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Abstract: Skeletal muscle is a tissue that has recently been recognized for its ability to produce
androgens under physiological conditions. The steroidogenesis process is known to be negatively
influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect
on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS,
resulting from both their metabolic activity and the surrounding environment. Interestingly, the
regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber
adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response.
The aim of the present study was to investigate whether ROS could influence steroidogenesis in
skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT),
as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase,
3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were
exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to
reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation
induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase
5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a
“performance-enhancing” drug, was evaluated in a single treatment or in combination with H2O2.
Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T,
and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment
significantly reduced the H2O2-induced DHT release. This study adds a new piece of information
about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen
peroxide plays an important role in activating muscle steroidogenesis.

Keywords: skeletal muscles; reactive oxygen species; redox status; testosterone; dihydrotestosterone;
tadalafil; phosphodiesterase type 5

1. Introduction

The most important male sex hormone, testosterone (T), is mainly produced in the
testis by Leydig cells, starting from the precursor, dehydroepiandrosterone (DHEA), gener-
ally in response to the luteinizing hormone (LH), and to the activation of the hypothalamic–
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pituitary–gonadal axis [1,2]. Dihydrotestosterone (DHT), a metabolite of T, has more
androgenic effects than T and is produced by peripheral tissues, mainly the prostate. Inter-
estingly, in addition to the testis, the expression of hydroxysteroid-dehydrogenase enzymes
has also been found in other tissues [3]. Particularly, the production of testosterone and
DHT, independently from the release of LH, has been observed in both mouse and human
skeletal muscle [4].

Endogenous androgens can influence cell metabolism and protein synthesis, depend-
ing on the time of action and physiological conditions. Moreover, their pattern of produc-
tion and release can be modified in response to acute or chronic muscle contractions [5–9],
through a positive regulatory effect on the expression of the key steroidogenic enzymes. Par-
ticularly in peripheral tissues, testosterone is synthesized through the metabolism of DHEA
via the action of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid
dehydrogenase (17β-HSD), and in turn, it is converted into DHT by the irreversible action
of 5α-reductase (5α-R), or in estradiol by aromatase (Cyp-19) activity (Figure 1).
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Figure 1. Schematic representation of the steroidogenesis pathway: 3β-HSD: 3β-hydroxysteroid
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An important occurrence observed during muscle contraction is the rise in superoxide
anions formation, a process mainly induced by the acceleration in oxidative metabolism,
necessary for supporting the major energy demand. These molecules are rapidly converted
to hydrogen peroxide (H2O2), whose relevance, at a low level, in activating redox signaling
pathways and transcription factors involved in the adaptive response to exercise, is recog-
nized by a growing number of studies [10–15]. The formation of small amounts of ROS
acting as redox signaling messengers, needed for the normal physiological functions, is
known as “eustress”. As a consequence of this phenomenon, the induction of numerous
ROS response proteins is observed. Among them, the small heat shock protein (sHSP),
αB-crystallin (CRYAB), is currently considered a sensor of oxidative stress in mammalian
cells, with a key role in the prevention of apoptosis [16].

On the contrary, overwhelming concentrations of ROS determine “oxidative distress”.
In particular, prolonged exposure to cytotoxic levels of ROS can modulate specific markers
of apoptosis (e.g., Bcl-2, Bax, and cleaved caspase-3), leading to programmed cell death [17].
Oxidative stress is a common factor in several age-related physiopathological conditions,
and it is widely recognized as a detrimental factor for physical performance [13].

To overcome the negative effects of the excessive ROS amount that is produced fol-
lowing intense exercise, sports practitioners commonly use antioxidant supplementation
in sports fields, along with “performer-enhancing” drugs, in the ever-growing attempt to
improve their physical efficiency.

Among the non-prohibited substances utilized to optimize sports performance, tadalafil
is often misused. This drug belongs to a group of phosphodiesterase type 5 enzyme in-
hibitors (PDE5i) originally prescribed for the treatment of erectile dysfunction (ED) [18,19].

In addition to its numerous physiological effects, it has been observed that tadalafil
also targets muscle tissue, regulating its endocrine–metabolic functions, probably through
the modifications of steroid hormone release [20,21]. However, the relationship between
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TAD, steroid hormones, pro-oxidant environment, and the relative molecular mechanisms
are still not completely clarified.

