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Simple Summary: Cells possess several pathways that repair DNA damage. One of these pathways
is homologous recombination repair (HR), a pathway responsible for the repair of double-strand
DNA breaks. In cancer, HR is sometimes dysfunctional, leading to genomic instability. The genomic
instability observed in HR-deficient (HRD) tumors has been suggested to alter immunogenicity
and render these tumors more susceptible to immunotherapy. In this review, we summarize the
available evidence for an association between HRD and tumor immunogenicity. Although there are
indications for increased efficacy of checkpoint inhibitors in HRD tumors, data from prospective
studies is needed to validate whether HRD can function as a biomarker for patient selection. The
extensive overview provided here can be used to guide further research in the field.

Abstract: Homologous recombination repair deficiency (HRD) can be observed in virtually all cancer
types. Although HRD sensitizes tumors to DNA-damaging chemotherapy and poly(ADP-ribose)
polymerase (PARP) inhibitors, all patients ultimately develop resistance to these therapies. Therefore,
it is necessary to identify therapeutic regimens with a more durable efficacy. HRD tumors have been
suggested to be more immunogenic and, therefore, more susceptible to treatment with checkpoint
inhibitors. In this review, we describe how HRD might mechanistically affect antitumor immunity
and summarize the available translational evidence for an association between HRD and antitumor
immunity across multiple tumor types. In addition, we give an overview of all available clinical data
on the efficacy of checkpoint inhibitors in HRD tumors and describe the evidence for using treatment
strategies that combine checkpoint inhibitors with PARP inhibitors.

Keywords: cancer; homologous recombination repair deficiency; immune checkpoint inhibitors

1. Introduction

Cells possess a complex set of non-redundant and partially overlapping pathways
to detect and repair DNA damage, including base modifications, strand breaks, and
interstrand crosslinks. Major DNA damage repair (DDR) pathways include direct repair,
base excision repair, nucleotide excision repair, mismatch repair (MMR), homologous
recombination (HR), non-homologous end joining (NHE]), and the Fanconi anemia repair
pathway, with each of these pathways directed at specific types of DNA damage [1].
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In cancer, DDR is frequently disrupted, leading to genomic instability. One of the
pathways that is regularly altered in cancer is HR. HR is an important pathway for the
repair of double-strand DNA breaks (DSBs) during the S and G2 phase of the cell cycle,
i.e., after DNA replication has occurred. HR is considered a relatively error-free process
because it uses an intact sister chromatid to guide DNA repair (Figure 1). HR deficiency
(HRD) leads to enhanced reliance on alternative pathways involved in DSB repair, i.e.,
classical NHE], alternative end joining, and single-strand annealing [2,3]. These pathways
repair DSBs without a homologous DNA template, resulting in characteristic genomic scars
across the genome [4,5].

Recognition of double-strand
DNA break by ATM and ATR
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Figure 1. Homologous recombination repair (HR). HR commences with the recognition of double-
strand DNA breaks by ATM and ATR. ATM and ATR activate BRCA1, which plays a key role in the
recruitment of repair proteins needed for DNA end resection. DNA end resection generates a long 3
single-strand DNA tail that can invade the homologous DNA strand (sister chromatid). After end
resection, RAD51 is loaded on the single-strand DNA tail with the help of BRCA2 and PALB2. The
strand then invades the homologous DNA strand where the actual DNA repair is performed. Since a
sister chromatid is used as a template for DNA repair, HR is considered a relatively error-free process.
Of note, besides the proteins depicted here, many other proteins are involved in HR.

Two well-known genes that play an important role in HR are BRCA1 and BRCA2
(Figure 1). Germline pathogenic BRCA variants have long been recognized for their role
in cancer susceptibility, increasing the risk of breast, ovarian, prostate, and pancreatic
cancers [6,7]. Nevertheless, BRCA mutations can also arise in tumors of patients without
pathogenic germline variants. Deleterious variants in BRCAI or BRCA2, either germline or
somatic, are most frequently observed in ovarian cancer (13.8%), castrate-resistant prostate
cancer (11.8%), and breast cancer (6.8%), but can occur in many other cancer types as
well [8,9]. In addition to BRCA1 and BRCA2, many other genes play a direct or indirect
role in HR. Nevertheless, the exact implications of aberrations in other HR-related genes
for the functionality of the HR pathway are largely unclear [10].



Cancers 2021, 13, 2249

30f19

HRD tumors respond differently to anti-neoplastic agents as compared to non-HRD
tumors. BRCA-mutated ovarian, breast, and prostate cancers have been described to be
more sensitive to DNA-damaging chemotherapy, i.e., platinum chemotherapy [11-13], or
poly(ADP-ribose) polymerase (PARP) inhibitors [9,14,15]. Nevertheless, patients ultimately
develop resistance to these therapies. There is a need for more effective and durable
treatment strategies.

In the last decade, immune checkpoint inhibitors have been registered for the treat-
ment of several cancer types. Currently approved agents target programmed cell death
protein 1 (PD-1), its ligand PD-L1, or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4).
While checkpoint inhibitors induce responses and improve overall survival (OS) in various
types of cancers, a long-term benefit is observed in only a minority of patients. At present,
it is largely unclear which patients will benefit from it. A role for DDR defects in selecting
patients for immunotherapy has been suggested. MMR-deficient tumors, which are char-
acterized by a hypermutated genome and instability of DNA repeat regions, have been
shown to be responsive to checkpoint inhibitors, independent of tumor type [16]. Other
DDR defects, particularly those leading to HRD, may also render tumors more susceptible
for checkpoint inhibitors.

