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Abstract
Background: Most of existing deep learning research in medical image
analysis is focused on networks with stronger performance. These networks
have achieved success, while their architectures are complex and even con-
tain massive parameters ranging from thousands to millions in numbers. The
nature of high dimension and nonconvex makes it easy to train a subopti-
mal model through the popular stochastic first-order optimizers, which only use
gradient information.
Purpose: Our purpose is to design an adaptive cubic quasi-Newton optimizer,
which could help to escape from suboptimal solution and improve the perfor-
mance of deep neural networks on four medical image analysis tasks including:
detection of COVID-19, COVID-19 lung infection segmentation, liver tumor
segmentation, optic disc/cup segmentation.
Methods: In this work, we introduce a novel adaptive cubic quasi-Newton
optimizer with high-order moment (termed ACQN-H) for medical image anal-
ysis. The optimizer dynamically captures the curvature of the loss function by
diagonally approximated Hessian and the norm of difference between previ-
ous two estimates, which helps to escape from saddle points more efficiently.
In addition, to reduce the variance introduced by the stochastic nature of
the problem, ACQN-H hires high-order moment through exponential moving
average on iteratively calculated approximated Hessian matrix.Extensive exper-
iments are performed to access the performance of ACQN-H. These include
detection of COVID-19 using COVID-Net on dataset COVID-chestxray, which
contains 16 565 training samples and 1841 test samples; COVID-19 lung infec-
tion segmentation using Inf -Net on COVID-CT, which contains 45, 5, and 5
computer tomography (CT) images for training, validation, and testing, respec-
tively; liver tumor segmentation using ResUNet on LiTS2017, which consists
of 50 622 abdominal scan images for training and 26 608 images for testing;
optic disc/cup segmentation using MRNet on RIGA,which has 655 color fundus
images for training and 95 for testing. The results are compared with commonly
used stochastic first-order optimizers such as Adam, SGD, and AdaBound, and
recently proposed stochastic quasi-Newton optimizer Apollo. In task detection
of COVID-19, we use classification accuracy as the evaluation metric. For the
other three medical image segmentation tasks, seven commonly used evalu-
ation metrics are utilized, that is, Dice, structure measure, enhanced-alignment
measure (EM), mean absolute error (MAE), intersection over union (IoU), true
positive rate (TPR), and true negative rate.
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Results: Experiments on four tasks show that ACQN-H achieves improve-
ments over other stochastic optimizers: (1) comparing with AdaBound,ACQN-H
achieves 0.49%, 0.11%, and 0.70% higher accuracy on the COVID-chestxray
dataset using network COVID-Net with VGG16, ResNet50 and DenseNet121
as backbones, respectively; (2) ACQN-H has the best scores in terms of
evaluation metrics Dice, TPR, EM, and MAE on COVID-CT dataset using net-
work Inf -Net. Particularly, ACQN-H achieves 1.0% better Dice as compared to
Apollo; (3) ACQN-H achieves the best results on LiTS2017 dataset using net-
work ResUNet, and outperforms Adam in terms of Dice by 2.3%; (4) ACQN-H
improves the performance of network MRNet on RIGA dataset, and achieves
0.5% and 1.0% better scores on cup segmentation for Dice and IoU,respectively,
compared with SGD. We also present fivefold validation results of four tasks. It
can be found that the results on detection of COVID-19, liver tumor segmen-
tation and optic disc/cup segmentation can achieve high performance with low
variance. For COVID-19 lung infection segmentation, the variance on test set is
much larger than on validation set, which may due to small size of dataset.
Conclusions: The proposed optimizer ACQN-H has been validated on four
medical image analysis tasks including: detection of COVID-19 using COVID-
Net on COVID-chestxray, COVID-19 lung infection segmentation using Inf -Net
on COVID-CT, liver tumor segmentation using ResUNet on LiTS2017, optic
disc/cup segmentation using MRNet on RIGA. Experiments show that ACQN-H
can achieve some performance improvement. Moreover, the work is expected
to boost the performance of existing deep learning networks in medical
image analysis.
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1 INTRODUCTION

