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coupling day length data 
and genomic prediction tools 
for predicting time‑related traits 
under complex scenarios
Diego Jarquin 1*, Hiromi Kajiya‑Kanegae2, chen taishen2, Shiori Yabe3, Reyna persa1, 
Jianming Yu4, Hiroshi nakagawa6, Masanori Yamasaki5 & Hiroyoshi iwata 2*

Genomic selection (GS) has proven to be an efficient tool for predicting crop-rank performance of 
untested genotypes; however, when the traits have intermediate optima (phenology stages), this 
implementation might not be the most convenient. GS might deliver high‑rank correlations but 
incurring in serious bias. Days to heading (DtH) is a crucial development stage in rice for regional 
adaptability with a significant impact on yield potential. The objective of this research consisted 
in develop a novel method that accurately predicts time‑related traits such as DtH in unobserved 
environments. for this, we propose an implementation that incorporates day length information (DL) 
in the prediction process for two relevant scenarios: CV0, predicting tested genotypes in unobserved 
environments (C method); and CV00, predicting untested genotypes in unobserved environments 
(cB method). the use of DL has advantages over weather data since it can be determined in advance 
just by knowing the location and planting date. the proposed methods showed that DL information 
significantly helps to improve the predictive ability of DTH in unobserved environments. Under CV0, 
the C method returned a root-mean-square error (RMSE) of 3.9 days, a Pearson correlation (PC) of 0.98 
and the differences between the predicted and observed environmental means (EMD) ranged between 
-4.95 and 4.67 days. For CV00, the CB method returned an RMSE of 7.3 days, a PC of 0.93 and the EMD 
ranged between -6.4 and 4.1 days while the conventional GS implementation produced an RMSE of 
18.1 days, a PC of 0.41 and the EMD ranged between -31.5 and 28.7 days.

To satisfy the daily food demands of a growing population, it is necessary to improve the crop production systems 
to allow a sustainable increase of the yield potential and nutritional value of the new and up-coming  varieties1. In 
plant breeding there are different tools and methodologies to increase the rate of genetic  gain2. Traditional plant 
breeding methods use phenotypic and/or pedigree information to perform selection of experimental lines for 
developing superior breeding lines. However, phenotypic selection may not be permissible in many situations 
due to the high phenotyping costs and limited availability of resources (land, water, seed availability, etc.); also, 
pedigree selection may not be accurate since it assumes a constant rate of recombination (50% of the genetic 
material coming from mother and the remaining 50% coming from father) and this might not be a feasible 
premise. In this regard, the use of molecular markers can help to detect the deviations from the expected genetic 
material of the parents and can be used to determine which parental haplotypes were inherited.

Genomic  selection3 (GS) is an emerging tool that allows screening genotypes from a very large population 
without having to observe them in  fields4,5. This method only requires phenotypic and genomic information for 
calibrating models, then other genotyped candidates are selected based on the predicted genetic values obtained 
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via their marker  profiles6. In this context, the implementation of genomic tools and resources translates our 
understanding of the relationship between genotype and phenotype into predicted genetic merits for direct 
selection. This is highly desirable when dealing with those traits that are controlled by a large number of genes 
with small individual effects, also known as complex  traits5,7. GS has shown to be an effective tool for plant and 
animal breeding applications, especially for complex  traits8. The success of GS predicting phenotypes from 
genotypic information has been reported in various crop  species9.

In GS, the genomic estimated breeding values (GEBVs) of complex traits of untested genotypes are computed 
based on genome-wide marker information. The GEBVs can be considered as deviations around a fixed mean 
(e.g., zero). Once the GEBVs are obtained, the breeders may conduct selections based on ranks by selecting those 
individuals in the tails. Depending on the trait, the individuals are selected either on the upper or lower tails of 
the ordered GEBVs. For example, the upper side is selected for increasing genetic gains of traits like grain yield, 
stress resistance, or the content of essential nutrients. On the other hand, genotypes in the lower tail are selected 
for reducing traits such as lodging, shattering, the content of anti-nutrients, etc. In these cases, the GEBVs provide 
sufficient information when the GEBVs and the direct genetic values (or phenotypic values) exhibit a high cor-
relation. However, the rank-based selection criteria might not be the most accurate when the target trait has an 
intermediate optima. This is the case of those traits related with phenological stages of crop plants. For example, 
Onogi et al.10, studied the prediction of heading date of untested genotypes within and across environments by 
integrating genomic prediction with crop/ecophysiological modelling. These authors predicted DTH of untested 
genotypes in observed and unobserved environments among other cross-validations schemes. In their case, the 
obtained root-mean-square error (RMSE) for predicting untested genotypes in unobserved environments was 
almost twice as much as when predicting observed environments. Moreover, in both cases, high correlations 
between predicted and observed values were obtained. Predicting untested genotypes in observed environ-
ments the correlation was of 0.96 while for unobserved environments it was of 0.87. These results highlight the 
importance of improving the accuracy of predicting untested genotypes in unobserved environments despite 
the fact of obtaining high correlations.