The aim of the present study was to evaluate the effect of H2O2 on steroidogenesis in
skeletal muscle. C2C12 myotubes were treated with a non-cytotoxic concentration of H2O2
to mimic a eustress condition and analyzed for DHT and T release; the gene expression
levels of the steroidogenic enzymes 5α-R, 3β-HSD, 17β-HSD, and aromatase, as well as
the protein expression/activation of stress response proteins such as alpha B-crystallin
(CRYAB), and apoptotic markers, such as Bcl-2, Bax, and caspase-3. Moreover, we verified
whether tadalafil could interfere with the H2O2-induced cellular response.

2. Results
2.1. Analysis of Stress Response Protein and Apoptotic Markers

C2C12 cells, treated for 24 h with H2O2 500 µM, were analyzed for morphological
changes. Figure 2A shows that, in comparison to control cells (left panel, a), the morpho-
logical condition of treated cells (right panel, b) was apparently similar, and no cell death
was observed. Then, we assayed the effect of hydrogen peroxide treatment on the expres-
sion/phosphorylation level of CRYAB in C2C12 myotubes (Figure 2B), as well as on the
expression of specific apoptotic markers, such as Bcl-2, Bax, and caspase-3 (Figure 2B–D).
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to 500 µM H2O2 for 24 h (right panel, b). Scale bar, 75 µm. (B) Representative immunoblot images of
specific apoptotic markers, such as Bcl-2, Bax, and caspase-3, were evaluated in C2C12 myotubes
exposed to hydrogen peroxide (500 µM for 24 h) in presence or not of tadalafil (1 µM, 30 min pre-
treatment, and then combined treatments for the following 24 h). (C,D) Representative immunoblot
images of total and phosphorylated form of CRYAB, evaluated in C2C12 myotubes exposed to
hydrogen peroxide (500 µM) for 1 h (C) or 24 h (D), pre-treated, or not, with tadalafil. Bar diagrams
represent the densitometric intensities of p-CRYAB, normalized with total CRYAB. β-actin was used
as loading control. * p < 0.05 vs. ctrl; § p < 0.05 vs. H2O2.

As expected, we observed a significant increase in CRYAB activation (p-CRYAB) follow-
ing exposure to hydrogen peroxide (1 h and 24 h, respectively, 1.8 ± 0.0 and 3.2 ± 0.1-fold
change vs. control, p < 0.05). Pre-treatment with tadalafil (1 µM) significantly reduced
CRYAB activation after 1 h (H2O2 + TAD: 0.7 ± 0.1-fold change vs. H2O2, p < 0.05). No
significant effects on p-CRYAB were detected in the presence of tadalafil alone. No differ-
ences were observed in control cells at both experimental points (1 h and 24 h; p > 0.05)
(Figure 2C,D).

No effects on the total content of CRYAB were observed at any experimental condition
(p > 0.05).

Similarly, no changes were observed for all apoptotic markers analyzed at each experi-
mental condition (p > 0.05) (Figure 2B).

2.2. Dihydrotestosterone (DHT) and Testosterone (T) Release

We evaluated the effect of hydrogen peroxide treatment on DHT and T release in
skeletal muscle. The treatment with H2O2 (500 µM, 24 h) induced a significant release of
DHT compared with control cells (15.6 ± 2.5 vs. 5.1 ± 2.8 pg/mL, p < 0.01), whereas no
significant effects were observed following tadalafil exposure in comparison to control,
although an increasing trend was demonstrated (1 µM, 24 h) (Figure 3A, p > 0.05).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

No significant effects were observed on testosterone secretion following each treat-

ment (p > 0.05, Figure 3B). 

 

Figure 3. C2C12 myotubes exposed to hydrogen peroxide (500 µM, 24 h) in presence or absence of 

tadalafil (1 µM, 30 min pre-treatment, and then combined treatments for the following 24 h) were 

analyzed for DHT (A) and T (B) release. Data are presented as the percentage of release vs. ctrl ± SE. 

* p < 0.05 and ** p < 0.01 vs. ctrl; § p < 0.05 vs. H2O2.. 

