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Background: Gastric cancer is one of the leading causes of cancer death in the world.
Improving gastric cancer survival prediction can enhance patient prognostication and
treatment planning.

Methods: In this study, we performed gastric cancer survival prediction using machine
learning and multi-modal data of 1061 patients, including 743 for model learning and 318
independent patients for evaluation. A Cox proportional-hazard model was trained to
integrate clinical variables and CT imaging features (extracted by radiomics and deep
learning) for overall and progression-free survival prediction. We further analyzed the
prediction effects of clinical, radiomics, and deep learning features. Concordance index (c-
index) was used as the model performance metric, and the predictive effects of multi-
modal features were measured by hazard ratios (HRs) at pre- and post-operative settings.

Results: Among 318 patients in the independent testing group, the hazard predicted by
Cox from multi-modal features is associated with their survival. The highest c-index was
0.783 (95% CI, 0.782-0.783) and 0.770 (95% CI, 0.769-0.771) for overall and
progression-free survival prediction, respectively. The post-operative variables are
significantly (p<0.001) more predictive than the pre-operative variables. Pathological
tumor stage (HR=1.336 [overall survival]/1.768 [progression-free survival], p<0.005),
pathological lymph node stage (HR=1.665/1.433, p<0.005), carcinoembryonic antigen
(CEA) (HR=1.632/1.522, p=0.02), chemotherapy treatment (HR=0.254/0.287, p<0.005),
radiomics signature [HR=1.540/1.310, p<0.005], and deep learning signature
[HR=1.950/1.420, p<0.005]) are significant survival predictors.
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Conclusion:Our study showed that CT radiomics and deep learning imaging features are
significant pre-operative predictors, providing additional prognostic information to the
pathological staging markers. Lower CEA levels and chemotherapy treatments also
increase survival chances. These findings can enhance gastric cancer patient
prognostication and inform treatment planning.
Keywords: gastric cancer, survival analysis (source: MeSH NLM), multi-modal data analysis, radiomics, deep
learning - CNN
INTRODUCTION

Gastric cancer is one of the leading causes of death worldwide
(1). Accurate survival prediction of gastric cancer patients can
inform clinical decision making and benefit treatment planning
(2). Since 1977, the American Joint Committee on Cancer
(AJCC) staging system is the guideline for treatment allocation
and prognostic prediction on gastric cancer patients (3–5).
However, the staging system is hard to account for the large
variations in survival outcomes.

Previous studies have reported a variety of clinical factors
indicative of gastric cancer prognosis, including serum tumor
markers, lymphovascular invasion, perineural invasion,
histological grade, etc. (6–10). Recent studies also showed that
quantitative imaging features, such as radiomics and deep
learning modeling, are associated with survival/prognosis of
gastric cancer patients (11, 12). Radiomics represent predefined
quantitative imaging descriptors. Deep learning (13) can
automatically extract imaging features from high-dimensional
imaging data, but these features are less intuitive than
radiomics descriptors.

It is expected that the combination of multi-modal data, such
as demographic information, clinical variables, imaging data,
histopathologic findings, lab measurements, therapeutic
interventions, can empower survival analysis of gastric cancer
(14). Currently, it lacks understanding of the interaction and
relationship of the multi-modal features for predicting gastric
cancer survival. The purpose of this study is to integrate clinical
variables, radiomics features, and convolutional neural network
(CNN)-identified deep learning features to predict overall and
progression-free survival on gastric cancer patients and identify
key prognostic markers from the multi-modal data modeling at
pre- and post-operative settings.
MATERIALS AND METHODS

Overview
We built a machine learning prognostic model (Figure 1) for
overall and progression-free survival prediction after
gastrectomy, by integrating multi-modal data: clinical variables
(including demographic information, lab tests, pathology, and
treatment data), intra-tumor radiomics, and deep learning
features of the tumor regions. The large set of radiomics (or
deep learning) features were aggregated to generate a signature
by the random survival forest method (15). We used the classic
2

Cox proportional-hazards (Cox in short) model for data
integration, survival prediction, and effect measurement.

