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Abstract

Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the
molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular
background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees
and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was
defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for
pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using
a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were
detected. A deletion at 5q31.1 covering the protocadherin-a gene cluster (Pcdha 1-9) was found co-segregating with low
music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis.
Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM
has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes
related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity
and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor
functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low
COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was
detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this
study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and
supports the previous results from AP study.
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Introduction

Like intelligence or language, music perception and practice are

complex cognitive functions of the human brain. Twin studies

have shown evidence for genetic overlap between different

cognitive abilities such as learning, reading and mathematics [1].

Neurobiological studies [2,3,4,5], studies on animals [6,7,8], and

human infants [9,10,11,12] have provided evidence on biological

basis of music perception. There is an abundance of data about the

neurophysiological effects of music perception and practice on the

human brain [2,3,4,5,12]. However data on the effects at the

cellular is so far missing.

Recent studies have shown a substantial genetic component in

music perception including absolute pitch [13], congenital amusia

[14], auditory structuring ability [15,16,17] and musical ability

[18]. Until now, little evidence for the molecular genetic

background of musical aptitude has been obtained. In the absence

of such evidence, we and others have performed both genome

wide analyses and candidate gene studies in musical traits

[13,15,16,17,18,19,20]. Intriguingly, genome-wide analyses per-

formed separately in Finnish and Mongolian populations with

different music phenotypes (musical aptitude and musical ability)

revealed linkage in the partly overlapping genetic regions at

chromosome 4q [15,18]. Previously, such candidate genes as

AVPR1A, SLC6A4, UNC5C and UGT8 have been suggested for

musical abilities [15,16,17,18]. These preliminary molecular

studies support the hypothesis that musical aptitude is the result
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of currently unknown number of genomic variations, environ-

ment, and their complex interactions.

Variations in the human genome range from large chromo-

somal anomalies (size .2–5 Mb) to single nucleotide polymor-

phisms (SNPs) (size from 1 to 700 bp) [21]. Copy number

variations (CNVs) are structural genomic variants arising from

deletions or duplications of the genomic region. CNVs show high

variability in the human genome and have been suggested to have

multiple effects on gene function, evolution and disease risk

[22,23]. To date, CNVs have been shown to have an important

role in cognitive function of the human brain in neuropsychiatric

disorders [23,24,25,26] and in common complex diseases [27,28].

Lately, attention has been paid to CNVs underlying normal

human traits like height and intelligence [29,30,31]. Most of these

studies have been performed in case-control settings and have

focused on diseases [32] whereas family-based studies on normal

cognitive traits are rare.

In order to obtain further understanding about the biological

basis of music perception, we conducted a genome-wide survey of

CNVs in five multigenerational families and in 172 unrelated

subjects who were characterized for musical aptitude and

creativity in music. The advantages of a family-based setting used

here over population-based include better control of population

stratification, enrichment of rare variants and the ability to

discriminate variants co-segregating with the trait [33,34]. High

mutation rate is resulting in a large number of de novo variations

[23]. The family based approach is useful as it offers validation for

CNV each time it is inherited.

Materials and Methods

Ethics statement
The study was approved by The Ethical Committee of Helsinki

University Central Hospital and was conducted in accordance

with the Declaration of Helsinki. An informed consent was

obtained from all subjects.

Study material
The age of the participants varied from 18 to 60 years. To

minimize the age-related affects on CNV accumulation and

various music tests, we made sure that all the individuals

participating in this study were aged #60 years.

The family pedigrees are shown in Figure 1. The families consist

of from 28 to 38 genotyped members whose combined music test

scores (COMB) and creative functions in music are known

(Table 1).The families participate in the study where genetic

background of music perception and practice is studied [15,16,17].

Of the study families, family 6 has the lowest mean COMB scores

(116.98), and creative functions in music were reported by 10%.

Family 14 has the highest mean COMB scores (128.21) and 46%

of the members reported creative functions in music.

Further, a sample set of 172 unrelated subjects were selected to

analyze the effect of CNV burden and the enrichment of CNVs in

opposite phenotypes of musical aptitude and creative functions in

music (Table 1). The unrelated subjects originate from the

genetically isolated Finnish population that has experienced

multiple bottlenecks in its population history [35] so we cannot

fully exclude their distant relatedness. In the questionnaire

participants could report if any close relatives participated in the

study. The individuals in the unrelated sample set were selected if

that they did not report any relatives in the study or did not show

relatedness in identity by descent (IBD) analysis. No medical

information was available from the participants but as far as we

know, they are healthy. The recruitment process has been

described in our earlier studies [15,16,17].

