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Introduction
Hemoglobinopathies are the most common hereditary disorders 
spread worldwide. They impose a heavy burden on families and 
the healthcare system in India as they are a major cause of mor-
bidity and mortality.1 Hemoglobinopathies include thalassemia 
and sickle cell anemia and its variants such as hemoglobin S, D, 
and E.2 Thalassemias are broadly classified into “α-thalassemia” 
and “β-thalassemia” based on the mutation in the corresponding 
globin gene, either α or β globins, which are present on chromo-
somes 16 and 11, respectively. They are inherited in an autoso-
mal recessive manner resulting in an abnormal production of 
adult hemoglobin (HbA), ineffective erythropoiesis, and short-
ened red-cell survival.3,4 The heterozygotic form of thalassemia 
is asymptomatic, whereas individuals who inherit the defective 
genes from each parent are homozygotes, expressing life-threat-
ening clinical manifestations. The decrease or absence of pro-
duction of the β-globin chains of the hemoglobin molecule 
causes β-thalassemia. More than 200 mutations have been found 
in the hemoglobin subunit beta (HBB) gene or its immediate 
flanking region. Most frameshift mutations are caused due to 
single nucleotide substitutions, nucleotide insertions, or 

deletions. Occasionally, β-thalassemia is also caused due to gross 
gene deletion.5,6 The most common mutations found in patients 
with β-thalassemia include 29% of CD17 (A>T), 27% of CD 
41-42 (−TTCT), 14% IVS-II-654 (C>T), 6% CD26 (G>A), 
and 3% CD26/CD27.7 In this review, we shall discuss the bioin-
formatic approaches to explore the differentially expressed 
microRNAs (miRNAs) inducing the γ-globin gene in patients 
with β-thalassemia. For better understanding, we shall begin 
with different types of thalassemia based on clinical severity, the 
role of transcription factors involved in the switching of fetal to 
HbA, biogenesis of miRNAs, and finally, the bioinformatic tools 
which would assist in the identification of significant miRNAs 
having a potential to be used as a diagnostic marker or therapeu-
tic target.

Classification of Thalassemia
According to the severity of the clinical phenotype, thalas-
semia was previously graded as minor, intermediate, or 
major. Thalassemia major refers to patients with extreme ane-
mia that manifest at a young age and require lifelong blood 
transfusions and iron chelation therapy. In contrast, 
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thalassemia minor relates to asymptomatic individuals with 
moderate anemia, and a heterozygous genetic mutation.8 
The latter category does not require blood transfusion but 
may need genetic counseling in the premarital or prenatal 
stage. Patients with thalassemia intermedia present with a 
range of clinical severity from mild, moderate, to moderately 
severe anemia, requiring no blood transfusions to periodic 
and regular blood transfusions if they experience thalassemia-
related complications, such as leg ulcer, pulmonary hyperten-
sion, thrombotic events, infection, and endocrine dysfunction.9 
However, over the last decade, there has been a shift to a sim-
pler classification based on the need for blood transfusions as 
“transfusion-dependent thalassemia” (TDT) and “non-trans-
fusion-dependent thalassemia” (NTDT).10 Patients with 
TDT require regular blood transfusions to survive, without 
which they will suffer from various complications and have a 
reduced lifespan. It mainly comprises β-thalassemia major, 
HbE/β-thalassemia, those who survived Hb Bart’s, hydrops 
fetalis, and severe nonendothelial HbH disease. Patients with 
NTDT may not need regular blood transfusions for survival 
but may need transfusions on rare occasions during physio-
logic stress like pregnancy or infection.11 The NTDT encom-
passes a broad range of clinical severity, ranging from mild to 
fairly persistent severe anemia, which can obstruct physio-
logic processes, including growth and development, leading 
to various clinical complications later in life. These patients 
may often need more frequent transfusions later in life due to 
the disease complications, such as the occurrence of spleno-
megaly. It mainly comprises minor and intermediate forms of 
β-thalassemia, intermediate HbE/β-thalassemia, and moder-
ate forms of HbH disease.12

Epidemiology
According to World Health Organization (WHO), about 7% 
of the world population is a carrier of abnormal hemoglobin 
genes; It is found that 300 000 to 500 000 children are born per 
annum with hemoglobin disorder, which is highly prevalent in 
the Middle East, Mediterranean, Central Asia, Southern 
China, and Indian subcontinents.13 Approximately 78% of 
these births occur in low- and middle-income countries.14 
Worldwide, the mortality rate accounts for 3.4% of children 
below 5 years of age.4

According to UNICEF, India encompasses around 35 to 45 
million carriers of β-thalassemia; on average, one in every 25 
Indians is a carrier of β-thalassemia.15 Every year, 7500 - 12 000 
children are born with a major form of β-thalassemia.16 Nearly 
30 000 children undergo regular blood transfusion, whereas 
around 3000 patients die yearly due to uncontrolled iron over-
load before 20 years of age. β-thalassemia is commonly observed 
in the population of Gujaratis, Sindhis, Bengalis, Muslims, 
Punjabis, Kolis, Mahars, Gauras, Saraswats, and Lohanas.14 β-
thalassemia carriers are 3% to 15% in North India and 1% to 
3% in South India.17

The Fetal-to-Adult Globin Switch
Hemoglobin is composed of α-globin and β-globin peptide 
chains and heme as a prosthetic group needed to carry oxygen. 
Various β-like globin molecules are generated because the 
human β-globin locus on chromosome 11 is developmentally 
controlled. In the early part of the first trimester, an embryonic 
kind of a β-like globin known as ε-globin is produced inside the 
yolk sac-derived primitive erythrocyte lineage.18 The major β-
like globin molecule produced from stem cells and progenitor 
cells in the fetal liver is the γ-globin.19 The HbF is formed when 
γ-globin chains combine with α-globin chains to create a stable 
tetramer.20 The key hemoglobin in the fetus, HbF (α2γ2), is 
present between 65% and 90% at birth and typically drops to 
<2% by 6 to 12 months. The γ-gene is turned off 6 months after 
childbirth, while the β-gene is turned on, resulting in the pro-
duction of HbA (α2 β2). After 6 months of age, around 1% of 
HbF is still generated, but they are distributed unevenly, with 
some red cells (F cells) expressing more HbF than others.