Study Cohort
We performed a retrospective study that received approvals by a
local ethics committee and an institutional review board with a
waiver of written informed consent. Our study complies with the
1964 Helsinki declaration and its later amendments. Initially a
total of 1,647 patients with pathologically confirmed gastric
cancer during 2014 to 2018 were identified for the study. The
exclusion criteria included: i) patients who failed to undergo
radical surgery; ii) patients with diagnosis of other cancers in
addition to gastric cancer; iii) patients with any intervention or
therapy before surgery; iv) patients with poor imaging quality
unacceptable for computational analysis; and v) patients without
pre-operative CT imaging available. Finally, 1,061 patients were
included for analysis, which were randomly split to two
independent study groups: Group-A of 743 patients (70%) for
model development and Group-B of 318 patients (30%) for
independent evaluation. Patients were followed up every 3-6
months, starting from the time of gastrectomy and censored at
the last alive contact or by the time of this study (i.e., 30 June
2019). For each patient, we collected various clinical data and a
pre-operative contrast-enhanced computed tomography
(CECT) scan.

Clinical Variables
We collected a set of clinical data acquired before and after the
gastrectomy operation. The pre-operative variables include lab
tests [e.g., serum carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9)], demographic variables,
qualitative radiologic staging variables [e.g., tumor depth
invasion (rT) and lymph node invasion (rN)], tumor location
assessed by radiographic imaging and endoscopy, histologic
grades by endoscopic biopsy. The post-operative data includes
chemotherapy treatment information as well as surgical
pathology variables [e.g., pathologic tumor staging (pT),
pathologic lymph node staging (pN), Lauren classification,
gross appearance, surgical histologic grade, lymphovascular
invasion (LVI), perineural invasion (PNI)]. See Supplementary
for more details on the variable measurement. We performed
univariate statistical tests for each variable (chi-squared test for
discrete variables and Mann-Whitney U test for continuous
variables) between Group-A and Group-B to measure their
properties. In order to select variables that are substantially
related to survival, univariate Cox analysis (16) was performed
February 2022 | Volume 11 | Article 725889
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and those with a p-value < 0.10 were selected for subsequent joint
modeling with imaging data.

Radiomics Features Extracted From 3D
Intra-Tumor Volume
Quantitative radiomic features are extracted from the segmented
3D tumor volume in the CECT images. The gastric tumor was
segmented slice-by-slice and semi-automatically by two
radiologists (QL and QXF) using an in-house developed and
validated software (ONCO IMAG ANLY v 2.0; Shanghai Key
Laboratory of MRI, ECNU, Shanghai, China). QL first
segmented the lesion for all cases; and one week later, QL
repeated segmentation on 30 patients to evaluate intra-reader
variability. To evaluate inter-observer variability, QXF
performed lesion segmentation on a selected subset of 30
patients. The lesion segmentation was conducted over
approximately two months. A total of 1,210 radiomic features,
which describe the tumor characteristics in terms of intensity,
shape, texture, etc., are extracted from the segmented gastric
tumor volumes using an open-source Python package
Pyradiomics (17). The robustness of each radiomic feature
between readers is measured using intra-class correlation
coefficient (ICC).

Deep Learning Features Extracted
From the Full Images Focused on the
Tumor Regions
Deep learning was used to extract potentially different features
from the approximate local regions around segmented tumor. To
this end, we designed an attention-guided Variational
AutoEncoder (attention-guided VAE) model (Figure 2A) to
guide the feature learning. The model was trained with the
manually segmented gastric tumor masks, where an attention
unit was incorporated to learn an attention map around the
segmented tumor regions. At the bottleneck of this model, the
Frontiers in Oncology | www.frontiersin.org 3
hidden layer outputs a 100-dimensional vector as the deep
learning features to characterize the attended tumor regions.
Figure 2B shows several examples of the attention regions
identified by the deep learning model.