Phenotypes
Musical aptitude of each participant was defined using three

music tests: the auditory structuring ability test (Karma Music test,

KMT) [36] and Carl Seashore’s pitch and time discrimination

subtests (SP and ST respectively) [37] described previously by Pulli

et al. [15] and Ukkola et al. [16]. Shortly, KMT contains 40 items

that measure recognition of melodic contour, grouping, relational

pitch processing, and gestalt principles, the same potentially innate

musical cognitive operations reported by Justus & Hutsler [38]. In

contrast, Seashore’s tests each contain 50 items that measure

simple sensory capacities, such as the ability to detect small

differences in tone pitch or duration that are necessary in music

perception. A combined music test score (COMB), was computed

as the sum of the separate scores of the three individual test results

(range from 75 to 150 scores), as described earlier [16,17]. There is

moderate correlation between the three music tests scores: 0.61

between KMT and SP, 0.42 between KMT and ST and 0.38

between SP and ST (P,0.0001 for all three) [17]. The SP has

shown the highest heritability (52%) whereas the heritability

estimates for KMT, ST and COMB are 39%, 10% and 44%

respectively [16,17]. The reliabilities of the music tests range from

0.78 to 0.91. [15]. The age had a significant effect on COMB

scores (F = 19.24, df = 169, p = 2.02*1025). The R-square of 0.09

suggests that about 9% of the variability in COMB scores could be

explained by age.

Background information, e.g. about the participant’s creativity

in music was collected using a web-based self-report questionnaire

as described earlier [16,17]. Here the creative functions in music

were defined as having one or several of the following: composing,

improvising or arranging music. The questionnaire is available

from the authors on request.

In this study, the music phenotypes were explored in opposite

phenotypes. Technically, we compared the distribution of CNVs

among subjects belonging to the two groups of COMB scores.

Based on the lower and upper quartiles of COMB scores, the

subjects were divided into (1) low and (2) high COMB scoring

group within each family and also unrelated sample (Table 2) (3)

‘‘Creative phenotype’’ here means a subject reporting one or

several of the aforementioned creative functions in music and (4)

‘‘noncreative phenotype’’ was applied if not reporting any of these

activities. Data about creativity was available in family 6 from

48%, family 13 from 63%, family 14 from 75%, family 15 from

53%, family 17 from 74% and unrelated data from 73% of the

family members participating in the study (Table 2).

Genotyping
Peripheral blood samples for genomic DNA extraction were

drawn from the participants over 12 years of age (no cell lines were

used). 200 ng of DNA from each subject was genotyped using the

Illumina Infinium Human OmniExpress-12v1 beadchip, which

contains an approximate number of 733,202 markers per sample

for SNP and CNV analyses. Samples were genotyped with an

average overall call rate of 99.54%. Normalized signal intensity

data was obtained through Illumina BeadStudio software.

Information on Log2 R ratios, B allele frequencies, markers and

chromosomal coordinates from each sample were used for CNV

identification. This is the first study using the SNP data obtained

from the analysis.

CNVs in Music Phenotypes
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CNV identification and quality control
We mapped all the probe coordinates in this study to human

genome build GRCh37/hg19. CNVs were identified using two

Hidden Markov Model (HMM) -based algorithms: PennCNV and

QuantiSNP. At present, both of these algorithms constitute the

most reliable set-up for CNV detection using Illumina platforms

[39]. Additionally, this multi-algorithm approach increases the

confidence of CNV calls and reduces false positives [39,40,41]. For

familial data, using the tro-based CNV calling in PennCNV, we

validated the inheritance status of CNVs. Further, to ensure good

quality of the data, we followed stringent quality control criteria at

both sample-level and CNV-call level. Specifically, we categorized

certain samples as outliers and eliminated them if they meet any of

the following criteria: (a) Call rate below the call threshold of 98%.

(b) Standard deviation of Log2 R ratio more than 0.15 (c) Standard

deviation of B allele frequency more than 0.05 (d) Waviness factor

outside the limits of 20.04 and 0.04 (4) BAF drift more than 0.002

(e) Number of detected CNVs per sample more than 50. At the

level of CNV-calls, CNVs identified using both PennCNV and

QuantiSNP were retained only if their size was larger than 10 bp

and their log Bayesian factor was more than 10 respectively. A

CNV detected by both algorithms was merged into a single

consistent-call (consensus) by using the outermost boundaries

defined by either of the algorithm, irrespective of their size of

overlap. We retained only such consistent calls for further analyses.