The HbF levels can also be elevated as a result of a variety 
of other factors such as hemopoietic stress and genetic defects 
such as δβ-thalassemia, hereditary persistence of fetal hemo-
globin (HPFH), and XmnI polymorphism (−158 C>T) (18). 
HBG1 (Aγ) and HBG2 (Gγ) (hemoglobin subunit gamma) are 
the 2 genes that code for the HbF subunits during the primi-
tive developmental stage, and these genes vary from each other 
by a single amino acid (glycine [γG] or alanine [γA]). HBG1 
and HBG2 genes start switching to adult HBB genes as the 
infancy period arrives.21 According to recent research, elevated 
HbF levels in patients with β-thalassemia result in asympto-
matic clinical outcomes. An increased level of HbF has also 
been shown to help decrease the disease severity in patients 
with β-thalassemia. HBS1, MYB, B-celllymphoma/leukemia 
11A (BCL11A), KLF1, leukemia/lymphoma-related factor 
(LRF), and other transcription factors are involved in the syn-
thesis of HbF (Figure 1).22

Transcription Factors in Hemoglobin Switching
Transcription factors, including HBS1L-MYB, regulate HbF 
levels on the LCR (locus control region) of the β-globin locus. 
The role of MYB on γ-globin expression is still unclear; how-
ever, some studies have reported that variation in the level of 
MYB may lead to elevated levels of HbF.23,24 BCL11A is a 
zinc-finger transcription factor that controls HbF to HbA 
switching and silencing; thus, it represses the HbF gene (HBG1 
and HBG2).25 Within the β-globin locus, BCL11A primarily 
interacts with transcription factors like GATA (globin tran-
scription factor), FOG1 (Zinc finger protein), and NuRD 
(nucleosome remodeling and deacetylase), a chromatin remod-
eling complex that includes the LCR region. BCL11A knock-
down in cultured human erythroid progenitor cells resulted in 
overexpression of HbF. This, along with other transcription 
factors, may help target a therapeutic approach inducing the 
expression of HbF via modulating the BCL11A activity.26
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KLF (EKLF1) (erythroid-specific Kruppel-like factor) is 
the principal regulator of adult β-globin gene expression.27 
KLF activates the transcription of BCL11A by binding to its 
promoter region, thereby mediating the γ-globin to β-globin 
gene switching. When KLF1 is knocked out, the BCL11A gene 
is not expressed, which increases γ-globin expression. This 
indicates that KLF1 and BCL11A play an essential role in 
hemoglobin switching.28 Normally, KLF1 activates BCL11A, 
which stops the synthesis of the γ-globin gene, thus switching 
the HbF to HbA. By interacting with the HBG1 and HBG2 
genes, LRF suppresses γ-globin gene expression while main-
taining the nucleosome density, resulting in the silencing of the 
γ-globin gene.29

Biogenesis of miRNAs
The regulatory role of miRNAs in various cell processes is now 
well understood. MiRNA-based regulatory mechanisms are 
classified as epigenetic regulatory mechanisms.30 The miRNAs 
play a role in the production and maturation of erythrocytes, 
the expression of hematological factors, and the regulation of 
globin gene expression through post-transcriptional gene 
silencing. The miRNAs are small noncoding single-stranded 
RNAs (18-25 nucleotides in length) found in eukaryotes. At 
the post-transcriptional level, they control gene expression by 
binding to the target mRNA’s 3′ untranslated region (3′ UTR). 
The miRNAs are essential because they induce negative gene 
regulation via base pairing with complementary sequences 

leading to mRNA degradation or translational inhibition.31 
The miRNA genes are transcribed by the enzyme RNA poly-
merase II/III. Pri-miRNAs have a unique hairpin shape that is 
polyadenylated at the 3′ end and capped at the 5′ end. 
Subsequently, primary miRNA (pre-miRNA) is processed by 
the enzyme DiGeorge syndrome critical region 8 (DROSHA/
DGCR8). One strand of pri-miRNA is cleaved at the base of 
the secondary structure by the enzyme DROSHA, which con-
sists of RNase III domains such as RIIIa and RIIIb, respec-
tively. Furthermore, it cuts the single-stranded RNA in the 3′ 
and 5′ ends, releasing pre-miRNAs, which is 60 to 70 nucleo-
tide in length.32 Pre-miRNA is transported to the cytoplasm 
from the nucleus by the enzyme Exportin 5. They are then 
processed by the RNase III enzyme DICER1, containing 2 
catalytic domains, which bind to the pre-terminal miRNA’s 
loop sequence and cleave RNA stem, resulting in the formation 
of mature 18- to 22-nucleotide-long miRNA; this process is 
assisted under the influence of transactivation response RNA-
binding protein (TRBP) complex . The miRNA duplex is 
packed into Argonaute (Ago) protein in the RNA-induced 
silencing complex (RISC) and successively unwound into a 
single strand in the RISC. One strand acts as a guide strand 
and forms a silencing complex at 3′ UTR of target mRNA for 
translational repression (Figure 2).33,34

It has been possible to increase the expression of γ-globin 
gene, thus elevating HbF by using the suppressive effects of par-
ticular miRNAs on several transcription factors, such as MYB, 

Figure 1. Role of transcription factors in switching the γ- to β-globin gene: HBS1 L: GTP-binding protein-myeloblastosis (HBS1L-MYB) are the 

transcription factors that regulate HbF levels on the locus control region (LCR) of the β-globin locus. BCL11A mainly interacts with transcription factors 

such as globin transcription factor (GATA), zinc finger protein (FOG1), and nucleosome remodeling and deacetylase (NuRD), acts as a regulator of HbF to 

HbA switching; KLF (EKLF1) (erythroid-specific Kruppel-like factor) activates the transcription of BCL11A by binding to its promoter region, thereby 

mediating the γ-globin to β-globin gene switching. By interacting with the HBG1 and HBG2 genes, LRF represses the synthesis of the γ-globin gene and 

maintains the density of nucleosomes, resulting in the silencing of the γ-globin gene.