Generating Aggregated Imaging
Signatures by Random Survival Forest
Due to the relatively large number of radiomics features and
deep learning features, direct use of the full set of features may
result in overfitting in the Cox model. We employed random
survival forest (15) to first select a substantially smaller subset
from the 1,210 radiomic features, and from the 100 attention-
VAE features, respectively. Random survival forest is an
ensemble tree method that identifies a subset of outcome-
correlated features based on their permutation feature
importance (18). The random survival forest process produces
a score indicating the survival probability and the score
represents an aggregated signature of its selected features, from
which we generated the radiomics signature and deep learning
signature. The training of random survival forest models was
performed on Group-A only and separately for the overall and
progression-free survival prediction.

Evaluation and Statistical Analysis
We evaluated and compared the survival prediction effects at 4
different settings, including using pre-operative data and post-
operative data, separately (Setting 1), combination of the full set
of pre- and post-operative data (Setting 2), and combination of
only the variables that are shown in Setting 1 to be statistically
significant (p<0.05) (Setting 3). In addition, we performed one
more round of feature selection using the random survival forest
method from the full set of data at Setting 1 and only the selected
variables were combined for modeling (Setting 4).

In the deep learning feature extraction, the 743 patients in
Group-A were randomly split into a training set (669 patients)
FIGURE 1 | Machine learning of multi-modal features for gastric cancer survival prediction and interpretation. The significant clinical variables, radiomics signature,
and deep learning signature were integrated in the Cox model for survival prediction, and the effects of these features were measured and analyzed by hazard ratios
at pre- and post-operative settings.
February 2022 | Volume 11 | Article 725889
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and a validation set (74 patients) for model learning. The axial
view CECT image with the largest cross-sectional area of tumor
was selected as the input of the attention-VAE model. We used
open-source software libraries PyTorch (19) to implement deep
learning modeling, and scikit-survival (20) to implement
random survival forest.

The model performance was measured on the independent
Group-B of 318 patients using concordance index (c-index) (21).
Hazard ratios were calculated to measure the effect of each
individual variable/feature. In order to measure the effects more
robustly, we repeated each experiment 20 times and calculated the
average c-index values. We reported 95% confidence intervals of
the c-index values using the non-parametric bootstrap method
(22). We also conducted statistical comparisons on the model
performance among Settings 1 to 4 using two-tailed Student’s t-
test. We performed all statistical analyses using the R software
(version 3.6.1, R Project for Statistical Computing) and Python
Frontiers in Oncology | www.frontiersin.org 4
(version 3.6.8). A two-sided p value less than 0.05 is considered
statistically significant.
RESULTS

Patient Characteristics
Table 1 summarizes key characteristics of the study cohort in
terms of 16 clinical variables. There are 8 pre-operative and 8 post-
operative variables. The percentage of the average follow-up time
is 23.6 months (range 1- 65 months). The median age is 61.7 ±
10.3 years. There are 762 male patients and 299 female patients.
The time interval between the CECT examination and standard
gastrectomy had a median of 9 days, ranging from 6 to 14 days.
Between Group-A and Group-B, all the clinical variables are
statistically similar (as shown in Table 1, all the p values are
greater than or equal to 0.05). In Group-A, 355 (48%) patients
A

B

FIGURE 2 | Deep learning feature extraction from CT images through an attention-guided Variational AutoEncoder (attention-guided VAE) model. (A) model
structure. (B) Gastric tumor region (yellow annotations) and the attention regions (highlighted by heatmaps) identified by the attention-guided VAE model.
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TABLE 1 | Patient characteristics (i.e., 16 clinical variables) included for survival modeling.

