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Abstract
The transmittable spread of viral coronavirus (SARS-CoV-2) has resulted in a significant rise in global mortality. Due to 
lack of effective treatment, our aim is to generate a highly potent active molecule that can bind with the protein structure 
of SARS-CoV-2. Different machine learning and deep learning approaches have been proposed for molecule generation; 
however, most of these approaches represent the drug molecule and protein structure in 1D sequence, ignoring the fact that 
molecules are by nature in 3D structure, and because of this many critical properties are lost. In this work, a framework is 
proposed that takes account of both tertiary and sequential representations of molecules and proteins using Gated Graph 
Neural Network (GGNN), Knowledge graph, and Early Fusion approach. The generated molecules from GGNN are screened 
using Knowledge Graph to reduce the search space by discarding the non-binding molecules before being fed into the Early 
Fusion model. Further, the binding affinity score of the generated molecule is predicted using the early fusion approach. 
Experimental result shows that our framework generates valid and unique molecules with high accuracy while preserving 
the chemical properties. The use of a knowledge graph claims that the entire generated dataset of molecules was reduced 
by roughly 96% while retaining more than 85% of good binding desirable molecules and the rejection of more than 99% of 
fruitless molecules. Additionally, the framework was tested with two of the SARS-CoV-2 viral proteins: RNA-dependent-
RNA polymerase (RdRp) and 3C-like protease (3CLpro).

Keywords Molecule generation · Drug-target affinity prediction · Graph neural network · Deep learning

1 Introduction

Coronaviruses, which contain proactive RNA viruses that 
cause severe diseases in humans, belong to the corona-
viridae group (Khan et al. 2020). Alpha, Beta, Delta, and 
Gamma coronavirus are among the four species in the group 
out of which SARS-CoV-2 belongs to the Beta category of 
viruses. According to current human genome data, SARS-
CoV-2 has a positive-sense single-stranded RNA genome 

that comprises genes that encode 3CLpro, RdRp, spike pro-
tein, envelope proteins, and various other protein structures 
(Thiel et al. 2003). Furthermore, the epidemic was followed 
by increased fatalities, showing that efficient treatment at the 
outset is critical to preventing the progression of the virus 
(Khan et al. 2020).

Generating a novel molecule emerge as fundamental 
research activity that helps in the creation of new drug 
discovery by reducing the enormous expenses along with 
time, but it is a difficult process (Wouters et al. 2020). 
Recently machine learning (Janairo 2021) and deep genera-
tive approaches (Öztürk et al. 2018; Nguyen et al. 2021a) 
achieve remarkable performance in molecule generation 
tasks, they are mostly concentrated on training models to 
produce unique compounds and predicts the affinity score of 
drug-molecule-target-protein interactions (DTA) represented 
in simplified molecular input line entry system (SMILES) 
format. However, molecules are often represented as graphs 
with a certain number of nodes representing atoms and 
edges representing bonds, but the SMILES sequence does 
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not capture all chemical properties (Nguyen et al. 2021a). 
Although sequence-based approaches are good but graph-
based approaches are more useful in data formats for under-
standing compounds and have several benefits over strings, 
particularly when coupled using graph neural networks 
(GNNs) (Jiang et al. 2020). GNNs can acquire atom order 
sequence descriptions and can be trained on a GPU effec-
tively and scalable to larger data (Jiang et al. 2020).

Similarly, for predicting the binding affinity of drug 
molecules (or generated molecules) with the target protein, 
there have been many computing prediction approaches 
presented (Öztürk et al. 2018). In current studies, the pro-
tein is simply composed of several amino acid residues 
denoted by sequences (Öztürk et al. 2018; Nguyen et al. 
2021a). The disadvantage of using sequence data is that 
it does not reflect the protein’s three-dimensional struc-
ture. Obtaining a relative three-dimensional structure, on 
the other hand, is a difficult process. To illustrate tertiary 
protein structure, another reasonable option is to use two-
dimensional residue contact maps (Senior et al. 2020). 
Now with a deep learning-based approach using GNNs, 
can effectively identify these contact maps with high 
accuracy. Furthermore, previously deep learning methods 
mostly employ a post concatenation method, in which the 
drugs and protein features are extracted independently and 
afterward concatenated at the end to predict the binding 
affinity score. This method although, neglects the notion 
that binding takes place in a pocket instead of throughout 
the entire protein. When a drug binds with a protein, it 
alters its functioning, resulting in the desired pharmaco-
logical actions. As a result, when the drug attaches to the 
protein, the post concatenation method is unable to cap-
ture these changes in protein structure. One way to tackle 
this challenge is to use the Graph Early Fusion Approach 
(Nguyen et al. 2021b), in which description features for 
a specific compound is identified first out of its molecule 
network structure. Before the actual proteins embedding 
phase, the molecule representation is incorporated into 
the protein network graph. The model can now consider 

changes in protein structure triggered by drug molecule’s 
bond formation thanks to its graph-in-graph algorithm 
architecture.

