./
15%	Melons	0.15 / 0.08	12	6%	Aubergines/egg plants Brussels sprouts	2/0.81	4.8
15%	Grapefruits	0.3 / 0.15	12	6%	Mandarins	0.4 / 0.25	4.5
13%	Sweet peppers/bell peppers	0.3 / 0.18	11	5%	Peaches	0.3 / 0.23	4.3
11%	Lemons	0.5 / 0.25	8.6	5%	Quinces	0.4 / 0.27	4.1
Expand/collapse list							
	modities exceeding the ARfD/ADI in chil	dren and adult					
diets (IESTI calculation)							
Results for children				Results for adults			
No of processed comr (IESTI):	nodities for which ARfD/ADI is exceeded			No of processed cor (IESTI):	nmodities for which ARfD/ADI is exceeded		
IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg
45%	Broccoli / boiled	0.7 / 0.46	36	17%	Cauliflowers / boiled	0.5 / 0.32	13
28% 10%	Cauliflowers / boiled	0.5 / 0.32 2 / 0.81	22 8.2	14% 4%	Broccoli / boiled	0.7 / 0.46 0.4 / 0.11	11 3.5
10%	Brussels sprouts / boiled Peaches / canned	2 / 0.81 0.3 / 0.23	8.2 6.0	4%	Apples / juice Peaches / canned	0.4 / 0.11 0.3 / 0.23	3.5
7%	Apples / juice	0.4 / 0.11	5.7	2%	Courgettes / boiled	0.09 / 0.06	1.8
4%	Pears / juice	0.4 / 0.11	3.4	1%	Oranges / juice	0.4 / 0.06	0.9
4%	Oranges / juice	0.4 / 0.06	3.4	1%	Tomatoes / sauce/puree	0.5 / 0.1	0.8
3%	Courgettes / boiled	0.09 / 0.06	2.2	0.9%	Grapefruits / juice	0.3 / 0.06	0.7
2%	Tomatoes / juice	0.5 / 0.1	1.9	0.7%	Pumpkins / boiled	0.01 / 0.01	0.5
2%	Peaches / juice	0.3 / 0.1	1.6	0.5%	Sugar beets (root) / sugar	0.01 / 0.12	0.4
1%	Sugar beets (root) / sugar	0.01 / 0.12	1.1	0.5%	Beetroots / boiled	0.01 / 0.01	0.3
1%	Tomatoes / sauce/puree	0.5 / 0.1	0.95 0.93	0.5%	Head cabbages / canned	4 / 0.04	0.3
					Celeries / boiled	0.01 / 0.01	0.34
1%	Potatoes / fried	0.01 / 0.01		0.4%			
	Potatoes / tried Pumpkins / boiled Witloofs / boiled	0.01 / 0.01 0.01 / 0.01 0.01 / 0.01	0.89	0.3%	Parsnips / boiled Kohlrabies / boiled	0.01 / 0.01 0.01 / 0.01	0.2

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Isocycloseram (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARID/ADI was identified.

* •				Isotianil					t values		
otca		LOQs (mg/kg) range f	rom:	0.01	to:	0.02	Details -	chronic risk	Supplementary	results -	
elsam			Toxicolo	gical reference	values		asse	essment	chronic risk as	essment	
efsa Food Safety Authority		ADI (mg/kg bw/day):		0.05	ARfD (mg/kg bw):	not necessary					
n Food Safety Authority		Source of ADI:		JMPR	Source of ARfD:	JMPR		- acute risk	Details - acu		
RIMo revision 3.1; 2021/01/06		Year of evaluation:		2023	Year of evaluation:	2023	assessm	ent/children	assessment,	adults	
					al mode						
			Chronic	risk assessmen	t: JMPR methodo	ology (IEDI/TMDI)					
		No of diets exceeding	the ADI :			1		-		Exposure	
										MRLs set at the LOQ	commo under as
d exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /		3rd contributor to MS diet	S Commodity /	(in % of ADI)	(in %
f ADI) MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
1% NL toddler	1.87	2%	Milk: Cattle		0.2%	Apples		0.1%	Maize/corn	4%	
% UK infant	1.01	2%	Milk: Cattle		0.1%	Potatoes		0.1%	Wheat	2%	
% NL child	0.93	1.0%	Milk: Cattle		0.2%	Sugar beet roots		0.1%	Apples	2%	
% FR toddler 2 3 yr	0.87	1%	Milk: Cattle		0.1%	Apples		0.1%	Wheat	2%	
% DE child	0.83	0.8%	Milk: Cattle		0.2%	Apples		0.1%	Oranges	2%	
% FR child 3 15 yr	0.81	0.9%	Milk: Cattle		0.1%	Wheat		0.1%	Oranges	2%	
% UK toddler % DK child	0.68	0.8%	Milk: Cattle Milk: Cattle		0.1%	Wheat		0.1%	Potatoes Swine: Muscle/meat	1% 1%	
% Dix child % SE general	0.58	0.5%	Milk: Cattle		0.1%	Rye Bovine: Muscle/meat		0.1%	Potatoes	1%	
% ES child	0.54	0.5%	Milk: Cattle		0.2%	Wheat		0.1%	Bovine: Muscle/meat	1.0%	
% RO general	0.52	0.5%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	1%	
% GEMS/Food G11	0.51	0.3%	Milk: Cattle		0.1%	Potatoes		0.1%	Soyabeans	1.0%	
0% DE women 14-50 yr	0.49	0.5%	Milk: Cattle		0.1%	Sugar beet roots		0.1%	Apples	0.9%	
0% DE general	0.48	0.5%	Milk: Cattle		0.1%	Sugar beet roots		0.0%	Apples	0.9%	
0% GEMS/Food G15	0.48	0.3%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.9%	
0% GEMS/Food G07	0.48	0.3%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.9%	
9% FR infant	0.47	0.7%	Milk: Cattle		0.0%	Potatoes		0.0%	Apples	0.9%	
9% GEMS/Food G08	0.46	0.2%	Milk: Cattle		0.1%	Wheat		0.1%	Swine: Muscle/meat	0.9%	
9% GEMS/Food G10	0.45	0.2%	Milk: Cattle		0.1%	Wheat		0.1%	Soyabeans	0.9%	
8% GEMS/Food G06	0.42	0.1%	Wheat		0.1%	Milk: Cattle		0.1%	Tomatoes	0.8%	
8% NL general	0.39	0.3%	Milk: Cattle		0.1%	Sugar beet roots		0.0%	Potatoes	0.8%	
8% IE adult	0.39	0.2%	Milk: Cattle		0.1%	Sweet potatoes		0.0%	Wheat	0.7%	
6% ES adult	0.28	0.2%	Milk: Cattle		0.0%	Wheat		0.0%	Oranges	0.5%	
5% FR adult	0.26	0.2%	Milk: Cattle		0.0%	Wine grapes		0.0%	Wheat	0.5%	
5% DK adult	0.24	0.2%	Milk: Cattle		0.0%	Swine: Muscle/meat		0.0%	Potatoes	0.5%	
4% LT adult	0.22	0.2%	Milk: Cattle		0.1%	Potatoes		0.0%	Swine: Muscle/meat	0.4%	
4% PT general	0.21	0.1%	Potatoes		0.1%	Wheat		0.0%	Wine grapes	0.4%	
4% UK vegetarian 4% UK adult	0.18	0.1%	Milk: Cattle Milk: Cattle		0.0%	Wheat Wheat		0.0%	Potatoes Potatoes	0.3%	
4% UK adult 3% FI 3 yr	0.18	0.1%	Milk: Cattle Potatoes		0.0%	vvneat Bananas		0.0%	Wheat	0.3%	
3% FI3 yr 3% IT toddler	0.17	0.1%	Wheat		0.0%	Bananas Other cereals		0.0%	Tomatoes	0.3%	