In rice, days to heading (DTH; typically defined as the number of days after planting when more than 50% of 
plants show the heading stage) is one of the critical traits of ideotypes with an increased yield potential. Hence, 
it is important to optimize DTH for high yield potential in different  environments11. Usually, multi-environment 
trials (METs) are performed for developing stable cultivars across a wide range of environmental conditions. 
Usually, breeders are interested in estimating DTH for a large set of environments instead of just a single one. 
However, when the GEBVs are computed for unobserved environments, these might contain a large bias if the 
phenotypic information from those genotypes in the training set does not resemble the target environment. 
The GEBVs from one environment may not be suitable for another due to variations in the environmental 
stimuli. This might cause inconsistencies in the response patters as result of the interaction between genotypes 
and environments (G × E interaction). These differences also remain for same genotypes observed at the same 
location but tested at different times (planting date, years). As consequence of the aforementioned issues, the 
problem of correctly estimating time-related traits such as DTH for a set of untested genotypes in a wide range 
of unobserved environments becomes harder to solve than for those traits where the selection is rank-based 
(e.g., yield). As pointed before, one of the advantages of GS techniques over conventional phenotypic methods 
is its ability for performing accurate rank predictions of untested genotypes based exclusively on their marker 
profiles. Thus, it is not necessary to observe these in fields in order to select the superior genotypes. Thus, a 
method capable of delivering highly accurate predictions of untested genotypes in unobserved environments 
without incurring a large bias is desirable.

As was pointed before, DTH in rice is important for regional adaptability and has usually great impact on 
yield  potential11. The genetic systems controlling DTH have been studied for a long time by integrating Mende-
lian genetics and  genomics12. The potential of GS in DTH has been evaluated in  rice13,14 and  sorghum15. Onogi 
et al.10 focused on the genomic prediction of DTH in multiple environments and demonstrated the potential of 
a novel method that integrates GS with a crop growth model. Li et al.15 also focused on the genomic prediction 
of DTH in multiple environments and showed the potential of combining GS with joint regression analysis on 
photothermal time. To our knowledge, no studies combining DL on the day when genotypes reach DTH with GS 
tools have been presented yet. The objective of this research was to develop a method for predicting time-related 
traits such as DTH in unobserved environments combining day length and molecular markers.

Two cross-validation schemes of interest for designing and planning experiments were considered for evalu-
ating the performance of the proposed implementation for predicting DTH in unobserved environments: CV0, 
predicting already tested genotypes in unobserved environments (targeting environments); and CV00, predict-
ing untested genotypes in unobserved environments (targeting genotypes and environments). For assessing the 
proposed implementation, the root-mean-square error (RMSE), the Pearson correlation (PC) and the difference 
between predicted, and observed environmental means (EMD) values were computed and compared with the 
results obtained from traditional GS models.

In this study, we propose two novel methods for predicting DTH of tested (curve’s method: C method) and 
untested (combining the curve’s method and the traditional genomic BLUP modeling: CB method) genotypes in 
unobserved environments in a precise and accurate way (i.e., small bias and high correlation between predicted 
and observed values).

Under the hardest cross-validation scheme (i.e., CV00), the results of the introduced CB method are compared 
with those obtained with the conventional GS implementation (G-BLUP). For studying the realistic scenario of 
predicting already tested genotypes in unobserved environments, the cross-validation scheme CV0 was con-
sidered. These results are used for assessing the levels of predictability that can be reached when the phenotypic 
information of a genotype is available in other environments. Here, the environments are considered “target” in 
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a strict sense because these can be selected even before conducting the field experiments using the theoretical 
DL values of specific locations for a given planting date.

Results
Descriptive statistics. The box-plot of DTH is depicted in Supplementary Fig. S1. The environments were 
ordered based on their environmental medians. In general, those environments with late planting dates appear 
first. The medians ranged between 59 (“Fukuyama 2010 Late”) and 116 (“Akita 2015”) days. The within envi-
ronments SDs varied between 5.07 and 16.83 days. Also, the smallest and the largest DTH values were 42 and 
148 days and these were observed in “Tsukubamirai 2016 Late” and “Akita 2015” environments, respectively.

evaluating the bias and accuracy of the methods. Table 1 contains the observed and predicted envi-
ronmental means (E-mean) for two different cross-validation schemes (CV00 and CV0) as well as the corre-
sponding RMSE and the PC between predicted and observed values within environments. For the CV00 scheme, 
both the CB and GS methods were implemented. The objective of using this cross-validation scheme was to con-
trast the performance of the proposed method with respect to the conventional GS implementation for predict-
ing untested genotypes in unobserved environments. Since we lack of phenotypic information for connecting 
yet to predict genotypes in unobserved environments with those genotypes in training sets, the CV00 scheme is 
considered the hardest and the most interesting prediction problem. Across environments, the conventional GS 
method returned an RMSE of 18.1 days and a PC of 0.41; within environments, the average RMSE and PC were 
of 17.5 days and 0.69. The EMD ranged between -31.5 and 28.7 days. On the other hand, across environments 
the proposed CB method returned an RMSE of 7.3 days and a PC of 0.93; within environments, the average 
RMSE and PC were of 7.2 days and 0.86. The EMD ranged between -6.4 and 4.1 days.