Characteristic Group-A for training (n = 743) Group-B for independent test (n = 318) p-value

Preoperative variables
Age, mean ± Std 61.8 ± 9.7 62.0 ± 9.6 0.43
Sex, No. (%) 0.20
Male 541 (72.8) 221 (69.5)
Female 202 (27.2) 97 (30.5)

CA19-9 < 39 units/milliliter, No. (%) 0.27
Yes 94 (12.7) 35 (11.0)
No 649 (87.3) 283 (89.0)

CEA < 4.7 nanograms/milliliter, No. (%) 0.24
Yes 160 (21.5) 63 (19.8)
No 583 (78.5) 255 (80.2)

Biopsy histologic grade, No. (%) 0.63
Well/moderate 440 (59.2) 194 (61.0)
Poor/undifferentiated 303 (40.8) 124 (39.0)

Location, No. (%) 0.99
Upper 165 (22.2) 87 (27.4)
Middle 232 (31.2) 96 (30.2)
Lower 332 (44.7) 128 (40.3)
Entire 14 (1.9) 7 (2.2)

Radiologic T stage, No. (%) 0.05
rT1 stage 152 (20.5) 46 (14.5)
rT2 stage 123 (16.6) 70 (22.0)
rT3 stage 286 (38.5) 122 (38.4)
rT4 stage 182 (24.5) 80 (25.2)

Radiologic N stage, No. (%) 0.83
rN0 stage 281 (37.8) 113 (35.5)
rN1 stage 196 (26.4) 81 (25.5)
rN2 stage 134 (18.0) 65 (20.4)
rN3 stage 70 (9.4) 34 (10.7)
rN4 stage 62 (8.3) 25 (7.9)

Post-operative variables
Pathological T stage†, No. (%) 0.99
pT1 stage 202 (27.2) 86 (27.0)
pT2 stage 95 (12.8) 39 (12.3)
pT3 stage 202 (27.2) 85 (26.7)
pT4 stage 244 (32.8) 108 (34.0)

Pathological N stage†, No. (%) 0.69
pN0 stage 285 (38.4) 115 (36.2)
pN1 stage 102 (13.7) 51 (16.0)
pN2 stage 120 (16.2) 47 (14.8)
pN3a stage 131 (17.6) 53 (16.7)
pN3b stage 105 (14.1) 52 (16.4)

Surgical histologic grade, No. (%) 0.44
Well/moderate 418 (56.3) 170 (53.5)
Poor/undifferentiated 325 (43.7) 148 (46.5)

Lauren classification, No. (%) 0.63
Intestinal type 407 (54.8) 180 (56.6)
Diffuse/mixed type 336 (45.2) 138 (43.4)

Gross appearance, No. (%) 0.75
Borrmann type I-III 715 (96.2) 304 (95.6)
Borrmann type IV 28 (3.8) 14 (4.4)

Lymphovascular invasion, No. (%) 0.51
Negative 457 (61.5) 188 (59.1)
Positive 286 (38.5) 130 (40.9)

Perineural invasion, No. (%) 0.86
Negative 443 (59.6) 187 (58.8)
Positive 300 (40.4) 131 (41.2)

Chemotherapy therapy, No. (%) 0.55
Yes 334 (45.0) 150 (47.2)
No 409 (55.0) 168 (52.8)
Frontiers in Oncology | www.frontiersin.org
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underwent total gastrectomy while 388 (52%) patients underwent
subtotal gastrectomy. In Group-B, the corresponding number was
163 (51%) and 155 (49%), respectively, for total and subtotal
gastrectomy. In our cohort, there were 308 patients who did not
undergo chemotherapy while they were eligible according to the
National Comprehensive Cancer Network (NCCN) guideline on
indications for chemotherapy (23), and there were 8 patients who
underwent chemotherapy while they are ineligible per the NCCN
guideline (23). The type of the chemotherapy varied across
patients, including XELOX (oxaliplatin + capecitabine), SOX (S-
1 + oxaliplatin), DS (docetaxel + S-1), etc. Our study cohort did
not include patients who received neoadjuvant chemotherapy.