The first part of this review describes how HRD might mechanistically affect antitumor
immunity. In the second part, the current evidence for an association between HRD and
tumor-infiltrating immune cells is summarized and an overview is given of available
clinical data on the efficacy of checkpoint inhibitors in HRD tumors. We focus on tumors
with BRCA inactivation, as the functional implications of other HR-related genes remain
uncertain and studies considering genome-wide HRD signatures are scarce. Finally, we
describe the evidence for synergism between checkpoint inhibitors and PARP inhibitors in
BRCA-inactivated tumors.

2. How HRD Influences Antitumor Immunity
2.1. Tumor Mutational Burden and Neoantigen Load

To avoid autoimmunity, the immune system discriminates self-antigens from non-self-
antigens. Due to mutations in protein-encoding genes, tumors may express aberrant antigens,
known as neoantigens. These neoantigens may be recognized by the immune system as
non-self, thereby generating an adaptive immune response, resulting in the selective elim-
ination of cancer cells. HRD tumors exhibit a unique mutational signature, characterized
by base-substitution signature 3 (enriched in C > G substitutions) and 8 (enriched in C > A
substitutions) as well as an elevated number of small deletions (indels) with flanking mi-
crohomology (Figure 2) [5,17]. Although tumor mutational burden (TMB) in HRD tumors
is generally not as high as in MMR-deficient tumors, HRD tumors have consistently been
described to have a higher TMB as compared to HR-proficient tumors [18-25]. For instance,
among two cohorts of breast cancer patients, the TMB was 2.0 to 2.6 times higher in patients
with a BRCA1 or BRCA2 mutation as compared to those without a BRCA mutation [22].
Across several types of cancers, high TMB has been associated with improved outcomes of
checkpoint inhibitor therapy [26-29]. A recent analysis among 1662 patients with various
cancer types showed that high TMB, defined as the highest 20% of each tumor type, was
associated with improved OS (hazard ratio = 0.61, p = 1.3 x 107) [29].
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Figure 2. The genomic landscape of BRCA-mutated and BRCA-wildtype tumors. The depicted circos
plots were generated using whole genome sequencing data of CPCT-02 study participants treated in
the Radboudumec. Results of the CPCT-02 have previously been published elsewhere [30]. The outer
first circle shows the chromosomes. The darker areas represent large gaps in the human reference
genome, i.e., regions of centromeres. The second circle shows all somatic single nucleotide variants
(SNVs) across the genome. Tumor purity-adjusted allele frequencies are scaled from 0% to 100%.
SNVs are colored according to the type of base change in concordance with coloring used in previous
literature [31]. Base substitutions that frequently occur in HRD are displayed in blue (C > A) and
black (C > G). The third circle depicts short insertions (yellow) and deletions (red, indels). The fourth
circle shows all copy number changes. Losses and gains are indicated in red and green, respectively.
The scale ranges from 0 (complete loss) to 6 (high-level gains). Absolute copy numbers above 6
are indicated by a green dot on the diagram. The fifth circle represents the observed minor allele
copy numbers. The scale ranges from 0 to 3, with losses (<1) shown in orange and gains (>1) shown
in blue. The innermost circle displays the structural variants within or between the chromosomes.
Translocations are indicated in blue, deletions are indicated in red, insertions are shown in yellow,
tandem duplications are indicated in green, and inversions are shown in black. The figure shows
that BRCA-mutated tumors generally have higher numbers of SNVs, small indels, deletions, and
tandem duplications (the latter is only more frequent in BRCAI-mutated tumors).
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Although a higher TMB increases the likelihood of the formation of neoantigens that
are able to induce an immune response, not all non-synonymous mutations give rise to
immunogenic neoantigens. Neoantigens are presented on the surface of cancer cells by
major histocompatibility complex (MHC) molecules. The immunogenicity of neoantigens
depends on its binding affinity to the patients” MHC molecule. Several tools have been
developed to predict neoantigen load, by inferring the MHC-peptide binding affinity from
sequencing data. Like TMB, a high neoantigen load has been associated with checkpoint
inhibitor efficacy [27,32,33]. The neoantigen load has been described to be 2-fold to 3-fold
higher in BRCA-mutated tumors as compared to BRCA wild-type tumors [22].

2.2. Copy Number Variations

The genomic instability of HRD tumors not only leads to a higher TMB, but also to
large structural changes that result in a gain or loss of part of a chromosome. Research in
breast and ovarian cancer identified three genomic signatures characteristic for HRD, which
may result in copy number variations (CNVs). These include telomeric allelic imbalance
(TAI) [34], loss of heterozygosity (LOH) [35], and large-scale state transitions (LST) [36]
(Figure 3). Furthermore, the presence of ~10 kb duplications is specific for BRCAI-mutated
tumors but not for other HRD tumors (Figure 2) [5,37].
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Figure 3. Telomeric allelic imbalance (TAI), loss of heterozygosity (LOH), and large-scale state transitions (LSTs). (a) Genomic

scars characteristic for homologous recombination repair deficiency (HRD) include TAI, LOH, and LSTs. Allelic imbalance

is the imbalance in paternal and maternal alleles with or without changes in the overall copy number of that region.

Characteristic for HRD is Al at the telomeric end of a chromosome (TAI). LOH refers to the situation where one of the two

alleles that was originally present in the cell is lost. LSTs are defined as chromosomal breaks between adjacent regions of at

least 10 mb. (b) CNV profile of an HRD tumor. The plot was generated using whole genome sequencing data of a CPCT-02

study participant treated in the Radboudumc [30]. Dots represent regions of 10 mb. As LSTs lead to copy number changes,
dots with a log ratio # 0 indicate LSTs.