3% FI6 yr	0.17	0.1%	Potatoes		0.0%	Wheat		0.0%	Bananas	0.3%	
2% IT adult	0.13	0.1%	Wheat			Tomatoes		0.0%			
2% IE child	0.12	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.2%	
2% PL general	0.10	0.1%	Potatoes		0.0%	Apples		0.0%	Tomatoes	0.2%	0
2% IE child		0.12	0.12 0.1% 0.12 0.1%	0.12 0.1% Wheat 0.12 0.1% Milk: Cattle	0.12 0.1% Wheat 0.12 0.1% Milk: Cattle	0.12 0.1% Wheat 0.0% 0.12 0.1% Milk: Cattle 0.0%	0.12 0.1% Wheat 0.0% Tomatoes 0.12 0.1% Milk: Cattle 0.0% Wheat	0.12 0.1% Wheat 0.0% Tomatoes 0.12 0.1% Milk: Cattle 0.0% Wheat	0.12 0.1% Wheat 0.0% Tomatoes 0.0% 0.12 0.1% Milk: Cattle 0.0% Wheat 0.0%	0.12 0.1% Wheat 0.0% Tomatoes 0.0% Apples 0.12 0.1% Milk: Cattle 0.0% Wheat 0.0% Potatoes	0.12 0.1% Wheat 0.0% Tomatoes 0.0% Apples 0.2% 0.12 0.1% Milk: Cattle 0.0% Wheat 0.0% Potatoes 0.2%

DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

-		fsa Safety Authority		Mepiqu		quat and its <u>luat chlorid</u> 2		oressed as	Details - c	Input hronic risk	Supplementary res	ults -	
	* * e	Sdm		LOOS (mgrkg) range in		gical reference val		0.10	asses	sment	chronic risk assessi	nent	
				ADI (mg/kg bw/day):		0.2	ARfD (mg/kg bw):	0.3	<u> </u>		·	\rightarrow	
Ει	uropean Food	d Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	Details - a		Details - acute ri		
		evision 3.1; 2019/03/19		Year of evaluation:		2008	Year of evaluation:	2008	assessmer	nt/children	assessment/adu	its	ł.
nent	ts:												
					Bet	fined calculatio	modo						
						ssessment: JMPR	methodology (It					1	
				No of diets exceeding t	he ADI :		-			1		Exposure MRLs set at	re resulting
			Expsoure	Highest contributor to			2nd contributor to MS			3rd contributor to MS		the LOQ	under a
	Calculated exposu (% of ADI)	re MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity / group of commodities		diet (in % of ADI)	Commodity / group of commodities		diet (in % of ADI)	Commodity / group of commodities	(in % of ADI)	<u>ار ار ا</u>
┥	(% 01 ADI) 8%	NL toddler	15.02	2%	Sunflower seeds		2%	Rapeseeds/canola seeds		1%	Milk: Cattle		
I	7%	RO general	14.34	4%	Sunflower seeds		2%	Wheat		0.8%	Wine grapes		
I	7%	GEMS/Food G08	13.74	3%	Sunflower seeds		1%	Wheat		0.6%	Rapeseeds/canola seeds		
I	7%	GEMS/Food G15	13.49	3%	Sunflower seeds		1%	Wheat		0.5%	Wine grapes		
	7%	GEMS/Food G07	13.11	2%	Sunflower seeds		1%	Wheat		1.0%	Rapeseeds/canola seeds		
I	6% 5%	NL child GEMS/Food G06	11.83 9.24	2% 2%	Sunflower seeds Wheat		1% 1%	Wheat Sunflower seeds		0.8%	Rapeseeds/canola seeds Table grapes		
	4%	FR child 3 15 vr	8.73	2%	Sunflower seeds		1%	Wheat		0.5%	Milk: Cattle		
	4%	GEMS/Food G10	8.64	1%	Sunflower seeds		1%	Wheat		0.5%	Rapeseeds/canola seeds		
	4%	PT general	8.64	2%	Sunflower seeds		1%	Wheat		1%	Wine grapes		
	4%	DK child	8.31	2%	Rye		1%	Wheat		0.6%	Swine: Muscle/meat		
	4%	IE adult	7.85	1%	Sunflower seeds		0.8%	Linseeds		0.7%	Wheat		
I	4%	DE child	7.34	1%	Wheat		0.6%	Table grapes		0.6%	Sunflower seeds		
	3%	GEMS/Food G11	6.93	1%	Wheat		0.7%	Sunflower seeds		0.5%	Wine grapes		
	3%	NL general	6.79	1%	Sunflower seeds		0.6%	Wheat		0.5%	Rapeseeds/canola seeds		
	3% 3%	FR toddler 2 3 yr	6.13	0.9% 1%	Wheat		0.8%	Sunflower seeds Sunflower seeds		0.7%	Milk: Cattle Wheat		
	3%	FR adult ES child	5.73 5.62	1%	Wine grapes Wheat		0.7%	Sunnower seeds		0.3%	Milk: Cattle		
I	3%	DE general	5.01	0.6%	Wheat		0.4%	Wine grapes		0.4%	Sunflower seeds		
I	2%	DE women 14-50 vr	4.90	0.6%	Wheat		0.4%	Sunflower seeds		0.4%	Wine grapes		
	2%	IT toddler	4.30	2%	Wheat		0.1%	Sunflower seeds		0.0%	Table grapes		
I	2%	ES adult	4.18	0.7%	Wheat		0.6%	Sunflower seeds		0.2%	Wine grapes		
I	2%	UK infant	3.92	1.0%	Milk: Cattle		0.8%	Wheat		0.1%	Oat		
I	2%	UK toddler	3.84	1%	Wheat		0.5%	Milk: Cattle		0.1%	Table grapes		
	1% 1%	SE general	3.00	1.0%	Wheat		0.3%	Milk: Cattle Wheat		0.1%	Bovine: Muscle/meat		
	1%	DK adult IT adult	2.83 2.73	0.4% 1%	Wine grapes Wheat		0.3%	Table grapes		0.2%	Swine: Muscle/meat Sunflower seeds		
	1%	LT adult	2.73	0.3%	Rye		0.3%	V heat		0.3%	Sunflower seeds		
I	1%	UK adult	2.32	0.5%	Wheat			Wine grapes		0.1%	Milk: Cattle	1	
I	1%	UK vegetarian	2.31	0.6%	Wheat		0.4%	Wine grapes		0.1%	Milk: Cattle		
	1%	FI3 yr	2.20	0.4%	Wheat		0.2%	Oat		0.2%	Rye		
	0.9%	FR infant	1.88	0.4%	Milk: Cattle		0.2%	Wheat		0.1%	Sunflower seeds		
	0.8%	FI 6 yr	1.68	0.3%	Wheat		0.2%	Rye		0.1%	Oat		
	0.6% 0.5%	FI adult IE child	1.27	0.2%	Rye Wheat		0.1%	Wine grapes Milk: Cattle		0.1%	Wheat Swine: Muscle/meat		
	0.5%	PL general	0.41	0.3%	Table grapes		0.1%	Sunflower seeds		0.0%	Cultivated fungi		
- 1		-			1		1	1			l .	1	

Details - acute risk assessment /children

Acute risk assessment / adults / general population	

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children No. of commodities	en for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities	or which ARfD/ADI is exceeded (IES	STI):	
IESTI				IESTI			
		MRL / input	_			MRL / input	_
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
83%	Table grapes	4 / 3.41	248	39%	Table grapes	4/3.41	11
17%	Cultivated fungi	0.09 / 2.95	50	27%	Wine grapes	4 / 3.41	81
13%	Sunflower seeds	40 / 12.5	40	5%	Cultivated fungi	0.09 / 2.95	15
11%	Wine grapes	4 / 3.41	32	4%	Sunflower seeds	40 / 12.5	10
4%	Linseeds	40 / 11.5	12	3%	Poppy seeds	40 / 11.5	8.