Deep learning for medical image analysis attracts great
attention and achieves great success. It can take care
of the simple repetitive and time-consuming process,
help in diagnosing disease, evaluate prognosis, and
plan operation.1 Among numerous medical image anal-
ysis tasks, classification and segmentation are the most
attractive.2 Great efforts have been made on design-
ing high-performance deep neural networks (DNNs),
which can even exceed human recognition ability.3 One
of leading DNNs for medical image segmentation is
UNet.4 It adopts an encoder–decoder structure, which
enables recovering full spatial resolution. Many variants
of UNet2,5–8 have been proposed for medical image
analysis. For instance, H-DenseUNet5 makes full use of
adjacent computer tomography (CT) volume for model
training and achieves improved performance on liver
segmentation task. ResUNet6 introduces a semantic
segmentation model with context multiimages input and
utilizes a new loss function that combines Dice loss7

with cross-entropy loss,which brings faster convergence
speed.MRNet9 explores the utilization of rich annotation
information from multiple experts and incorporates the
multirater (dis-)agreement cues which help to generate
better prediction.

Recently, COVID-19 ravages the world. The medical
system suddenly suffers great pressure from exponen-
tially increasing number of infections. This inspires the
research on deep learning based COVID-19 automated
diagnosis.10 COVID-Net11 is the first open-source
convolutional neural network designed for COVID-19
detection and achieves good precision. COVID-Net and
its many variants12–14 augment the traditional health-
care strategy for tackling COVID-19, while they can
hardly be applied to segment infected regions from CT
slices faces. This may partly be due to high variation in
infection characteristics, low-intensity contrast between
infections and normal tissues, and lack of labeled data.
To solve these problems, Inf -Net15 is proposed to auto-
matically identify infected regions from chest CT slices.
It utilizes implicit reverse attention and explicit edge
attention to improve the identification of infected regions.

Most of DNNs mentioned above are always com-
plex with massive parameters ranging from thousands
to millions in numbers. The high dimension and noncon-
vex nature of DNNs make them hard to optimize.16,17

The most popular optimizers are the first-order ones
that are based on first-order Taylor expansion of loss
function. For many applications, SGD,18 Adam,19 and
AdamW20 are the default optimizers because of their
simplicity and efficiency. Recently, due to its good
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performance, Adam19 also engenders an ever-growing
list of modifications, such as AdaBound,21 Radam,22

Adabelief,16 and Adax.23 However, they are easy to
be trapped in suboptimal solutions in algorithmic iter-
ations, which largely due to only utilizing gradient
information.24 Instead, stochastic second-order optimiz-
ers can capture and exploit curvature properties of
the loss landscape by incorporating both gradient and
Hessian information, leading to better performance.
AdaHessian,24 as an adaptive Hessian-based optimizer,
estimates the Hessian matrix diagonally, Hutchinson’s
method.25 The method incorporates spatial averaging
for Hessian diagonal which helps in denoising local Hes-
sian information and enables AdaHessian to achieve
better generalization. Instead of directly obtaining Hes-
sian information, an alternative is a class of stochastic
quasi-Newton optimizers,26–28 which approximate the
curvature of objective function only using gradient
information. Generally, second-order optimizers require
much more computational resource on both time and
memory to calculate the Hessian matrix, while quasi-
Newton optimizers are more applicable as they are able
to balance performance and efficiency. As an example,
for experiments on ImageNet using ResNext, the time
cost of second-order optimizer AdaHessian can reach
up to 11.78 and 9.58 times larger than those of first-
order optimizer SGD and recent proposed stochastic
quasi-Newton optimizer Apollo, respectively. Meanwhile,
the memory cost of AdaHessian can reach up to 2.51
and 2.39 times larger than those of SGD and Apollo,
respectively.28

In this work,we propose a novel adaptive cubic quasi-
Newton optimizer with high-order moment (termed
ACQN-H) for medical image analysis. Different from
existing stochastic quasi-Newton optimizers which usu-
ally approximate Hessian only using the curvature of
the loss function, the proposed optimizer incorporates
both the curvature of the loss function and the norm
of difference between previous two estimates. Besides,
ACQN-H hires high-order moment through exponen-
tial moving average on iteratively calculated Hessian
approximations to reduce the variance introduced by
the stochastic nature of the problem. The performance
of ACQN-H has been validated in four tasks including
detection of COVID-19, COVID-19 lung infection seg-
mentation, liver tumor segmentation, and optic disc/cup
segmentation. Moreover, the work is also expected to
boost the performance of other existing deep learning
networks in medical image analysis.

