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Abstract

strategies for this disease.

mathematical models and field experiments.

control.

Background: Wolbachia invasion has been proved to be a promising alternative for controlling vector-borne
diseases, particularly Dengue fever. Creating computer models that can provide insight into how vector population
modification can be achieved under different conditions would be most valuable for assessing the efficacy of control

Methods: In this paper, we present a computer model that simulates the behavior of native mosquito populations
after the introduction of mosquitoes infected with the Wolbachia bacteria. We studied how different factors such as
fecundity, fitness cost of infection, migration rates, number of populations, population size, and number of introduced
infected mosquitoes affect the spread of the Wolbachia bacteria among native mosquito populations.

Results: Two main scenarios of the island model are presented in this paper, with infected mosquitoes introduced
into the largest source population and peripheral populations. Overall, the results are promising; Wolbachia infection
spreads among native populations and the computer model is capable of reproducing the results obtained by

Conclusions: Computer models can be very useful for gaining insight into how Wolbachia invasion works and are a
promising alternative for complementing experimental and mathematical approaches for vector-borne disease

Keywords: Dengue, Wolbachia infection, Computer simulation

Background

Dengue is considered the most rapidly spreading viral dis-
ease in the world. There are 30 more human infections
nowadays than 50 years ago. The World Health Organi-
zation estimates that over 2.5 billion people in more than
100 countries are at risk of infection, with Southeast Asia,
the Americas, and Western Pacific as the most vulnerable
areas [1].

Infection rates fluctuate between 50 and 100 million
infected people each year, 500,000 of whom develop hem-
orrhagic fever that causes up to 25,000 deaths annually
worldwide [1]. More recent forecasts estimate 390 million
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Dengue infections per year with approximately 96 million
suffering from serious symptoms of the disease [1].

The economic burden of medical treatment for infected
people and the loss of productivity in countries where
Dengue is endemic are very high. The cost of Dengue fever
has been estimated to be approximately 2.1 billion dollars
per year in the Americas alone, with the cost increasing
from year to year. Dengue is an illness that consumes more
resources from the health systems of affected countries
than any other disease [2].

Dengue is a human virus transmitted from individual to
individual by the Aedes aegypti mosquito, a species that is
commonly found in the workplace and homes in tropical
areas. Dengue viruses can be grouped into four serotypes,
all of which are capable of producing Dengue fever and
Dengue hemorrhagic fever. It is believed that once a
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serotype of Dengue is acquired, the risk of developing
hemorrhagic Dengue increases [1].

Under the circumstances, it is clear that creating new
ways to reduce Dengue incidence is imperative. Currently,
there are no effective treatments against Dengue. Several
drugs can be used to alleviate the symptoms and help
the body resist the illness, but there is no specific drug
that kills the pathogen [3]. Although there is a vaccine
for Dengue, it is not currently available for commercial
production [1].

The introduction of modified mosquitoes into wild pop-
ulations is a disease control strategy that seems promising
in principle [4, 5]. The invasion of disease-carrying pop-
ulations by mosquitoes that are refractory to the disease
is a convenient approach that could be more effective
than traditional vector control strategies such as the use
of insecticide, and hopefully less harmful to the environ-
ment.

One feasible alternative that seems worth exploring is
the introduction of mosquitoes infected with the Wol-
bachia bacteria into wild populations for Dengue disease
control. Wolbachia bacteria produces a series of modifi-
cations in the reproduction mechanism of its host, such
as cytoplasmic incompatibility, that can contribute to the
establishment of immune populations [6].

Furthermore, in other species of insects the Wolbachia
bacteria has been observed to provide virus resistance
to its hosts and immunity to some diseases. However,
it has previously been suggested that Wolbachia infec-
tion produces a loss of fitness in its hosts [5]. Conversely,
previous experiments have demonstrated that in some
Wolbachia strains, the cytoplasmic incompatibility driver
can be capable of overcoming the loss of fitness in the
infected hosts and imperfect maternal transmission [7].
In principle, these conditions should promote the rapid
invasion of the host population [5].