4%	Mustard seeds	40 / 11.5	12	3%	Mustard seeds	40 / 11.5	8.
3%	Wheat	3 / 0.6	8.7	2%	Linseeds	40 / 11.5	5.
2%	Milk: Cattle	0.07 / 0.05	6.2	2%	Wheat	3 / 0.6	5.0
2%	Rapeseeds/canola seeds	15 / 3.65	5.0	1%	Barley	4 / 0.73	3.
1%	Barley	4 / 0.73	4.1	1.0%	Rye	3 / 0.6	2.9
1%	Bovine: Liver	0.5 / 0.49	4.0	0.9%	Sheep: Liver	0.6 / 0.94	2.0
1%	Rye	3 / 0.6	3.8	0.7%	Bovine: Liver	0.5 / 0.49	2.
0.6%	Milk: Goat	0.15 / 0.07	1.7	0.6%	Milk: Cattle	0.07 / 0.05	1.
	Bovine: Kidnev	0.8 / 0.4	1.5	0.6%	Rapeseeds/canola seeds	15 / 3.65	1.5
0.5%							
0.3% Expand/collapse lis	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi	0.07 / 0.07	0.87	0.4%	Milk: Goat	0.15 / 0.07	1.3
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi		0.87	Results for adults		0.15 / 0.07	1.3
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi			Results for adults	Milk: Goat	0.15 / 0.07	1.5
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre No of processed co	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi	ldren and adult		Results for adults No of processed cor			
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childred No of processed cc (IESTI): IESTI	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi	Idren and adult		Results for adults No of processed cor exceeded (IESTI): IESTI		MRL / input	
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre No of processed cc (IESTI): IESTI Highest % of	Eggs: Chicken ommodities exceeding the ARfD/ADI in chi i an mmodities for which ARfD/ADI is exceeded	Idren and adult	 Exposure	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of	nmodities for which ARfD/ADI is	MRL / input for RA	Expos
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre No of processed cc (IESTI): IESTI Highest % of ARtD/ADI	Eggs: Chicken ommodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities	ldren and adult MRL / input for RA (mg/kg)	Exposure (µg/kg bw)	Results for adults No of processed core exceeded (IESTI): IESTI Highest % of ARID/ADI	nmodities for which ARfD/ADI is Processed commodities	MRL / input for RA (mg/kg)	Expos (µg/kg
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childr No of processed cc (IESTI): IESTI Highest % of ARfD/ADI 13%	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice	Idren and adult MRL / input for RA (mg/kg) 4 / 0.92	Exposure (µg/kg bw) 40	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARtf0/ADI 11%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine	MRL / input for RA (mg/kg) 4 / 3.41	Expos (µg/kg 32
0.3% Expand/collapse liss Total number of c diets (IESTI calculation) Results for childred No of processed cc (IESTI): IESTI Highest % of ARfD/ADI 13% 10%	Eggs: Chicken ommodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils	Idren and aduit MRL / input for RA (mg/kg) 4 / 0.92 40 / 25	Exposure (µg/kg bw) 40 29	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARtD/ADI 11% 7%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / raisins	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01	Expos (µg/kg 32 20
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre No of processed cc (IESTI): IESTI Highest % of ARtD/ADI 13% 10% 5%	Eggs: Chicken t ommodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cutivated fungi / fried	MRL / input for RA (mg/kg) 4 / 0.92 40 / 25 0.09 / 2.95	Exposure (µg/kg bw) 40 29 15	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 7% 6%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / raisins Wine grapes / juice	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92	Expor (µg/kg 32 20 19
0.3% Expand/collapse liss Total number of c diets (IESTI calculation) Results for childr No of processed cc (IESTI): IESTI Highest % of ARID/ADI 13% 10% 5% 5% 2%	Eggs: Chicken t commodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivated fungi / fried Wheat / miling (flour)	MRL / input for RA (mg/kg) 4 / 0.92 40 / 25 0.09 / 2.95 3 / 0.6	Exposure (µg/kg bw) 40 29 15 7.3	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childre No of processed cc (IESTI): IESTI: IESTI Highest % of ARtD/ADI 13% 10% 5% 2% 1%	Eggs: Chicken mmodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cutivated fungi / fried Wheat / milling (hlour) Wheat / milling (hlour)	MRL / input for RA (mg/kg) 4 / 0.92 40 / 25 0.09 / 2.95 3 / 0.6	Exposure (µg/kg bw) 40 29 15 7.3 3.3	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 7% 6%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / raisins Wine grapes / juice	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childr No of processed cc (IESTI): IESTI Highest % of ARID/ADI 13% 10% 5% 2% 1% 0.9%	Eggs: Chicken t commodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivated fungi / fried Wheat / milling (wholemeal)-baking Oat / boiled	MRL / input for RA (mg/kg) 4 / 0.92 40 / 25 3 / 0.6 3 / 0.73	Exposure (µg/kg bw) 40 29 15 7.3 3.3 2.6	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse liss Total number of c diets (IEST) calculation) Results for children No of processed co: (IEST): IEST): Highest % of ARTO/ADI 13% 10% 5% 2% 1% 0.9% 0.9%	Eggs: Chicken mmodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivat/e fluing / fried Wheat / milling (flour) Wheat / milling (wholemeal)-baking Oat / boiled Barley / cooked	MRL / input for RA (mg/kg) 4 (0.92 40 / 25 0.09 / 2.95 3 / 0.6 3 / 0.73 4 (0.73 4 (0.73	Ехрозите (µg/kg bw) 40 29 15 7.3 3.3 2.6	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Expos (µg/kg