While little is known about the link between TAI, LOH, and LSTs and antitumor
immunity, a relation has been suggested between immunity and the fraction of the genome
altered by CNVs (CNV fraction). A large-scale analysis, including 9125 samples of 33 cancer
types, demonstrated that the total number of TAI, LOH, and LSTs positively correlates with
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the CNV fraction, indicating that HRD tumors generally have a higher CNV fraction [10].
A pan-cancer analysis of The Cancer Genome Atlas (TCGA) data showed that the CNV
fraction negatively correlates with cytotoxic immune signatures, i.e., genes specific for
cytotoxic CD8" T cells and natural killer cells [38]. The relation between the CNV fraction
and the clinical outcome following treatment with anti-CTLA-4 was assessed in two
independent cohorts of melanoma patients (n = 110 and n = 64). In both cohorts, a
high CNV fraction was predictive of poor survival following treatment with anti-CTLA-4
(hazard ratio = 2.2, p = 0.0004 and hazard ratio = 2.3, p = 0.03, resp.) [38]. Another study
that assessed the relationship between the CNV fraction and response to anti-PD-(L)1 in
248 non-small cell lung cancer (NSCLC) patients showed an inverse relation between the
CNV fraction and response to checkpoint inhibitors (p = 0.02) [39].

There is increasing evidence that CNVs play a critical role in tumorigenesis [38].
Nevertheless, it is largely unclear why a high CNV fraction is associated with low cytotoxic
immune signatures and a poor response to checkpoint inhibitors. It has been suggested
that CNVs induce proteotoxic stress and, thereby, impair the signals needed to attract
cytotoxic immune cells [38]. An alternative hypothesis is that patients with a high CNV
fraction more frequently harbor loss of tumor suppressor genes or amplification of driver
genes that have been implicated in antitumor immunity, such as PTEN loss [40] or MYC
amplification [41]. In addition, loss of HLA loci, which encode MHC (or HLA) molecules,
has been suggested to provide an advantage to cancers and allow for the outgrowth of
subclones with an increased neoantigen load [42].

2.3. STING Pathway

Apart from the distinct genomic aberrations found in HRD tumors, the accumulation
of DNA damage in these tumors may also affect their immunogenicity. Defects in the HR
pathway have been associated with activation of the stimulator of interferon genes (STING)
pathway in dendritic cells [43] and tumor cells [44]. In this pathway, cytosolic DNA is
sensed by cyclic GMP-AMP synthase (cGAS), leading to activation of STING and enhanced
transcription of type I interferon (IFN) genes [43]. Type I IFNs have immunostimulatory
functions and play a role in promoting cross-presentation of antigens by dendritic cells,
thereby, enhancing antigen-specific T cell responses [45]. Preclinical research has shown
that activation of the STING pathway by STING agonists induces immune-mediated tumor
regression [46,47].

There is accumulating evidence that cytosolic DNA is increased in DDR-deficient cells
and that this leads to altered STING pathway activity. Research in mice deficient for ATM
and patients with congenital ATM deficiency demonstrated that loss of ATM, which is a
DNA damage sensor, is associated with enhanced type I IFN production, which results
from the accumulation of cytosolic DNA and activation of the STING pathway [48]. In
BRCAI-mutated breast cancer cells, increased cytosolic DNA levels and enhanced STING
pathway activation have also been observed [49]. Additionally, in HRD breast cancer cell
lines and in vivo models, treatment with PARP inhibitors, which increases DSB formation,
enhanced STING pathway activation and resulted in the recruitment of immune cells [44].

In summary, the slightly increased TMB and the STING-mediated upregulation of
type I IFN genes observed in HRD tumors suggest that these tumors might be more
immunogenic. The higher number of CNVs, on the other hand, might suppress antitumor
immunity. This raises the question which of the mechanisms predominates in driving the
immunogenicity of HRD tumors.

3. The Tumor Immune Microenvironment in BRCA-Inactivated Tumors

A comparison of the immune infiltrate between HRD and HR-proficient tumors
could provide important insights into the immunogenic consequences of HRD. While
a uniform definition of immunogenicity is lacking, a high number of tumor-infiltrating
lymphocytes (TILs), especially of CD8* T cells, is commonly considered indicative of
immunogenicity [50]. A more detailed description of the different immune cell subsets
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and checkpoint molecules discussed in this paragraph is given in the Box 1. In this section,
we focus on differences in the immune infiltrate between BRCA-inactivated and BRCA
wild-type tumors.

3.1. Breast Cancer

Several studies in breast cancer suggest an association between BRCA mutation status
and increased immune cell infiltration, especially for the BRCAI-mutated tumors. Nolan
and colleagues evaluated the presence of TILs in triple negative breast cancer (TNBC)
patients with (n = 29) and without (1 = 64) pathogenic germline BRCA1 variants. Higher
numbers of TILs were observed in BRCAI-mutated tumors as compared to BRCA1 wild-
type tumors. The immune infiltrate in BRCAI-mutated tumors consisted of cytotoxic
(CD8") and helper (CD4*) T cells, with a low frequency of regulatory T cells (Tregs) [21].
In accordance with this, a large-scale analysis in 1269 breast cancer patients revealed that
low protein expression of BRCA1 was associated with high numbers of CD8" TILs as
compared to patients with normal BRCA1 expression [51]. While the previously mentioned
studies focused on BRCAI-mutated tumors, others also took BRCA2 mutation status into
account. Kraya and colleagues found that cytolytic activity, defined as the mean expression
of PRF1 and GZMA, was higher in patients with a BRCA-mutated tumor (48 BRCAI-
mutated, 41 BRCA2-mutated) compared to patients with an HR-proficient tumor (1 = 652),
with no difference between BRCAI-mutated tumors and BRCA2-mutated tumors [23].
Wen and colleagues, on the other hand, showed that only pathogenic BRCA1 but not
BRCA2 variants were associated with a higher number of activated CD4* and CD8" T
cells using transcriptome data of the Wellcome Sanger Institute and TCGA (n = 1418, 78
BRCAI-mutated and 53 BRCA2-mutated) [22].