4 Bioinformatics and Biology Insights 

BCL11A, GATA1, and KLF. As a result, this method could be 
used as a novel therapeutic strategy for inducing HbF and reduc-
ing clinical complications in patients with β-thalassemia.35 The 
results published by Jessica Gasparello et al reported that miRNA 
controls the expression of transcription factors, resulting in 
increased expression of the γ-globin gene. Examples are miR-
16-1 and miR-15a as targets for MYB,36 miR-34a, which targets 
KLF-1,37 and miR-486-3p, which targets BCL11A.38 Valentina 
Lulli et  al38 studied that in erythroid cells, overexpression of 
miR-486-3p lowered BCL11A levels, which was related to 
enhanced expression of the γ-globin gene, whereas suppression 
of miR-486-3p levels raised BCL11A and reduced γ-globin 
gene expression. Kuo-Ting Sun et al39 studied using miR-138 
mimic and healthy subjects’ exosomes which inhibited the 
BCL11A activity and increased the expression of a γ-globin 
gene in K562 cell lines. A study on miRNA expression patterns 
in patients with β-thalassemia reported that more experimental 
studies need to be carried out to analyze overexpression or 
knock-outs of differentially expressed miRNA, which can fur-
ther provide stronger results; hence, this may help in developing 
novel therapies to induce HbF level and thus reduce the burden 
of blood transfusion in patients with β-thalassemia.40

Based on the above evidence from the literature, it is evident 
that miRNAs play an important role in the pathophysiology of a 
variety of diseases, including β-thalassemia; hence, there has been 
an increased interest in the scientific community to study these 
molecules in detail as an increased understanding will help us uti-
lize these miRNAs as a diagnostic marker or therapeutic targets. 

Experimental studies on these miRNAs can be exhaustive, con-
sidering the number of miRNAs and the procedural difficulties of 
performing wet-lab experiments. Bioinformatic databases have 
become a lifesaver for scientists working on miRNAs as they pro-
vide comprehensive knowledge about various significant miRNAs 
regulating several pathways. To give an exhaustive outline of the 
current bioinformatics tools, we have elaborated most commonly 
used tools, and these chosen tools are accessible freely. The most 
frequently referred database is the miRBase41; however, different 
databases have likewise been created to supplement miRbase, such 
as MirGeneDB42 or miRCarta.43 Although more than 2300 
human miRNAs have been discovered, not all of them have been 
included in these databases.44

Preferred tools are beneficial for researchers to get a basic idea 
about the miRNAs participating in increasing the expression of 
the γ-globin gene. The miRNAs-based bioinformatics tools 
generate the database search for microRNAs, target prediction, 
pathways, and biomarker discovery.45 To begin with, text mining 
and bioinformatics meta-information bases like OMIC tools 
(https://omictools.com/)46 and newly developed Tools4miRs 
(https://tools4mirs.org/) can be utilized to get the list of acces-
sible miRNA bioinformatics tools; then, the most frequently 
used tools which are linked to miRbase can be selected.47

Bioinformatics Tools in miRNA Research
To effectively manage thalassemia, it is fundamental to study 
the role of each miRNA involved and the pathways they  
participate in. Although enormous practical information is 

Figure 2. Biosynthesis of miRNAs:RNA polymerase II/III transcribes the miRNA gene to produce pri-miRNA, which is subsequently processed by Drosha 

to produce pre-miRNA. Pre-miRNAs are carried to the cytoplasm, where the enzyme Dicer acts on them to form mature miRNA duplexes (22 nucleotides). 

The RISC subsequently packs this into Ago protein, which is then unwound into a single strand in the RISC. One strand acts as a guide strand and results 

in the formation of a silencing complex at 3′ UTR of target mRNA for translational repression.

https://omictools.com/
https://tools4mirs.org/
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accessible, it is a considerable task for the researchers to know 
the role of each miRNA involved in the expression of γ-globin. 
Before the wet-lab experiments, bioinformatic methods 
attempt to predict a successful target miRNA. Sankha Subhra 
Das et al studied the expression patterns of miRNAs in patients 
with HbE/β-thalassemia, using miRNA polymerase chain 
reaction assay, 8 miRNAs were found to be upregulated “miR-
146a-5p, miR-146b-5p, miR-148b-3p, miR-155-5p, miR-
335-5p, miR-192-5p, miR-7-5p, and miR-98-5p” and 4 
miRNAs were downregulated “let-7b-5p, let-7a-5p, miR-
92a-3p, and miR-320a.” Bioinformatic analysis was done using 
DIANA-MicroT, miRDB, and TargetScan and found that 
these miRNAs are associated with signaling pathways, such as 
HIF-1 and MAPK, which may result in an elevated level of 
HbF expression in patients with HbE/β-thalassemia.40 Jessica 
et al studied the role of miR-210 that increases HbF concen-
tration by down-regulating the BCL11A levels. They used 
miRwalk, an online tool, to find the mRNA base pairing 
between the miRNA-210-3p coding region and target genes 
KLF-1, BCL11A, and MYB.48

This knowledge allows researchers to understand how miR-
NAs function in physiological and disease states. This article 
introduces a few techniques to detect miRNA targets, includ-
ing various methodologies for miRNA:mRNA interaction rec-
ognition. In recent years, the number of miRNA resources has 
increased, and various bioinformatics databanks have been cre-
ated to manage miRNA-related data such as miRNA sequence, 
miRNA target prediction, miRNA expression, analysis of 
miRNA regulatory networks, metabolic pathways, and explo-
ration of transcription factors are some of the categories.49

The principal elements of bioinformatics include investiga-
tion of raw data, data processing, and broad biodata mining to 
give valuable outcomes dependent on “in-silico factual infor-
mation” and “numerical strategies.”45 The miRNA identifica-
tion is complicated and needs practical knowledge. Recent 
technological advances, such as high-throughput sequencing, 
have made it easier to assess their expression patterns. Some of 
the computational-based techniques were introduced to study 
the structural variants, putative genes, and the targets of miR-
NAs. A web-based tool such as MiRscan, Rfam, and miRNA-
Base (miRbase) database was created, which stored miRNA 
gene sequences from various species.50

Characteristics of miRNA target prediction tools 
include

These tools mainly use the following features: miRNA seed 
region, conserved site, free energy, and site accessibility.