Currently, the ongoing project “Eliminate Dengue” aims
to develop a natural approach to control Dengue using
Aedes aegypti mosquitoes infected with the Wolbachia
bacteria. To date, there have been releases of infected
mosquitoes in Australia with field data demonstrating
seemingly promising results. However, it is premature to
conclude to what extent this approach will work [8]. To
monitor Wolbachia invasion in native mosquito popula-
tions, a collection of mosquitoes are captured to test if
they are infected. Collecting individuals in the field can
be onerous, particularly during the dry season when only
a few individuals are likely to be captured making the
measures statistically unreliable [5]. In coming years, sev-
eral releases are planned in Brazil, China, Vietnam, and
Indonesia [8].

Theoretical models on the dynamics of Wolbachia inva-
sion have previously been developed [9, 10]. In principle,
these models should be able to explain the dynamics of
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an invasion of native populations [11]. However, mathe-
matical population dynamics models are often based on
strong assumptions such as unbounded population sizes,
probability calculations that are difficult in practice, and
random mating. Another disadvantage of mathematical
models is their intrinsic complexity [12].

The majority of these models require a solid mathemat-
ical background to understand and use them as predictive
tools. We believe that using computer simulation mod-
els could be more user-friendly than using mathematical
models for making predictions on Wolbachia invasion.
Additionally, the environment in population dynamics
tends to change over time and mathematical models do
not adapt well to changes, causing a loss of accuracy in the
predictions [12]. In this context, we believe that computa-
tional simulations can be very useful tools complementing
mathematical models and in some cases, capable of pro-
ducing similar predictions. We believe that the results
obtained by computer models could be useful in planning
and carrying out successful experimental work.

Previously, we have developed computational tools and
models as part of our research program, the aim of which
is to use computer models to provide insight into the pop-
ulation dynamics of disease vectors. We have simulated
a variety of gene drive mechanisms, such as transpos-
able elements and the maternal effect dominant embry-
onic arrest, to predict the effectiveness and feasibility of
these population replacement strategies for vector-borne
disease control [13-16].

In this paper, we present a series of simulations on
Wolbachia invasion of simulated vector populations. A
variety of scenarios are explored using different variables.
The main objective of this work is to formulate a com-
putational model that could be useful in determining
the conditions required by Wolbachia to invade a native
population.

The computational model proposed in this study could
be used to provide valuable insight into the conditions
required for Wolbachia invasion to occur, including the
proportion of Wolbachia-infected individuals needed to
realize invasion of a native mosquito population, among
others. We present experimental results to show the use-
fulness of the proposed model.

Wolbachia bacteria
Wolbachia pipientis is a type of bacteria that infects a wide
variety of invertebrates. It is estimated that approximately
70 % of insect species are infected with this bacteria [17].
The bacteria can spread rapidly in an uninfected popula-
tion owing to the cytoplasmic incompatibility mechanism
that is induced in its hosts [18, 19]. This mechanism
causes the progeny of a female that is not infected with
Wolbachia and a male that is infected to die by reduc-
ing egg hatch. If the female is infected, the offspring will
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survive and will be infected with Wolbachia irrespective
of the infection status of the male. Previous studies have
also suggested a decrease in fitness and fecundity of the
infected hosts [5, 7].

There are several strains of Wolbachia bacteria that
infect insects in nature, but two strains in particular have
been proposed for use in population modification [8].

The first strain, called wMelPop, shortens the life span
of infected mosquitoes by approximately half. The Dengue
infection cycle takes about 12 days to complete, starting
when the mosquito bites an infected person and end-
ing when the virus can be transmitted by the mosquito
to another person. During this time, the virus replicates
inside the mosquito until it reaches the salivary glands.
When the mosquito takes a blood meal, the infected saliva
enters the host causing a new infection [1]. Because only
old mosquitoes can transmit Dengue or malaria owing to
the long infection cycles of these diseases, this strain could
be used as a disease control. This strain has, however, only
been tested in laboratory experiments [8].

A second strain of Wolbachia, called wMel, provides
some virus resistance to its hosts. This mechanism could
result in the rapid invasion of the host population and,
therefore, in a promising disease control mechanism
as virus resistance prevents the mosquitoes from being
infected with the Dengue pathogen [8]. However, there is
a decrease in fitness in the infected individuals preventing
the bacteria from spreading, although it is believed that
the cytoplasmic incompatibility that wMel induces in its
hosts is strong enough to negate the fitness cost [5].

Biologists have been trying to infect mosquito eggs
with Wolbachia for several years with poor results. More
recently, however, using micro injection they have been
able to infect Aedes aegypti eggs with a strain of Wolbachia
from the fruit fly [20].