While several studies suggest that BRCAI-mutated breast cancers have increased
immune cell infiltration, there are also numerous studies that did not find any association
between BRCA mutation status and immune cell infiltration [11,19,52,53]. Further com-
plicating the interpretation of the results, a recent study indicates that BRCAI-mutated
tumors (1 = 17) have a more immunosuppressed tumor microenvironment as compared to
BRCA1 wild-type tumors, as evidenced by higher expression of immunoregulatory and
suppressive genes [54]. Interestingly, this was not the case for BRCA2-mutated tumors
(n = 18). The authors observed lower numbers of SNVs and indels and higher CNV frac-
tions in BRCAI-mutated tumors as compared to BRCA2-mutated tumors and suggest that
these genomic differences may contribute to the observed differences in immunogenicity.

3.2. Ouvarian Cancer

Most studies in ovarian cancer have reported increased TILs and immune checkpoint
expression in BRCA-mutated tumors. In a cohort of 53 patients with serous ovarian
cancer (29 BRCAl-mutated, 8 BRCA2-mutated, 16 HR-proficient), BRCA-mutated tumors
exhibited increased CD3* and CD8* T cells as compared to HR-proficient tumors. PD-1 and
PD-L1 expression on tumor-infiltrating immune cells was also higher in BRCA-mutated
tumors, but no significant difference was observed in PD-L1 expression on tumor cells or
the number of B cells [55]. In line with these findings, a study in 40 patients, including
18 patients with a BRCAI-mutated tumor (n = 9) or a tumor with epigenetic loss of BRCA1
(n =9), demonstrated that intraepithelial CD8* TILs were more frequently observed in
tumors with BRCA1 abnormalities (94.4% vs. 57.9%) [56]. Additionally, a study among
158 ovarian cancer patients (37 BRCA-mutated, 121 BRCA-wildtype) showed that BRCA-
mutated tumors had significantly higher levels of PD-1 and PD-L1 mRNA as compared to
BRCA wild-type tumors [57]. Finally, in a study among 103 patients with serous ovarian
cancer (21 BRCAI-mutated, 10 BRCA2-mutated, 21 BRCA1I methylation, and 51 no BRCA
loss), BRCA-mutated tumors tended to be more frequently infiltrated by CD8* T cells
(92.9%) as compared to tumors with BRCA1 methylation (76.2%) or no BRCA loss (73.9%,
p = 0.057) [58]. In contrast to the breast cancer studies that are described above, the ovarian
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cancer studies analyzed BRCA1-mutated and BRCA2-mutated tumors as a single group,
making it impossible to evaluate the contribution of the individual genes.

Like in breast cancer, there are also a few studies in ovarian cancer that do not
support an association between BRCA-inactivation and immune cell infiltration. In an
immunohistochemistry study including 48 patients with serous ovarian cancer and known
germline BRCA mutation status (4 BRCAI-mutated, 8 BRCA2-mutated, 36 BRCA-wildtype),
no association was found between germline BRCA mutation status and the infiltration
of CD8* T cells or Tregs or checkpoint expression (PD-L1 or LAG-3) [59]. Furthermore,
analyses of transcriptome data of the TCGA yielded conflicting results [19,60].

3.3. Prostate Cancer

In an attempt to better understand the impact of BRCA2 mutations on the immune
phenotype of prostate cancer, Jenzer and colleagues performed immunohistochemistry
and T-cell receptor (TCR) sequencing in nine BRCA2-mutated and nine BRCA wild-type,
hormone-sensitive prostate cancers. No difference was observed in the number of T
cell clones or TCR clonality. In BRCA2-mutated tumors, however, the ratio between
intratumoral and stromal CD4" T cells, CD8* T cells and Tregs was higher as compared to
BRCA2 wild-type tumors. Although the location of the T cells does not inform us about
the antitumor activity of these cells, the closer proximity to the tumor cells does suggest a
more active immune response [61].

Box 1. Immune Cell Subsets and Immune Checkpoints.

e T cells are key players in antitumor immunity. They are able to selectively target cancer cells
following recognition of non-self-antigens. T cells, characterized by the expression of CD3,
can be subdivided into cytolytic T cells (CD8"), helper T cells (CD4"), and regulatory T cells
(CD4*FoxP3*). While cytolytic T cells and helper T cells play an important role in tumor
immunosurveillance, regulatory T cells suppress antitumor immunity. Studies in various
cancer types indicate that high intratumoral CD8* T cell density is associated with favorable
outcomes to checkpoint inhibitor therapy [62,63]. Nevertheless, the sole presence of CD8*
T cells does not necessarily indicate an active immune response. Immune activity can be
inhibited by a lack of antigen presentation or by the presence of immune suppressive cells,
cytokines, or inhibitory checkpoint molecules.

e B cells play a major role in antibody-mediated immunity. Although their role in antitumor
immunity is not completely understood, recent data suggest that B cells play a role in antitumor
immunity and promote checkpoint inhibitor efficacy [64].

Natural killer cells are innate immune cells with a cytolytic function.