Selected Significant Variables/Features
Out of the 16 variables listed in Table 1, the following key
variables were selected for modeling: 5 pre-operative variables
Frontiers in Oncology | www.frontiersin.org 6
(CEA, CA19-9, biopsy findings, rT, rN) and 7 post-operative
variables (pT, pN, LVI, PNI, gross appearance, surgical histologic
grade, and chemotherapy treatment). For the radiomics feature
extraction, the average intra-observer ICC was 0.96 and the
average inter-observer ICC was 0.86, indicating a good
reliability. The most relevant radiomics features selected by
random survival forest to generate the radiomics signatures are
listed in Table 2, along with their respective ICC values.

Performance of the Survival
Prediction Models
Table 3 shows the full survival prediction results with a
comprehensive comparison under different settings. As can be
seen at Setting 1, when only using the post-operative variables,
the c-indexes are 0.783 for overall survival and 0.770 for
progression-free survival. When only using the pre-operative
TABLE 2 | Radiomic features selected by random survival forest to generate the radiomics signatures for overall survival and progression-free survival.

Prediction Radiomic feature name Permutation
importance

Intra-observer ICC Inter-observer ICC

Overall survival wavelet-HLL_firstorder_MeanAbsoluteDeviation 0.0068 0.999 0.999
wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis 0.0048 0.823 0.818
log-sigma-5-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 0.0034 0.947 0.912
original_shape_Maximum2DDiameterRow 0.0033 0.999 0.999
original_glszm_ZoneVariance 0.0029 0.999 0.999
wavelet-LLL_firstorder_Energy 0.0029 0.999 0.999
original_shape_MajorAxis 0.0029 0.999 0.999
wavelet-HLH_glszm_LargeAreaEmphasis 0.0028 0.987 0.977
wavelet-HLH_glrlm_LongRunEmphasis 0.0027 0.996 0.994
log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity 0.0027 0.999 0.999
wavelet-LHL_firstorder_MeanAbsoluteDeviation 0.0023 0.999 0.998
original_shape_SurfaceVolumeRatio 0.0022 0.994 0.991
original_glszm_SmallAreaEmphasis 0.0022 0.972 0.942
original_firstorder_10Percentile 0.0021 0.996 0.992
log-sigma-2-0-mm-3D_glszm_GrayLevelNonUniformity 0.0021 0.999 0.999
wavelet-LLH_gldm_DependenceNonUniformity 0.0021 0.998 0.999
wavelet-HLH_firstorder_Mean 0.002 0.984 0.962
original_firstorder_Energy 0.002 0.999 0.999
wavelet-HHL_glcm_ClusterTendency 0.0017 0.996 0.995
wavelet-LLH_glrlm_GrayLevelNonUniformityNormalized 0.0017 0.998 0.996

Progression-free
survival

original_glszm_SizeZoneNonUniformity 0.0037 0.999 0.999
log-sigma-4-0-mm-
3D_gldm_LargeDependenceHighGrayLevelEmphasis

0.0033 0.981 0.980

wavelet-LLH_firstorder_RootMeanSquared 0.0032 0.999 0.999
wavelet-LLH_gldm_LargeDependenceEmphasis 0.003 0.995 0.992
original_shape_SurfaceArea 0.0029 0.999 0.999
original_glszm_GrayLevelNonUniformity 0.0028 0.999 0.997
log-sigma-5-0-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis 0.0026 0.999 0.991
wavelet-HHL_glcm_SumSquares 0.0025 0.999 0.999
wavelet-HLL_glszm_ZoneVariance 0.0025 0.992 0.983
wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis 0.0024 0.823 0.818
wavelet-HHH_glszm_SizeZoneNonUniformity 0.0023 0.929 0.929
wavelet-HHL_glcm_JointEntropy 0.0022 0.999 0.999
wavelet-LHH_firstorder_RobustMeanAbsoluteDeviation 0.002 0.999 0.999
wavelet-LHL_glszm_LargeAreaLowGrayLevelEmphasis 0.002 0.996 0.944
wavelet-HHL_glrlm_RunLengthNonUniformity 0.002 0.999 0.999
wavelet-LLH_glszm_ZoneVariance 0.0018 0.998 0.997
wavelet-HHH_glrlm_RunPercentage 0.0018 0.995 0.988
original_firstorder_Variance 0.0018 0.995 0.991
wavelet-HHH_glszm_SmallAreaEmphasis 0.0017 0.856 0.822
wavelet-HHL_glszm_GrayLevelNonUniformityNormalized 0.0017 0.973 0.948
F
ebruary 2022 | Volume
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TABLE 3 | Prediction performance of overall survival and progression-free survival and their comparisons at different settings.
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ls in Setting 1)