Notation. We use italics letters such as 𝜖 and 𝛽 to
denote scalars, bold lowercase letters x and y to denote
vectors, and bold uppercase letters H and D to denote
matrices.

2 METHODOLOGY

In this section, we first provide the formulation of the
cubic quasi-Newton method in Subsection 2.1.Then,we
describe the updated process for approximated Hes-
sian matrix Bk in Subsection 2.2. Finally, the form of
high-order moment applied for ACQN-H is discussed in
Subsection 2.3.

2.1 Formulation of cubic quasi-Newton
method

Generally, the updated rule of the Newton method can
be written as

xk+1 = xk − H−1
k gk, (1)

where xk ∈ ℝd is the parameter vector updated at kth
iteration, gk ∈ ℝd and Hk ∈ ℝd×d are the gradient vec-
tor and Hessian matrix, respectively. Acquiring the exact
Hessian Hk needs high computation cost. Instead, the
quasi-Newton method approximates the second deriva-
tive of loss function as a series sum of first-order
gradient information from prior iterations, and this is
much more efficient.28 The curvature of the loss func-
tion can be acquired through a second-order Tayler
expansion

xk+1 = arg min
x

f (xk) + gT
k (x − xk) +

1
2

(x − xk)T Bk(x − xk).

(2)

where f : ℝd → ℝ is the loss function and x ∈ ℝd is the
weights of DNNs. The weight update process is shown
as

xk+1 = xk − B−1
k gk, (3)

where arg min represents the set of values where the
object function attains the minimum, Bk ∈ ℝd×d is an
approximation to the Hessian matrix at xk . To further
enhance the global convergence, the cubic regular-
ization is introduced29 and the optimal weights can
be acquired through finding the minimizer of cubically
regularized second-order Taylor expansion

xk+1 = arg min
x

f (xk) + gT
k (x − xk)

+
1
2

(x − xk)TBk(x − xk) +
𝜌

6
||x − xk||

3, (4)

𝜌 > 0 is a sufficient large hyperparameter. By first-
order optimality conditions, we set the derivative of the
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objective to zero, which immediately yields

gk + Bk(x − xk) +
𝜌

2
||x − xk||(x − xk) = 0, (5)

which is a nonlinear system and can be approximated
by a linear one as follows:

gk + Bk(x − xk) +
𝜌

2
||xk − xk−1||(x − xk) = 0 (6)

yielding a novel update:

xk+1 = xk − (Bk +
𝜌

2
||xk − xk−1|| ⋅ I)−1gk, (7)

where I ∈ ℝd×d is the identity matrix. Comparing with
(3), (7) additionally makes use of the norm of difference
between previous two estimates, leading to better perfor-
mance. Further, to guarantee the positive-definiteness,
the Newton update in (7) is combined with rectifying
operation and becomes

xk+1 = xk − D−1
k gk, (8)

where

Dk = max(abs(Bk +
𝜌

2
||xk − xk−1|| ⋅ I), 𝜃 ⋅ I), (9)

where 𝜃 is a positive parameter, max(⋅, ⋅) operation
enables Dk ∈ ℝd×d to prevent the step size from becom-
ing arbitrary large since there exists zero value in
Bk .

2.2 Updating Bk

For simplification, the matrix Bk in (8) is approximated
by a diagonal matrix. Thus, acquiring D−1

k at every itera-
tion becomes computationally feasible since Dk is also
a diagonal matrix.Here,Bk can be updated according to
the quasi-Cauchy equation30:

Bk+1 = arg min
B

||B − Bk||

S.t.sT
k Bsk = sT

k yk(weak scant equation)
(10)

where sk = xk − xk−1 and yk = gk − gk−1. The solution
to the above problem with the Frobenius matrix based
on the variational technique in Zhu et al.30 is given by

Bk+1 = Bk +
sT

k yk − sT
k Bksk

||sk||
4
4 + 𝜖

Diag(s2
k), (11)

where Diag(v) is the diagonal matrix with diagonal
elements from vector v.