Checkpoint molecules play an important role in regulating immune responses. PD-L1, PD-1,
and LAG-3 are all inhibitory checkpoint molecules. Activation of these checkpoints suppresses
immune cell activation. In some cancer types, PD-L1 expression is associated with a response
to PD-(L)1 inhibitors [65]. In NSCLC and urothelial cancer, PD-L1 expression is used for
treatment stratification.

3.4. Summary

Although several studies in various cancer types indicate that BRCA-inactivated
tumors have more dense immune infiltrates, current data is inconclusive. There are several
possible explanations for these heterogeneous results. First, study results might have
been biased due to the presence of sporadic cancers in the BRCA-mutated group. In
most studies the BRCA-mutated group was not limited to patients with biallelic BRCA
inactivation. Across cancer types, only 89% of patients with a germline BRCA1 variant
and 79% of patients with a BRCA2 variant have a tumor with complete loss of the wild-
type allele [30]. Besides the presence of sporadic cancers in the BRCA-mutated group,
there might also have been HRD tumors in the BRCA-wildtype group as HRD can also
arise from mutations in other HR genes or promoter hypermethylation [5,17,66]. Recently,
genome-wide, mutational scar-based scores have been developed for the assessment of
HRD, such as HRDetect [17] and CHORD [5]. Up to 45% of cancer patients with an HRD
tumor according to CHORD do not have an event in BRCAI or BRCA? [5]. Unfortunately,



Cancers 2021, 13, 2249

90f19

currently available data on the association of HRD and immune cell infiltration has focused
on the BRCA mutation status and did not take genome-wide HRD signatures into account.
Finally, an explanation for the inconsistent results might be the heterogeneity of HRD
tumors. The immunogenicity of the HRD tumor might differ depending on the degree
of genomic instability and the genomic regions where alterations have occurred. It is
conceivable, for example, that amplification or loss of driver genes involved in immune
suppression might hamper antitumor immunity despite higher TMB and STING pathway
activation. While evidence on this subject is currently limited, it is plausible that only
those tumors with a high number of SNVs and indels and a low CNV fraction are more
immunogenic. In support of this, a study in breast cancer patients described a negative
association between T cell infiltration and the degree of LOH, TAI, and LSTs within the
BRCA-mutated subgroup [23].

4. Checkpoint Inhibitor Therapy in BRCA-Inactivated Tumors
4.1. Tumor Types with Low Sensitivity to Checkpoint Inhibitor Monotherapy

Although checkpoint inhibitors have greatly improved clinical outcomes in some
cancers, checkpoint inhibitors have had limited success in many other tumor types so
far. These tumor types include breast cancer, ovarian cancer, and prostate cancer, i.e.,
tumor types where HRD occurs rather frequently. Although checkpoint inhibitors are not
beneficial for the entire group of breast cancer, ovarian cancer, or prostate cancer patients,
selected subgroups may benefit. HRD has been suggested to function as a biomarker to
select patients for checkpoint inhibitor therapy.

4.1.1. Breast Cancer

Most research on checkpoint inhibitors in breast cancer has focused on patients with
TNBC, a subgroup that is enriched for BRCAI mutations [67]. Checkpoint inhibitors have
shown modest activity in breast cancer, when used as a single agent [68]. Nevertheless,
the combination of the PD-L1 inhibitor atezolizumab with the chemotherapeutic agent
nab-paclitaxel has been shown to improve median OS as compared with nab-paclitaxel
alone in PD-L1* TNBC (25.0 to 15.5 months) [69]. Preclinical studies suggest that BRCA2-
mutated but not BRCAI-mutated breast cancers are responsive to treatment with checkpoint
inhibitor monotherapy [21,54]. However, clinical studies supporting this are lacking.
Data from clinical trials suggest that BRCA-mutated TNBCs are not more susceptible to
treatment with atezolizumab plus nab-paclitaxel [70]. Furthermore, BRCA1-like, genomic
copy number profiles appear to be negatively associated with response to PD-1 blockade
in TNBC [71] (Table 1).



Cancers 2021, 13, 2249

10 of 19

Table 1. The efficacy of checkpoint inhibitors in HRD tumors.

Reference Tumor Type Genes Treatment Results !
Total Mut
Pathogenic germline or somatic . .
¢ . Atezolizumab + PFS: hazard ratio 1.07, 95% CI 0.77-1.49
[70] TNBC 612 8 BRCAI/2 variants, zygosity status nab-paclitaxel OS: hazard ratio 1.07, 95% CI 0.71-1.62
not assessed
Nivolumab with or
(71] TNBC 19 25 BRCAT-like genomic copy number without induction Lower ORR in BRCA1-like patients (p < 0.05)
profiles chemotherapy or
irradiation
. Pathogenic germline BRCA1/2 ORR: 12.5% (1/8) in BRCA-mut vs 7.9% (3/38) in
[72] Ovarian cancer 46 8 variants, zygosity status not Avelumab
BRCA-WT
assessed
Ovarian or fallopian tubal Pathogenic germline BRCAL/2
[73] cancerp 6 6 variants, zygosity status not Nivolumab ORR: 76% (3/6 CR,1/6 PR, 2/6 PD)
assessed
[74] Ovarian or uterine cancer 25 2 Pathogenic ggrmhne BRCAIL Atezolizumab ORR: Both had PD
variants
. ORR: 11% (2/19) in patients with BRCA1/2 or
[75] CRPC 153 19 Pathogenic homozygogs BRCAL/2 Pembrolizumab ATM aberrations and 3% (4/124) in patients
or ATM aberrations . .
without HR aberrations
. ORR: 50% (3/6) in DDR-mut vs 22.6% (7/31) in
Pathogenic homozygous DDR-WT.
[76] CRPC 28 5 aberrations in BRCA2, ATM, CDK12, Ipilimumab + nivolumab . Lo
 ANCA Of note, responding patients in the DDR group
© had mutations in BRCA2 or FANCA
ORR: 40% (2/5) in DDR-mut vs 0% (0/3) in
Pathogenic mutations in BRCA2 (3), DDR-WT (p = 0.46)
[77] CRPC with AR-V7 expression 15 6 ATM (2), ERCC4 (1)?, LOH in two Ipilimumab + nivolumab PSA response: 33% (2/6) vs 0% (0/9) (p = 014)

BRCA2-mut patients

PFS: hazard ratio = 0.31, 95% CI 0.10-0.92, p = 0.01
OS: hazard ratio = 0.41, 95% CI1 0.14-1.21, p = 0.1
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Table 1. Cont.