The C method was implemented under the CV0 scheme and their results were used for assessing the predic-
tive ability of predicting an already tested genotype in an untested environment by considering only the pheno-
typic and daily DL information of the same genotype but observed in other environments. Across environments, 
this method returned an RMSE of 3.9 days and a PC of 0.98; within environments, the average RMSE and PC 
were 3.7 days and 0.98. The EMD ranged between -4.95 and 4.67 days.

The results of CB and GS methods are directly comparable between them (CV00 scheme). Figure 1 depicts the 
scatter plot between predicted and observed DTH values for all genotypes across environments. The top panel 
contains the results obtained with the proposed method (CB), while the bottom panel shows the results derived 
from the conventional GS implementation. The blue and black lines correspond to the fitted and the on target 
predictions with respect to the observed DTH values, respectively. In general, across-environments (Fig. 1) and 
within environments (Table 1) the results obtained with the CB method showed a better fit than those derived 
from the GS implementation.

The advantages of the CB method for predicting DTH are clearly appreciated when analyzing the predicted 
environmental means (E-means). Figure 2 displays the predicted (x-axis) and observed (y-axis) E-means under 
the CB (orange) and GS (blue) methods. As expected, when no information from the target environment was 
available the conventional GS implementation predicted DTH values centered on the overall mean (~ 88 days) 
of the environments in the training set. On the other hand, the CB method consistently returned values that 
were closer to the diagonal black line than those from the GS method. The black line represents the exact match 
between predicted and observed values.

Discussion
The box-plot (Supplementary Fig. S1) showed a high heterogeneity between the environments of this study with 
those with a “late” planting date exhibiting smaller phenotypic variability and shorter occurrence time for DTH 
compared with the “early” planting environments. Among other considerations, extended (allowing the inclusion 
of the main effect of the environments) GS models assume homogeneity of variances between environments. 
However, the violation of this assumption may induce serious inconsistencies in the results, especially when the 
genotype-by-environment interaction parameters are not explicitly included in models.

The results from the GS model provide a clear idea of the problems we might incur predicting time-related 
traits when the phenotypic information from the target environment is not available (CV00). This cross-valida-
tion scheme represents among the four prediction scenarios that breeders face in field (CV2: predicting tested 
genotypes in observed environments; CV1: predicting untested genotypes in observed environments; CV0: pre-
dicting tested genotypes in unobserved environments; and CV00: predicting untested genotypes in unobserved 
environments) the most interesting, useful and challenging. Dealing with traits where the selection process is 
based on ranks rather than in the per se estimated values, the conventional implementation (GS) usually provides 
good results (moderate to high correlations) under the four schemes.

However, in traits related with important growth stages like DTH where the per se estimated values are crucial 
for designing, planning and establishing future experiments (i.e., CV0 and CV00 situations), the implementation 
of the conventional implementations (GS) might not be the best choice. When no phenotypic information from 
the target environment is available, the E-mean of the target environment is determined as the weighted average 
of those environments in the training set forcing it to be centered around a general mean which corresponds 
to the weighted mean of those environments in the training set. Hence, the final prediction is composed of this 
general weighted mean plus deviations corresponding to the estimated/predicted genomic effects. Since these 
deviations are conceptualized to be centered around zero, under CV0 and CV00 schemes the GS method would 
produce similar environmental means (i.e., centered on an overall mean determined by those environments in 
the calibration set).
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CV00 CV0