The main goal of this work is to build a framework that 
can generate a highly potent active candidate molecule 
that can interact with the SARS-CoV-2 protein structure 
with a high binding score. The proposed framework is 
illustrated in Fig. 1 that contains three major modules. 
The first module deals with the molecule generation part 
using GGNN (Li et al. 2015). The second module deals 
with the screening part via the construction of a Knowl-
edge Graph between drug–drug similarity, protein–pro-
tein similarity, and drug-target similarity. Finally, the third 
module employs a graph early fusion approach to estimate 
the binding affinity score of generated molecules with the 
target protein structure.

2  Methodology

2.1  Molecule generation

For generating a molecule GGNN was used which is a type 
of GNNs that have recently gained popularity as effec-
tive tools for graph representation learning. In general, the 
GGNN receives the graph structure of the molecule, i.e. 
the adjacency matrix representing the connection of nodes 
within the graph, and the node features matrix for atom 
properties, as input and produces the processed node fea-
ture matrix, and the graph embedded feature matrix. The 
hidden node values (tensor) along with other propagation 
nodes within the graph structure are aggregated to produce 
the final output graph embedding. GGNN comprises three 
phases—Message Passing, Graph Readout, and Global 
Readout. Together these perform iterative actions on sub-
graphs of molecules to generate new molecules.

Fig. 1  Workflow of the proposed framework carried out with three phases: (1) Molecule generation, (2) Molecule screening, and (3) Binding 
affinity prediction
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2.1.1  Message passing

The message-passing is processed through the different 
nodes within the graph network and mathematically rep-
resented as:

where mi represents the message coming from neighbor 
nodes and hi represents the present state of current node vi , 
N(vi) shows the current neighbor of the node vi , and eij rep-
resents the feature for the edge linking two adjacent nodes 
i.e. vi and vj . Message passing and update operations are 
represented by Ml and Ul . Following the message passing 
step comes the graph readout phase.

2.1.2  Graph readout

where g denotes the output graph feature representation and 
R denotes the readout function captures the input and output 
of different node states, converts it, and creating a new graph 
representation.

2.1.3  Global readout

The global readout takes the hidden node (HL) and local 
graph property (g) to predict the global graph embedding. 
This embedding is used to compute the action probability 
distribution (APD) of every graph network, which is a value 
holding the potential actions for expanding a graph and 
instructs the GGNN how to construct a graph network. The 
3 different actions that can be chosen are: firstly Inserting a 
node into the graph network followed by linking the graph’s 
latest added node to the existing node, and lastly bringing 
the graph building to a termination state. For a given graph 
network, GGNN must train to allocate null values to incor-
rect actions. The very first 2 multilayer perceptron (MLP) in 
the global readout phase output initial f �

add
 and f �

con
 , which 

could then be merged with graph readout output. This 
merged matrix is sent through the next MLPs, which then 
outputs the APD after being concatenated and normalized. 
It’s worth noting that fterm is solely dependent on g.
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2.1.4  Pre‑processing

The training data set was preprocessed in such a manner 
that the algorithm can be trained on what to do to generate 
molecular graphs and how to rebuild graphs. To generate 
the data sets, the compounds in the training dataset are seg-
mented one by one to determine the decoding pathway r 
for each compound. The graph network Gn is split into Gn−1 
and each time the associated APDn−1 for Gn−1 is determined; 
APDn−1 provides a mechanism to rebuild Gn . Reversing the 
breadth first search technique is used to determine the order 
of node or edge deletion and it guarantees that unconnected 
segments throughout the graph are not produced after dis-
connecting the edge.

2.1.5  Dataset and evaluation metrics

The MOSES dataset, which was acquired out from the 
MOSES Git repository (Polykovskiy et al. 2020), was uti-
lized to evaluate the GGNN model. The MOSES dataset is 
just a subset of the ZINC database and the description of 
dataset is mentioned in Table 1.