Using this important discovery, examining scenarios
and mechanisms that can lead to Wolbachia invasion of a
wild population will be valuable for studying the potential
of biological control strategies for this disease.

Methods

The availability of data in the literature on mosquito pop-
ulation structure and distribution, population sizes, and
migration rates, is not abundant. The experiments pre-
sented in this section are based on examples found in
the literature and information gathered through personal
communication with biologists [5, 7].

The computer model used for our experiments consists
of a collection of mosquito populations that are con-
nected via migration (see Fig. 1). In nature, it is common
for mosquito populations to be spread over a geographic
location, generally near villages and water bodies, with
some individual exchange between them [21]. Although
migration is an important factor for introducing genetic
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diversity in populations [22], it has a downside. Accord-
ing to mathematical models, it tends to decrease the
Wolbachia invasion rate [9].

In the proposed computational model, we used a par-
allel algorithm and where possible, each population was
simulated on an independent CPU core isolated from the
other populations. We used the cytoplasmic incompati-
bility mechanism to alter the reproduction process of the
population to observe if Wolbachia is capable of invading
a native population.

Mosquito representation

For each mosquito in the population, we modeled a set
of attributes representing what we considered the most
important features for modeling Wolbachia invasion. The
first property of the mosquito is its chromosome repre-
sented by an array of letters, each of which belongs to the
DNA alphabet (A,G,C,T).

It is important to note that Wolbachia infection does not
alter the DNA of the host; we included the chromosome
of the mosquito to provide data for use in conducting evo-
lutionary analyses such as phylogenetic reconstruction, as
a future work. The chromosome was kept small to save
some computer resources as chromosome length does not
alter the results of the simulations, but was long enough to
allow genetic traces of the individuals to be tracked. The
second feature we included in the model was gender. Gen-
der differentiation between individuals is important in the
reproduction process. The gender attribute can have only
two values, male and female.

Another important component of our model is explicit
representation of geographic location using a square pop-
ulation grid. For this purpose, we used a pair of variables
to track the column and row of every mosquito. Loca-
tion within the population is important particularly in the
reproduction stage because mosquitoes mate with other
mosquitoes in their surroundings.

A Boolean flag was used to record whether an individ-
ual was infected with Wolbachia, to simulate the invasion
process.

Finally, we kept track of the fitness of an individual,
including the fitness cost associated with Wolbachia infec-
tion [5]. Fitness is probably the most important character-
istic of an individual because it controls its reproductive
capability. A high fitness value increases the probability of
an individual to generate offspring and also dictates the
number of offspring it will produce. The fitness of the ini-
tial population is assigned randomly between 0 and 100.
The fitness of the offspring is calculated as the average of
the fitness values of the parents with a small perturbation
that increases or decreases the fitness slightly.

Fitness is a very abstract concept that depends not only
on genetic factors, but also on the environment. Measur-
ing the fitness of an individual is very complicated because
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Fig. 1 Computer model used to run the experiments

it is an intrinsic and idealized value. We used a numeri-
cal scale to identify simply how well the individuals had
adapted to the environment [23].

Population structure

The habitat of the mosquitoes is simulated using a two-
dimensional toroidal grid. The location of each individual
in the grid is important in the reproduction stage because
we limited females from pairing only with males occurring
within their neighborhood (see Fig. 2).

The population is composed of approximately half
males and half females. The gender of the offspring is
determined randomly at the time of breeding, and thus,
this composition can vary slightly from generation to gen-
eration. The size of the population is fixed for the entire
simulation.

In nature, the density of the population of mosquitoes
varies significantly throughout the year because it
depends heavily on climatic factors such as rain and tem-
perature. As Aedes aegypti mosquitoes prefer artificial
water containers as breeding sites, they do not rely entirely
on climatic factors. This means that if there are sufficient
artificial water supplies to breed, the Aedes aegypti popu-
lation remains almost the same throughout the year [24].
This is the reason why we fixed the size of the mosquito
populations in our simulations.

We used the proposed population grid to simulate as
closely as possible, how reproduction takes place in nat-
ural populations. It is known that the location of an
individual is not random, but depends on the fitness of
the individual. In many populations, individuals with the
highest fitness tend to gather together in the center of the
population, while the less adapted ones are relegated to
remote locations [25].