The seed region

The miRNA’s seed region is a highly conserved segment that 
enables miRNA to be classified into families and species. The 
seed region is a conserved sequence with 8 nucleotides 

beginning at the 5′ end and ending toward the 3′ ends of miRNA 
sequences. Seed match occurs between miRNA and mRNA 
nucleotide based on the Watson-Crick rule.51 The insertion of 
nucleotides at the 3′ end of the miRNA sequence is one factor 
that allows the strong pairing of the seed region with the target 
gene composition of adenine (A) and uracil (U) total number of 
binding sites at the 3′ UTR. The seed region includes 6mer, 
7mer-m8, 7mer-A, and 8mer. The miRNA targets can be pre-
dicted using seed match, and the following tools can be used: 
mirSVR, DIANAmicroT, miRanda, and target scan.52

Conserved sites

The miRNA-binding sites are preserved across different spe-
cies; these sites are considered “conserved.” The conserved 
region in miRNA sequence analysis might be anywhere 
throughout its structure, including the miRNA, 5′ UTR, and 3′ 
UTR, or a mixture of all three. The seed region of miRNA has 
more conservation than the non-seed region.51 The miRNAs’ 
conserved sites can be evaluated using the promoter region and 
target genes assessment.52 Evolutionary distance and phyloge-
netic calculations are considered by the miRNA target predic-
tion tool. The tools mainly include PicTar, microT, TargetScan, 
DIANA-PITA, and miRanda.53

Free energy

To measure the interaction between the miRNA and its target 
mRNA, minimum free energy (MFEs) must be calculated. 
During a reaction, the change in free energy is referred to as 
(ΔG). miRNA:mRNA binding increases when the free energy 
is low.54 Negative ΔG reactions have less energy available for 
future reactions, resulting in a stable interaction between 
miRNA and mRNA. Free energy can be measured using the 
Vienna RNA package and is calculated in terms of negative 
real value and expressed in kcal/mol.55

Site accessibility

The ability of miRNA to find and hybridize with an mRNA 
target is determined by site accessibility. In the first step of the 
miRNA:mRNA hybridization process, miRNA binds to a 
short region of mRNA. As the miRNA binds to a target, the 
secondary structure of the mRNA unfolds. Therefore, the 
assessed amount of energy expected to make a site available to 
the miRNA can be used to determine that an mRNA is a 
miRNA target. The tools mainly include miRDB, TargetScan, 
microTar Base, and miRanda.56

Other Target Sites
In addition to the 3′ UTR target sites, other mRNA sites have 
been identified as miRNA targets, including coding sequences 
for mRNAs, 5′ UTR, and open reading frames that can be 
used by the miRNA target prediction tools.57
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Search for miRNAs
miRBase

The investigation of miRNAs can be initiated by exploring 
miRBase, which gives valuable information regarding the 
properties of each miRNA. It is a public repository for all 
reported microRNA sequences, which was established in the 
year 2002. Its initial release included 218 miRNA loci from 5 
different species. The most recent release, in September 2018, 
had 38 589 entries representing hairpin precursors and 48 860 
mature miRNAs from 271 species.41 Hairpin and mature 
miRNA sequences can be searched and browsed with miR-
base.58 miRBase displays data in 3 categories such as (1) expres-
sion pattern of each miRNA, (2) classification of new genes 
identified with miRNAs, and (3) information on mature and 
immature miRNAs, including their chromosomal area and 
structures. miRBase is appropriately connected to different 
data sets that offer target genes.59

To Evaluate Predicted miRNA Targets
Target scan

TargetScan allows users to search for miRNAs by name, gene 
name, or miRNA families broadly conserved, conserved, or 
poorly conserved across multiple species.60 Different tran-
scripts for each gene are generated and further analyzed based 
on site type, probability of conserved targeting (PCT), context 
score, percentage of context score, weighted context score, and 
conserved site for each miRNA. Searching the tool using the 
miRNA name shows the target gene, and the results can be 
obtained based on the conserved sites, cumulative weighted 
context++ score, and aggregate PCT.61 Target scan uses a 
model named context-plus plus (context++) score, which 
considers context scores such as AU content, type of binding 
site, 3′ UTR region and nearest distance from the 3′ UTR end 
for binding of miRNAs to its target site.62 The conservation of 
a 3′ UTR is evaluated, and then, the k-mer analysis is per-
formed as the 3′ UTR has numerous target sites, and aggregate 
PCT is produced. In addition, the gene’s 3′ UTR creates a link 
with a conserved seed sequence. This tool can also calculate the 
free energy of miRNA:mRNA duplex along with the score by 
finding the number of A and U content.63

Diana micro T-CDS

The Diana-microT-CDS is the recent version of the miRNA 
target prediction system. The most relevant features derived 
from “photoactivatable ribonucleoside-enhanced crosslinking 
and immunoprecipitation” (PAR-CLIP) data are identified 
using machine learning in the upgraded version. These data 
allow Diana-micro T-CDS to know the miRNA-binding site 
at the coding region and 3′ UTR. The accessibility of the 3′ 
UTR can be predicted using Sfold. The keywords used while 
searching Diana-micro T-CDS are miRNA, gene name, 

KEGG description, and Ensembl ID. The resulting output 
includes the information regarding the binding site, conserved 
region, context score, predicted target location, and links to 
Ensembl, PubMed, and miRBase.64 For miRNA-mRNA base 
pairing, this tool mainly uses miRNA-recognition elements 
(MREs) found in the 3′ UTR region of mRNAs. The calcula-
tion is based on guanine-uracil (G-U) wobble dinucleotide 
base pairs and free energy of complementary base pairing to 
identify MRE. The following parameter includes miRNA-
related protein (miRNP), limiting the location and size of 
nucleotide loops and protrusions between miRNA and its 
related MRE.62