Statistical analyses
To unravel the impact of CNVs on musical aptitude and

creative functions in music, we analyzed the detected CNVs using

three different approaches: First, we analyzed the inheritance of

CNVs in extended pedigrees and their penetrance in contrasting

phenotypes, i.e. high COMB vs low COMB and creative vs non-

creative subjects. The main objective of this analysis is to find the

highly penetrant CNVs that are private to a specific phenotype.

For this, CNVRs larger than 10 kb were ranked in each family in

individuals of contrasting phenotypes (Table 2). This straightfor-

ward ranking method ranks a CNV based on its frequency count

in the ‘‘affected’’ individuals of each family. For example, the

CNV that appears the most frequent in musically creative

individuals of a family is given a higher rank for musical creativity

within that family. This ranking method was described earlier in

Karlsson et al. [26]. Second, we investigated the effect of CNV

burden on 172 unrelated individuals characterized for the

aforementioned phenotypes. For this, we tested if there was an

increased burden of CNVs in opposite phenotypes concerning

number of CNVs and CNV size using a two-sided Fisher’s exact

test. Third, we checked if any particular CNV was present with

increased frequency in the opposite phenotypes of unrelated

individuals using a two-sided Fisher’s exact test; p-value,0.05. All

these Statistical analyses were performed using R (statistical

computing environment, http://www.r-project.org/), SPSS pre-

dictive analytics software version 20, PLINK and custom scripts.

Results

CNVRs in musical aptitude (COMB scores)
In the five study families all CNVRs were ranked for COMB

scores and are shown in Supplementary material (Table S1). High

ranking CNVRs shared by individuals in at least two families for

the COMB scores are shown in Table 3. One CNVR was ranked

high in high COMB scores. A total of 67% of family members

with high COMB scores in families 6 and 14 members carried a

deletion at 1q21.2 (Table 3). The region contains genes FCGR1C

and LOC388692 and has previously been linked with neurodevel-

opmental disorders (schizophrenia, autism, ADHD, mental

retardation, learning disabilities and dyslexia) [42,43]. A family-

specific deletion at 8p23 (DLGAP2), previously related to autism

[39], was also ranked high in family 14.

In low COMB scoring individuals one CNVR was ranked high

in two different families. This was a deletion at 5q31.3 found in

54% of low COMB scoring individuals in families 14 and 15. The

region contains the protocadherin-a gene cluster 1–9 (Pcdha 1-9)

consisting of 14 tandemly arranged genes [44]. Protocadherins are

composed of a-, b- and c-clusters arranged in tandem on human

chromosome 5 and expressed in vertebrate brain [45,46]. The

Pcdha encode diverse proteins whose functions are involved in

axonal projection and in learning and memory. Several other

family-specific interesting CNVRs were ranked high for low

COMB scores. In family 14 there was a duplication at 17q21.31

that contains the KANSL1 (also called KIAA1267) gene. Also, a

deletion at 9p21.1 (LINGO1) in family 15 was ranked high for low

COMB scores.

A number of large family-specific CNVs were detected in low

COMB scoring individuals. A novel 2.1 Mb duplication (not

found in the Database of Genomic Variants) at 15q26 was

inherited in family 15 in three generations (Figure 1, ID 209, 202,

203). Interestingly, this region contains the MCTP2 gene

previously associated with schizophrenia in samples consisting of

Norwegian, Swedish and Danish subjects [47]. In family 6 a novel

large 1.3 Mb duplication was identified at 8q24.22 (rs4518624–

Figure 1. The families of the study. Circles represent females, squares males and genotyped individuals were marked with subject numbers.
doi:10.1371/journal.pone.0056356.g001

Table 1. Characteristics of each family and the unrelated sample set (N-value).

Pedigree no. 6 13 14 15 17 unrelated

DNA available 25 32 39 36 38 172

sex male 12 (48%) 16 (50%) 20 (53%) 15 (42%) 18 (47%) 71 (41%)

female 13 (52%) 16 (50%) 18 (47%) 21 (58%) 20 (53%) 101 (59%)

COMB music test scores mean 116.98 120.66 128.21 117.17 118.3 122.41

range 93.5–144.25 88.25–141.5 82–147 83–147 90–144.8 89–148

Creativity in music No 18 (90%) 19 (70%) 19 (54%) 22 (79%) 30 (88%) 125 (86%)

Yes 2 (10%) 8 (30%) 16 (46%) 6 (21%) 4 (12%) 21 (14%)

doi:10.1371/journal.pone.0056356.t001

CNVs in Music Phenotypes
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rs9297816) in a subject with low COMB scores (Figure 1, family 6

ID 48). This region contains the genes ADCY8, ASAP1, FAM49B

and GSDMC. The duplication is located inside the region that has

previously been linked with absolute pitch (rs755520–rs2102861)

[13] (Figure 2).