2.3 High-order moment

To reduce the variance and further improve the per-
formance, we adapt the moments for both gradient
and diagonally approximated Hessian.The first moment
mk ∈ ℝd is defined as

mk =
(1 − 𝛽k−1

1 )𝛽1mk−1 + (1 − 𝛽1)gk

1 − 𝛽k
1

, (12)

where 𝛽1 is the first moment hyperparameter. The high-
order moment V k ∈ ℝd×d is shown as follows:

V k =
(1 − 𝛽k−1

2 )𝛽2V k−1 + (1 − 𝛽2)Dh
k

1 − 𝛽k
2

, (13)

where 𝛽2 ∈ (0, 1) is the hyperparameter and h repre-
sents the order of the second moment. The second
moment utilizes historical second-order derivatives to
smooth the noisy curvature information. Generally, in
many image classification and segmentation tasks,
Adam, AdamW, and AdaHessian would set 𝛽1 = 0.9,
𝛽2 = 0.999. We use the same setting to enable a
fair comparison.

To summarize, the complete algorithm of adaptive
cubic quasi-Newton optimizer with high-order moment
(ACQN-H) is given in Algorithm 1. In which, at most first-
order gradients are required, and Bk , Dk , and V k are
all diagonal. Therefore, ACQN-H iteratively updates with
linear complexity for both time and memory.

2.4 Performance evaluation

To access the performance of ACQN-H, the optimizer
is extensively tested on a wide range of learning tasks:
detection of COVID-19, COVID-19 lung infection seg-
mentation, liver tumor segmentation, and optic disc/cup
segmentation. The results in each task are com-
pared with stochastic first-order optimizers like Adam,19

SGD,18 AdaBound,21 and stochastic second-order opti-
mizer Apollo.28 Among them, Adam and SGD are the
most common and default optimizers for these tasks,
AdaBound is a recently proposed first-order optimizer
that works well. For each task, fivefold cross-validation
results are reported.The tested learning tasks are briefly
explained below:

1. Detection of COVID-19: We experiment on the
COVID-chestxray dataset31 using COVID-Net.27 The
training set consists of 7966 normal chest X-rays
and 8599 X-rays of negative samples, while the test
set contains 885 normal X-rays and 956 negative
X-rays. Besides, to broadly test its performance, we
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ALGORITHM 1 ACQN-H

Require: ng //Mini-batch size

Require: 𝜂 //Stepsize

Require: 𝛽1, 𝛽2 ∈ [0, 1) //Exponential decay rates for the moment
estimates

Require: 𝜖, 𝜌, 𝜃, h //Positive parameters

Require: x0, g0, B0, m0, V 0 //Initialize variables

Require: k ← 0 //Initialize timestep

1: while xk not converged do

2: k ← k + 1

3: gk ← ∇fi(x; 𝝃 i) //Stochastic gradient at timestep k

4: sk ← xk − xk−1

5: yk ← gk − gk−1

6: Bk ← Bk−1 +
sT

k yk−sT
k Bk−1sk

||sk ||
4
4+𝜖

Diag(s2
k ) //Update diagonal

Hessian

7: Dk ← max(abs(Bk +
𝜌

2
||xk − xk−1|| ⋅ I), 𝜃 ⋅ I) // Rectify for

positive-definiteness

8: mk ←
(1−𝛽k−1

1 )𝛽1mk−1+(1−𝛽1)gk

1−𝛽k
1

//Update first moment

9: V k ←
(1−𝛽k−1

2 )𝛽2V k−1+(1−𝛽2)Dh
k

1−𝛽k
2

//Update high-order second

moment

10: xk+1 ← xk − 𝜂V
−

1
h

k mk //Update parameters

11: end while

12: return xk+1

set VGG16,32 ResNet50,33 and DenseNet12134 as
backbones instead of only one default ResNet50
backbone. Besides, the total training epoch is 300.
Although there are image samples from the same
patient, we only want to test the performance of the
optimizer under the same conditions as those of
COVID-Net.