For evaluating the molecule generation module, following 
metrics were used.
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.

Table 1  Dataset description of MOSES dataset

Parameter Values

Size of training set 33M
(no. of graphs)
Size of test set 3.8M
(no. of graphs)
Size of validation set 210K
(no. of graphs)
Types of atoms (C, N, O,

F, S, Cl, Br)
Maximum no. of 27
nodes in a graph
Formal charges [0]
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– Fraction of valid and unique compounds, shows the 
validity and uniqueness of the resulting molecule.

– Novelty refers to the percentage of created compounds 
that were not in the train set.

– Filters refer to the percentage of created compounds that 
travel through the filters used to create the dataset.

– Fragment similarity (Frag) (Davis et al. 2011) is a 
measure that compares distributions in produced and 
source datasets. It is expressed like a cosine similarity. 
The limits of this metric are [0, 1].

– Scaffold similarity (Scaff) (Blaschke et al. 2018) is a 
metric comparable to frag, as opposed to fragments it 
measures the patterns of all compound’s side chains and 
bridge fragments linking rings. The limits of this metric 
are [0, 1].

– Similarity to the nearest neighbor (SNN) (Arús-Pous 
et al. 2019) shows the closeness among the fingerprints 
of a produced compound to its closest neighbor com-
pound. The limits of this metric are [0, 1].

– Internal diversity (IntDivp) (Sanchez-Lengeling et al. 
2017) is a measure of chemical heterogeneity inside a 
group of molecules that have been generated. This meas-
ure captures the mode collapse of the model. The limits 
of this metric are [0, 1].

– The Fréchet ChemNet Distance (FCD) (Prykhodko 
et al. 2019) is used to determine if produced compounds 
are diverse and also have comparable chemical and bio-
logical features to natural compounds.

The distribution of features is a vital component for view-
ing the molecular structures that have been produced. Four 
criteria were used to evaluate the distributions of produced 
and reference molecule:

– Molecular weight is the total of a molecule’s atomic 
weight.

– ���� is the octanol/water partition coefficient.
– Synthetic Accessibility Score (SA) (Degen et al. 2008) 

a qualitative assessment of how difficult (10) or simple 
(1) a particular compound is to synthesis.

– Quantitative Estimation of Drug-likeness (QED) 
(Bemis and Murcko 1996) is the likelihood that a com-
pound would be a suitable drug option. The limits of this 
metric are [0, 1].

2.2  Molecule screening

To optimize the results a custom-made Knowledge Graph 
was used to apply a screening process on the thousands 
of novel as well as FDA-approved drug molecules. Our 
knowledge graph is a heterogeneous graph generated from 
two homogeneous similarity matrices i.e. drug–drug and 
target-target similarity matrices and the DTI(Drug Target 

Interaction) data from the DAVIS dataset (Davis et al. 2011). 
A pictorial representation of our framed knowledge graph 
is shown in Fig. 2.

2.2.1  Drug–drug similarity matrix

Molecular similarity involves two major components:

– Molecular Descriptors: Represent the structures of the 
molecules being compared.

– Similarity coefficient: Metric used to compute a quan-
titative score for the degree of similarity based on the 
weighted values of structural descriptors.

The MACCS (Molecular ACCess System) keys (Durant 
et al. 2002) were used as molecular descriptors (2-D chemi-
cal fingerprints) as they are one of the most commonly used 
structural keys. The similarity coefficient between two drug 
molecules is calculated using Tanimoto Coefficient on their 
respective MACCS keys. Similarity scores for all pairs of 
drugs were calculated in the DAVIS dataset and generated 
the drug-drug similarity matrix.

2.2.2  Target–target similarity matrix

The standardized Smith–Waterman algorithm (Yamanishi 
et al. 2008) was used to calculate target–target similarity 
analysis of structural protein patterns. The Smith Water-
man approach determines comparable regions between two 
strings of amino acid or structure of protein sequences by 
performing local sequencing.

Now, to construct the knowledge graph, it is required to 
define a threshold value for binding affinity as well as the 
similarity scores exceeding which would result in the crea-
tion of an edge between drug-target and target-target respec-
tively. For binding affinity, we chose the pKd value to be 7.0 
( Kd value of 100 nM), since this value is a widely accepted 
threshold for the DAVIS dataset. To identify the threshold 
value of the target-target similarity score, the global cluster-
ing coefficient metric was used that was calculated from the 
knowledge graph.