Mean RMSE Corr Mean RMSE Corr

Real CB GS CB GS CB GS C C C

Tsukubamirai 2004 Late 79.4 76.7 85.9 7.0 12.6 0.86 0.70 76.3 4.6 0.99

Tsukubamirai 2004 Early 87.5 93.2 84.1 10.0 12.9 0.84 0.55 92.2 6.4 0.97

Tsukubamirai 2005 Early 98.5 102.1 87.1 6.9 14.0 0.87 0.75 101.0 3.5 0.98

Tsukubamirai 2005 Late 76.7 74.8 84.8 5.7 12.4 0.86 0.68 73.7 3.4 0.99

Kasai 2006 87.4 83.8 88.3 7.9 8.8 0.85 0.75 82.8 6.8 0.93

Fukuyama 2006 80.6 83.0 82.5 5.6 13.4 0.87 0.29 82.0 2.0 0.99

Fukuyama 2007 84.1 83.4 86.6 5.0 6.1 0.87 0.84 82.5 2.9 0.98

Tsukuba 2008 104.5 107.7 87.2 9.1 19.2 0.87 0.85 107.3 4.0 0.98

Kasai1st 2008 102.2 99.9 88.7 9.0 17.8 0.89 0.71 99.2 4.3 0.99

Fukuyama 2008 77.8 82.2 85.6 7.8 11.1 0.86 0.77 81.3 4.5 0.98

Tsukuba 2009 103.9 107.7 87.1 8.6 19.0 0.89 0.81 108.0 5.2 0.98

Kasai1st 2009 101.9 100.6 89.4 7.6 15.1 0.89 0.83 100.0 2.7 0.99

Fukuyama 2009 78.7 78.7 89.6 5.2 13.2 0.86 0.83 77.8 1.5 0.99

Tsukuba 2010 Late 83.5 89.1 88.9 8.4 11.1 0.86 0.66 88.4 5.9 0.97

Kasai1st 2010 100.6 100.7 89.5 7.1 14.3 0.88 0.77 100.1 1.9 0.99

Fukuyama 2010 76.2 79.5 88.2 5.9 15.3 0.86 0.50 78.1 2.6 0.99

Fukuyama 2010 Late 59.0 65.4 87.7 9.2 29.7 0.84 0.82 62.5 4.2 0.96

Tsukuba 2011 Early 105.9 109.9 85.5 9.9 23.9 0.87 0.66 109.9 5.3 0.98

Tsukuba 2011 Late 82.8 80.8 90.0 5.9 11.9 0.86 0.78 80.4 4.1 0.95

Tsukuba 2011 Middle 94.7 95.7 90.9 6.5 11.1 0.88 0.67 95.4 3.0 0.98

Kasai 2011 101.4 100.6 89.3 7.8 15.7 0.89 0.76 100.0 2.4 0.99

Fukuyama 2011 75.7 79.4 91.1 6.4 16.9 0.87 0.83 78.6 3.1 0.99

Fukuyama 2011 Late 66.4 72.7 97.9 8.9 32.4 0.68 0.58 66.2 2.9 0.95

Tsukuba 2012 Early 97.1 96.0 86.9 5.7 12.4 0.81 0.74 101.1 5.8 0.97

Tsukuba 2012 Late 84.3 81.6 88.2 6.1 7.5 0.86 0.80 81.0 4.3 0.96

Tsukuba 2012 Middle 92.6 95.4 88.4 6.3 8.3 0.87 0.82 94.8 3.7 0.97

Kasai 2012 103.8 102.7 86.4 7.9 21.3 0.89 0.60 102.1 2.7 0.99

Fukuyama 2012 75.2 78.8 89.9 6.2 16.3 0.87 0.83 78.0 3.1 0.99

Fukuyama 2012 Late 71.5 77.0 103.1 7.5 32.4 0.70 0.66 68.6 3.4 0.98

Fukuoka 2012 79.6 76.0 89.1 6.7 13.0 0.84 0.69 75.4 5.2 0.96

Akita 2012 113.1 115.9 90.1 8.3 26.1 0.86 0.54 114.5 2.8 0.98

Kasai 2013 104.8 104.1 87.3 8.0 20.1 0.90 0.80 103.5 3.2 0.98

Fukuyama 2013 74.9 80.1 89.4 7.4 16.3 0.87 0.82 79.3 4.6 0.99

Fukuyama 2013 Late 62.1 64.8 85.7 6.3 27.1 0.83 0.36 64.1 3.6 0.93

Fukuoka 2013 77.4 77.3 93.3 5.7 17.5 0.86 0.77 76.7 1.9 0.99

Akita 2013 116.6 115.8 91.1 8.5 28.1 0.88 0.66 115.1 2.4 0.99

Kasai 2014 102.4 105.1 88.9 8.4 18.0 0.90 0.66 104.4 2.8 0.99

Fukuyama 2014 79.6 82.1 87.9 5.9 12.1 0.88 0.68 81.3 2.1 0.99

Fukuyama 2014 Late 67.6 64.5 88.1 6.7 21.4 0.83 0.79 62.9 5.1 0.98

Fukuoka 2014 81.8 77.7 80.4 6.7 11.5 0.87 0.45 77.1 5.4 0.97

Akita 2014 115.2 116.2 89.6 9.2 28.5 0.88 0.68 115.6 2.2 0.99

Fukuyama 2015 76.3 72.6 88.1 6.5 14.4 0.86 0.63 71.9 4.6 0.99

Akita 2015 118.1 119.8 89.4 7.7 29.9 0.81 0.76 117.6 2.5 0.99

Kasai 2016 102.3 101.2 85.6 7.2 20.4 0.90 0.61 100.7 3.1 0.98

Fukuyama 2016 79.1 81.1 85.2 6.0 8.9 0.86 0.82 80.8 2.4 0.99

Fukuyama 2016 Late 67.5 65.2 89.6 6.8 26.1 0.79 0.63 64.6 4.5 0.95

Tsukubamirai 2016 Late 73.6 77.9 84.6 7.0 13.6 0.90 0.80 77.2 4.9 0.98

Kasai 2017 108.6 106.2 85.7 8.3 26.3 0.89 0.56 105.5 4.3 0.98

Fukuyama 2017 77.4 80.2 87.7 6.3 16.3 0.88 0.42 79.6 2.7 0.99

Continued
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The results from the C method showed that this implementation provides good estimations of DTH under 
the CV0 scheme. Across environments, the RMSE was of 3.9 days and a PC of 0.98. These results were similar to 
those obtained using the conventional GS models when the phenotypic information of the target environment 
was available (i.e., CV2 scheme) for other genotypes except for the one being predicted. Under CV2, the RMSE 
and Pearson correlation across environment were of 3.8 days and 0.98, respectively (data not shown).