Reference Tumor Type Genes Treatment Results 1
Total Mut
Pathogenic alterations in BRCA1/2 ORR: 80% (12/15) and 19% (6/32) in patients with
. (3) and other DDR genes (12; ATM, e deleterious DDR alterations and no DDR
(78] Urothelial cancer 60 15 POLE, ERCC2, CHEK2, FANCA, and Anti-PD-(L)1 alterations, resp.
MSH2, MSH6). Zygosity status n/a PFS: Median PFS NR? and 2.9 months, resp
BRCA1/2 mutations. Zygosity status e 10% and 29% of patients with and without durable
791 NSCLC 4 ? and pathogenicity n/a Anti-PD-(L)1 benefit resp, harbored a mutation in BRCA1/2
. . Anti-PD-1 alone (32) or  38% (6/16) of patients with disease control vs. 33%
[80] Renal cell carcinoma 34 12 BRCAZi(;nuat?Egn:r’ﬂzd};gOﬁ;Z status combined with (6/18) of patients with PD had a mutation in an
pathogenicity anti-CTLA-4 (2) BRCA1/2
. BRCA2 mutations. Zygosity status s BRCA2 mutation in 28% (6/21) of responders vs.
[81] Metastatic melanoma 38 7 and pathogenicity n/a Anti-PD-1 6% (1/17) of non-responders
ARID1 A, BLM, BRCA2, MRET11, 05:
NBN, RAD50, RAD51/B/D, RADS52, Anti-CTLA-4 (9%), . L .
[82] Various solid tumors 1661 335 RAD54 L, XRCC2 anti-PD-(L)1 (76%), or ~ Median OS 41 mo“thili‘_?vlé‘mut vs 16 months in
Zygosity Stat“sna/r“ad pathogenicity both (16%) Adj hazard ratio* = 1.39, 95% CI 1.15-1.70, p = 0.022
OS BRCA1:
Pathogenic somatic or germline . Hazard ratio 0.76, 95% CI 0.48-1.54, p = 0.45
[54] Various tumors 2185 95 BRCAT (28) or BRCA? (67) Anti-PD-(L)1, CTLA-4 or OS BRCA2:

mutations. Zygosity statis n/a

a combination

Hazard ratio 0.48, 95% CI 0.29-0.80
Adj hazard ratio® = 0.50, 95% CI 0.30-0.83, p=0.008

! A hazard ratio <1 indicates better outcomes in patients with HRD tumors. 2 ERCC4 is involved in nucleotide excision repair. 3 Median follow up was 19.6 months. * Adjusted for high TMB, type of ICI
administered, and tumor type. 5 Adjusted for TMB and cancer type. Abbreviations: adj = adjusted; AR-V7 = androgen receptor variant 7; 95% CI = 95% confidence interval; CRPC = castrate-resistant prostate
cancer; DDR = DNA damage repair; HR = homologous recombination; LOH = loss of heterozygosity, mut = mutated; NSCLC = non-small cell lung cancer; ORR = objective response rate; OS = overall survival;
PFS = progression-free survival; PD-1 = programmed cell death protein-1; PD-L1 = programmed cell death ligand 1; TNBC = triple negative breast cancer; WT = wild type.
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4.1.2. Ovarian Cancer

Clinical trials on the efficacy of single-agent checkpoint inhibitor therapy in ovarian
cancer have reported response rates around 10% [72,83]. Due to these low response rates,
checkpoint inhibitors have not (yet) been approved for the treatment of ovarian cancer,
apart from the subset of patients with MMR-deficient tumors [16]. Data on the efficacy of
checkpoint inhibitors in HRD ovarian cancer is limited. A phase Ib trial on the efficacy of
PD-L1 inhibitor avelumab reported only one objective response among eight patients with
a pathogenic germline BRCA variant (12.5%). This response rate was very similar to that
observed in BRCA-wildtype patients (7.9%) [72]. A case series, on the other hand, described
very promising responses to PD-1 inhibitor nivolumab among six patients with germline
BRCA mutations and recurrent ovarian (n = 5) or fallopian tube (n = 1) cancer. Four out
of six patients achieved an objective response, including three complete responses [73].
Although it is possible that checkpoint inhibitors are more effective in patients with HRD
ovarian cancer, the low response rates to checkpoint inhibitors together with the high
frequency of HRD in ovarian cancer (up to 50%) indicates that checkpoint inhibitors are
not effective in all patients with HRD ovarian cancer [5].