No significant excess of large CNVs or CNV burden were

detected in unrelated individuals with high or low COMB scores

(Table S2).

CNVRs in the creative phenotype
In the five study families CNVRs were ranked for creative

phenotype and are shown in the Supplementary material (Table

S3). A total of five CNVRs were ranked high in the creative

phenotype in at least two different families (Table 3). A deletion at

5p15.33 containing the gene ZCHHC11 was present in 48% and a

duplication at 2p22.1 containing the gene GALM was present in

27% of creative family members (family 14 and 17; family 14 and

15, respectively). GALM encodes galactose mutarotase which is

functioning in serotonin metabolism [48,49]. Curiously, we and

others have studied the association of the serotonin transporter (5-

HTT) in music related phenotypes [16,17,19,20,50]. A duplication

at 10q11.22 was found in 24% and a deletion at 3p22.2 in 20% of

the creative phenotype subjects in two families each (families 14

and 17; families 13 and 17, respectively). 19% of the members in

families 14 and 17 carried an inherited deletion at 5p15.31.

Family-specific deletions at 6q12 [51] and at 8p23.3 containing

the DLGAP2 gene, a candidate gene for autism [39], were ranked

high in creativity (Table S3). The deletion at 8p23.3 was also

ranked high among high COMB scores (Table S3).

Three CNVRs were ranked high for noncreative individuals

from at least two different families. A deletion at 2p12 was carried

by 31% and a deletion at 3p14.1 by 21% of the noncreative

subjects in two families (family 14 and 17; family 13 and 17,

respectively). 19% of non-creative individuals from three families

(6, 14 and 17) carried a deletion at 3q28 containing the CCDC50

gene.

In the unrelated sample set no significant excess of large CNVs

or CNV burden were detected in the creative or non-creative

phenotypes (Table S2).

Table 2. Descriptive statistics for the analyzed music phenotypes in the study material.

COMB scores Creative phenotype

High (% of total N) Low (% of total N) Yes (% of total N) No (% of total N)

Fam no. 6 .144.2 ,115.0

N 5 (20%) 4 (16%) 1 (4%) 11 (44%)

Fam no. 13 .138.8 ,114.5

N 5 (16%) 5 (16%) 6 (19%) 14 (44%)

Fam no. 14 .141.8 128.5

N 7 (18%) 7 (18%) 17 (44%) 12 (31%)

Fam no. 15 .137.0 ,105.0

N 6 (17%) 6 (17%) 5 (14%) 14 (39%)

Fam no. 17 .133.2 ,111.5

N 8 (21%) 8 (21%) 4 (11%) 24 (63%)

Unrelated .138.2 ,116.2

N 40 (23%) 28 (16%) 18 (10%) 108 (63%)

doi:10.1371/journal.pone.0056356.t002

Table 3. High-ranked CNVRs for COMB scores and creative phenotype in the analyzed families.

freq. in the
phenotype Chr region Chr: start-end

Event
type Genes Families

High COMB music test scores 67% 1q21.2 1:149039031–149388389 Loss FCGR1C, LOC388692 6, 14

Low COMB music test scores 54% 5q31.3 5:140225908–140237548 Loss Protocadherin alpha gene cluster 14, 15

Creative phenotype 48% 5p15.33 5:788646–840717 Loss ZDHHC11 14, 17

27% 2p22.1 2:38955129–38977612 Gain GALM 14, 15

24% 10q11.22 10:47412588–47703869 Gain ANTXRL 14, 17

20% 3p22.2 3:37979882–37986249 Loss CTDSPL 13,17

19% 5p15.31 5:8258881–8260630 Loss - 14,17

Noncreative phenotype 31% 2p12 2:76941049–76949101 Loss - 14,17

21% 3p14.1 3:65191847–65214685 Loss - 13,17

19% 3q28 3:191065392–191072060 Loss CCDC50 6, 14, 17

doi:10.1371/journal.pone.0056356.t003
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Association of CNVRs with music phenotypes in the
unrelated sample set

After family-based ranking of CNVRs in COMB scores and

creative phenotype was completed, the association analysis in the

unrelated sample set was performed (Table 4 and Table 5). A

duplication at 12p11.21 was slightly enriched in individuals with

high COMB scores (Fisher p = 0.0385), while a deletion at 3p14.1

was observed in individuals with low COMB scores (Fisher

p = 0.0322). No known genes were located in these CNVRs. The

deletion at 3p14.1 was also found in the noncreative family

members in CNVR ranking analysis (Table 3). A deletion at

5q31.1 containing Pcda was seen in 7% of low COMB and in none

of the high COMB subjects.