0.3% Expand/collapse lis Total number of c diets (IESTI calculation) Results for childr No of processed cc (IESTI): Highest % of ARID/ADI 13% 10% 5% 2% 1% 0.9%	Eggs: Chicken t commodities exceeding the ARfD/ADI in chi an mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivated fungi / fried Wheat / milling (wholemeal)-baking Oat / boiled	MRL / input for RA (mg/kg) 4 / 0.92 40 / 25 3 / 0.6 3 / 0.73	Exposure (µg/kg bw) 40 29 15 7.3 3.3 2.6	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse liss Total number of c diets (IESTI calculation) Results for childrn No of processed co (IESTI): IESTI Highest % of ARtD/ADI 13% 10% 5% 2% 1% 0.9%	Eggs: Chicken mmodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivat/e fluing / fried Wheat / milling (flour) Wheat / milling (wholemeal)-baking Oat / boiled Barley / cooked	MRL / input for RA (mg/kg) 4 (0.92 40 / 25 0.09 / 2.95 3 / 0.6 3 / 0.73 4 (0.73 4 (0.73	 Exposure (µg/kg bw) 40 29 15 7.3 3.3 2.6 2.6 2.6 2.6 2.2	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse liss Total number of c diets (IESTI calculation) Results for childre No of processed cc (IESTI): IESTI Highest % of ARfD/ADI 13% 10% 5% 2% 1% 0.9% 0.9% 0.7%	Eggs: Chicken mmodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cutivated fungi / fried Wheat / milling (flour) Wheat / milling (flour) Wheat / milling (flour) Cutivated fungi / fried Cutivated	MRL / input for RA (mg/kg) 4 / 0.92 4 0 / 25 0.09 / 2.95 3 / 0.6 3 / 0.7 3 / 0.73 3 / 0.73	 Exposure (µg/kg bw) 40 29 15 7.3 3.3 2.6 2.6 2.2	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	Ехроз (µg/kg 32 20 19 5.3
0.3% Expand/collapse lis Total number of c diets ((EST) calculation) Results for childrif No of processed co ((EST)): IESTI Highest % of ARtD/ADI 10% 5% 2% 1% 0.9% 0.9% 0.7%	Eggs: Chicken t Eggs: Chicken mmodities exceeding the ARfD/ADI in chi mmodities for which ARfD/ADI is exceeded Processed commodities Wine grapes / juice Sunflower seeds / oils Cultivated fungi / fried Wheat / milling (flour) Wheat / milling (wholemeal)-baking Oat / boiled Barley / cooked Oat / milling (flakes) Rye / boiled	MRL / input for RA (mg/kg) 4 / 0.92 4 / 0.92 4 0 / 25 0.09 / 2.95 3 / 0.6 3 / 0.73 4 / 0.73 3 / 0.6	 Exposure (µg/kg bw) 40 29 15 7.3 3.3 2.6 2.6 2.6 2.6 2.2	Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 7% 6% 2%	nmodities for which ARfD/ADI is Processed commodities Wine grapes / wine Table grapes / vine Table grapes / juice Barley / beer	MRL / input for RA (mg/kg) 4 / 3.41 4 / 16.01 4 / 0.92 4 / 0.15	 Ехрос (µg/kg 32 20 15 5.3

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Mepiquat (sum of mepiquat and its salts, expressed as mepiquat chloride) is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

		-			Tricv	clazole				Input	values		
		Faa		LOQs (mg/kg) range fr			to:	0.05	Details - ch	nronic risk	Supplementary	results -	
	**	fsa 💼			Toxicological	reference values			assess		chronic risk ass	essment	
				ADI (mg/kg bw/day):		0.05	ARfD (mg/kg bw):	0.05					
Eι	Iropean Food	Safety Authority		Source of ADI:		EFSA	Source of ARID:	EFSA	Details - a assessmen		Details - acu assessment/		
		ision 3.1; 2021/01/06		Year of evaluation:		2023	Year of evaluation:	2023	assessmen	veniluren	assessmenty	aduits	
nent	s:												
						ormal mode							
				1	Chronic risk assess	ment: JMPR method	ology (IEDI/TMD	DI)					
				No of diets exceeding t	he ADI :							Exposure MRLs set at	e resulting fr
			Expsoure	Highest contributor to			2nd contributor to MS			3rd contributor to MS		the LOQ	under asse
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per dav)	MS diet (in % of ADI)	Commodity /		diet (in % of ADI)	Commodity /		diet (in % of ADI)	Commodity / group of commodities	(in % of ADI)) (11.20
+	(% 01 ADI) 2%	NL toddler	1.24	(III % 0I ADI) 1%	group of commodities Milk: Cattle		(III % 01 ADI) 0.2%	group of commodities Apples		0.1%	Maize/com	2%	1%
	1%	NL child	0.66	0.5%	Milk: Cattle			Sugar beet roots		0.1%	Apples	1%	0.6
	1%	DE child	0.63	0.4%	Milk: Cattle		0.2%	Apples		0.1%	Wheat	1%	0.5
	1%	UK infant	0.61	0.8%	Milk: Cattle		0.1%	Potatoes		0.1%	Wheat	1%	0.9
	1%	FR toddler 2 3 yr	0.56	0.6%	Milk: Cattle		0.1%	Apples		0.1%	Wheat	1%	0.7
	1%	FR child 3 15 yr	0.55	0.5%	Milk: Cattle			Wheat		0.1%	Sugar beet roots	1%	0.6
	0.9%	UK toddler	0.45	0.4%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.9%	0.5
	0.8%	GEMS/Food G11	0.42	0.2%	Milk: Cattle		0.1%	Potatoes		0.1%	Soyabeans	0.8%	0.2
	0.8%	DK child	0.41	0.3%	Milk: Cattle		0.1%	Rve		0.1%	Wheat	0.8%	0.4
	0.8%	GEMS/Food G07	0.38	0.1%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.8%	0.2
	0.8%	GEMS/Food G06	0.38	0.1%	Wheat		0.1%	Tomatoes		0.0%	Milk: Cattle	0.7%	0.1
	0.8%	GEMS/Food G15	0.38	0.1%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.8%	0.2
	0.8%	GEMS/Food G08	0.38	0.1%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.8%	0.2
	0.8%	RO general	0.38	0.2%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.8%	0.3
	0.8%	ES child	0.38	0.2%	Milk: Cattle		0.1%	Wheat		0.1%	Cocoa beans	0.7%	0.4
	0.7%	SE general	0.37	0.2%	Milk: Cattle			Bovine: Muscle/meat		0.1%	Potatoes	0.7%	0.4
	0.7%	DE women 14-50 vr	0.37	0.2%	Milk: Cattle		0.1%	Sugar beet roots		0.1%	Apples	0.7%	0.3
	0.7%	GEMS/Food G10	0.37	0.1%	Milk: Cattle		0.1%	Wheat		0.1%	Sovabeans	0.7%	0.2
	0.7%	DE general	0.36	0.2%	Milk: Cattle		0.1%	Sugar beet roots		0.0%	Apples	0.7%	0.3
	0.7%	Fladult	0.35	0.6%	Coffee beans		0.0%	Potatoes		0.0%	Rye	0.7%	0.0
	0.7%	IE adult	0.33	0.1%	Milk: Cattle			Sweet potatoes		0.0%	Wheat	0.7%	0.1
	0.6%	NL general	0.30	0.2%	Milk: Cattle		0.1%	Sugar beet roots		0.0%	Potatoes	0.6%	0.2
	0.6%	FR infant	0.29	0.3%	Milk: Cattle		0.0%	Potatoes		0.0%	Apples	0.6%	0.4
	0.4%	FR adult	0.22	0.1%	Milk: Cattle		0.0%	Wine grapes		0.0%	Wheat	0.4%	0.1
	0.4%	PT general	0.21	0.1%	Potatoes		0.1%	Wheat		0.0%	Wine grapes	0.4%	0.0
	0.4%	ES adult	0.21	0.1%	Milk: Cattle			Wheat		0.0%	Oranges	0.4%	0.2
	0.4%	FI3 yr	0.18	0.1%	Potatoes		0.0%	Bananas		0.0%	Wheat	0.3%	0.0
	0.3%	DK adult	0.16	0.1%	Milk: Cattle		0.0%	Potatoes		0.0%	Wheat	0.3%	0.2
	0.3%	IT toddler	0.16	0.1%	Wheat		0.0%	Other cereals		0.0%	Tomatoes	0.3%	0.0
1	0.3%	LT adult	0.16	0.1%	Milk: Cattle		0.1%	Potatoes		0.0%	Apples	0.3%	0.1
	0.3%	UK vegetarian	0.15	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Potatoes	0.3%	0.1
	0.3%	FI6 yr	0.14	0.1%	Potatoes		0.0%	Cocoa beans		0.0%	Wheat	0.3%	0.0
	0.3%	UK adult	0.14	0.1%	Milk: Cattle			Wheat		0.0%	Potatoes	0.3%	0.1

Acute risk assessment / adults / general population
Details - acute risk assessment/adults

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

The calculation is based on the large portion of the most critical consumer group.