2.3. mRNA Expression of Steroidogenic Enzymes 

We examined the effect of hydrogen peroxide treatment on the expression of the 

steroidogenic enzymes mainly expressed in skeletal muscle [22]. H2O2 (500 µM H2O2, 24 

h) induced a significant increase of mRNA expression of 3β-HSD, 17β-HSD, 5α-R2, and 

aromatase (Cyp-19), compared with control cells (respectively: 61.6 ± 6.1-, p < 0.01; 4.6 ± 

0.2-, p < 0.05; 1.5 ± 0.2-fold change, p < 0.05; 1.6 ± 0.1-fold change, p < 0.05) (Figure 4A–D). 

Pre-treatment with tadalafil reduced the expression of 5α-HSD mRNA induced by H2O2 

(0.9 ± 0.1-fold change, p < 0.05) and significantly increased the expression of Cyp-19 (3.5 ± 

0.2-fold change, p < 0.05) but did not significantly affect the mRNA expression of 3β-HSD 

and 17β-HSD. Interestingly, the presence of tadalafil per se induced a significant increase 

of the transcripts of all steroidogenic enzymes compared with control cells (respectively, 

28.4 ± 0.6-, p < 0.01; 6.5 ± 0.8-, p < 0.05; 2.8 ± 0.3-fold change, p < 0.05, 1.2 ± 0.1-fold change, 

p < 0.05); moreover, it showed a stronger effect of H2O2 on 17β-HSD and 5α-R2 mRNAs (p 

< 0.05). 

 
(A) (B) 

Figure 3. C2C12 myotubes exposed to hydrogen peroxide (500 µM, 24 h) in presence or absence of
tadalafil (1 µM, 30 min pre-treatment, and then combined treatments for the following 24 h) were
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The pre-treatment with tadalafil blunted the effect of H2O2 (9.2 ± 2.8, p < 0.05 pg/mL,
Figure 3A) by reducing the extent of the phenomenon. However, the DHT release was still
significantly higher compared with control cells.

No significant effects were observed on testosterone secretion following each treatment
(p > 0.05, Figure 3B).

2.3. mRNA Expression of Steroidogenic Enzymes

We examined the effect of hydrogen peroxide treatment on the expression of the
steroidogenic enzymes mainly expressed in skeletal muscle [22]. H2O2 (500 µM H2O2,
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24 h) induced a significant increase of mRNA expression of 3β-HSD, 17β-HSD, 5α-R2,
and aromatase (Cyp-19), compared with control cells (respectively: 61.6 ± 6.1-, p < 0.01;
4.6 ± 0.2-, p < 0.05; 1.5 ± 0.2-fold change, p < 0.05; 1.6 ± 0.1-fold change, p < 0.05)
(Figure 4A–D). Pre-treatment with tadalafil reduced the expression of 5α-HSD mRNA
induced by H2O2 (0.9 ± 0.1-fold change, p < 0.05) and significantly increased the expres-
sion of Cyp-19 (3.5 ± 0.2-fold change, p < 0.05) but did not significantly affect the mRNA
expression of 3β-HSD and 17β-HSD. Interestingly, the presence of tadalafil per se induced
a significant increase of the transcripts of all steroidogenic enzymes compared with control
cells (respectively, 28.4 ± 0.6-, p < 0.01; 6.5 ± 0.8-, p < 0.05; 2.8 ± 0.3-fold change, p < 0.05,
1.2 ± 0.1-fold change, p < 0.05); moreover, it showed a stronger effect of H2O2 on 17β-HSD
and 5α-R2 mRNAs (p < 0.05).
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Figure 4. (A) 3β-HSD, (B) 17β-HSD, (C) 5α-R2, and (D) aromatase (Cyp-19) mRNA of C2C12
myotubes exposed to H2O2 (500 µM, 24 h for Cyp-19) in presence or absence of tadalafil (1 µM,
30 min pre-treatment and then combined treatments for the following 24 h). Data are shown as the
fold increase vs. ctrl taken as 1 (red line) ± SE (n = 3). * p < 0.05 and ** p < 0.01 vs. ctrl; § p < 0.05 vs.
H2O2.

3. Discussion

Our findings offer compelling lines of evidence indicating that moderate levels of H2O2
can induce modulation of steroidogenesis in muscle cells, as indicated by the increased
expression of 3β-HSD, 17β-HSD 5α-R2, and aromatase, as well as by the release of DHT.
We believe that this activation can contribute to the adaptation process to an oxidizing
environment, such as that caused by strenuous exercise, and considering the data from the
literature, probably ameliorates cell survival. Tadalafil per se induced a significant increase
in the transcripts of all steroidogenic enzymes; however, this effect was followed by a small
release of DHT, while the combined treatments blunted the DHT release induced by H2O2.