As discussed before, it is expected to obtain similar environmental means using either CV0 or CV00 
schemes under the conventional GS implementations. Under the CV00 scheme, across-environments the GS 
strategy returned a RMSE of 18.1 and a PC of 0.41. The EMD between predicted and observed values ranged 
between -31.5 and 28.7 days. On the other hand, under the CV0 scheme the C method returned EMD ranging 
between -4.95 and 4.67 days. In this case, the phenotypic information of those genotypes to be predicted in 
unobserved environments but tested in others was used. Since under the CV0 and CV00 schemes (i.e., when 
phenotypic information of the target environment is not available for any genotype) the conventional GS imple-
mentation produce similar E-means thus it is also expected that the proposed C method will produce better 
results than those derived from the GS implementation under the CV0 scheme.

The main goal of this research was to develop a prediction method able to deliver a small RMSE between pre-
dicted and observed values predicting DTH of untested genotypes in unobserved environments (CV00 scheme). 
Under this scenario, the CB method produced encouraging results. The across-environments RMSE was of 
7.3 days for a PC of 0.86. A significant improvement was achieved compared with those results obtained using the 
conventional GS implementation (RMSE of 18.1 days and PC of 0.41). In this case, the CB method doubled the 
accuracy of the conventional GS method and reduced the RMSE around 60%. The advantages of the CB method 
are better appreciated comparing the predicted environmental means. Under the conventional GS implementa-
tion, the differences between the predicted and the observed environmental means ranged between -31.5 and 
28.7 days while with the CB method these range between -6.4 and 4.1 days. The CB method reduced the extremes 
(left and right) of the GS range between 80 and 85%, respectively. Figure 2 shows that the CB environmental 
means (orange dots) were always closer to the diagonal line that represents the exact match with the true environ-
mental means in comparison with those means derived from the conventional GS implementation (blue dots).

At the beginning the implementation of the C and CB methods requires enough information to accurately 
characterize the genotype’s DL curves and for this, sets of genotypes tested in many environments are necessary. 
However, once a good characterization of the DL curves is accomplished, potentially any untested genotype may 
be accurately predicted in any unobserved environment. Thus, similar results can be expected for a different set 
of genotypes and environments than those analyzed in this study.

The methods here introduced (C and CB) showed that the use of DL information significantly improves 
the predictive ability of the conventional GS implementations with an important reduction of the RSME. An 
advantage of the C method is that if the phenotypic information of the same genotype is available for a set of 
environments, the expected DTH for an unobserved environment can be easily estimated without requiring 
molecular marker information or phenotypic information from other genotypes. The CB method improved the 
predictive ability of untested genotypes in unobserved environments by coupling phenotypic and molecular 
marker information with the DL.

The introduced methods require the daily day length (DL) information of the environments (training and 
testing) in their design. The convenience of these two methods resides in the fact that the theoretical daily DL 
information can be obtained in advance before establishing and designing the experiments. Hence, the day 
length data potentially can help breeders to better schedule the crop season. The proposed methods capture the 
genotype-by-environment interaction (G × E) component via the fitted curves thus the explicit inclusion of this 
term is not needed. Moreover, the conventional GS implementation returns the same genomic estimated effect 
across environments for a particular genotype when the G × E component is absent. The curves precisely cap-
ture the sensitivity experienced by genotypes under different environments driving specific responses for each 

Table 1.  Environmental means, Root Mean Squared Error (RMSE) and the Pearson correlation between 
predicted and observed days to heading (DTH) for 112 rice genotypes tested in 51 environments in Japan. Two 
cross-validation schemes were implemented for mimicking realistic prediction scenarios: CV0 corresponds 
to the scenario of predicting tested genotypes in unobserved environments; CV00 considers the prediction 
of untested genotypes in unobserved environments. For CV0, the C method was used combining phenotypic 
and day length information (DL) of genotypes tested in other environments (one at a time). For CV00, two 
methods were considered: (i) the conventional GS implementation; and (ii) the CB method, which combines 
phenotypic and DL information from tested genotypes (training set) and genomic BLUP values 

(

ĝ
)

 from 
untested genotypes (testing set). In both cases, the prediction procedure was conducted by leaving one 
genotype out across environments and by deleting all phenotypic information from the target environment.

CV00 CV0

Mean RMSE Corr Mean RMSE Corr

Real CB GS CB GS CB GS C C C

Fukuyama 2017 Late 68.4 67.7 88.8 6.0 22.9 0.82 0.69 67.0 3.0 0.97

Tsukubamirai 2017 Late 69.5 73.1 86.9 6.8 19.8 0.87 0.65 72.2 4.3 0.98

Mean 7.2 17.5 0.86 0.69 3.7 0.98
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Figure 1.  Scatter plot of predicted (x-axis) and observed (y-axis) DTH values under CB (top) and GS 
(bottom) methods for the CV00 scheme (predicting untested genotypes in unobserved environments) for a 
rice data set comprising 112 genotypes tested in 51 environments in Japan between 2005 and 2017. The CB 
method combines the predicted environmental means (E-mean) and the genomic BLUPs 

(

ĝ
)

 derived from the 
conventional GS implementation while the GS implementation considers a common mean across environments 
plus the genomic BLUPs. The blue line represents the fitted line between predicted and observed DTH values, 
and the black line shows the exact match (on target) of the predicted values on the observed values.
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environment. Although the CB method is composed of the genomic component computed without explicitly 
considering the G × E term, the final prediction accounts for this interaction term via the curves. In addition, 
the formal modeling of the heterogeneity of variances is not necessary because these patterns are also accounted 
for the proposed method via the curves.