ARD/AD Commodities (mg/kg) (µg/kg bw) ARD/AD Commodities (mg/kg) (µg/kg bw) 3% Bovine: Edibe offais (other than liver and kidney) 0.017/0.18 1.5 1% Bovine: Edibe offais (other than liver and kidney) 0.017/0.18 0.57 2% Milk: Cattle 0.017/0.18 1.2 1% Swine: Edibe offais (other than liver and kidney) 0.017/0.18 0.55 0.5% Milk: Cattle 0.017/0.18 0.24 0.9% Swine: Elver 0.017/0.18 0.43 0.4% Swine: Liver 0.017/0.18 0.22 0.9% Swine: Liver 0.017/0.11 0.32 0.3% Rice 0.037/0.01 0.17 0.7% Bovine: Charp roducts 0.017/0.11 0.32 0.3% Rice 0.37/0.01 0.12 0.3% Milk: Sheep 0.017/0.18 0.22 0.3% Rice 0.37/0.01 0.12 0.3% Milk: Sheep 0.017/0.11 0.12 0.3% Milk: Sheep 0.017/0.11 0.17 0.7% Bovine: Kidney 0.017/0.11<	Results for children No. of commodities for	n or which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities for	or which ARfD/ADI is exceeded (IESTI):		
MRL / Input MRL / Input MRL / Input MRL / Input ARDAD Commodities (mg/kg) (ug/kg) bw) ARDAD Commodities (mg/kg) (ug/kg) 3% Bovine: Edite offais (other than liver and kidney) 0.011 / 0.18 1.5 1% Bovine: Edite offais (other than liver and kidney) 0.011 / 0.18 0.67 2% Milk: Cattle 0.011 / 0.18 1.5 1% Bovine: Edite offais (other than liver and kidney) 0.011 / 0.18 0.55 1% Swine: Ever 0.011 / 0.18 0.54 1% Swine: Ever 0.011 / 0.18 0.45 0.3% Roia Cost 0.011 / 0.18 0.24 0.9% Swine: Ever 0.011 / 0.18 0.43 0.3% Poulty: Muscle/meat 0.011 / 0.18 0.22 0.9% Swine: Ever 0.011 / 0.18 0.34 0.3% Roia 0.31 / 0.01 0.33 Bovine: Kuscle fraits (war than liver and kidney) 0.011 / 0.11 0.32 0.3% Bovine: Kuscle fraits (war than liver and kidney) 0.011 / 0.11 0.15 0.17 0.2% Bovine: Ku	IESTI				IESTI			
ARD/ADI Commodities (mg/kg) (ug/kg/w) ARD/ADI Commodities (mg/kg) (ug/kg/w) 3% Bovine: Edite offails (other than liver and kidney) 0.011/0.18 1.5 1% Bovine: Edite offails (other than liver and kidney) 0.011/0.18 0.75 3% Bovine: Edite offails (other than liver and kidney) 0.011/0.18 0.44 1% Swine: Edite offails (other than liver and kidney) 0.011/0.18 0.55 1% Swine: Edite offails (other than liver and kidney) 0.011/0.18 0.24 0.9% Swine: Edite offails (other than liver and kidney) 0.011/0.18 0.34 0.4% Swine: Edite offails (other than liver and kidney) 0.011/0.18 0.22 0.9% Swine: Edite offails (other than liver and kidney) 0.011/0.18 0.33 0.3% Polutry. Nuclei/meat 0.011/0.10 0.17 0.7% Bovine: Muscle/meat 0.011/0.11 0.12 0.4% Milk: Ceatin 0.011/0.16 0.11 0.23 Swine: Edite offails (other than liver and kidney) 0.011/0.16 0.11 0.13 0.5% Swine: Edite offails (other than liver and kidney) 0.011/0.10 0.0			MRL / input				MRL / input	
3% Bovine: Liver 0.01/0.18 1.5 1% Bovine: Edite offsis (other than liver and kidney) 0.01/0.18 0.07 3% Bovine: Edite offsis (other than liver and kidney) 0.01/0.18 0.63 Swine: Edite offsis (other than liver and kidney) 0.01/0.18 0.65 1% Swine: Edite offsis (other than liver and kidney) 0.01/0.18 0.64 0.95% Milk: Gaat 0.01/0.18 0.64 0.5% Milk: Gaat 0.01/0.01 0.24 0.9% Swine: Edite offsis (other than liver and kidney) 0.01/0.18 0.63 0.3% Poultry: Muscle/meat 0.01/0.01 0.17 0.7% Bovine: Uner 0.01/0.18 0.24 0.3% Poultry: Muscle/meat 0.01/0.01 0.13 0.25% Swine: Uner 0.01/0.01 0.18 0.24 0.2% Eggis: Chicken 0.01/0.01 0.12 0.4% Milk: Gaat 0.01/0.01 0.18 0.25 0.2% Swine: Kidney 0.01/0.01 0.12 0.3% Milk: Sheep 0.01/0.01 0.16 0.16 0.16 0.16			for RA				for RA	Exposu
3% Bovine: Edible offais (other than liver and kidney) 0.01 / 0.1 8 0.1 8 2% Milk: Cattle 0.01 / 0.1 8 0.4 8 0.4 1 / 0.8 0.65 0.01 / 0.1 8 0.5 6 1% Swine: Edible offais (other than liver and kidney) 0.01 / 0.1 8 0.5 6 0.01 / 0.1 8 0.5 6 0.5 % Milk: Cattle 0.01 / 0.1 8 0.24 1% Swine: Edible offais (other than liver and kidney) 0.01 / 0.1 8 0.3 4 0.4 % Swine: Liver 0.01 / 0.1 8 0.22 0.8 % Swine: Childe offais (other than liver and kidney) 0.01 / 0.1 8 0.3 3 0.3 % Poultry: Muscle/meat 0.01 / 0.01 0.1 7 0.7 % Bovine: Childe offais (other than liver and kidney) 0.01 / 0.1 8 0.3 2 0.2 % Eggs: Chicken 0.01 / 0.01 0.1 2 0.3 % Swine: Liver 0.01 / 0.1 8 0.3 2 0.2 % Bovine: Kidney 0.01 / 0.01 0.1 2 0.3 % Milk: Sheep 0.01 / 0.01 0.1 3 0.1 % Bovine: Kidney 0.01 / 0.01 0.07 0.1 % Bovine: Kidney 0.01 / 0		Commodities		(µg/kg bw)	ARfD/ADI			(µg/kg l
2% Mil: Cattle 0.01/0.01 1.2 1% Swine: Chine products 0.01/0.18 0.55 1% Swine: Chine products 0.01/0.01 0.24 0.9% Swine: Chine products 0.01/0.18 0.44 0.4% Swine: Liver 0.01/0.01 0.24 0.9% Swine: Chine products 0.01/0.18 0.43 0.3% Poultry: Musclement 0.01/0.01 0.17 0.7% Bovine: Chine products 0.01/0.01 0.33 0.3% Rice 0.31/0.01 0.12 0.4% Milk: Cattle 0.01/0.01 0.12 0.2% Swine: Nuclear 0.01/0.01 0.12 0.4% Milk: Solat 0.01/0.01 0.13 0.2% Swine: Kiney 0.01/0.01 0.07 0.2% Sheep: Liver 0.01/0.01 0.07 0.4% Bovine: Kidney 0.01/0.01 0.07 0.2% Poultry: Musclement 0.01/0.01 0.07 0.4% Bovine: Kidney 0.01/0.01 0.07 0.2% Poultry: Musclement 0.01/0.01 0.07								0.72
T% Sume: Edite offsit (other than liver and kidney) 0.01 / 0.18 0.54 1% Sheep: Liver 0.01 / 0.18 0.52 0.5% Mile: Coatt 0.01 / 0.18 0.22 0.8% Mile: Cattle 0.01 / 0.18 0.23 0.3% Poultry: Muscle/meat 0.01 / 0.01 0.13 0.5% Swine: Liver 0.01 / 0.18 0.23 0.3% Floar 0.01 / 0.01 0.13 0.5% Swine: Liver 0.01 / 0.01 0.23 0.2% Eggs: Chicken 0.01 / 0.01 0.12 0.3% Mile: Sote 0.01 / 0.01 0.12 0.2% Bovine: Kidney 0.01 / 0.01 0.07 0.2% Silver: Kidney 0.01 / 0.01 0.07 0.1% Obvine: Muscle/meat 0.01 / 0.01 0.07 0.2% Poultry: Muscle 0.01 / 0.01 0.01 0.1% Sheep: Live 0.01 / 0.01 0.06 0.1% Dovine: Muscle/meat 0.01 / 0.01 0.07 0.1% Obvine: Fat issue 0.01 / 0.01 0.06 0.1% Swine: Kithey 0.01 / 0.01								