Setting 4: Combined modeling
(applied feature selection to full
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C-index
[95% CI]

Hazard
Ratio

p-
value

C-index
[95% CI]

0.708 (0.706,
0.709)

0.721 (0.720,
0.722)

1.03
0.65

1.08
0.12

1.95
<0.005

1.540
<0.005

1.050
0.43

1.120
0.05

1.07
0.61

0.57
<0.005

0.761 (0.759,
0.762) 1.64

0.01 0.758 (0.757,
0.759)

1.28
0.19
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0.26
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variables, the corresponding c-indexes are 0.651 and 0.686,
respectively. In both cases, the post-operative variables are
significantly (p<0.001 for both overall and progression-free
survival) more predictive than the pre-operative variables.

When the full set of the pre- and post-operative variables
are combined (Setting 2), the respective c-index of overall and
progression-free survival is 0.703 and 0.743, both outperforming
(both p<0.001) the pre-operative variables alone but
underperforming (both p<0.001) the post-operative variables
alone. This implies that these variables may not be optimally
integrated by the Cox model in Setting 2. When combining only
the significant variables (those with p<0.05 at Setting 1), as
shown at Setting 3, the c-index increases to 0.708 for overall
survival prediction, slightly higher (p=0.19) than using all the
variables (0.703) at Setting 2, while still significantly lower
(p<0.001) than the post-operative variables (0.783) at Setting 1;
meanwhile, the progression-free survival prediction shows a
similar observation at Setting 3, where the c-index increases to
0.761, which is significantly higher (p<0.001) than using all the
variables at Setting 2 (0.743), but again, significantly lower
(p<0.001) than the post-operative variables (0.770) at Setting 1.
At Setting 4, the c-index increases to 0.721 for overall survival
prediction, which is still significantly (p<0.001) lower than the
post-operative modeling (0.783) in Setting 1, but significantly
(p<0.001) higher than the combined full set (0.703) at Setting 2.
Likewise, at Setting 4, the performance pattern of the
progression-free survival is similar to that of the overall
survival. The comparisons of these results indicate the
following: (I) when the full set of pre- and post-operative
variables are all combined (Setting 2), the c-index values
increase and become closer to, but are still lower than, just
using the post-operative variables; and (II) regardless of using
only the significant variables with p<0.05 (Setting 3) or using the
variables selected by a second process of feature selection (Setting
4), the c-index is improved than using the full set at Setting 2.
When comparing Setting 3 and Setting 4, the c-index for overall
survival is higher (p<0.001) at Setting 4, while the c-index for
progression-free survival is higher (p=0.02) at Setting 3. This
indicates that the two methods of selecting subset variables for
modeling (i.e., Settings 3 and 4) have respective advantages for
the two different survival prediction tasks.