Materials and methods
phenotypic data. The phenotypic data set comprises the seeding and heading date of 112 Japanese rice 
cultivars with different origin from different regions and these correspond to improved lines and landraces (Sup-
plementary Table S1). The genotypes were tested in 51 locations (North to South of Japan) from 2004 to 2017 
(Supplementary Table S2). This multi-environmental trial (MET) experiment was conducted for investigating 
heading date related genes. The materials have polymorphisms known as heading date related genes (e.g., Hd1, 
Hd2, Hd5, and Hd6).

The number of DTH was calculated as the number of days that occur between the heading date and the 
seeding date. The heading date was determined when more than 50% of the individuals in the plot reached the 
heading stage.

Marker genotype data. A detailed description of the DNA extraction procedure and library construction 
of the whole-genome shotgun sequence can be found in Yabe et al.16. For each variety, total DNA was extracted 
using the CTAB  method17. The library was constructed using the Illumina TruSeq DNA Sample preparation kit 
according to the manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA). Next-generation sequencing 
data was obtained using the Illumina HiSeq 2000, HiSeq 4000 and HiseqX systems via paired-end sequencing 
(Illumina, Inc., San Diego, CA, USA). The sequence data have been deposited in the DNA Data Bank of Japan 
(DDBJ) Sequence Read Archive, under Submission DRA008071. Data sets deposited in the DDBJ Sequence 
Read Archive (SRA106223, ERA358140, DRA000158, DRA000307, DRA000897, DRA000927, DRA007273, 
DRA007256) were reanalyzed. Adapters and low-quality bases were removed from paired reads using the Trim-
momatic v0.36  program18. The preprocessed reads were mapped to the Os-Nipponbare-Reference-IRGSP-1.019 
by using the bwa-0.7.12 mem algorithm with the default  options20. The mean depth of the reads against the Os-
Nipponbare-Reference-IRGSP-1.0 ranged from 7.4× to 72.4× with an average of 16.9×.

SNP calling was based on alignment using the Genome Analysis  Toolkit21 (GATK, 3.7-0-gcfedb67) and Picard 
package V2.5.0 (https ://broad insti tute.githu b.io/picar d). The mapped reads were realigned using RealignerTar-
getCreator and indelRealigner of GATK software. SNPs and InDel were called at the population level using the 

Figure 2.  Scatter plot of predicted and observed environmental means (E-means) using the CB method 
(orange) and the conventional GS implementation (blue) for the CV00 scheme (predicting untested genotypes 
in unobserved environments) for a rice data set comprising 112 genotypes tested in 51 environments in Japan 
between 2005 and 2017. The vertical pink line indicates the position of the overall phenotypic mean across 
environments (88 days). The diagonal black line shows the exact match between predicted and observed 
means. ARMSE and ACP stand for average Root-mean-square error and average (across environments) Person 
correlation between predicted and observed DTH values. The RMSE and PC were first computed within 
environments and the obtained values were averaged.

https://broadinstitute.github.io/picard
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UnifiedGenotyper of GATK with the -glm BOTH option. Heterozygous loci were treated as missing, owing to the 
assumption that almost all markers were well fixed in rice cultivars after several generations of self-pollination. 
We used only biallelic non-missing sites overall cultivars with a minor allele frequency (MAF) ≥ 0.025. Initially, 
629,602 SNP markers were considered in the study. After applying conventional quality control (i.e., discarding 
those SNPs with more than 50% of missing values and a MAF smaller than 0.03) 408,372 SNPs remaining in 
the study for analysis.

Day length data. Although there are several definitions for day length (DL) according to the Smithsonian 
 Institution22 roughly speaking, it can be defined as the amount of time in a day with sunlight. The theoretical DL 
values were computed by the default  method23 included in the geosphere (v1.5-5) R  package24. DL information 
can be known in advance just by knowing the location and date, and it is not influenced by the weather condi-
tions.

cross‑validation schemes. Two cross-validation schemes were considered in this study and these mimic 
different situations that breeders might face in fields. Supplementary Fig. S2 shows a graphical representation 
of CV0 (predicting tested genotypes in unobserved environments) and CV00 (predicting untested genotypes in 
unobserved environments). For CV0 (top panel in Supplementary Fig. S2), the cross-validation is conducted by 
deleting the phenotypic information from all genotypes at each environment (one at a time). Then, the remain-
ing environments are used as training set.

For implementing the CV00 scheme, not only the phenotypic information of the testing environment is 
deleted (same as in the previous cross-validation scenario) but also the phenotypic information of the genotype 
to be predicted is deleted from all environments (one at a time). In the bottom panel of Supplementary Fig. S2, 
we have that the goal was to predict genotype G3 in environment E4. For this environment, the same procedure 
is repeated for each one of the genotypes (G1–G5). Such that with six environments and five genotypes we have 
that this procedure is implemented 30 (5 × 6) times considering the toy example displayed in this panel (bottom).