0.5% Mil: Coat 0.01/0.01 0.24 0.9% Swine: Exible offaits (oher than liver and kidney) 0.01/0.18 0.43 0.3% Poultry: Muscle/meat 0.01/0.01 0.17 0.7% Bovine: Uher products 0.01/0.01 0.33 0.3% Rice 0.31/0.01 0.13 0.5% Swine: Liver 0.01/0.01 0.13 0.2% Eggs: Chicken 0.01/0.01 0.12 0.4% Milk: Soat 0.01/0.01 0.13 0.2% Swine: Kudelwineat 0.01/0.01 0.12 0.4% Milk: Soat 0.01/0.01 0.13 0.2% Swine: Kudelwineat 0.01/0.01 0.07 0.2% Sheep: Euble offaits (oher than liver and kidney) 0.01/0.01 0.01 0.01 0.07 0.2% Sheep: Muscle/meat 0.01/0.01 0.07 0.2% Sheep: Muscle/meat 0.01/0.01 0.07 0.2% Poultry: Muscle 0.01/0.01 0.06 0.1% Swine: Kidney 0.01/0.01 0.06 0.1% Swine: Kidney 0.01/0.01 0.07 0.2% Poultry: Kidney 0.01/								
0.4% Swine: Liver 0.01/0.18 0.22 0.8% Mili: Catile 0.01/0.01 0.01 0.3% Poulty: Muscle/meat 0.01/0.01 0.17 0.7% Bovine: Cher produts 0.01/0.01 0.13 0.3% Egg: Chicken 0.01/0.01 0.12 0.4% Swine: Liver codust 0.01/0.01 0.12 0.2% Swine: Muscle/meat 0.01/0.01 0.12 0.3% Mile: Cad 0.01/0.01 0.11 0.2% Bovine: Kitney 0.01/0.01 0.07 0.2% Poulty: Muscle/meat 0.01/0.01 0.07 0.1% Othermed animals: Muscle/meat 0.01/0.01 0.07 0.2% Poulty: Muscle/meat 0.01/0.01 0.07 0.1% Othermed animals: Muscle/meat 0.01/0.01 0.05 0.1% Bovine: Klaney 0.01/0.01 0.07 0.1% Bovine: Klaney 0.01/0.01 0.05 0.1% Bovine: Klaney 0.01/0.01 0.03 0.03 0.07% Mile: Sheep 0.01/0.01 0.02 0.1% Bovine: Klaney <								
0.3% Poulty: Musclement 0.01 / 0.01 0.17 0.7% Bovine: Other products 0.01 / 0.18 0.33 0.3% Rice 0.01 / 0.01 0.12 0.4% Mile: Sheep 0.01 / 0.01 0.12 0.2% Swine: Muscle/meat 0.01 / 0.01 0.12 0.3% Mile: Sheep 0.01 / 0.01 0.12 0.2% Bovine: Kidney 0.01 / 0.01 0.02 0.3% Mile: Sheep 0.01 / 0.01 0.17 0.2% Bovine: Kidney 0.01 / 0.01 0.07 0.2% Sheep: Edible offals (other than liver and kidney) 0.01 / 0.01 0.07 0.1% Chainemed animats: Muscle/meat 0.01 / 0.01 0.07 0.2% Poulty: Muscle 0.01 / 0.01 0.05 0.1% Chainemed animats: Muscle/meat 0.01 / 0.01 0.06 0.1% Bovine: Kidney 0.01 / 0.01 0.06 0.07% Milk: Sheep 0.01 / 0.01 0.02 0.1% Bovine: Kidney 0.01 / 0.01 0.02 0.06% Swine: Kidney 0.01 / 0.01 0.02 0.1% B								
0.3% Rice 0.3/0.01 0.13 0.3% Swine: Liver 0.01/0.18 0.22 0.2% Eggs: Chicken 0.01/0.01 0.12 0.3% Milk: Goat 0.01/0.01 0.13 0.2% Bovine: Kidney 0.01/0.01 0.12 0.3% Milk: Goat 0.01/0.01 0.11 0.1% Bovine: Kidney 0.01/0.01 0.07 0.2% Poultry: Muscle 0.01/0.01 0.01 0.1% Obter famed animals: Muscle/meat 0.01/0.01 0.07 2.% Poultry: Muscle 0.01/0.01 0.06 0.1% Sheep: Editione famed animals: Muscle/meat 0.01/0.01 0.06 0.1% Bovine: Kishey 0.01/0.03 0.09 0.1% Bovine: Kishey 0.01/0.03 0.09 0.1% Bovine: Kishey 0.01/0.03 0.02 0.1% Bovine: Kishey 0.01/0.03 0.02 0.1% Bovine: Kishey 0.01/0.03 0.02 0.01% Swine: Kishey 0.01/0.03 0.02 0.01% Swine: Kishey 0.01/0.03 0.02 0.01% Swine: Kishey								
0.2% Eggs: Chicken 0.01 / 0.01 0.12 0.4% Milk: Goat 0.01 / 0.01 0.11 0.2% Swine: Kidney 0.01 / 0.01 0.01 0.2% Sheep: Etible offsi (other than liver and kidney) 0.01 / 0.01 0.13 0.11 0.13 0.11 0.01 0.05 0.1% Bovine: Muscle 0.01 0.01 0.05 0.1% Other farmed animals: Muscle/meat 0.01 0.05 0.1% Other farmed animals: Muscle/meat 0.01 0.03 0.03 0.1% Swine: Kidney 0.01 0.03 0.03 0.1% Swine: Kidney 0.01 0.03 0.03 0.1% Swine: Kidney 0.01 0.01 0.02 0.1% Swine: Kidney 0.01 0.01 0.03 0.03 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
0.2% Swine: Muscle/meat 0.01 / 0.01 0.12 0.3% Milk: Sheep 0.01 / 0.01 0.15 0.2% Bovine: Kidney 0.01 / 0.01 0.07 0.2% Sheep: Edible offsilo (other than liver and kidney) 0.01 / 0.01 0.01 0.1% Dother farmed animals: Muscle/meat 0.01 / 0.01 0.07 0.2% Rice 0.3 / 0.01 0.05 0.1% Equine: Muscle/meat 0.01 / 0.01 0.06 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.06 0.1% Equine: Muscle/meat 0.01 / 0.01 0.05 0.1% Bovine: Kidney 0.01 / 0.01 0.06 0.06% Swine: Kidney 0.01 / 0.01 0.02 0.1% Swine: Kidney 0.01 / 0.01 0.02 0.03% Swine: Fait tissue 0.01 / 0.01 0.02 0.1% Swine: Kidney 0.01 / 0.01 0.02 0.03% Swine: Fait tissue 0.01 / 0.01 0.02 0.1% Swine: Kidney 0.01 / 0.01 0.02 0.03% Poultry: Iver 0.01 / 0.01 0.02 0.05%								
0.2% Bovine: Kidney 0.01 / 0.01 0.09 0.2% Sheep: Edibe offals (other than liver and kidney) 0.01 / 0.16 0.17 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.07 0.2% Rice 0.33 / 0.01 0.05 0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.06 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.06 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.06 0.1% Sheep: Muscle/meat 0.01 / 0.01 0.06 0.1% Othermed animals: Muscle/meat 0.01 / 0.01 0.06 0.07% Milk: Sheep 0.01 / 0.01 0.04 0.1% Bovine: Kidney 0.01 / 0.01 0.02 0.06% Swine: Fat issue 0.01 / 0.01 0.02 0.10% Swine: Kidney 0.01 / 0.01 0.02 0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.10% Swine: Fat issue 0.01 / 0.01 0.02 0.03% Poultry: Fat issue 0.01 / 0.01 0.01 0.08% Poultry: Liver 0.01 / 0.01 0.02								
0.1% Bovine: Muscle/meat 0.01 / 0.01 0.07 0.2% Poultry: Muscle 0.01 / 0.01 0.01 0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.05 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.05 0.1% Sheep: Muscle/meat 0.01 / 0.01 0.05 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.06 0.0% Sheep: Muscle/meat 0.01 / 0.01 0.04 0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.06 0.0% Swine: Kidney 0.01 / 0.01 0.02 0.1% Swine: Kidney 0.01 / 0.01 0.02 0.06% Swine: Fat tissue 0.01 / 0.01 0.02 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.02 0.02% Poultry: Liver 0.01 / 0.01 0.02 0.1% Swine: Fat tissue 0.01 / 0.01 0.02 0.00% Poultry: Fat tissue 0.01 / 0.01 0.02 0.09% Fage: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Liver 0.01 / 0.01 0.02 0.								