Effect Evaluations of the Multi-Modal
Features
After comparing the prediction model’s performance, here we
analyze the prediction effects of individual variables in terms of
their hazard ratios. Here we first look at the overall survival
prediction. It shows CEA (HR=1.477; p=0.03), deep learning
signature (HR=2.746; p<0.005), and radiomics signature
(HR=1.584; p<0.005) are significant variables for pre-operative
prediction; for post-operative prediction, the significant variables
are pT (HR=1.336; p<0.005), pN (HR=1.665; p<0.005), gross
appearance (HR=1.682, p=0.04), and chemotherapy (HR=0.254,
p<0.005). At Setting 2, the two imaging variables (i.e., deep
learning signature and radiomics signature) remain significant
with similar hazard ratios, along with the following new
observations: CEA became marginal (p=0.06), pT became
T
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insignificant (p=0.88)), PNI became marginally significant
(p=0.05), gross appearance became insignificant (p=0.64), and
chemotherapy’s hazard ratio increased to 0.440 from 0.254. At
Setting 3, those significant variables still remain significant
except the pT and pN; it should be noted that in this case, the
c-index (0.708) is much lower than the post-operative prediction
(0.783), indicating very likely that the effects of pT and pN were
lost in this setting. It is interesting to see that at Setting 4, rT and
rN are selected in the models; however, as their p values are
greater than 0.05 and the HRs are close to 1, the predictive values
of rT and rN are limited when combined with other more
significant variables. Comparing Setting 3 and Setting 4, CEA
and gross appearance are significant in Setting 3, but they are not
selected at Setting 4; in contrast, pN is marginally significant
(p=0.05) at Setting 4 but is in-significant (p=0.17) at Setting 3;
the two imaging signatures and chemotherapy treatment remain
the significant predictors at both Setting 3 and Setting 4 for the
overall survival prediction.

Similarly, we now compare the effects of these variables for
the progression-free survival prediction. Specifically, for pre-
operative prediction at Setting 1, the significant variables are
almost the same with the overall survival prediction, except here
the biopsy histologic grade is also significant (HR=1.507;
p=0.03). For post-operative prediction at Setting 1, the
significant variables are also almost the same with the overall
survival prediction, except that gross appearance is not
significant. Most significant variables at Setting 1 remain
significant at Setting 2, except that biopsy histologic grade and
pN became insignificant. Interestingly, when combining only the
significant variables as shown at Setting 3, the significant
variables are CEA, the two imaging signatures, pT, pN, and
chemotherapy. Comparing Setting 3 and Setting 4, the significant
predictors remain the same in the two settings.

In all the four settings, the hazard ratios for chemotherapy
treatment are lower than one, indicating the chemotherapy
treatment reduces the risk of death (in other words, patients
benefit from receiving the treatment with an increasing survival
time). The two imaging signatures play a significant prediction
role of survival in all the four settings. For pT and pN, at Setting
3, they are not significant for overall survival while significantly
predictive of progression-free survival; at Setting 4, pN is a
significant predictor for both overall and progression-free
survival, while pT is only significantly predictive for
progression-free survival.
DISCUSSION

In this study, we evaluated the combination of various clinical
variables and quantitative CECT imaging descriptors for overall
and progression-free survival prediction on gastric cancer
patients. We identified five primary prognosis factors, including
two pathological staging variables, the history of chemotherapy
treatment, and two aggregated signatures from radiomics and
deep learning. While multi-modal data have been increasingly
used in machine learning modeling, our study provides a
Frontiers in Oncology | www.frontiersin.org 9
measurement on the quantitative effects of the examined multi-
modal features for gastric cancer survival analysis. This can
enhance gastric cancer patient prognostication.

We found that in the models with the highest c-indices, the
two pathological staging variables, pT and pN, are correlated
with survival with highest hazard ratios. This suggests that the
pathological staging data including both the depth of mural
invasion and nodal involvement are closely indicative of patient
survival. It is noted that when combined with pre-operative
variables (including the imaging signatures), the effects of pT and
pN are dismissed for overall survival prediction. This may have
two important indications. First, because of the lower c-index at
Settings 3 and 4, we suspect this may have to do with the
modeling method in the Cox model, where variables are
simply linearly concatenated and thus may not be optimal to
capture more complicated non-linear interactions when the
aggregated imaging signatures are incorporated in the model.
Additional work on developing advanced modeling methods is
therefore warranted. Second, at Settings 3 and 4 we found that
the deep learning signature maintains high hazard ratios (like at
Settings 1 and 2), while pT and pN are insignificant. This implies
that the proposed deep learning model can extract quantitative
imaging features that have overlapping information with pT and
pN for overall survival prediction. This is a finding that
highlights the important utility of pre-operative CECT imaging
data coupled with the proposed deep learning modeling
techniques. Interestingly, when looking at the progression-free
survival at Setting 3, both the two imaging signatures and pT and
pN are significant predictors with a similar magnitude of hazard
ratios, which indicates that the information in the pre-operative
CECT imaging signatures and the information in the
pathological staging markers are complementary to each
other for the progression-free survival prediction. Such
complementary effects may align with the observation that
CECT images can visualize the invasion of tumor into gastric
wall (T stage) and the enlarged regional lymph nodes (N stage).
Finally, it is not surprising to see that post-operative
chemotherapy, with a hazard ratio consistently lower than one,
can significantly increase survival.