GBLUP model. The Genomic Best Linear Unbiased Predictor model (Genomic BLUP or GBLUP) is the 
most common and convenient main effects model used in GS  applications8,25. It attempts to explain DTH of the 
ith genotype (i = 1, 2,…, I) observed in the jth environment (j = 1, 2, …, J) as the sum of a common mean plus 
random environmental and genomic effects, and an error term, and it is represented as follows:

where µ is a constant effect common to all genotypes across all environments;Ej are IID (independent and identi-
cally distributed) outcomes from a normal distribution N

(

0, σ 2
E

)

 representing the effect of the jth environment; 
g =

{

gi
}

∼ N
(

0, Gσ 2
g

)

 is the vector of genomic effects, with G = XX′

p  as the genomic relationship matrix whose 
entries describe the genetic similarities between pairs of individuals, X is the standardized (by columns) matrix 
of p molecular markers; εij are IID outcomes from a N

(

0, σ 2
e

)

 representing the error term; and σ 2
E , σ 2

g  and σ 2
e  are 

the corresponding associated variance components of the described random effects.
Usually, when METs are analyzed the environmental component explains the larger proportion of the phe-

notypic variability across  environments26,27. Hence, from (1) it can be concluded that the predicted DTH of the 
ith genotype in the jth environment strongly depends on the environmental mean rather than on the genomic 
component. This environmental mean is composed by a common mean effect (across environments) plus a 
deviation (around zero) that corresponds to the effect of jth environment.

Conceptually, the common mean effect can be viewed as the average performance of all genotypes across 
environments. The environmental deviation corresponds to the mean effect of the current environmental stimuli 
in the set of the tested genotypes beyond the common mean. Thus, the environmental effects can be considered 
as deviations around the common mean. Hence, by construction, the contribution of the genomic component 
to the idealized phenotype is much smaller in comparison with the overall mean and the environmental effects.

If the phenotypic information (DTH) of the target environment is available for a set of already observed 
genotypes, good approximations of the environmental effects can be obtained. Otherwise, the environmental 
effects are estimated using the phenotypic information of those genotypes observed in other environments. In 
this case, the environmental component is estimated as the weighted average of the environmental effects in the 
training set. Since these random effects are conceptualized to be centered on zero, the weighted average will be 
close to zero. Hence, a predicted DTH value will be mainly composed of a common mean and a small genomic 
effect. This would shrink the predicted values towards the common mean. Although this method usually delivers 
high correlations between predicted and observed values, it also induces a large bias (RMSE) when predicting 
time-related traits.

To alleviate this, the two introduced methods (C and CB) attempts to leverage the DL information in the 
prediction process by considering the curves of the daily day length in the prediction process. The idea for using 
DL information in the prediction process was motivated when examining the relationship between the Cumu-
lative Day Length (CDL) and DTH for all genotypes across environments (Supplementary Fig. S3). A simple 
linear regression of DTH on CDL returned an R-squared value of 0.99, exhibiting a strong relationship between 
these two variables. We can conclude that if the CDL values are known then accurate estimations of DTH may 
be obtained for any genotype in any environment. However, in order to compute the CDL, the exact number 
of days between the planting date and the heading occurrence should be known first. This implies that DTH 
should be known beforehand, which makes unfeasible the direct use of CDL for prediction purposes. However, 

(1)Yij = µ+ Ej + gi + eij ,
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these results provide strong evidence about the potential of the DL information for improving the prediction 
accuracy of DTH.

Since each genotype was observed in a considerable number of environments (between 48 and 50), it is pos-
sible to find specific response patterns between DTH and DL analyzing each genotype at a time. In this study, 
across environments, we observed that the DL values at the DTH occurrence present strong response patterns 
with DTH. For illustrating the conceptualization of this idea, we use the example depicted in Fig. 3. It corresponds 
to phenotypic (DTH) and DL information of genotype 56 observed in 50 environments out of 51 (observed in 
environments 1–46, and 48–51 but not in env 47). The goal in this example is to estimate DTH for this genotype 
in the unobserved environment (env 47: Tsukubamirai 2016 Late). For each environment, the planting date 
was considered as day 1 (x-axis) then the daily DL (y-axis) values were plotted (pink lines) from day 1 (plant-
ing) until the time when genotype 56 reached DTH (blue dots). In Fig. 3, a pattern relating DTH and DL at the 
occurrence day is easily identified. This gradient seems not to be strongly affected by the initial DL values at the 
different planting dates across environments. However, it appears to be linked with the initial DL’s changing rate 
at the planting day. Those environments where DL’s changing rates decreased at the planting time (late cultivars) 
showed the shortest DTH values and vice-versa.