MiRwalk

This tool predicts the target miRNA-binding sites and informa-
tion on all known genes of humans, rats, and mice.65 MiRWalk 
utilizes automated “PubMed text mining searches” to track 
down data on miRNAs. It is expected to serve as an exhaustive 
database covering miRNA targets related to their target genes, 
diseases, pathways, and transcription factors. miRWalk also uses 
a computational approach to find the complementary regions 
between miRNA and targeted gene sequences. Many other well-
known prediction databases and tools are merged with the results 
of the miRWalk algorithm, including DIANA-microT-CDS, 
miRanda-rel2010, DIANA-microTv-4.0, miRmap, mirBridge, 
miRDB4.0, doRiNA, miRNAMap, PicTar, and TargetScan6.2.66

MiRDB

miRDB serves as a repository for predicting the targets of miRNA 
with data acquired from version 21 of miRbase. MirTarget can be 
used for target prediction; hence, both conserved and noncon-
served targets can be predicted. It uses an supportive vector mech-
anism (SVM) modeling tool to produce a probability score, which 
signifies the statistical confidence of the prediction results. miRDB 
functioning is updated using the MirTarget algorithm and pro-
vides target sequences of gene or miRNA for transcriptome-wide 
prediction of miRNA regulators of gene targets. Searching 
MiRDB with miRNA name displays a complete sequence that 
can help get more detailed information about each miRNA. To 
compare the primary sequence of miRNAs, complete alignment 
of the entire miRNA sequence can be used, which helps discover 
the functional genes of particular miRNAs.67

microTar base

The miRTarBase was created to provide the most up-to-date 
and complete information on experimentally validated 
miRNA-target interactions. It detects miRNA target by base 
pairing with the seed region complementary to 3′ UTRs of 
mRNA. This tool predicts the MFE change, seed region, fold 
change, and miRNA-mRNA interaction of each miRNA mol-
ecule.68 Summarized features of the reviewed databases are 
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given in Table 1. Criteria for the selection of miRNAs are 
shown in Figure 3.69

Discussion
In erythroid cells, miRNAs have a role in the maturation, pro-
liferation, regulation, and expression of HbF genes.70 The role 
of miRNA in regulating gene expression in β-thalassemia is 
challenging, and understanding its use as a diagnostic marker or 
therapeutic target is even more difficult. Earlier reports have 
shown that miRNA increases the expression of the γ-globin 
gene in patients with β-thalassemia by regulating the transcrip-
tion factors.25

Bioinformatic tools play a significant role in investigating miRNA 
and target genes. However, predicting miRNA-mRNA interac-
tions is still challenging because of the lack of knowledge and 
complexity of collecting data from various tools.71 There are many 
miRNA prediction tools available in the database. Most often 

used bioinformatics tools for predicting miRNAs that mediate the 
γ-globin production in patients with β-thalassemia are Diana 
microT-CDS, miRwalk, TargetScan, microTar, and MiRDB. 
Diana micro T-CDS helps predict functional RNA motifs 
because of its up-to-date database, mainly for identifying target 
miRNA. This software is very easy to use, presents good data visu-
alization, and is user-friendly. MirSVR scores, which may be 
determined based on the 3′ UTR region, conservation of the tar-
get region, and the binding energy of miRNA-mRNA interac-
tions, are used in miRwalk to identify miRNA targets genes.62,64 
Target Scan and MiRDB are mainly used for miRNA target pre-
diction by comparing the primary sequences of miRNAs, which 
help identify functional genes, and it is highly convenient to 
use.63,67 microTar predicts the seed region by calculating the 
MFE of each mRNA molecule, calculating fold change where 
each seed matches, and finally anticipating the miRNA-mRNA 
interaction.68 Besides miRNABase, Target Scan, Diana 

Table 1. Summary of reviewed databases.

DATABASES FEATURES LINK REFERENCES

miRNABase Public repository and online resource for 
microRNA sequences and annotation

http://mirbase.org/. Guo et al57

Target Scan Predicts biological targets of miRNAs http://www.targetscan.org/. Kiriakidou et al61

Diana microT-CDS Detects MREs located in both the 3′ UTR 
and CDS regions

http://www.microrna.gr/microT-CDC Paraskevopoulou et al64

MiRwalk Predict target sites and miRNA target 
interactions

http://mirwalk.uni-hd.de/. Sticht et al66

MiRDB Functional annotation http://mirdb.org. Wong and Wang67

microTar Base miRNA target interaction http://tiger.dbs.nus.edu.sg/microtar/, Thadani and Tammi68

Online databases such as miRNABase, Target Scan, Diana microT-CDS, MiRwalk, MiRDB, and microTar Base, mentioned in the table are commonly used for miRNA 
target prediction and functional annotations. The latest version of the abovementioned databases can be accessed using the link mentioned in the table.

Figure 3. Criteria for selection of miRNAs: Candidate miRNAs may be selected using the criteria shown in the figure.

http://mirbase.org/
http://www.targetscan.org/
http://www.microrna.gr/microT-CDC
http://mirwalk.uni-hd.de/
http://mirdb.org
http://tiger.dbs.nus.edu.sg/microtar/


8 Bioinformatics and Biology Insights 

microT-CDS, MiRwalk, MiRDB, and microTar Base, the other 
miRNA target prediction tools include RNAhybrid, starBase, 
PicTar, TarBase, miRanda, PITA, and SVmicro.72-76 RNA hybrid 
is a tool for predicting the miRNA targets in large RNAs by locat-
ing the best location to hybridize within a large RNA. This tool 
predicts putative binding sites, nonoverlapping regions, free 
energy, and threshold P value. A MFEs will be determined when 
evaluating the target sequences from huge databases. Thus, RNA 
hybrid helps in finding the target genes that are controlled by the 
miRNA pathways.77

MiRNA prediction is based on complementary sites in 3′ UTR 
regions that are conserved. It presents the results in the miRNA 
seed region with accurate complementary sites and then extends 
to 18- to 24-nucleotide-long sequences representing major 
interactions. We must consider context score, sites with poor 
seed pairing, seed match, and MFE value.53 The selected tools 
help understand the commonly expressed miRNA and target 
genes and eliminate false negatives and false-positive results, 
providing the most reliable and accurate results of the selected 
miRNAs. The miRNAs with a significant negative free energy 
indicate that miRNA-mRNA interactions are possible. 
Therefore, bioinformatic-based identification of miRNA is an 
alternative approach to help predict novel miRNAs in β-
thalassemia. This method is beneficial, inexpensive, and conveni-
ent for future studies. To evaluate the “accuracy” and “precision” 
of the target miRNAs, in vivo and in vitro investigation of gene-
targeting miRNAs and miRNA expression is essential.