Wolbachia infection

In our experiments, Wolbachia infection produces uni-
directional cytoplasmic incompatibility in its hosts and a
decrease in fitness of the infected individual. The infec-
tion process occurs at the beginning of the simulation.
Populations of mosquitoes evolve independently, with
some infected with Wolbachia and other native popula-
tions remaining uninfected. When the simulation starts,
the populations are combined to observe the interaction
between uninfected and infected populations.

The fitness decrease due to Wolbachia infection,
the number of populations simulated, where infected
mosquitoes are introduced, and the percentage of
infected mosquitoes introduced, vary from experiment
to experiment. At the end of each experiment, we
calculated the rate of Wolbachia invasion in each
population.
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neighborhood. Individuals in red are infected with Wolbachia

Fig. 2 Population structure. Individuals in blue squares indicate possible mates for the female in the green square representing the center of the

Mating restriction

In mathematical models and ideal populations, reproduc-
tion relies on random mating [26]. However, very few
populations exhibit random mating in the wild. In nature,
there are a variety of circumstances that make random
mating impossible, especially geographic constraints. In
our computer model, we simulated a geographic restric-
tion to mimic more faithfully how reproduction occurs in
native populations.

Genetic operators
Selection
Random mating was not used to choose the parents in the
reproduction process owing to the incorporation of two
important restrictions. The first significant restriction is
the gender of the individuals. First, we randomly selected
the female from the population and then we found a
suitable male.

In the second restriction, the males that can mate with
a selected female are only those that exist within the
neighborhood of the female.

To emulate the effect of fitness on reproduction, we used
a selection mechanism for choosing both male and female.
This mechanism is similar to the tournament selection

used in evolutionary algorithms that involves randomly
selecting a collection of individuals from the popula-
tion and then, based on the fitness values, choosing the
best [27].

Recombination

To generate the chromosome of the offspring, we recom-
bined the chromosomes of their parents by choosing a
random position in the chromosome. Then, the chromo-
some of each offspring was obtained by applying one-
point crossover used in evolutionary computing [27].

Before performing recombination, we checked whether
either the male or female was infected with Wolbachia.
As described in the Wolbachia section, if the male is
infected and the female not, all the offspring are killed
by the cytoplasmic incompatibility. In this case, there is
no need to generate the chromosome of the offspring.
To keep the size of the population constant, the mating
process continues until all the slots in the population are
completely filled.

If offspring are feasible, recombination is performed
with a probability of 100 %. Recombination is always
performed because in nature, the mosquito offspring
always inherit genetic material from both parents.
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Recombination does not directly affect the results of the
simulation, but it is important for genetic evolution anal-
yses to be performed in the future.

After recombination is performed, the Wolbachia status
of the offspring is set depending on the parents’ infection
status, as explained previously.

Mutation

In all the experiments presented in this paper, we
employed the mechanism of uniform mutation borrowed
from the evolutionary computation literature [27]. For
each position in the chromosome, we generated a random
number; if it surpassed a certain threshold, the chromo-
some was mutated at that position.

For each position in the chromosome that needed to be
mutated, we generated another random number. Based on
this generated number, another letter of the DNA alpha-
bet was selected from a uniform probability distribution
to replace the mutated letter.

As with recombination, mutation does not directly
affect the results of the simulations, but both are neces-
sary to produce data on genetic change in populations for
genetic evolution analyses.

Migration

Migration is the process whereby some individuals are
relocated in other nearby populations. This mechanism
is very important in nature because it introduces genetic
diversity in populations. In our experiments, migration
was simulated by moving a proportion of individuals from
one population to another. This process occurred before
each generation was created.

Newly migrated individuals participate in the repro-
duction process, introducing genetic diversity into the
population and in some cases, affecting the degree of
Wolbachia invasion in the population.

Results

In this section, we present a series of experiments that
allow us to outline different simulations that can be con-
ducted using the computer model and the questions that
can be addressed with these experiments.

The parameters used in the experiments are divided into
two groups. The first group contains the control variables
that are fixed in all the experiments. After running several
experiments, we observed that the effect of these param-
eters on the outcome of the simulations is marginal. The
first group of parameters with their respective values are
given in Table 1.