2.3  Binding affinity prediction

The objective of the DTA concern is to predict the affinity 
score A of the generated drug-molecule D and target-protein 
P. This concern can mathematically be defined as a regres-
sion task:

where � denotes the parameter values of the prediction func-
tion F.

(10)A = F
�
(P,D),
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Most existing methods for predicting binding affinity are 
using sequences of protein structure encoded in a feature 
vector, mostly with one-hot encoding. In our work, RaptorX 
tool (Wang et al. 2017) was used to extract 2D contact map 
data as the tertiary structure description in order to incor-
porate important structural features. Furthermore, instead of 
using one-hot encoding for the protein sequences, TAPE’s 
embedding model (Rao et al. 2019) was used, which was 
learned from a set of unlabeled amino acid sequence data. 
We also employ secondary structure data extracted using 
the RaptorX tool in the form of the likelihood of three dif-
ferent protein structure types i.e. alpha helix, beta-pleated 
sheet, and coil. The architecture of binding affinity predic-
tion model is shown in Fig. 3.

2.3.1  Graph early fusion approach

The main justification for utilizing Graph Early Fusion 
Approach(GEFA) (Nguyen et al. 2021b) is because it takes 
into account the changes made in target protein structure that 
occur as a result of drug interaction. The graph structure of 
drug and target are taken as an input and the binding affinity 
score ( pKd where Kd is Dissociation constant of the reaction) 
is given as output. The GEFA integrates the drug molecule 
graph into the protein graph using a self-attention mecha-
nism to represent structural reforms within the binding site 
that occur throughout the interaction phase. To accomplish 
this, a two layer Graph Convolutional Network(GCN) with 
residual blocks was used to improve the vertex descriptions 
within the compound structure. Then, most of the drug rep-
resentation were compressed into a single node in order to 
add it to the protein graph. This single node is now added to 
the protein structure, with the edges linking the compound 
node and residue nodes indicating their interaction. Each 
residue leads to the bond formation uniquely, and this is 
indicated in the drug-residue edges. A self-attention tech-
nique was utilized to learn this degree of compliance.

2.3.2  Binding affinity prediction

To improve the node descriptions of the combined drug-
protein graph obtained from the early fusion process, a 
two-layer GCN with residual blocks was used once again. 
Now, before extracting the graph feature, the drug node 
was removed from the combined graph, therefore only 
the protein representation can be extracted. Next a max-
pooling process afterward following a two-layer network 
was used to obtain the final structure of the protein graph 
network. Concatenating the drug features before and after 
the fusion procedure provides the final representation of 
the drug molecule. To estimate binding affinity scores, 
the final compound feature vector, as well as the protein 

drug feature vector were fused and sent to a three-layered 
fully connected deep network for predicting the binding 
affinity score.

2.3.3  Datasets and evaluation metrics

The DAVIS dataset (Davis et al. 2011), which is one of the 
most extensively used benchmark datasets for binding affin-
ity prediction models was used to train the graph early fusion 
model. Reasons behind selecting this dataset for evaluating 
predictive models include: Data heterogeneity is not a prob-
lem when using the DAVIS dataset as it can be heterogene-
ous if we utilize data from other sources, which might lead to 
data inconsistency. In addition, the data in this dataset is of 
high quality that comprises interactions between 72 kinase 
inhibitors and 442 kinases, which cover more than 80% of 
the human active protein kinome. The dataset descriptions 
is shown in Table 2.

To analyze our model’s performance, four distinct met-
rics were employed, that are backed up by past research and 
are common for most models that work on binding affinity 
prediction. These metrics are:

Table 2  Dataset description of DAVIS dataset

Parameter Values

Total number of 68
Compounds
The maximum length 103
of a compound SMILES
Total number of Proteins 442
The maximum length 2549
Total number of Interactions of a protein sequence 30056
Formal Charges [0]

Fig. 2  Knowledge graph build using two homogeneous similar-
ity matrices and DTI data where the first-hop neighbor of the target 
protein includes the protein with the same structure from the dataset, 
the second-hop neighbor contains molecules from the dataset and the 
third hop contains the generated molecules
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– Concordance Index (CI) to determine if the sequence of 
predicted binding affinity scores of pairs of drugs-target 
matches the higher sequence of actual values; the higher 
the CI score, the better the model.

– Mean Squared Error (MSE) is the average value of the 
difference among the estimated and true output values.