Conclusion
Thalassemia is most prevalent in India, and treatment modali-
ties are not entirely developed. Many patients with the disease 
may survive; however, some succumb early. In the current sce-
nario, miRNAs’ role in managing β-thalassemia is less explored, 
but in the near future, miRNA-based therapeutics will give new 
hope. Bioinformatic approaches in predicting the miRNAs 
allow researchers to address different aspects of ongoing 
miRNA research. This review mainly focused on bioinformatics 
tools such as Diana microT-CDS, miRwalk, TargetScan, micro-
Tar, and MiRDB. These bioinformatics tools suggest that the 
current approaches to identifying the target miRNAs are mainly 
based on different operational modalities. The miRNA 
researchers highly accept these tools as they are user-friendly. 
Combining the results from various bioinformatic tools assists 
in identifying the candidate miRNAs to be later validated in the 
wet-lab experiments to induce the synthesis of γ-globin via 
influencing the transcription factors. It will help researchers 
establish novel concepts for managing β-thalassemia and deliver 
therapeutic strategies to improve their quality of life.

Acknowledgements
We would like to acknowledge the JSS Academy of Higher 
Education & Research, Mysuru, the Indian Council of Medical 
Research (ICMR), and the Department of Science & 

Technology (DST), Government of India. We also acknowl-
edge Dr Vinay Kumar Rao for critically reviewing the article.

Author Contributions
S.S.K. and R.B.R. performed the literature search and drafted 
the manuscript, S.M.N. and P.V. critically reviewed the manu-
script and provided their intellectual inputs, and A.P. concep-
tualized the idea critically reviewed the manuscript, and gave 
the final approval for publication.

REFERENCES
 1. Modell B, Darlison M, Birgens H, et al. Epidemiology of haemoglobin disorders 

in Europe: an overview. Scand J Clin Lab Invest. 2007;67:39-69. doi:10.1080/ 
00365510601046557.

 2. Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. 
Hematol Oncol Clin North Am. 2018;32:165-175. doi:10.1016/j.hoc.2017.11.008.

 3. Angastiniotis M, Lobitz S. Thalassemias: an overview. Int J Neonatal Screen. 
2019;5:1-11. doi:10.3390/ijns5010016.

 4. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and 
derived service indicators. Bull World Health Organ. 2008;86:480-487. doi:10.2471/ 
BLT.06.036673.

 5. Jha R, Jha S. Beta thalassemia—a review. J Pathol Nepal. 2014;4:663-671. 
doi:10.3126/jpn.v4i8.11609.

 6. Thein L, Perrine SP, Leboulch P. Pathophysiology of β Thalassemia. Hemoglo-
binopathy. 2005;1:31-37.

 7. Huang TL, Zhang TY, Song CY, et al. Gene mutation spectrum of thalassemia 
among children in Yunnan Province. Front Pediatr. 2020;8:159-155. doi:10.3389/
fped.2020.00159.

 8. Viprakasit V, Ekwattanakit S. Clinical classification, screening and diagnosis for 
thalassemia. Hematol Oncol Clin North Am. 2018;32:193-211. doi:10.1016/j.
hoc.2017.11.006.

 9. Musallam KM, Taher AT, Rachmilewitz EA. β-thalassemia intermedia: a clini-
cal perspective. Cold Spring Harb Perspect Med. 2012;2:a013482. doi: 10.1101/
cshperspect.a013482.

 10. Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V. Guidelines for the 
Management of Transfusion Dependent Thalassaemia (TDT). 3rd ed. Nicosia: Thal-
assaemia International Federation; 2014.

 11. Weatherall DJ. The definition and epidemiology of non-transfusion-dependent 
thalassemia. Blood Rev. 2012;26:S3-S6. doi:10.1016/S0268-960X(12)70003-6.

 12. Taher AT, Musallam KM, Cappellini MD, Weatherall DJ. Optimal management 
of β thalassaemia intermedia. Br J Haematol. 2011;152:512-523. doi:10.1111/ 
j.1365-2141.2010.08486.x.

 13. Williams TN, Weatherall DJ. World distribution, population genetics, and 
health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med. 
2012;2:a011692. doi:10.1101/cshperspect.a011692.

 14. Mohanty D, Colah RB, Gorakshakar AC, et al. Prevalence of β-thalassemia and 
other haemoglobinopathies in six cities in India: a multicentre study. J Commu-
nity Genet. 2013;4:33-42. doi:10.1007/s12687-012-0114-0.

 15. Cao A, Kan YW. The prevention of thalassemia. Cold Spring Harb Perspect Med. 
2013;3:1-15. doi:10.1101/cshperspect.a011775.

 16. Faizi N, Kazmi S. Universal health coverage—there is more to it than meets the 
eye. J Fam Med Prim Care. 2017;6:169-170. doi:10.4103/jfmpc.jfmpc_13_17.

 17. Singh DM, Dayal P, Dayal P, et al. Clinico-epidemiological profile of thalassemia 
patients in a tertiary care center. Pediatr Rev Int J Pediatr Res. 2019;6:484-488.

 18. Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring 
Harb Perspect Med. 2013;3:a011643. doi:10.1101/cshperspect.a011643.