The second group consists of those parameters that are
most important in terms of the goals of these experiments.
Moreover, in field experiments with real mosquitoes,
these parameters comprise the independent variables
that can be manipulated. To obtain the values for these
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Table 1 Fixed parameters. Maximum Offspring refers to the
maximum number of offspring reaching adulthood from a single
female

Parameter Value
Chromosome Length 200 bases
Generations 100
Mutation Probability 1%
Possible Mating Partners 3
Maximum Offspring 10
Neighborhood Size 30
Recombination Probability 100 %

parameters, we used a statistical method known as Latin
Hypercube Sampling (LHS), which is frequently used to
construct computer experiments. LHS generates a plau-
sible set of parameter values from a multidimensional
distribution [28]. To determine the ranges of these param-
eters, we used information from the literature [29, 30].

Table 2 lists these parameters and their values, rep-
resented as a range, which differs from the single
values given for each of the parameters included in
group 1.

We conducted several experiments with different com-
binations of parameter values to simulate the most
relevant scenarios. Owing to the large number of com-
binations of parameters values, we gathered a large vol-
ume of data from which we selected, analyzed, and
synthesized the most important results, as described
below.

In all experiments, at least 30 independent runs were
performed to ensure that the results obtained would be
statistically valid. The results of the experiments are pre-
sented as averages of all runs. We conducted five different

Table 2 Variable Wolbachia and mosquito parameters.
Cytoplasmic Incompatibility, Maternal Inheritance, and Fecundity
Penalty were obtained from the wMel estimates in [7]. Fitness
Cost was obtained from [5]. Mosquito and Wolbachia variables
are denoted by (M) and (W), respectively

Parameter Value

Population Size (M) 10,000-250,000

Number of Populations (M) 2-4
Invasion Rate (M) 20-40 %
Migration (M) 1-5 %
Intensity of Cytoplasmic Incompatibility (W) 100 %
Maternal Inheritance (W) 100 %
Fecundity Penalty Wolbachia Infected (W) 12-18 %
Fecundity Penalty Wolbachia Non-infected (W) 8-10%
Wolbachia Fitness Cost (W) 15-25%
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experiments, in each of which, the values of one impor-
tant parameter were varied while the others remained
fixed. The experiments were separated because we wished
to observe the effect of each parameter on the invasion
process.

The experiments were designed based on mathematical
models of Wolbachia invasion [9, 10]. We also considered
the results from the Eliminate Dengue empirical study
in which Wolbachia infected mosquitoes were released
and then recaptured to measure the degree of invasion of
infected mosquitoes within the native populations [5].

The general algorithm applicable to all the experiments
is described in Algorithm 1:

Algorithm 1
1 - Generate the native mosquito populations
2 - Generate the Wolbachia infected mosquito popula-
tions
3 - Introduce the infected populations into the native
populations
while Generations < 100 do
4 - Migration process between populations
while Mosquitoes < PopulationSize do
5 - Select parents
if Offspring is feasible then
6 - Calculate number of offspring
while N < NumberofOffspring do
7 - Perform recombination
8 - Perform mutation
9 - Calculate fitness of the offspring
10 - Update Wolbachia infection status
end while
end if
end while
11 - Calculate infection rates of populations
end while

The results of this experiment are shown in Fig. 3.
A general pictographic representation of how the exper-
iments were conducted is shown in Fig. 4.

Infection rate

The goal of this experiment was to find the threshold
for the initial Wolbachia-infected population size neces-
sary to invade the native population fully. We investigated
three different fitness costs due to Wolbachia infection:
15 %, 20 %, and 25 %. Moreover, different rates of initial
invasion were used to find the unstable equilibrium point,
that is, to detect the thresholds where the infection com-
pletely disappears or spreads among all or almost all the
individuals. We used large populations of 90,000 individ-
uals because we needed a population that was sufficiently
large to be refractory to genetic drift and, although rare,
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some main populations could reach that size [29]. The
main population is the source population in the area and
is generally close to a human village and a water body,
providing food and a hatching site, respectively.

The results of this experiment, shown in Fig. 3, are
consistent with the mathematical models. In each case,
the infection spreads or decreases rapidly at the begin-
ning and after about 15 generations remains almost
unchanged. The most valuable information obtained from
this experiment is the equilibrium points and thresh-
olds for different Wolbachia fitness costs and invasion
rates.

In the past, we tested other population modification
alternatives using computer simulations. In our experi-
ments, Wolbachia infection was proved to be superior in
terms of the percentage of infected mosquitoes needed for
Wolbachia to invade the native population [13, 15].