Seven different CNVRs showed very suggestive association with

the creative phenotype and one CNVR to the non-creative

phenotype (Table 5). Of the mildly associated CNVRs, seven were

deletions and one was duplication. Interestingly, the deletion at

5p15.33, for creative subjects was found in both the family-based

(48%) and unrelated (22%) sample sets. The most promising,

though preliminary, associations were seen between the creative

phenotype and deletions at 6q14, 7q11 and 7q33 (Fisher

p = 0.0194). 11% of creative vs. 0% of noncreative subjects were

carrying each of these deletions. In previous studies, 6q14,

containing the genes MYO6 and SEN6, has been associated with

intellectual disability and language delay [51]. The region 7q11,

containing genes INTS4L1 and ZNF92, is a candidate locus for

epilepsy [52]. Interestingly, regions near to 7q33, containing the

gene EXOC4, has previously been linked to speech and language

disorders [53] and dyslexia [54]. Further, a deletion at 12p11

(17% creative vs. 2% non-creative), and a 70 kb deletion at 6p21

(28% creative vs. 8% non-creative) were weakly associated with

creative functions in music (p = 0.0207 and p = 0.0298, respec-

tively). A duplication at 7p12 was enriched in 22% of creative

individuals. For the non-creative group, a deletion at 3p12,

locating near to a susceptibility gene for reading and language

disorder ROBO1 [55], was more common compared to the

creative group (24% non-creative vs. 0% creative).

We acknowledge that because of the multiple testing problem

the associations detected here are only suggestive and preliminary.

Discussion

Low music test scores
In the genome wide analysis of CNVs in musical traits, several

CNVRs containing genes that affect neurodevelopment, learning

and memory were detected. The most relevant CNVR found here

was a deletion at 5q31.1 covering the protocadherin-a gene cluster

1–9 (Pcdha 1-9). This deletion was found from both sample sets in

subjects with low music test scores (COMB): 54% of the cases from

two families (Table 3) and 7% from the unrelated subjects. There

is an abundance of data about the neurophysiological effects of

music perception and practice on the human brain [2,3,4,5,12].

However data on the effects at the cellular levels is so far missing.

Pcdha is involved in neural migration, differentiation and

synaptogenesis [56,57,58]. Katori and colleagues [60] discovered

that Pcdhas are important in maturation of serotonergic projec-

tions in all or most of the brain regions. Previously, Fukuda et al.

[59] showed abnormalities in Pcdha mutant mice in abilities

important for musical aptitude, that is learning and memory. The

human serotonin transporter gene (SLC6A4) together with arginine

vasopressin receptor gene (AVPR1A) polymorphisms has been

reported to associate with artistic creativity in professional dancers

[50] and with short-term musical memory [19]. Based on the

normal function of the brain, Pcdha may be a relevant candidate

gene affecting music perception and practice. In our previous

studies, AVPR1A, also related to learning and memory, was

associated with musical aptitude and listening to music [16,17].

Absolute pitch (AP), which is a rare ability to recognize the pitch

of a musical tone without a reference pitch, was previously linked

on chromosome 8q24.21 [13]. In our study, a 1.3 Mb long

Figure 2. 1.3 Mb duplication in the region previously linked with absolute pitch.
doi:10.1371/journal.pone.0056356.g002

Table 4. Association of CNVRs with music test scores in the unrelated dataset.

High COMB
(N = 40)

Low COMB
(N = 28) Chr region Chr: start-end

Event
type Genes p-value

COMB music test scores 8 (20%) 13 (46%) 3p14.1 3: 65191847–65214685 loss - 0.0322

6 (15%) 0 (0%) 12p11.21 12: 31266287–31409778 gain - 0.0385

doi:10.1371/journal.pone.0056356.t004

CNVs in Music Phenotypes
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duplication was located in the core linkage region of AP (Figure 2)

in a subject with low COMB scores. The overlapping region

contains gene ADCY8 (adenylate cyclase 8) that is associated with

synaptic plasticity, short-term memory performance [60] and with

bipolar disorder [61]. Additionally, genes GSDMC, FAM49B and

ASAP1 lie in the region of duplication (RefSeq). Disorders caused

by CNVs of dosage sensitive genes critical for the physiological

function of nervous system have been identified [62]. Further,

large duplications have shown harmful effects on neurodevelop-

ment [43,63]. Music test scores used in our study tests e.g. subject’s

ability to detect differences in pitch. Although there are no studies

about the overlap of AP and the phenotypes studied here, it is

intriguing to speculate whether the duplication in the AP region

had a harmful effect on pitch perception accuracy in the

multifaceted phenotype of musical aptitude.