 19. Olaniyi J, Olaniyi O, Arinola A. Foetal haemoglobin (HbF) status in adult sickle 
cell anaemia patients in Ibadan, Nigeria. Ann Ibadan Postgrad Med. 2011;8:30-
33. doi:10.4314/aipm.v8i1.63955.

 20. McGrath KE, Frame JM, Fromm GJ, et al. A transient definitive erythroid lin-
eage with unique regulation of the β-globin locus in the mammalian embryo. 
Blood. 2011;117:4600-4608. doi:10.1182/blood-2010-12-325357.

 21. Stamatoyannopoulos G. Control of globin gene expression during development 
and erythroid differentiation. Exp Hematol. 2005;33:259-271. doi:10.1016/j.
exphem.2004.11.007.

 22. Sankaran VG, Weiss MJ. Anemia: progress in molecular mechanisms and thera-
pies. Nat Med. 2015;21:221-230. doi:10.1038/nm.3814.

 23. Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows 
BCL11A associated with persistent fetal hemoglobin and amelioration of the 
phenotype of β-thalassemia. Proc Natl Acad Sci U S A. 2008;105:1620-1625. 
doi:10.1073/pnas.0711566105.



Kalaigar et al 9

 24. Lettre G, Sankaran VG, Bezerra MC, et al. DNA polymorphisms at the BCL11A, 
HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and 
pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008;105:11869-11874.

 25. Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is reg-
ulated by the developmental stage-specific repressor BCL11A. Science. 2008;322: 
1839-1842.

 26. Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin 
switching: review. Br J Haematol. 2010;149:181-194. doi:10.1111/j.1365-2141. 
2010.08105.x.

 27. Perkins A, Xu X, Higgs DR, Patrinos GP, Arnaud L, Bieker JJ. Kruppeling 
erythropoiesis—an unexpected broad spectrum of. Blood. 2016;127:1856-1863. 
doi:10.1182/blood-2016-01-694331.1856.

 28. Crispino JD, Weiss MJ. Erythro-megakaryocytic transcription factors associ-
ated with hereditary anemia. Blood. 2014;123:3080-3088. doi:10.1182/
blood-2014-01-453167.

 29. Kang J, Kang Y, Kim YW, You J, Kang J, Kim A. LRF acts as an activator and 
repressor of the human β-like globin gene transcription in a developmental 
stage dependent manner. Biochem Cell Biol. 2019;97:380-386. doi:10.1139/
bcb-2018-0303.

 30. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24-29. 
doi:10.1203/pdr.0b013e3180457684.

 31. Wang H, Wang H, Duan X, Liu C, Li Z. Digital quantitative analysis of 
microRNA in single cell based on ligation-depended polymerase colony (Pol-
ony). Biosens Bioelectron. 2017;95:146-151. doi:10.1016/j.bios.2017.04.001.

 32. Azzouzi I, Schmugge M, Speer O. MicroRNAs as components of regulatory 
networks controlling erythropoiesis. Eur J Haematol. 2012;89:1-9. doi:10.1111/ 
j.1600-0609.2012.01774.x.

 33. Xie M, Li M, Vilborg A, et al. Mammalian 5′-capped microRNA precursors that 
generate a single microRNA. Cell. 2013;155:1568-1580. doi:10.1016/j.cell.2013. 
11.027.

 34. Cheloufi S, Dos Santos CO, Chong MMW, Hannon GJ. A dicer-independent 
miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465:584-
589. doi:10.1038/nature09092.

 35. Saki N, Abroun S, Soleimani M, et al. MicroRNA expression in β-thalassemia 
and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J. 2016; 
17:583-592.

 36. Sankaran VG, Menne TF, Šćepanović D, et al. MicroRNA-15a and -16-1 act via 
MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad 
Sci U S A. 2011;108:1519-1524. doi:10.1073/pnas.1018384108.

 37. Ward CM, Li B, Pace BS. Stable expression of miR-34a mediates fetal hemoglo-
bin induction in K562 cells. Exp Biol Med (Maywood). 2016;241:719-729. 
doi:10.1177/1535370216636725.

 38. Lulli V, Romania P, Morsilli O, et al. MicroRNA-486-3p regulates γ-globin 
expression in human erythroid cells by directly modulating BCL11A. Plos One. 
2013;8:e60436. doi:10.1371/journal.pone.0060436.

 39. Sun KT, Huang YN, Palanisamy K, et al. Reciprocal regulation of γ-globin 
expression by exo-miRNAs: relevance to γ-globin silencing in β-thalassemia 
major. Sci Rep. 2017;7:202. doi:10.1038/s41598-017-00150-7.

 40. Das SS, Das S, Byram PK, et al. MicroRNA expression patterns in HbE/β-
thalassemia patients: the passwords to unlock fetal hemoglobin expression in β-
hemoglobinopathies. Blood Cells Mol Dis. 2021;87:102523. doi:10.1016/j.bcmd. 
2020.102523.

 41. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: from microRNA 
sequences to function. Nucleic Acids Res. 2019;47:D155-D162. doi:10.1093/nar/
gky1141.

 42. Fromm B, Billipp T, Peck LE, et al. A uniform system for the annotation of ver-
tebrate microRNA genes and the evolution of the human microRNAome. Annu 
Rev Genet. 2015;49:213-242. doi:10.1146/annurev-genet-120213-092023.

 43. Backes C, Fehlmann T, Kern F, et al. MiRCarta: a central repository for collect-
ing miRNA candidates. Nucleic Acids Res. 2018;46:D160-D167. doi:10.1093/nar/
gkx851.

 44. Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true 
human miRNAs. Nucleic Acids Res. 2019;47:3353-3364. doi:10.1093/nar/gkz097.

 45. Pourteymourfard Tabrizi Z, Jami MS. Selection of suitable bioinformatic tools in 
micro-RNA research. Gene Reports. 2020;21:100893. doi:10.1016/j.genrep. 
2020.100893.

 46. Henry VJ, Bandrowski AE, Pepin AS, Gonzalez BJ, Desfeux A. OMICtools: an 
informative directory for multi-omic data analysis. Database (Oxford). 
2014;2014:bau069. doi:10.1093/database/bau069.