4.1.3. Prostate Cancer

Checkpoint inhibitor monotherapy has not been able to improve the clinical outcome
in unselected patients with castrate-resistant prostate cancer (CRPC). Only 3-5% of CRPC
patients achieve an objective response to anti-PD-1 [75]. The response rate to combination
therapy with ipilimumab and nivolumab appears to be higher. Yet, still only 10-26% of
patients achieve an objective response [84]. Exploratory biomarker analyses in clinical trials
have suggested that HRD tumors might be more sensitive to checkpoint inhibitors. In the
KEYNOTE-199, the objective response rate to pembrolizumab was 11% in patients with
BRCAI-mutated, BRCA2-mutated, or ATM-mutated tumors and 3% in patients without
mutations in HR-related genes [75]. In the CheckMate 650, 50% of patients with an HRD
tumor and only 22.6% of patients with HR-proficient tumors responded to combination
therapy [76]. Importantly, in the latter study, the authors used a broad definition of HRD,
including not only BRCA, but also ATM, CDK12, and FANCA alterations. Only tumors with
BRCA2 and FANCA mutations responded to therapy. Although promising, one should
keep in mind that the number of patients in this trial were low (Table 1).

4.2. Tumor Types Responsive to Checkpoint Inhibitor Monotherapy

Biomarkers that enrich for response to checkpoint inhibitors may also have great utility
in tumor types where checkpoint inhibitors are already part of standard care. In these
tumor types, biomarkers may guide the treatment sequence and may help decide between
checkpoint inhibitors monotherapy or combinational treatment strategies. Therefore, it is
important to know how HRD affects checkpoint inhibitor sensitivity in these tumors.

4.2.1. Urothelial Cancer

In urothelial cancer, PD-(L)1 inhibitors are currently mostly used as second-line treat-
ment for patients with metastatic disease who progressed on platinum-based chemother-
apy [85]. Recent trials investigating the efficacy of checkpoint inhibition in the first-line
setting showed no survival benefit for checkpoint inhibitors over chemotherapy in the
overall population [86,87]. Nevertheless, first-line therapy with checkpoint inhibitors may
be very effective in selected subgroups. A study of 60 patients with advanced urothelial
cancer showed that 80% of patients who had tumors with a deleterious DDR alteration
had an objective response to anti-PD-(L)1, whereas responses were seen in only 18.8% of
patients without DDR alterations. Importantly, only three out of fifteen patients with dele-
terious DDR alterations harbored tumor mutations in BRCA1 or BRCA2 and no information
is provided on the responses of these three patients. Other DDR mutations included ATM,
POLE, ERCC2, FANCA, and MSH6 [78].
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4.2.2. Other Cancer Types

The incidence of HRD in other tumor types where checkpoint inhibitors are part
of standard care is very low. This includes melanoma, non-small cell lung cancer, and
renal cell carcinoma [5]. There have been a few reports on the association between BRCA
mutations and checkpoint inhibitor efficacy in these tumors. Nevertheless, none of these
studies reported on the zygosity status or pathogenicity of the identified mutations, making
it difficult to interpret the results. These data are summarized in Table 1.

4.3. Pan-Cancer Analyses

A recent, large-scale, pan-cancer analysis in 1661 patients treated with checkpoint
inhibitors demonstrated a significantly longer OS in patients with tumors with a mutation in
an HR-related gene [82]. Patients were treated with antibodies targeting CTLA-4 (9%), PD-
(L)1 (76%), or both (16%). The authors distinguished between HR-related genes (ARID1A,
BLM, BRCA2, MRE11, NBN, RAD50, RAD51/B/D, RAD52, RAD54L, XRCC2) and DNA
checkpoints (including, among others, BRCA1, ATM, CHEK1, and CHEK?2). Patients with
tumor mutations in HR-related genes had significantly longer OS as compared to those
without these mutations, independent of tumor type or TMB (41 months vs. 16 months,
adjusted hazard ratio = 1.39, 95% CI 1.15-1.70, p < 0.001). In contrast to the HR-related genes,
the DNA checkpoints were not associated with OS after adjustment for TMB and tumor
type. The most frequently mutated HR-related genes were ARID1A (11.4%) and BRCA2
(5.6%). Mutations in BRCA2 as well as most other HR-related genes with an incidence of
least 1% (ARID1A, RAD50, RAD51B, and MRE11) were individually associated with longer
OS. In a cohort of patients not treated with checkpoint inhibitors, mutations in HR-related
genes were associated with worse OS (HR 0.86, 95% CI 0.78-0.95, p = 0.003), suggesting
that mutations in the designated HR-related genes have predictive value for response to
checkpoint inhibitors rather than a prognostic value. Despite the retrospective character,
the broad definition of HR-related genes, and the fact that the observed non-synonymous
mutations were not assessed for their functional effects, this large scale analysis supports
the idea that mutations in BRCA2 and other genes with a direct or indirect role in HR
render tumors more susceptible for treatment with checkpoint inhibitors.

In line with these findings, another large study of 2185 patients with various cancer
types also suggests higher sensitivity of BRCA2-mutated tumors to checkpoint inhibitors.
Included patients were treated with anti-PD-(L)1, CTLA-4, or a combination of both. In
total, 67 patients harbored a pathogenic germline or somatic variant in BRCA2 and 28 in
BRCA1. Zygosity status was not assessed. In univariate analysis, BRCA2 but not BRCA1
mutations were associated with improved OS after checkpoint inhibitor therapy. The
correlation between BRCA2 mutations and OS remained significant after controlling for
tumor type and TMB (HR 0.50, 95% CI 0.30 — 0.83, p = 0.008). It is difficult to make a direct
comparison between BRCA2-mutated and BRCAI-mutated tumors as the distribution of
these mutations differs across cancer types and the correlation between the BRCAT mutation
status and OS was not controlled for tumor type. Nevertheless, the data suggest that
patients with BRCA2-mutated tumors are more susceptible for treatment with checkpoint
inhibitors.