Creativity and psychiatric disorders
Creativity is an ability to produce work that is not only original

but appropriate for the situation in which it occurs [64]. In our

previous study creativity in music (here composing, improvising or

arranging) showed substantial heritability [16]. Here, a duplication

at 2p22.1, containing the GALM gene, was co-segregating with

creative phenotype. GALM encodes galactose mutarotase which

has been reported to increase serotonin release and membrane

trafficking of the human serotonin transporter (5-HTT) [48].

GALM has been associated with serotonin transporter binding

potential in the human thalamus [48], the region that is important

for the music perception process [65]. Serotonin metabolism is

disturbed in mood disorders e.g. depression [49]. Recently,

serotonin transporter gene (SLC6A4) has been associated not only

with psychiatric disorders but also with musical aptitude [16],

attending choral singing [19] and creative dance performance

[50]. It is known that genetic polymorphisms that are related to

psychiatric disorders may have a positive impact on cognitive traits

like creativity, IQ, and working memory [50,66,67,68]. The other

side of the coin is that highly creative individuals may have an

elevated risk for certain types of psychiatric disorders. Kyaga et al.

[68] suggested co-segregation of mental disorders with creativity in

families. The risk alleles may act like plasticity genes, resulting in

that carriers are more responsive to both positive and negative

environmental experiences than others [69].

Music is non-verbal communication that is able to evoke

emotions which are unique in intensity and state [70,71]. Listening

to and/or playing music is environmental stimuli that has multiple

measurable effects on brain structure and function. Neurophysi-

ological and brain imaging studies have discovered that music

induces synaptic plasticity, e.g. active training and practicing

music has been shown to enlarge cortical presentations in the

somatosensory and auditory domains in professional musicians

[72]. However, little is known about the effect of music on the

brain function at the cellular level. In our study, a large 2.1 Mb

long duplication in the region of the MCTP2 gene, previously

reported in schizophrenia [47] was co-segregated in three

generations with low or average music test scores. MCTP2 is

involved in cellular signal transduction and synaptic functions by

Ca2+ binding [73]. In schizophrenia, Ca2+ binding is altered in the

prefrontal cortex [74]. This same brain region is also important for

recognizing emotions in music [75], which makes us hypothesize

the effect of this large duplication to the function of prefrontal

cortex in music perception [41,62,63].

In our study, a deletion at 3p14.1 was ranked high in both

family and unrelated data for different phenotypes; in the family

data the non-creative phenotype, and in the unrelated sample set

low music test scores. In our previous study high music test scores

were associated with creativity in music (p,0.0001) [16]. This

may support the finding that deletion at 3p14.1 is associated with

both low music test scores and the non-creative phenotype.

The size of the CNVRs
Currently, the standardized practices and gold standard for

CNV studies, especially across different size spectrum, are lacking.

Although several studies raised the issue of potential false

discoveries among smaller CNVs (,100 kb), it remains intriguing

for the researchers to study smaller CNVs because of their well-

acknowledged functional impact [76,77]. Moreover,

CNVs.100 kb were previously suggested to have deleterious

effects [23] and in general they have been heavily implicated in

neurodevelopmental disorders. As this study focuses on a normal

trait, our presumption allowed us to consider smaller CNVs also.

However, we tried to minimize the false discoveries by using a

multi-algorithm approach which has been promising in previous

studies [39,40,41].

Concluding Remarks

Here we report the results of the first genome wide CNV survey

for music related phenotypes; musical aptitude and creative

functions in music using both a family-based approach and case-

control study. The advantages of this study are the use of both

family-based and sporadic data. Moreover, all samples were

genotyped at the same time using the same platform, increasing

Table 5. Association of CNVRs with creative functions in music in the unrelated dataset.