0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.07 0.2% Rice ¹ 0.3 / 0.01 0.06 0.1% Sheep: Muscle/meat 0.01 / 0.01 0.06 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.06 0.07% Milk: Sheep 0.01 / 0.01 0.04 0.1% Swine: Kidney 0.01 / 0.03 0.07 0.06% Swine: Kidney 0.01 / 0.01 0.02 0.1% Swine: Kidney 0.01 / 0.01 0.02 0.04% Bovine: Fat issue 0.01 / 0.01 0.02 0.1% Swine: Muscle/meat 0.01 / 0.01 0.02 0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.1% Equine: Muscle/meat 0.01 / 0.01 0.02 0.02% Poultry: Liver 0.01 / 0.01 0.02 0.1% Equine: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.01 0.09% Eggs: Chicken 0.01 / 0.01 0.01 0.03 0.03% Goat: Muscle 0.01 / 0.01 0.01 0.03 0.03%								
0.1% Equine: Muscle/meat 0.01 / 0.01 0.06 0.1% Bowine: Muscle 0.01 / 0.01 0.06 0.1% Sheep: Muscle/meat 0.01 / 0.01 0.05 0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.06 0.07% Mik: Sheep 0.01 / 0.01 0.04 0.1% Other farmed animals: Muscle/meat 0.01 / 0.03 0.06 0.06% Swine: Kidney 0.01 / 0.01 0.02 0.1% Bowine: Muscle/meat 0.01 / 0.01 0.06 0.06% Swine: Fat issue 0.01 / 0.01 0.02 0.1% Bowine: Muscle/meat 0.01 / 0.01 0.02 0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.19% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.03% Poultry: Liver 0.01 / 0.01 0.00 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.01 0.00% Bowine: Fat issue 0.01 / 0.01 0.01 0.03%<								
0.1% Sheep: Muscle/meat 0.01 / 0.01 0.05 0.1% Other farmed animals: Muscle/meat 0.01 / 0.01 0.06 0.07% Milk: Sheep 0.01 / 0.01 0.04 0.1% Swine: Kidney 0.01 / 0.03 0.07 0.06% Swine: Fat issue 0.01 / 0.01 0.02 0.1% Bovine: Kidney 0.01 / 0.01 0.02 0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.1% Bovine: Muscle/meat 0.01 / 0.01 0.02 0.02% Poultry: Liver 0.01 / 0.01 0.02 0.19% Equire: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.03% Goat: Muscle 0.01 / 0.01 0.01 0.01% Eggs: Goase 0.01 / 0.01								0.06
0.07% Milk: Sheep 0.01 / 0.01 0.04 0.1% Swine: Kidney 0.01 / 0.03 0.06 0.06% Swine: Kidney 0.01 / 0.01 0.02 0.1% Bowine: Kidney 0.01 / 0.01 0.02 0.03% Swine: Fat tissue 0.01 / 0.01 0.02 0.10% Swine: Muscle/meat 0.01 / 0.01 0.02 0.03% Swine: Fat tissue 0.01 / 0.01 0.02 0.10% Swine: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Liver 0.01 / 0.01 0.01 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Liver 0.01 / 0.01 0.01 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.00% Poultry: Fat tissue 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.00% Eggs: Chick 0.01 / 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.								0.06
0.04% Bovine: Fat issue 0.01 / 0.01 0.02 0.10% Swine: Muscle/meat 0.01 / 0.01 0.02 0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Liver 0.01 / 0.01 0.01 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Sign: Chicken 0.01 / 0.01 0.02 0.09% Eggs: Chicken 0.01 / 0.01 0.02 0.03% Goait, Muscle 0.01 / 0.01 0.02 0.03% Fourity: Kinney 0.01 / 0.01 0.02 0.03% Fourity: Kinney 0.01 / 0.01 0.02 0.03% Poultry: Kinney 0.01 / 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <td></td> <td>Milk: Sheep</td> <td>0.01/0.01</td> <td>0.04</td> <td></td> <td>Swine: Kidney</td> <td>0.01 / 0.03</td> <td>0.06</td>		Milk: Sheep	0.01/0.01	0.04		Swine: Kidney	0.01 / 0.03	0.06
0.03% Swine: Fat issue 0.01 / 0.01 0.02 0.02% Poultry: Liver 0.01 / 0.01 0.01 0.02% 0.00% Poultry: Fat issue 0.01 / 0.01 0.01 0.00% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Sheep: Muscle/meat 0.01 / 0.01 0.02 0.00% Poultry: Fat issue 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.02 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.02 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.03% Eggs: Chicken 0.01 / 0.01 0.02 0.03% Eggs: Chicken 0.01 / 0.01 0.01 0.01 0.01 0.03% Eggs: Chicken 0.01 / 0.01 0.01 0.01 0.	0.06%	Swine: Kidney	0.01/0.03	0.03	0.1%	Bovine: Kidney	0.01 / 0.03	0.05
0.02% Poultry: Liver 0.01 / 0.01 0.01 0.09% Sheep: Musclemeat 0.01 / 0.01 0.00 0.00% Poultry: Fat tissue 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.00% Poultry: Fat tissue 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.09% Some: Fat tissue 0.01 / 0.01 0.00 0.03% Goat: Muscle 0.01 / 0.01 0.00 0.09% Foggs: Chicken 0.01 / 0.01 0.00 0.03% Goat: Muscle 0.01 / 0.01 0.00 0.03% Foguitry: Kidney 0.01 / 0.01 0.01 0.00 0.03% Foguitry: Kidney 0.01 / 0.01 0.00 0.01% Poultry: Fat tissue 0.01 / 0.01 0.00 0.01% Foggs: Goase 0.01 / 0.01 0.00 0.01% Foggs: Goase 0.01 / 0.01 0.00 0.01% No of pro	0.04%	Bovine: Fat tissue	0.01/0.01	0.02	0.10%	Swine: Muscle/meat	0.01 / 0.01	0.05
0.00% Poultry: Fat tissue 0.01 / 0.01 0.00 0.09% Poultry: Liver 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.09% Eggs: Chicken 0.01 / 0.01 0.00 0.03% Gas: Muscle 0.01 / 0.01 0.00 0.03% Eggs: Chicken 0.01 / 0.01 0.01 0.01 0.01 0.01 0.03% Eggs: Chicken 0.01 / 0.01 0.01 0.03 0.03% Eggs: Chicken 0.01 / 0.01 0.01 0.03% Eggs: Chicken 0.01 / 0.01 0.01	0.03%	Swine: Fat tissue	0.01/0.01		0.10%	Equine: Muscle/meat	0.01 / 0.01	0.05
Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI):								0.05
Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): Highest % of ARfD/ADI MRL / input for RA Exposure (mg/kg) MRL / input (ug/kg) Highest % of ARfD/ADI MRL / input For RA MRL / input for RA Highest % of ARfD/ADI Frocessed commodities (mg/kg) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.06	0.00%	Poultry: Fat tissue	0.01/0.01	0.00				0.05