To verify that we were performing experiments in non-cytotoxic conditions, we evalu-
ated the expression of CRYAB, a protein sensitive to the alteration of redox homeostasis,
along with apoptotic markers after treatments.

CRYAB expression appears to be dependent on the levels of ROS (cytotoxic or non-
cytotoxic) [23–27]. In our experiments, we did not observe upregulation of CRYAB protein



Int. J. Mol. Sci. 2022, 23, 6566 6 of 13

expression, and no featured changes related to cell death were observed at the morpho-
logical and molecular levels. On the contrary, we observed a significant increase in the
phosphorylated form that is known to participate early in the oxidative stress adaptive
response of skeletal and cardiac muscles [25,26]. Depending on the type and/or duration
of various stimuli, a part of the CRYAB pool becomes phosphorylated and, correlatively,
shows an enhanced affinity for the various elements of the cell, providing beneficial out-
comes [28]. These data confirm that our experimental conditions induced eustress in C2C12
myotubes.

3.1. H2O2 Induces the Release of DHT but Not Testosterone

In our experimental model, H2O2 induced the release of DHT but not testosterone.
Dihydrotestosterone is a metabolite of testosterone that is produced in many tissues,
following the rapid and irreversible reduction in testosterone by 5α-reductase. It has
been reported that DHT, but not T, modulates force production in isolated, intact, mouse
skeletal muscle fibers, and stimulates amino acid uptake [29,30]. Moreover, several works
have demonstrated the protective effect of DHT against oxidative stress, in both in vitro
and in vivo experimental models.

In a model of mouse embryonic stem cells, DHT pre-treatment prevented H2O2-
induced cell injury through inhibition of ROS and ROS-induced activation of different
signaling pathways, such as p38-mitogen-activated protein kinase (p38MAPK) and stress-
activated protein kinase (SAPK)/JNK and NF-κB) [31]. DHT treatment reduced amyloid-
beta peptide 1–42 (Aβ1–42)-induced oxidative stress, and the internalization of Aβ1–42 by
Z310 cell line epithelial cells [32]. It was demonstrated that DHT enhanced resistance to
oxidative, stress-induced apoptosis on endometrial stromal cells by enhancing forkhead
box protein O1 (FOXO1) expression, in parallel with increased manganese-dependent
superoxide dismutase (SOD2) [33]. DHT was also found protective in pancreatic islet
INS-1 β-cells against H2O2-induced oxidative stress [34]. Moreover, the inhibition of
DHT production through treatment with finasteride, an inhibitor of 5α-reductase, induced
oxidative stress in an experimental rat model, indicating an autocrine protective role of
dihydrotestosterone [35].

In our results, we found that stimulation of C2C12 cells with H2O2 induced the release
of DHT but did not influence T release. To explain the significance of the different effects of
H2O2 on the release of the two hormones, we speculate that H2O2 itself, at a non-cytotoxic
level, produces a defensive microenvironment, thus protecting the secreting cell itself, as
well as nearby cells. Instead, it is possible that increased T levels might lead to an alteration
in the balance between ROS and antioxidant defenses and, therefore, to an enhanced risk
of oxidative stress. In fact, several studies have demonstrated that T has mainly pro-
oxidant properties in different tissues, including muscles, especially if it is present at high
levels [36–40].

In this context, we can suppose that DHT could be part of a defensive communica-
tion system between cells that allows them to adapt to changing redox environmental
conditions [41].

3.2. H2O2 Modulates the Expression of Steroidogenic Enzymes

In the past, it was believed that only gonads were responsible for androgen pro-
duction. At present, it has been demonstrated that other tissues are able to produce
androgens. Recently, muscle cells have been shown to possess steroidogenesis enzymes,
whose activity seems to be modulated by several physiological stimuli [42]. In particu-
lar, 17β-hydroxysteroid (17β-HSD), 3β-hydroxysteroid (3β-HSD), 5α-reductase, and P450
aromatase are particularly expressed in the ovary, in testis, and in the brain, but also in
muscles, such as the gastrocnemius, which presents the highest expression of 3 β-HSD, and
the soleus, with the highest expression of P450 aromatase [42]. Although studies conducted
on C2C12 revealed the enzymatic activity of 3β-HSD, the presence of the protein was still
not detected in their results [43].
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Here, we found that H2O2 exposure induced the transcription of 3β-HSD, 17β-HSD,
and 5α-R2 mRNAs.