Radiomics are mathematically defined descriptors while deep
learning features are less intuitive because of the complexity in
deep neural networks. The two aggregated imaging signatures
are identified as significant factors for both overall and
progression-free survival prediction. These two signatures may
convey distinct information on the high-dimensional CECT
images. Radiomic features/signature quantify characteristics of
the segmented intratumor regions. Tumor margins, or the peri-
tumorous regions, may also carry active and predictive
information related to patient outcomes (24). The deep
learning signature derived specifically from the attention-
guided VAE model can extract additional features from the
approximate tumor regions (not necessarily limited to intra-
tumor). In our analysis, when the pre- and post-operative data
are combined, deep learning signature shows a higher hazard
ratio (i.e., importance) than the radiomic signature for overall
survival prediction, and a comparable hazard ratio for the
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progression-free survival prediction. This observation indicates
that the radiomics features and deep learning-identified features
play important yet different roles or interact distinctly in the two
survival prediction tasks.

The focus of our study is to examine the effect and
relationship of multi-modal features for gastric cancer survival
prediction. Meanwhile, our model’s c-index values are in line
with previously reported studies (3, 11). For example, a deep
learning-based nomogram (11) achieved c-index of 0.802 and
0.792, respectively, for overall and disease-free survival of gastric
cancer. A Cox proportional hazard model with the AJCC staging
system showed c-index of 0.796 for overall survival on a gastric
cancer cohort (3). Although these values cannot be directly
compared due to the differences on study cohort, data
modality, and evaluation setting, we put these numbers in the
same context for a general overview of the survival prediction
model’s performance. In addition, while these prediction models
may not be directly used in their current capacities, the
important findings of our study are the quantitative effects of
the prognostic biomarkers identified from the multi-modality
data, which can better inform clinicians for clinical decision-
making. In particular, the pre-operative prediction of survival
may provide early information to improve treatment planning
and patient care.

Our study has some limitations. While our study included
more than one thousand patients with complete data to enable
the performed analyses, additional evaluation using external
datasets will further validate our findings. The Cox model is
more explainable but may be less effective to integrate non-linear
interactions among multi-modal features. This study indicates
the needs of developing more advanced models in future work.
In addition, indications to chemotherapy were not consistently
applied to the enrolled patients according to the NCCN
guideline, which reflects a limitation of retrospective analysis.
Finally, the tumor segmentation is semi-automated, which may
have introduced certain level of dependence to the data
annotators. While showing a high intra- and inter-observer
agreement on segmentations, we expect to use fully automated
and robust tumor segmentation methods when they
become available.
CONCLUSIONS

We integrated multi-modal data for gastric cancer survival
prediction and evaluated their individual and combined effects.
Our study showed that quantitative radiomics and deep learning
imaging features are significant pre-operative predictors of
survival, providing additional prognostic information to the
pathological staging markers. Lower CEA levels and
chemotherapy treatments independently increase survival
chances. Our findings provide quantitative effect measures on
these markers in pre- and post-operative survival prediction,
which will enhance gastric cancer patient prognostication and
benefit treatment planning
Frontiers in Oncology | www.frontiersin.org 10
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