2. COVID-19 lung infection segmentation:We report the
performance of ACQN-H on the COVID-CT dataset35

using a supervised version of the Inf -Net model.15

COVID-CT is a COVID-19 CT segmentation dataset
with 100 labeled CT slices, which consists of 45 CT
images for training, 5 CT images for validation, and
the remaining 50 images for testing. Additionally, the
total training epoch is 100.

3. Liver tumor segmentation: We use ResUNet6 on the
LiTS2017 dataset,36 which also served as a segmen-
tation challenge during MICCAI 2017.The training set
of LiTS2017 contains 50 622 abdominal scan images
of 130 CT scans from 91 patients while the test set
contains 26 608 images of 70 CT scans from 40
patients. The total training epoch is 300.

4. Optic disc/cup segmentation: We report experiments
using the MRNet model9 on the RIGA dataset,37

which contains in total of 750 color fundus images.
Followed with the experiment setting in MRNet, 655
samples are selected as the training set and 95 sam-

ples consist of the test set.Moreover, the total training
epoch is 60.

Experiment environment. The deep neural net-
work framework we experiment on is Pytorch1.7.1 with
python3.6 and is GPU-accelerated. The hardware is a
single RTX 3090Ti with I9-10920X CPU, while the RAM
is 32GB.

Experiment setup. We perform a careful hyperpa-
rameter tuning in experiments as follows:

ACQN-H: We set 𝜃 = 1, 𝜌 = 1, 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−8. As if a diagonal element of the approximated
Hessian matrix Dk is less than 1, the corresponding
element in Dk becomes 1. Thus, the update of this ele-
ment can work as that of SGD and prevent the step
to be arbitrarily large. Besides, we do not tune 𝜌 and
𝜃 on different problems, which may help to reach a
better result. The learning rate 𝜂 is set to 0.1. In addi-
tion, for each task, we search the best order h from 2.0
to 10.0.

SGD: The momentum is set to 0.9, while the learn-
ing rate is searched among {a × 10b}, where a ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9} and b ∈ {−4,−3,−2,−1}.

Adam, AdaBound, and Apollo: The learning rate is
searched as SGD,and other parameters are set as their
own default values in the literature.

Evaluation metrics. In the medical image classifica-
tion task detection of COVID-19, the commonly used
classification accuracy is utilized as the evaluation met-
ric. For the other three medical image segmentation
tasks,we integrate the default evaluation metrics into the
following seven evaluation metrics, that is, Dice, struc-
ture measure (SM),enhanced-alignment measure (EM),
mean absolute error (MAE), intersection over union
(IoU), true positive rate (TPR), and true negative rate
(TNR). Among these metrics, Dice, SM, EM, MAE, and
IoU can measure the similarity between the result and
ground truth. TPR means the correct rate of correctly
segmented pixels of a target region, and TNR repre-
sents the correct proportion of background pixels that
are segmented correctly.Assuming T0 and T1 represent
the normal region and the ground truth (GT), respec-
tively, P0 is the predicted normal region, and P1 means
the predicted segmentation region, | ⋅ | means the num-
ber of matrix elements. The seven evaluation metrics
can be formulated as follows:

1. Dice:

Dice(T1, P1) =
2|T1 ∩ P1|

|T1| ∪ |P1|
. (14)

2. Structure measure:

SM(T1, P1) = (1 − 𝜶) ∗ So(T1, P1) + 𝜶 ∗ Sr (T1, P1),
(15)
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TABLE 1 Test accuracy of COVID-Net with COVID-chestxray

Backbone (%) Adam SGD AdaBound Apollo ACQN-H

VGG16 95.44 95.44 96.25 96.36 96.74

ResNet50 94.41 94.19 95.49 95.44 95.60

DenseNet121 95.17 95.27 95.82 96.36 96.52

where 𝛼 ∈ [0, 1], So is the object-aware similarity and
Sr represents the region-aware similarity.38

3. Enhanced-alignment measure:

EM(T1, P1) =
|𝝓(T1, P1)|

w × h
, (16)

where w and h are the width and height of the
input CT image, respectively, and 𝜙(⋅) represents the
enhanced alignment matrix.39

4. Mean absolute error:

MAE(T1, P1) =
||T1 − P1||1

w × h
. (17)

5. Intersection over union:

IoU(T1, P1) =
|T1 ∩ P1|

|T1 ∪ P1|
. (18)