Results for children No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): Results for adults No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): No d processed commodities for which ARID/ADI is exceeded (IESTI): Highest % of ARID/ADI Processed commodities (mg/kg) (µg/kg) Q,3 / 0 0.06 Q,1% Rice / milling (polishing) Q,3 / 0 Q,0 / 0								
Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI):								
0.03% Poultry: Kidney 0.01 / 0.01 0.01 0.03% Bovine: Fat tissue 0.01 / 0.01 0.01 0.02% Bovine: Fat tissue 0.01 / 0.01 0.01 0.02% Bovine: Fat tissue 0.01 / 0.01 0.01 0.01% Eggs: Goose 0.01 / 0.01 0.01 0.01% Poultry: Fat tissue 0.01 / 0.01 0.01 0.01% Poultry: Fat tissue 0.01 / 0.03 0.00 0.01% Poultry: Kidney 0.01 / 0.03 0.00 Control tissue 0.01 / 0.03 Control tissue Control tissue Results for adults No of pro								
Results for children No d processed commodities for which ARID/ADI is exceeded (IESTI); Results for adults No d processed commodities for which ARID/ADI is exceeded (IESTI); Results for adults No d processed commodities for which ARID/ADI is exceeded (IESTI); Results for adults No d processed commodities for which ARID/ADI is exceeded (IESTI); Results for adults (IESTI Results for adults (IESTI Results for adults (IESTI Results for adults (IESTI Results for adults (IESTI) Results for adults (IESTI) Results for adults (IESTI)								
Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): Highest % of ARfD/ADI MRL / input (ug/kg) MRL / input (ug/kg) MRL / input ARfD/ADI MRL / input (ug/kg)								
Image: Constraint of commodities exceeding the ARfD/ADI in children and adult diets (IEST calculation) 0.01% Poultry: Fat issue 0.01 / 0.01 0.00 Total number of commodities exceeding the ARfD/ADI in children and adult diets (IEST calculation) Results for children 0.01% Sheep: Kidney 0.01 / 0.01 0.00 Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.01% Sheep: Kidney 0.01 / 0.03 0.00 Total number of commodities exceeding the ARfD/ADI in children and adult diets Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IHighest % of for RA ARID/ADI Processed commodities (mg/kg) (µg/kg 0.1% Rice / milling (polishing) 0.3 / 0 0.06								
Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI IESTI IESTI MRL / input MRL / input MRL / input MRL / input For RA Exposure Highest % of ARfD/ADI MRL / input for RA Exposure for RA Exposure MRL / input for RA Exposure for RA Exposure ARfD/ADI Processed commodities (ing/kg) (iug/kg 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04								
(IESTI calculation) Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI IESTI Highest % of ARfD/ADI Frocessed commodities (mg/kg) MRL / input (µg/kg MRL / input for RA Exposure (mg/kg) MRL / input (µg/kg MRL / input or coessed commodities MRL / input for RA Exposure (µg/kg) MRL / input (µg/kg MRL / input or coessed commodities MRL / input for RA Exposure (µg/kg) MRL / input or coessed commodities MRL / input for RA Exposure (µg/kg) MRL / input or coessed commodities MRL / input for RA Exposure (µg/kg) MRL / input or coessed commodities MRL / input for RA Exposure (µg/kg) MRL / input for RA Exposure (µg/kg) ARfD/ADI Processed commodities MRL / input for RA Exposure (µg/kg) ARfD/ADI Processed commodities MRL / input for RA Exposure (µg/kg) ARfD/ADI Processed commodities MRL / input for RA Exposure for RA Exposure for RA ARfD/ADI Processed commodities MRL / input for RA Exposure for RA ARfD/ADI Processed commodities					0.01%	Sheep. Kiuney	0.0170.03	0.00
No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IMRL / input Highest % of ARfD/ADI for RA Exposure MRL / input ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) ARfD/ADI Processed commodities (mg/kg) (µg/kg 0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04		mmodities exceeding the ARfD/ADI in children ar	nd adult diets					
No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI IESTI MRL / input Highest % of ARfD/ADI for RA Exposure Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) ARfD/ADI Processed commodities (mg/kg) 0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04					I			
IESTI IESTI Highest % of ARID/ADI MRL / input for RA Exposure Exposure (mg/kg) Highest % of for RA MRL / input for RA MRL / input for RA Exposure Exposure (mg/kg) MRL / input for RA Karposure (mg/kg) MRL / input for RA Exposure (mg/kg) MRL / input for RA Karposure (mg/kg) MRL / input for RA Exposure (mg/kg) MRL / input for RA Exposure for RA <						modifies for which ARfD/ADL is exceeded (IESTI)		
MRL / input MRL / input MRL / input Highest % of for RA Exposure Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw) ARID/ADI Processed commodities (mg/kg) (µg/kg 0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04								
Highest % of ARID/ADI For RA Exposure (mg/kg) Highest % of (µg/kg) for RA Exposure (µg/kg) Highest % of ARID/ADI Forcessed commodities for RA Exposure (µg/kg) 0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04	ESI		MRL / input		1511		MRL / input	
ARID/ADI Processed commodities (mg/kg) (µg/kg) ARID/ADI Processed commodities (mg/kg) (µg/kg) 0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04	Highest % of			Exposure	Highest % of			Expos
0.1% Rice / milling (polishing) 0.3 / 0 0.06 0.1% Rice / milling (polishing) 0.3 / 0 0.04		Processed commodities				Processed commodities		
Expand/collapse list								0.04
	Expand/collapse list							