Creative
(N = 18)

Non-creative
(N = 108) Chr region Chr: start-end Event type Genes p-value

Creative
phenotype

2 (11%) 0 (0%) 6q14.1 6: 76218758–76552776 loss MYO6.SENP6 0.0194

2 (11%) 0 (0%) 7q33 7: 133146663–133235334 loss EXOC4 0.0194

2 (11%) 0 (0%) 7q11.21 7: 64679561–65326821 loss INTS4L1.ZNF92 0.0194

3 (17%) 2 (2%) 12p11.21 12: 32004170–32056577 loss - 0.0207

0 (0%) 26 (24%) 3p12.3 3: 75419736–75655870 loss FAM86DP 0.0232

4 (22%) 5 (5%) 7p12.1 7: 52733291–52743803 gain - 0.0237

5 (28%) 9 (8%) 6p21.32 6: 32493790–32560859 loss - 0.0298

4 (22%) 6 (6%) 5p15.33 5: 674921–840717 loss ZDHHC11 0.0359

doi:10.1371/journal.pone.0056356.t005
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the reliability of the analyses. However, there are several

limitations in our study. Definition of the phenotype here covers

only a small portion of the multifaceted phenotype of music

perception and practice. Being aware of the quantitative nature of

musical aptitude, division of the phenotype to high COMB and

low COMB groups is somewhat artificial. Also, the sample size is

relatively small and the participants have not been screened for

neurocognitive deficits. Consequently, the identified CNVs cannot

be excluded here as being potentially predisposing for neuropsy-

chiatric conditions. Because of the small sample size only

suggestive associations were detected. The result, although

interesting, is preliminary and replication with a larger sample

set is needed.

The perception of sounds begins in the cochlea, the auditory

portion of the inner ear, but the actual perceiving, processing and

creating music takes place at multiple sites and elicits different

functions of the brain [4,5,70,78,79,80,81]. The thalamus is

responsible for projection of the sound information into the

auditory cortex where more specific information about acoustic

signal, like pitch height, chroma, intensity and timbre, is further

extracted [4]. CNVs found in this study contain several genes that

are expressed in brain regions where music is perceived, including

hippocampus, thalamus and prefrontal cortex. Further studies are

needed to survey the mechanisms of the detected CNVs and genes

for the human brain and further to music perception and practice.
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Large recurrent microdeletions associated with schizophrenia. Nature 455(7210):

232–236.
43. Grayton HM, Fernandes C, Rujescu D, Collier DA (2012) Copy number

variations in neurodevelopmental disorders. Prog Neurobiol 99(1): 81–91.

44. Noguchi Y, Hirabayashi T, Katori S, Kawamura Y, Sanbo M, et al. (2009)
Total expression and dual gene-regulatory mechanisms maintained in deletions

and duplications of the Pcdha cluster. J Biol Chem 284(46): 32002–32014.
45. Fukuda E, Hamada S, Hasegawa S, Katori S, Sanbo M, et al. (2008) Down-

regulation of protocadherin-alpha A isoforms in mice changes contextual fear
conditioning and spatial working memory. Eur J Neurosci 28(7): 1362–1376.

46. Katori S, Hamada S, Noguchi Y, Fukuda E, Yamamoto T, et al. (2009)

Protocadherin-a family is required for serotoninergic projections to appropri-
ately innervate target brain areas. J Neurosci 29:9137–9147.

47. Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D, et al. (2012)
Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype.

Nat Genet 44(6): 636–638.

48. Djurovic S, Le Hellard S, Kähler AK, Jönsson EG, Agartz I, et al. (2009)
Association of MCTP2 gene variants with schizophrenia in three independent

samples of Scandinavian origin (SCOPE). Psychiatry Res 168(3):256–258.
49. Liu X, Cannon DM, Akula N, Moya PR, Knudsen GM, et al. (2011) A non-

synonymous polymorphism in galactose mutarotase (GALM) is associate with
serotonin transporter binding potential in the human thalamus: Results of a

genome-wide association study. Mol Psychiatry 16:584–585.

50. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, et al. (2007)
Serotonin-1A receptor imaging in recurrent depression: replication and

literature review. Nucl Med Biol 34(7): 865–877.
51. Bachner-Melman R, Dina C, Zohar AH, Constantini N, Lerer E, et al. (2005)

AVPR1a and SLC6A4 Gene Polymorphisms Are Associated with Creative

Dance Performance. PLoS Genetics 1(3): e42.
52. Kousi M, Anttila V, Schulz A, Calafato S, Jakkula E, et al. (2012) Novel

mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene. J Med
Genet 49(6): 391–9.

53. Petrin AL, Giacheti CM, Maximino LP, Abramides DV, Zanchetta S, et al.
(2010) Identification of a microdeletion at the 7q33-q35 disrupting the

CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 152A(12):

3164–3172.
54. Matsson H, Tammimies K, Zucchelli M, Anthoni H, Onkamo P, et al. (2011)

SNP variations in the 7q33 region containing DGKI are associated with dyslexia
in the Finnish and German populations. Behav Genet 41(1): 134–140.

55. Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi

J, et al. (2005) The axon guidance receptor gene ROBO1 is a candidate gene for
developmental dyslexia. PLoS Genet 1(4): e50.

56. Hasegawa S, Hamada S, Kumode Y, Esumi S, Katori S, et al. (2008) The
protocadherin-alpha family is involved in axonal coalescence of olfactory sensory

neurons into glomeruli of the olfactory bulb in mouse. Mol Cell Neurosci 38(1):

66–79.
57. Pedrosa E, Stefanescu R, Margolis B, Petruolo O, Lo Y, et al. (2008) Analysis of

protocadherin alpha gene enhancer polymorphism in bipolar disorder and
schizophrenia. Schizophr Res 102: (1–3)210–219.

58. Katori S, Hamada S, Noguchi Y, Fukuda E, Yamamoto H, et al. (2009)

Protocadherin-alpha family is required for serotonergic projections to appropri-

ately innervate target brain areas. J Neurosci 29(29): 9139–9147.

59. Fukuda E, Hamada S, Hasegawa S, Katori S, Sanbo M, et al. (2008) Down-

regulation of protocadherin-alpha A isoforms in mice changes contextual fear

conditioning and spatial working memory. Eur J Neurosci 28(7): 1362–1376.

60. Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, et al. (1999)

Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-

dependent long-term memory and late phase LTP. Neuron 23:787–798.

61. Zhang P, Xiang N, Chen Y, Sliwerska E, McInnis MG, et al. (2010) Family-

based association analysis to finemap bipolar linkage peak on chromosome 8q24

using 2,500 genotyped SNPs and 15,000 imputed SNPs. Bipolar disord 12(8):

786–792.

62. Gu W, Lupski JR (2008) CNV and nervous system diseases –what’s new?

Cytogenet Genome Res 123(1–4): 54–64.

63. Almal SH, Padh H (2012) Implications of gene copy-number variation in health

and diseases. J Hum Genet 57(1): 6.13.

64. Sternberg RJ, Lubart TI (2006) The concept of creativity: Prospects and

paradigms. In: Sternberg RJ, Lubart TI, eds. Handbook of creativity. New York:

Cambridge University Press. pp 3–15.

65. Koelsch S, Siebel WA (2005) Towards a neural basis of music perception.

Trends Cogn Sci 9(12): 578–584.

66. Reuter M, Roth S, Holve K, Hennig J (2006) Identification of first candidate

genes for creativity: a pilot study

67. Keri (2009) A Promoter Polymorphism of the Neuregulin 1 Gene Is Related to

Creativity in People With High Intellectual Achievement. Psychological Science

20:1070–1073.

68. Kyaga S, Lichtenstein P, Boman M, Hultman C, Långström N, et al. (2011).

Creativity and mental disorder: family study of 300 000 people with severe

mental disorder. BJPsych 199: 373–379.

69. Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, et al. (2009)

Vulnerability genes or plasticity genes? Molecular Psychiatry 14: 746–754.

70. Menon V, Levitin DJ (2005) The rewards of music listening: response and

physiological connectivity of the mesolimbic system. Neuroimage 15(1): 175.184.

71. Zentner M., Grandjean D, Scherer KR (2008) Emotions evoked by the sound of

music: characterization, classification, and measurement. Emotion 8: 494–521.

72. Abbott A (2002) Music, maestro, please! Nature 416(6876): 12–14.

73. Shin OH, Han W, Wang Y, Sudhof TC (2005) Evolutionarily conserved

multiple C2 domain proteins with two transmembrane regions (MCTPs) and

unusual Ca2+ binding properties. J Biol Chem 280(2): 1641–1651.

74. Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, et al. (2008) Changes in density of

calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal

cortex in schizophrenia and bipolar disorder. Neuropathology 28(2) 143–150.

75. Moghimi S, Kushiki A, Guerguerian AM, Chau T (2012) Characterizing

emotional response to music in the prefrontal cortex using near infrared

spectroscopy. Neurosci Lett 525(1): 7–11.

76. Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, et al. (2010)

Variation in transcription factor binding among humans. Science 328(5975):

232–235.

77. Schlattl A, Anders S, Wasazak SM, Huber W, Korbel JO (2011) Relating CNVs

to transcriptome data at fine resolution: assessment of the effect of variant size,

type, and overlap with functional regions. Genome Research 21(12) 2004–2013.

78. Limb CJ, Braun AR (2008) Neural Substrates of Spontaneous Musical

Performance: An fMRI Study of Jazz Improvisation. PLoS ONE 3(2): e1679.
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