6. True positive rate:

TPR(T1, P1) =
|T1 ∩ P1|

|T1 ∩ P1| + |T0 ∩ P0|
. (19)

7. True negative rate:

TNR(T0, P0) =
|T0 ∩ P0|

|T0|
. (20)

3 RESULTS

3.1 Detection of COVID-19

To assess the generalization performance of ACQN-H
on medical image classification,we also use COVID-Net
with VGG16, ResNet50, and DenseNet121 as back-
bones on the COVID-chestxray dataset, and results are
shown in Table 1, ACQN-H outperforms other optimiz-
ers on classification accuracy in all experiments and
achieves 0.38%, 0.16%, and 0.16% higher accuracy
than Apollo with the backbones VGG16, ResNet50, and
DenseNet121, respectively. Test accuracy curves are
reported in Figure 1. As can be seen, the test accuracy
of ACQN-H is better than that of other optimizers.More-
over, fivefold cross-validation results using ACQN-H are

F IGURE 1 Test accuracy curves of COVID-Net on
COVID-chestxray using VGG16, ResNet50, and DenseNet121 as
backbone

reported in Table 2. It can be found that the average Dice
values among different folds vary slightly.

3.2 COVID-19 lung infection
segmentation

In the COVID-19 lung infection segmentation task, we
experiment on the Inf -Net model with the COVID-CT
dataset. The performance of ACQN-H is evaluated
through six widely adopted metrics, that is, Dice, TPR,
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TABLE 2 Quantitative results of fivefold cross-validation using COVID-Net with COVID-chestxray

Validation set Test Set
Backbone(%) VGG16 ResNet50 DenseNet121 VGG16 ResNet50 DenseNet121

Fold-0 99.01 98.95 99.21 97.21 95.95 97.61

Fold-1 98.55 98.15 98.65 96.05 95.15 95.97

Fold-2 97.62 98.02 98.82 95.92 95.32 96.32

Fold-3 97.86 97.36 97.93 97.86 95.36 97.13

Fold-4 98.66 97.72 98.54 96.66 96.22 95.57

Avg 98.34 98.04 98.63 96.74 95.60 96.52

F IGURE 2 Segmentation results on COVID-CT with Inf -Net

TABLE 3 Assessment of Inf -Net with COVID-CT. (For metric
MAE, lower is better, for other metrics, higher is better)

(%) Adam SGD AdaBound Apollo ACQN-H

Dice 68.7 57.4 64.8 69.0 70.0

TPR 68.1 79.2 65.9 68.2 68.4

TNR 94.9 85.7 94.3 95.6 95.4

SM 76.5 63.8 75.0 76.9 76.0

EM 84.9 72.4 83.8 87.3 88.7

MAE 7.7 14.9 8.9 7.7 7.4

TNR, SM, EM, and MAE. For metric MAE, lower is better
and for other metrics, higher is better.

Table 3 presents quantitative results of COVID-19
lung infection segmentation. It shows that ACQN-H
has the best scores in terms of Dice, TPR, EM, and
MAE. Particularly, ACQN-H achieves 1.0% better Dice
as compared to Apollo. Figure 2 also gives some visual
comparison examples of COVID-19 lung infection seg-
mentation. Comparing with other optimizers, ACQN-H

TABLE 4 Quantitative results of fivefold cross-validation using
COVID-CT with Inf -Net

% Validation set Test set

Fold-0 78.50 ± 0.10 68.51 ± 0.57

Fold-1 77.90 ± 0.14 70.87 ± 0.47

Fold-2 79.71 ± 0.10 65.45 ± 0.90

Fold-3 80.17 ± 0.10 73.31 ± 0.65

Fold-4 81.77 ± 0.07 71.86 ± 0.62

Avg. 79.61 ± 0.11 70.02 ± 0.59

yields infection segmentation results with more accurate
boundaries. Besides, Table 4 shows quantitative fivefold
validation results of COVID-19 lung infection segmenta-
tion in terms of Dice.As can be seen, the variance on the
test set is much larger than on the validation set. More-
over, the performance on the test set drops about 9% on
average. The potential reason could be the small size of
the dataset.
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F IGURE 3 Segmentation results on LiTS2017 with ResUNet. The red pixels denote the liver region.