– R squared r2
m
 : represents the model’s global predictive 

accuracy.

3  Experiments and results

All the simulation of our framework comprising three mod-
ules are issued on a configuration of azure Standard NV12 
with a vCPU size of 12 and RAM of 112 GiB.

3.1  Results

The GGNN model for molecule generation was evaluated 
on the MOSES dataset. Later on, the results were compared 
against different state-of-the-art methods including Vari-
ational Autoencoder (VAE) (Blaschke et al. 2018), Adver-
sarial Autoencoder (AAE) (Blaschke et al. 2018), Character-
level Recurrent Neural Networks (CharRNN) (Arús-Pous 
et al. 2019), Objective-Reinforced Generative Adversarial 
Network (ORGAN) (Sanchez-Lengeling et al. 2017), and 
LatentGAN (Prykhodko et al. 2019). The training was per-
formed on mini-batches at a learning rate of 0.0001 and opti-
mizer as adam with the default PyTorch parameters. For 
every epoch, 30,000 samples were simulated and the results 
were stored. The comparison of results obtained from dif-
ferent model is shown in Table 3.

On the Davis dataset, the early fusion approach for pre-
dicting binding score prediction was compared with the tra-
ditional late fusion strategy like DeepDTA, GCNConvNet 
and DGraphDTA as shown in Table 4. The training was car-
ried out on 128 mini-batches with a learning rate of 0.0005 
and a learning decay of 20% after 40 epochs, with no change 
in MSE in the validation data. The train, test and validation 
curve for GEFA is shown in Fig. 4. The model is trained till 
convergence using Adam as optimizer.

3.2  Usecase considering SARS‑CoV‑2 protein

Now, after completion of training our framework, two pro-
teins of the coronavirus (SARS-CoV-2) namely, RdRp and 
3CLpro were simulated with novel drug molecules generated 
using our optimized molecule generation model. The steps 
involved in this process are shown below.

– For the simulation, firstly the SARS-CoV-2 proteins was 
added to the existing knowledge graph after calculating 
the similarity score with all other proteins. Then the new 
drug nodes were added to the graph iteratively by cal-
culating drug-drug similarity with all other drugs in the 
graph and forming respective edges

– Now, in the candidate selection phase, proteins that 
are direct neighbors of the coronavirus proteins were 
selected and ranked them as per their edge weight (nor-
malized Smith-Waterman Score)

– Then a list of drugs were generated that have a good 
binding affinity to these proteins. The drugs that have 
high similarity to the former were taken as candidate 
drugs for the SARS-CoV-2.

Fig. 3  Illustration of steps involved in Graph Early Fusion Model used for prediction of binding affinity includes: (1) Early fusion of drug and 
target to form drug-target graph, (2) Refinement of drug-target graph, and (3) Binding affinity prediction step



Network Modeling Analysis in Health Informatics and Bioinformatics            (2022) 11:6  

1 3

Page 7 of 11     6 

– These candidate drugs were then fed into the Graph Early 
Fusion Model along with the SARS-CoV-2 proteins to 
predict their binding affinity scores. Those with binding 
affinity values higher than 7.0 were considered as poten-
tial drugs for coronavirus is shown in Table 5 and the 
corresponding molecular graph of generated compound 
with considerable binding affinity are shown in Fig. 5.

Out of 11164 novel generated molecules, only 369(3.31%) 
molecules were predicted to have binding affinity ≥ 7 ∶ 0 
with the SARS-CoV-2 proteins. And after the screening 
process, 405 candidate molecules were selected of which, 
316(70.37%) had binding affinity ≥ 7 ∶ 0 . Among 369 bind-
ing molecules, 316 were retained after screening and more 
than 10000(99%) non-binding molecules were discarded in 
the screening process itself as demonstrated in Figure 6.

4  Discussion

Our study states that it’s not in the best interest to represent 
molecules in linear 1D representations while generative 
modeling, since it may lose out on many of their valuable 

properties which come from their tertiary structures. Now, 
it could therefore being said that GNNs are best suitable 
for most of the tasks surrounding chemical structures since 
they will preserve tertiary properties and will also allow us 
to use traditional graph algorithms surrounding graph data 
structures of computer science to perform various kinds of 
analysis. Experimental results support this claim as GGNN 
reproduced 100% valid and 100% unique novel molecules 
while preserving all chemical properties.