For CV00 scheme, the proposed method requires: (i) first the estimation of DTH in a target/unobserved 
environment (CV0) for a set of already tested (training) genotypes (one at a time) yet to be observed; (ii) then 
compute the expected environmental mean of the unobserved environment using the estimated values derived 
from the previous step (i); (iii) the final step consists of adding to the estimated environmental mean the resulting 
genomic BLUPs of the untested genotypes derived from the conventional GS method. Further details of these 
steps are given below.

c method. The DTH estimation of a tested genotype in an unobserved environment (CV0) requires pheno-
typic and DL information across several environments. The first step considers the characterization of DL at the 
occurrence of heading time across environments. For this, a third-degree polynomial equation is used to model 
DL as a function of DTH (orange curve in Fig. 3) as follows:

(2)dlij = b0 + b1t + b2t
2
+ b3t

3
+ εij ,

Figure 3.  Graphical representation of the C method for estimating days to heading (DTH, x-axis) of genotype 
56 in environment 47 (env 47 Tsukubamirai 2016 Late). Pink curves represent the daily day length (hours) 
values (DL, y-axis) from planting day (day 1) until heading time for genotype 56 in 50 environments (1–46, and 
48–51). The blue dots indicate the corresponding DL values when genotype 56 reached heading time. The green 
curve  (C2) represents daily DL progression of the target environment (Environment 47) where no genotypes 
have been observed yet. The orange curve  (C1) represents the fitted line for genotype 56 using a third-degree 
polynomial equation relating DL at the occurrence time (DTH across environments). The vertical dotted 
gray line shows the intersection (93 days) between the green and the orange curves  (C1,  C2). This value is the 
estimated DTH for genotype 56 in the unobserved environment “env 47 Tsukubamirai 2016 Late”. The vertical 
dotted black line corresponds to the actual DTH (90 days) value for env 47.
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where dlij represents the observed DL of the ith genotype in the jth environment; t  is the time independent vari-
able; b0 , b1 , b2 , and b3 are the model coefficients; and εij is the error term and it is assumed to be IID N

(

0, σ 2
ε

)

 . 
This model is referred as  C1.

Similarly, the daily DL information of the target environment (green curve) is modeled using a third-degree 
polynomial equation: 

with b0E , b1E , b2E , and b3E correspondent to the model coefficients; and ξij is the error term and it is assumed to 
be IID N

(

0, σ 2
ξ

)

 . This model is referred as  C2. The solution to this system of two equations  (C1,  C2) will produce 
an estimate of DTH in the target environment for the genotype under analysis only (genotype 56 in this case). 
In order to find the intersection of these two curves, a numerical evaluation was implemented. In this example, 
the solution was found to be 93 days to heading (Fig. 3; vertical dotted gray line) while the observed DTH was 
of 90 days.

cB method. Since the ultimate goal is to predict DTH for untested genotypes in unobserved environments, 
the first step is to estimate the expected DTH mean of the target environment. Then, the final prediction is 
composed of the expected DTH mean of the target environment plus the genomic BLUP ( ̂gi ) of the untested 
genotype obtained via the conventional GS implementation. For estimating the DTH mean, the C method was 
first implemented in a set of already tested genotypes (training set) for predicting their corresponding DTH on 

(3)Ej = bE0 + bE1t + bE2t
2
+ bE3t

3
+ ξij ,

Figure 4.  Representation of the procedure for predicting DTH for the untested genotype G5 in the unobserved 
environment E4 using the information of four genotypes (G1, G2, G3, and G4) observed in three environments 
(E1, E2, and E3). The top panel contains the observed values for genotypes (G1, G2, G3, and G4) in 
environments (E1, E2, and E3). The middle panel contains the predicted values that presumably were obtained 
with the C method for these genotypes in the unobserved environment E4. Also, the E-mean (108.3) of E4 is 
computed as the mean of the predicted values for genotypes G1, G2, G3, and G4. The bottom panel contains the 
predicted DTH value (106) of genotype G5 in environment E4 as the sum of the E-mean (108.3) computed in 
the previous step and the genomic BLUP (-2.3) obtained with the conventional GS implementation.
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the target environment. Here, only the phenotypic and DL information of those genotypes in the training set was 
considered and the predicted values were averaged.

Figure 4 shows the process for predicting untested genotypes in unobserved environments using a toy example 
consisting of five genotypes (G1, G2, G3, G4, and G5) and four environments (E1, E2, E3, and E4). In this exam-
ple, we describe the procedure for predicting DTH of the untested genotype G5 in an unobserved environment 
(E4). The top panel of Fig. 4 contains the observed values of genotypes 1–4 in environments 1–3. The middle 
panel shows the predicted values presumably obtained with the C method for genotypes 1–4 (104, 105, 110, and 
114) in E4, the unobserved environment. Also, the predicted E-mean (108.3) was computed there as the mean 
of the predicted DTH values. The bottom panel shows the predicted DTH for genotype  G5 in the environment 
E4 (106). This value (106 = 108.3-2.3) was obtained as the sum of the E-mean and the genomic BLUP value (-2.3) 
obtained for genotype G5 using the conventional GS implementation.

Software. The C and CB methods, as well as all the statistical analyses were performed using the R-software 
R Core  Team28. The conventional GS model was fitted using the Bayesian Generalized Linear Regression (BGLR) 
R-package29,30.

Data availability
Genome data can be accessed from DDBJ under submission DRA008071.
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