TABLE 5 Assessment of ResUNet on LiTS2017. (For Dice,
higher is better, while for other evaluation metrics, lower is better)

(%) Adam SGD AdaBound Apollo ACQN-H

Dice 91.22 90.87 90.62 91.20 93.46

TPR 97.53 98.48 98.40 98.77 98.77

TNR 86.90 84.77 84.80 85.37 89.26

IoU 84.43 83.58 83.20 84.14 88.03

3.3 Liver tumor segmentation

We experiment with the ResUNet model on the
LiTS2017 dataset and evaluate the results with assess-
ments Dice, IoU, TPR, and TNR. For all these evaluation
metrics, higher is better.

Quantitative results of liver tumor segmentation are
shown in Table 5.As can be seen,ACQN-H achieves the
best results and outperforms Apollo in terms of Dice by
2.3%. Figure 3 gives some visual comparison examples
of liver tumor segmentation. We can see that the seg-
mentation results using ACQN-H are more similar to the
GTs than other optimizers. Besides, quantitative fivefold
validation results of liver tumor segmentation in terms of
Dice are shown in Table 6. As can be seen, the variance
among results in each fold is low. Moreover, the relative
performance on the test set drops only about 2.14%.

3.4 Optic disc/cup segmentation

In the optic disc/cup segmentation task, we experi-
ment on the RIGA dataset with the MRNet model, and

TABLE 6 Quantitative results of fivefold Cross-validation using
ResUNet with LiTS2017

% Validation set Test set

Fold-0 95.03 ± 0.09 94.04 ± 0.04

Fold-1 95.12 ± 0.09 93.13 ± 0.04

Fold-2 96.68 ± 0.09 94.01 ± 0.04

Fold-3 95.45 ± 0.09 93.11 ± 0.04

Fold-4 95.72 ± 0.09 93.01 ± 0.04

Avg 95.60 ± 0.09 93.46 ± 0.04

TABLE 7 Assessment of MRNet with RIGA. (Higher is better)

(%) Adam SGD AdaBound Apollo ACQN-H

Disc Dice 94.9 97.7 97.5 97.6 97.6

Disc IoU 90.5 95.5 95.1 95.3 95.4

Cup Dice 83.3 83.3 81.9 83.2 83.8

Cup IoU 73.2 73.2 71.5 72.9 74.2

the performance is evaluated through IoU and Dice.
We present quantitative experiments in Table 7. Obvi-
ously,ACQN-H has advantage on cup segmentation and
achieves 0.6% and 1.3% better scores for Dice and
IoU, respectively, when comparing with Apollo. ACQN-H
also achieves comparable results on disc segmentation.
Figure 4 presents some visualized segmentation results.
From the first row, all optimizers achieve excellent per-
formance on optic disc segmentation, and their results
are similar to the GT. Meanwhile, the second row shows
that the optic cup segmentation result using ACQN-H
achieves superior performance.
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F IGURE 4 A sample of segmentation result on RIGA with MRNet. (a) represents the original image (above) and ground truth (below). The
segmentation boundaries of GT (green) and the predicted optic disc (red) for different optimizers are shown in the first row of (b)–(f), while the
results of cup segmentation are shown in the second row.

F IGURE 5 The violin plots present the dice of different optimizers for COVID-19 lung infection segmentation, liver tumor segmentation, and
optic disc/cup segmentation.

We also present quantitative fivefold validation results
of optic disc/cup segmentation in Table 8. It can be
found that optic disc segmentation can achieve high
performance with low variance. However, the perfor-
mance of optic cup segmentation is not as good as
optic disc segmentation, and the average Dice drops
about 14% on the test set with obvious larger variance.
This indicates that optic cup segmentation remains a
challenging problem.