Population size effect

The aim of this experiment was to observe the effect of
population size on the spread of Wolbachia infection. In
this experiment, the initial invasion rate was fixed at 30 %
and the number of individuals in each population varied
over the range given in Table 2. Figure 5 shows the results
of the experiment.

Figure 5 shows that in larger populations, Wolbachia
infection spreads much faster. In the largest population,
all the individuals were infected within only 25 genera-
tions, whereas in the smaller population, the infection rate
remained between 80 % and 93 %. This behavior results
from the influence of genetic drift, which induces erratic
population dynamics.

It should be noted that in most of the simulations
with the smallest population (10,000 individuals) and sev-
eral of the simulations with the medium size population
(100,000), the infected population became extinct in sev-
eral runs, thereby lowering the average invasion rate in
these cases.

The outcomes of these experiments suggest that it is
easier and faster to invade a large population completely
than to invade a small population even with the intro-
duction of a larger percentage of Wolbachia infected
mosquitoes.

Number of populations

In many natural environments, there are more than one
mosquito population in a geographic area connected via
migration. In this experiment, our goal was to observe the
effect of the number of mosquito populations on the Wol-
bachia invasion process and how it spreads among several
populations. We simulated three and four populations
of equal size connected via migration and compared the
results of the two scenarios. A source population and
two or three sub populations around the source were
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Fig. 3 Invasion using different Wolbachia fitness costs averaged over 30 runs. The lines represent the invasion rates using different introduction rates
of infected mosquitoes
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Table 3 Pearson'’s correlation coefficients

Population 1 Population2  Population 3 Population 4
Population T 1.0000000 0.9456096 0.9424586 0.9105121
Population 2 1.0000000 0.9957714 0.9904861
Population 3 1.0000000 0.9896529
Population 4 1.0000000

used without any migration between sub populations. In
each population, a percentage of infected mosquitoes was
introduced at the beginning of the experiment according
to Table 2.

The results of this experiment are shown in Table 3.

We computed Pearson’s correlation coefficients for all
pairs of experiments (see Table 3). High correlation coef-
ficients indicate that the number of populations does not
have a significant impact on the spread of the infection.
As the number of populations increases, there is a tiny
perturbation on how the infection spreads among the
populations owing to migration, but it is not important
enough for the number of populations to be considered a
crucial factor.

Island model scenario

Using the results of the previous experiments, we
designed an additional experiment that follows the island
model. In this experiment, there were four populations,
one of which was the source population while the other
three were sub populations connected via migration.
There was no migration between sub populations. The
goal of this experiment was to compare two differ-
ent scenarios. In the first scenario, Wolbachia infected

mosquitoes were introduced into the source population,
while in the second, they were introduced only into all the
peripheral populations, each of which comprised 1,000
individuals. Parameters differing from those used in the
other experiments are shown in Table 4.

The results of the first scenario are shown in Fig. 6.

Figure 6 shows that for all populations, approximately
60 % invasion was achieved by the end of the simula-
tion. The degree of invasion was a little lower than that

Table 4 Simulation parameters. For both scenarios, the number
of Wolbachia infected mosquitoes inserted were fixed at 3,000
mosquitoes representing 30 % of the main population

Parameter Value
Main Population Migration 5%
Peripheral Population Migration 3%
Main Population Size 10,000
Peripheral Population Size 2,500
Wolbachia Infected Mosquitoes Inserted 3,000
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obtained with a single population owing to migration,
which lowers the invasion in the main population. We
used smaller populations because as found in a previous
experiment, small populations are harder to infect and in
nature, population sizes as small as 10,000 individuals are
common [29].

Figure 7 shows how the invasion of Wolbachia in the
subpopulations starts at an accelerated rate but becomes,
after a few generations, constant and then finally starts
to decrease. In the main population, the fixation of Wol-
bachia starts very slowly and remains almost constantly
close to zero. Neither the main nor the subpopulations
could be invaded.

Main population infection spread
Figure 8 shows how the infection spreads among the
native population through the generations in the scenario
where the infected mosquitoes are introduced into the
main population, leaving the sub populations unaltered.

In the first few generations, the infection remains almost
constant until it reaches approximately 35 % invasion in
the fourth generation. Once this threshold is reached,
the infection spreads very rapidly until all the individuals
reach the equilibrium point by generation 20.