4.4. Summary

There is evidence from two large pan-cancer analyses suggesting that checkpoint in-
hibitors are more effective in patients with BRCA2-mutated tumors. Data from other studies
is limited by the small sample size, the lack of information on the pathogenicity of the
identified mutations and zygosity status, and/or the broad definition of HR-related genes.
All clinical data is summarized in Table 1. Prospective studies are needed to validate the
findings of the two large pan-cancer trials and to provide more insight into HRD-associated
hallmarks associated with responses to checkpoint inhibitors. As evident from the low
response rates to checkpoint inhibitors in ovarian cancer, where HRD occurs in up to 50%
of patients, it is clear that not all patients with HRD will respond to checkpoint inhibitors.
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Additional factors, such as the presence of a BRCA1-type or BRCA2-type HRD signature,
the TMB, and the CNV fraction, might influence sensitivity to checkpoint inhibitors in these
tumors. Phase II trials in patients with advanced solid tumors (ClinicalTrials.gov Iden-
tifier: NCT03428802) and metastatic CRPC (ClinicalTrials.gov Identifier: NCT04717154)
have recently been initiated to study the efficacy of checkpoint inhibitors in HRD tumors.
If (a subset) of HRD tumors prove to be more sensitive to checkpoint inhibitor therapy, this
will have important implications for treating patients with HRD tumors.

5. Combining Checkpoint Inhibitors with DNA-Damaging Agents

Among various cancer types, BRCA mutations have been found to sensitize tumors
to treatment with PARP inhibitors. In light of the presumed increased immunogenicity
of HRD tumors, it is important to discover whether treatment strategies that combine
checkpoint inhibitors with PARP inhibitors might be effective in treating these cancers.
PARP inhibitors currently have a role in the treatment of ovarian cancer, pancreatic cancer,
HER2-negative breast cancer, and CRPC [9].

PARPs play a critical role in the repair of single-strand DNA breaks (SSBs). PARP
inhibitors use two distinct mechanisms. First, PARP inhibitors prevent the repair of SSBs,
which will eventually lead to the accumulation of DSBs. In HRD tumors, this is lethal
because DSBs cannot be repaired by the HR pathway. Second, PARP inhibitors trap PARP
proteins at the site of SSBs, thereby preventing DNA replication [88]. PARP inhibitors have
been suggested to have an immunomodulatory effect. In preclinical studies, upregulation
of PD-L1 was observed during PARP inhibition [89,90]. In addition, PARP inhibitors have
been shown to promote STING pathway activation [91]. Therefore, combining checkpoint
inhibitors and PARP inhibitors might be a promising treatment strategy for HRD cancers.

In breast and ovarian cancer mouse models, PARP inhibitors and checkpoint inhibitors
were found to have synergistic activity [89,91-93]. Clinical data supporting the superiority
of combination therapy over PARP inhibitor monotherapy, however, is lacking. A recent
phase I/1I clinical trial evaluated the safety and efficacy of combination therapy with
PD-L1 inhibitor durvalumab and PARP inhibitor olaparib in 34 patients with germline
BRCA-mutated, metastatic breast cancer (16 x BRCAI, 18 x BRCA?2). Patients were allowed
to have received a maximum of two previous lines of chemotherapy. The safety profile
of the combination appeared similar to durvalumab or olaparib monotherapy. Objective
responses were observed in 63% of patients. The median duration of the response was
9.2 months (95% CI 5.5-13.1), the median progression-free survival (PFS) was 8.2 months
(95% CI 4.6-11.8), and the median OS was 21.5 months (95% CI 16.2-25.7) [94]. These results
are comparable with the efficacy of olaparib monotherapy in germline BRCA-mutated
breast cancer, as reported in the OlympiAD trial [15].

The efficacy of the PD-1 inhibitor pembrolizumab and the PARP inhibitor niraparib in
recurrent ovarian cancer was evaluated in 62 patients. In this phase I/1I trial, 11 patients
(18%) harbored a mutation in BRCA1 (n = 9) or BRCA2 genes (n = 2). The combination
induced an objective response in 18% of patients and disease control in 65%. Median PFS
was 3.4 months (95% CI, 2.1-5.1 months), median duration of the response was not reached
(ranging from 4.2 to >14.5 months), and OS data was not yet mature. Exploratory analyses
indicated that the combination of niraparib and pembrolizumab resulted in anti-tumor
activity regardless of the BRCA mutation status or HRD status [95].

In conclusion, although preclinical data suggest that PARP inhibitors and checkpoint
inhibitors might work synergistically, clinical data confirming this hypothesis is lack-
ing. Fortunately, several phase I-III clinical trials investigating the combination of PARP
inhibitors and checkpoint inhibitors in HRD tumors are underway (ClinicalTrials.gov
Identifiers: NCT02571725, NCT03101280, NCT02849496, NCT03330405, NCT04508803,
NCT04493060, NCT03824704, NCT02953457, NCT03834519).
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6. Conclusions

In summary, the modest increase in TMB and the STING-mediated upregulation of
type I IEN genes observed in HRD tumors imply that HRD tumors are more immunogenic.
Yet, data regarding the association between BRCA mutations and immune cell infiltration
is inconsistent. Two large pan-cancer trials suggest that checkpoint inhibitors might be
more effective in BRCA2-mutated tumors, but this requires further validation. Factors
accounting for the differing study results may include differences in study populations,
infrequent assessment of the zygosity status, HRD among BRCA-wildtype patients, and
heterogeneity within the HRD group inherent to the genomic instability of these tumors.
Prospective studies are needed to test whether HRD or HRD-associated hallmarks can
function as biomarkers to select patients for treatment with checkpoint inhibitors, either as
a single-modality treatment or in combination with PARP inhibitors.
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