 47. Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs—one place to gather 
all the tools for miRNA analysis. Bioinformatics. 2016;32:2722-2724. doi:10.1093/
bioinformatics/btw189.

 48. Gasparello J, Fabbri E, Bianchi N, et al. BCL11A mRNA targeting by miR-210: 
a possible network regulating γ-globin gene expression. Int J Mol Sci. 2017;18: 
2530. doi:10.3390/ijms18122530.

 49. Witwer KW. Circulating MicroRNA biomarker studies: pitfalls and potential 
solutions. Clin Chem. 2015;61:56-63. doi:10.1373/clinchem.2014.221341.

 50. Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K. A compila-
tion of Web-based research tools for miRNA analysis. Brief Funct Genomics. 
2017;16:249-273. doi:10.1093/bfgp/elw042.

 51. Innocenti GM. The time when the “Tomte” of evolution was playing with time. 
Behav Brain Sci. 2001;24:287. doi:10.1017/S0140525X0131395X.

 52. Fujiwara T, Yada T. miRNA-target prediction based on transcriptional regula-
tion. BMC Genomics. 2013;14:S3. doi:10.1186/1471-2164-14-s2-s3.

 53. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of 
microRNA targets predicts functional non-conserved and non-canonical sites. 
Genome Biol. 2010;11:R90. doi:10.1186/gb-2010-11-8-r90.

 54. Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence 
of thermodynamic parameters improves prediction of RNA secondary structure. 
J Mol Biol. 1999;288:911-940. doi:10.1006/jmbi.1999.2700.

 55. Lorenz R, Bernhart SH, Hönerzu Siederdissen C, et al. ViennaRNA package 
2.0. Algorithms Mol Biol. 2011;6:1-14. doi:10.1186/1748-7188-6-26.

 56. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target 
structure on microRNA function. Nat Struct Mol Biol. 2007;14:287-294. 
doi:10.1038/nsmb1226.

 57. Guo ZW, Xie C, Yang JR, Li JH, Yang JH, Zheng L. MtiBase: a database for 
decoding microRNA target sites located within CDS and 5′UTR regions from 
CLIP-Seq and expression profile datasets. Database (Oxford). 2015;2015:bav102. 
doi:10.1093/database/bav102.

 58. Moore AC, Winkjer JS, Tseng TT. Bioinformatics resources for microRNA dis-
covery. Biomark Insights. 2016;10:53-58. doi:10.4137/BMI.S29513.

 59. Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microR-
NAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68-D73. doi:10.1093/
nar/gkt1181.

 60. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing 
stability and high target-site abundance decrease the proficiency of lsy-6 and other 
microRNAs. Nat Struct Mol Biol. 2012;18:1139-1146. doi:10.1038/nsmb.2115.

 61. Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-
experimental approach predicts human microRNA targets. Genes Dev. 2004;18: 
1165-1178. doi:10.1101/gad.1184704.

 62. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA tar-
get sites in mammalian mRNAs. Elife. 2015;4:1-38. doi:10.7554/eLife.05005.

 63. Friedman JM, Jones PA. MicroRNAs: critical mediators of differentiation, 
development and disease. Swiss Med Wkly. 2009;139:466-472.

 64. Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web 
server v5.0: service integration into miRNA functional analysis workflows. 
Nucleic Acids Res. 2013;41:W169-W173. doi:10.1093/nar/gkt393.

 65. Dweep H, Gretz N. MiRWalk2.0: a comprehensive atlas of microRNA-target 
interactions. Nat Methods. 2015;12:697. doi:10.1038/nmeth.3485.

 66. Sticht C, De La Torre C, Parveen A, Gretz N. Mirwalk: an online resource for 
prediction of microrna binding sites. Plos One. 2018;13:e0206239. doi:10.1371/
journal.pone.0206239.

 67. Wong N, Wang X. miRDB: an online resource for microRNA target prediction 
and functional annotations. Nucleic Acids Res. 2015;43:D146-D152. doi:10.1093/
nar/gku1104.

 68. Thadani R, Tammi MT. MicroTar: predicting microRNA targets from RNA 
duplexes. BMC Bioinformatics. 2006;7:1-9. doi:10.1186/1471-2105-7-S5-S20.

 69. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools for sequence-based 
miRNA target prediction: what to choose? Int J Mol Sci. 2016;17:1987. 
doi:10.3390/ijms17121987.

 70. Eltaweel NH, ElKamah GY, Khairat R, Atia HAE, Amr KS. Epigenetic effects 
toward new insights as potential therapeutic target in B-thalassemia. J Genet Eng 
Biotechnol. 2021;19:51. doi:10.1186/s43141-021-00138-x.

 71. Seenprachawong K, Nuchnoi P, Nantasenamat C, Prachayasittikul V, Supo-
kawej A. Computational identification of miRNAs that modulate the differen-
tiation of mesenchymal stem cells to osteoblasts. PeerJ. 2016;4:e1976. doi:10.7717/
peerj.1976.

 72. Quillet A, Saad C, Ferry G, et al. Improving bioinformatics prediction of 
microRNA targets by ranks aggregation. Front Genet. 2020;10:1330. doi:10.3389/
fgene.2019.01330.

 73. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. 
Nat Genet. 2005;37:495-500. doi:10.1038/ng1536.

 74. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast 
and flexible. Nucleic Acids Res. 2006;34:451-454. doi:10.1093/nar/gkl243.

 75. Yang JH, Li JH, Shao P, Zhou H, Chen YQ , Qu LH. StarBase: a database for 
exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and 
Degradome-Seq data. Nucleic Acids Res. 2011;39:D202-D209. doi:10.1093/nar/
gkq1056.

 76. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: a comprehensive database 
of experimentally supported animal microRNA targets. RNA. 2006;12:192-197. 
doi:10.1261/rna.2239606.

 77. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective pre-
diction of microRNA/target duplexes. RNA. 2004;10:1507-1517. doi:10.1261/
rna.5248604.