4 DISCUSSION

In this paper, we present a novel ACQN-H for medical
image analysis. Our method can capture the curvature
of the loss function by diagonally approximated Hessian
and the norm of difference between previous two esti-
mates. Additionally, ACQN-H hires high-order moment
through exponential moving average on iteratively cal-
culated Hessian approximations. The method can help
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TABLE 8 Quantitative results of fivefold Cross-validation using
MRNet with RIGA

Optic disc Optic cup
Subtask
(%)

Validation
set Test set

Validation
set Test Set

Fold-0 99.01 ± 0.02 97.81 ± 0.02 88.36 ± 0.14 84.24 ± 0.68

Fold-1 98.70 ± 0.03 97.15 ± 0.02 88.18 ± 0.14 82.31 ± 0.71

Fold-2 98.57 ± 0.01 96.47 ± 0.02 86.97 ± 0.10 83.55 ± 0.62

Fold-3 99.25 ± 0.01 98.32 ± 0.02 86.13 ± 0.14 83.97 ± 0.53

Fold-4 99.07 ± 0.01 98.25 ± 0.01 87.61 ± 0.17 84.93 ± 0.57

Avg 98.92 ± 0.02 97.60 ± 0.02 87.45 ± 0.15 83.81 ± 0.64

to escape from saddle points more efficiently and train
a DNN with better performance.

ACQN-H is evaluated through a wide range of medi-
cal image analysis tasks using state-of -the-art models.
These include COVID-chestxray for the detection of
COVID-19 using COVID-Net, COVID-CT for COVID-19
lung infection segmentation using Inf -Net, LiTS2017
for liver tumor segmentation using ResUNet and RIGA
for optic disc/cup segmentation using MRNet. For the
detection of COVID-19,quantitative results are reported
in Table 1. As a medical image classification task,
ACQN-H consistently achieves the best accuracy with
different backbones. Test accuracy curves are reported
in Figure 1, from which we can see that ACQN-H has
a better convergence than Adam, SGD, and AdaBound.
Quantitative results of COVID-19 lung infection seg-
mentation are shown in Table 3, from which ACQN-H
achieves the best score in terms of dice, EM, and
MAE, only slightly inferior to Apollo in SM and TNR.
This implies the segmentation results from ACQN-H are
more similar to GTs when comparing with Adam, SGD,
and AdaBound. In terms of TPR and TNR, the resulting
image of ACQN-H has the least proportion of misseg-
mented pixels. In addition, Figure 2 also gives some
visual comparison examples. The result of ACQN-H
segment the regions infected with COVID-19 more accu-
rately. Results of liver tumor segmentation are shown
in Table 5 and Figure 3. Obviously, ACQN-H outper-
forms other optimizers in terms of quantization and
segmentation. As quantitative results of optic disc/cup
segmentation shown in Table 7, ACQN-H achieves the
best dice and IoU on optic cup segmentation, which
implies that ACQN-H can better segment optic cups as
GT. For optic disc segmentation, ACQN-H is only slightly
lower than Adam which is better than other optimizers.
Figure 4 gives some visualized segmentation results.
ACQN-H has a visually better optic cup segmentation
result, while its disc segmentation result is comparable.

We find that the segmentation results do not match
the GTs well on COVID-19 lung infection segmentation
and optic cup segmentation. This has resulted from two
main reasons.At first, the datasets COVID-CT and RIGA
have limited labeled cases.Second,the test samples are

complex from a visual point.For example, the samples in
the COVID-19 lung infection segmentation task include
many small infections with irregular margins. For the
optic cup segmentation task, the cases fail most often
due to a weak boundary between the optic disc and optic
cup. Thus, these two tasks are much more challenging,
while ACQN-H still achieves the best results in visual.

Figure 5 shows the violin plots of COVID-19 lung
infection, liver tumor, and optic disc/cup segmentation
results using different optimizers in terms of Dice. It
gives the summary statistics and the entire distribution
of the quantitative results. As can be seen, ACQN-H
achieves the best lower quartile, median, and upper
quartile in all tasks, which indicates that most cases
segmented using ACQN-H get higher Dice.

5 CONCLUSION

We have proposed ACQN-H, a novel and efficient
adaptive cubic quasi-Newton optimizer with a high-
order moment for medical image analysis, and its
superiority is demonstrated on four types of datasets.
ACQN-H only requires at most first-order gradients
and updates with linear complexity for both time and
memory, thus it is quite suitable for large-scale deep
learning based medical image analysis and is expected
to boost the performance of existing DNNs for medical
image analysis.
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