Figure 8 also shows that the infection spreads evenly
among the population. There are no areas in which the
infection is more concentrated or has little presence.

Effect

Migration is a critical factor for spreading the Wolbachia
infection in the island model scenario [30]. The goal of
this experiment was to observe how different migration
rates affect the spread of Wolbachia bacteria among the
source population and subpopulations. It is believed that
several populations can coexist with stable rates of Wol-
bachia infection if they are connected via migration. To
conduct these experiments we used the same scenario
as in the previous experiment (Island Model Scenario),
infecting only the source population and using three dif-
ferent migration rates from the main population to the sub
populations, namely, 1 %, 3 %, and 5 %. The rest of the
parameters used are listed in Table 4.

Figure 9 shows the results of these experiments. In the
first scenario, the degree of invasion of the source pop-
ulation increases rapidly until it reaches the equilibrium
point in generation 15. Invasion of the subpopulations
remains close to zero owing to the low migration rate,
which hinders the infected mosquitoes from migrating to
the subpopulations in sufficient quantities to invade them
consistently.

In the other two scenarios, all the populations reached a
stable and almost identical Wolbachia degree of invasion.
Moreover, the higher the migration rate was, the faster
the populations reached equilibrium with an approximate
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Fig. 6 Infection of source population

——Main pop
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Sub pop 2
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Generations

53 % invasion. Apparently, all populations reached equi-
librium when using a 3 % or higher migration rate.
Specifically, if the migration rate is too high, it can hap-
pen that most of the infected mosquitoes leave the source
population and settle in a sub population, leading to rapid
invasion of the sub populations, but leaving the source
population with too few infected individuals to spread
the bacteria. Conversely, if the migration rate is too low,
the source population can be infected rapidly but the sub
populations remain uninfected or with a very low degree

of invasion because very few mosquitoes reach the sub
populations.

These results confirm that migration is a very impor-
tant factor in the spread of the Wolbachia bacteria to other
populations and in maintaining the degree of Wolbachia
invasion at a stable level [30, 31].

Conclusions
The work presented here shows that computer mod-
eling and simulations are useful tools for studying the

100.00
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Fig. 7 Infection of peripheral populations

Generations
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Infection at Generation 20

Infection at Generation 60

Infection at Generation 100

Fig. 8 Spread of infection through the generations.In this example, the infection reached 100 % of the individuals of the population

Infection at Generation 40

Infection at Generation 80

dynamics of Wolbachia invasion. We showed that com-
putational simulations can provide important insight into
the conditions required to implement biological strategies
for controlling vector-borne diseases such as malaria and
Dengue.

Elucidation of these conditions experimentally would be
onerous in practice. We believe that computational sim-
ulations are useful tools for modeling population-based
phenomena, such as evolution, migration, and bacte-
rial invasion, among others. Furthermore, computational
modeling can be used to validate mathematical population

models and is an excellent low-cost alternative to experi-
mental studies.

In particular, our computer simulations suggest that
Wolbachia invasion can be rapidly achievxed in simu-
lated populations under certain doable conditions. The
results obtained in our experiments are consistent with
the observations derived from both mathematical model
predictions and field experiments on Wolbachia transmis-
sion in real mosquito populations [5, 7-10]. This implies
that the cost of experimental studies can be reduced by
conducting computer simulations to predict the spread of
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Wolbachia invasion in advance. Moreover, we believe that
these predictive studies have great potential in contribut-
ing to the efficacy of Wolbachia invasion experiments
aimed to reduce the spread of Dengue.

Computer simulations, however, have obvious limita-
tions. The dynamics of infectious diseases is a complex
multifactorial phenomenon. Estimation of the factors
influencing the invasion rate and the modeling thereof
seems intractable from a computational perspective.
Therefore, assessing the effectiveness of computer sim-
ulation models and parameterizing them with real data
could provide useful insight into the capabilities and lim-
itations of computer simulations, providing the basis for
improving their prediction capabilities.

Consequently, our future work will focus on assessing
the results of the proposed model by conducting statistical
analyses and comparing the results in the light of new data
made available from real world experiments on Wolbachia
invasion. Overall, we believe that this work could con-
tribute to the eventual deployment of biological strategies
for controlling vector-borne diseases generally.

The source code and binary executable of the software
are available on request from the corresponding author.
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