Also a cutting-edge deep learning architecture was used 
that uses the Graph Early Fusion Approach and knowledge 
graphs to predict drug-target binding affinity, which is cru-
cial for virtual drug repurposing and development. The 
Early Fusion Method is used to address the change in pro-
tein structure that occurs during the bond formation also 
with the compound molecule. Unlike previous deep learn-
ing methods that employed a late fusion approach, the early 
fusion technique incorporates drug molecule representation 
into the protein sequence training process, allowing the net-
work to learn the potential binding sites that occur in the 
protein structure after the bond formation. As a result, the 
model is better to recognize since it reveals which residues 
and to what extent they contribute to the bond formation.

This claim is also supported by the fact that use of drug-
drug and protein-protein similarity calculation to create 
and exploit drug target knowledge graphs for the screening 
purpose and optimization in efficiency for the discovery of 
highly potent drugs given a target protein. Without using 
screening process, all the generated novel molecules had to 
be tested against the target protein, even though among the 
11,164 novel molecules generated, only 369 (3.31%) were 
predicted to be binding. While, after the screening process, 
only 405 molecules (out of 11164) were selected as candi-
date molecules out of which 316 (70.37%) of the binding 

Table 3  Comparison of results 
obtained from different models 
for molecule generation using 
MOSES dataset

Metric VAE AAE Char-RNN ORGAN LatentGAN GGNN

Valid 0.1535 0.6227 0.8161 0.756 0.6604 1
unique@1K 0.9999 0.9999 0.99990 0.9969 0.9969 1
unique@10K 0.9991 0.9995 0.9996 0.9942 0.9921 1
FCD 3.2761 1.3476 0.3249 73.595 3.8604 27.995
SNN 0.4788 0.5332 0.5442 0.3163 0.4412 0.2446
Frag 0.9883 0.9917 0.9992 0.7637 0.9832 0.5415
Scaf 0.7211 0.8555 0.8871 0 0.4500 0.0214
IntDiv 0.8551 0.8553 0.8538 0.4715 0.8525 0.8883
IntDiv2 0.8483 0.8485 0.8479 0.4530 0.8461 0.8809
Filters 0.8503 0.9617 0.9766 0.9413 0.9374 0.3047
logP 0.2475 0.2606 0.0824 29.916 0.1985 0.9640
SA 0.2665 0.0674 0.0401 1.2772 0.4033 2.3227
QED 0.0237 0.0036 0.0043 0.7557 0.0379 0.1913
Weight 18.523 14.071 4.889 10.906 13.009 18.697
Novelty 0.9995 0.9986 0.9975 1 1 1

Table 4  Comparison of results obtained from different models for 
binding affinity prediction using DAVIS dataset

Model RMSE ↓ MSE ↓ CI ↑ r
2

m

DeepDTA (Öztürk et al. 2018) 0.511 0.261 0.878 0.630
GCNConvNet (Nguyen et al. 

2021a)
0.533 0.284 0.865 0.601

DGraphDTA (Jiang et al. 2020) 0.491 0.241 0.887 0.700
GEFA 0.427 0.223 0.902 0.721
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molecules were retained. The screening process thus dis-
carded 99% of the non-binding molecules before being fed 
into the Early Fusion model.

5  Conclusion

In this paper, a framework was introduced blending the 
three different techniques i.e. molecule generation using 
GGNN and novel candidate selection using knowledge 
graph and for further binding affinity calculations using 
early fusion approach for a molecular generation. This 
framework was tested with a simulated run on two of the 

SARS-CoV-2 viral proteins namely, RdRp and 3CLpro. 
The uniqueness of our framework consists in exploring the 
capability of GNN to process the structured data of molec-
ular graphs. One major advantage of using GNNs includes 
dealing directly with the molecule’s graph representation, 
which the string representation lacks. GNNs can capture 
both the global and local context of the molecular graph 
whereas in few cases convolution operations performed 
on sequential data failed to capture the global context of 
the molecule. Finally, it could therefore being said that 
proposed framework will be the cornerstone for AI-based 
Drug Discovery.

Fig. 4  a Shows the RMSE curve for train, test and validation curves of GEFA model, b shows the MSE curve for train, test and validation of 
GEFA model, and c shows the CI curve for train, test and validation of GEFA model
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Fig. 5  A sample molecular graph representation of generated molecules with their IUPAC names that posses higher binding affinity score with 
the target SARS-CoV-2 viral proteins: RNA-dependent-RNA polymerase (RdRp) and 3C-like protease (3CLpro)
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