Several studies have also reported that physical activity plays a role in the steroidoge-
nesis of muscle cells. Mechanical stimulation promoted the expression of the steroidogenic
enzymes 3β-HSD, 17β-HSD, and aromatase in C2C12 cells, confirming the importance of
this biochemical pathway in contracting muscles [22].

Further, it has been shown that endurance exercise training enhances muscular DHT
concentration through steroidogenic enzyme modulation in human and rat skeletal muscles,
suggesting that local bioactive androgen production may participate in exercise training-
induced skeletal muscular adaptation [21,44,45].

The influence of exercise on steroidogenesis has been proven to be very promising;
for example, it was reported that age-related declines in sex steroidogenic enzymes and
muscle sex steroid hormone levels were restored via a progressive resistance training
program through 3β-HSD, 17β-HSD, and 5α-reductase expression inductions [3]. Indeed, a
rapid increase in serum DHT concentration has been observed immediately after repeated,
high-intensity sprint exercises in healthy subjects [46].

Dehydroepiandrosterone (DHEA) is a precursor of sex steroid hormones, and in vivo,
its circulating levels provide substrates required for conversion into androgens and estro-
gens in peripheral tissues [47]. Our experiments confirmed that the presence of exogenous
DHEA, such as that contained in the bovine serum normally used for cell culture, is es-
sential to stimulate steroidogenesis in any experimental condition (1500 times p < 0.001,
Table 1). In a serum-deprived condition, no DHT release was observed.

Table 1. DHT evaluation in serum-free condition after H2O2 and TAD administration.

DHT (pg/mL)

ctrl n.d.
H2O2 n.d.

H2O2 + TAD n.d.
TAD n.d.

DHEA 1547.5 ± 395.7 *
* p < 0.001 vs. ctrl; n.d. not detectable.

3.3. TAD Influences Steroidogenesis in C2C12 Myotubes

Various non-prohibited substances and nutritional supplements are often used by
competitive and non-competitive athletes in order to prevent or reduce metabolic imbalance,
thus improving physical performance. Some of them have been shown to influence the
endogenous steroids milieu and energy metabolism, both at rest and during exercise.
Among these compounds, different effects of phosphodiesterase’s type 5 inhibitor (PDE5i)
tadalafil on exercise adaptation, performance, and modulation of endocrine, enzymatic,
and metabolic pathways were observed [20,48–54]. Tadalafil amplifies the nitric oxide (NO)
biological activity, thus modulating the endogenous steroids release and energy substrate
metabolism, at rest and after physical stress [51,55–58].

Recently, our laboratory, along with others, has demonstrated that PDE5i, including
tadalafil, may modulate muscle metabolism and response to ROS under physiological and
pathological conditions, in either in vitro or in vivo studies [27,59–66].

Here, we observed a different effect of tadalafil when administered alone, or in com-
bined treatment with H2O2. In particular, tadalafil treatment did not influence T release,
while it induced a slight increase in DHT levels, along with the increase in 17β-HSD and
5α-reductase expressions.

While tadalafil, in the combined treatment, significantly blunted the DHT release,
H2O2 induced and reduced the expression of 5α-R2. According to this observation, recently,
we have demonstrated that tadalafil administration in vivo significantly blunted serum
DHT increase after maximal aerobic exercise, compared to placebo in young men [21].
The blunting effect of tadalafil on DHT supports a possible role of peripheral nitric
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oxide/GMPc-related pathways in influencing physical stress-related steroidogenesis and
DHT metabolism, making cells less dependent on the protective action of DHT.

Interestingly, a marked increase in aromatase expression was observed, possibly
increasing the conversion of T to estradiol, a hormone also involved in response to oxidative
stress in muscle cells. Therefore, it is possible that an additional mechanism exists in muscle
cells that reduces the expression of the steroidogenic enzyme responsible for the conversion
of T to DHT [67] and increases the conversion to estradiol in mild stress conditions. In fact,
there was a demonstrated protective role of estradiol in muscle cells [68–72].

4. Conclusions

Through this study, we provided a new piece of evidence to the picture of the adaptive
skeletal muscle cell response to a pro-oxidant environment.

Given that C2C12 myotubes possess most of the morpho-functional features of con-
tractile muscle cells, and considering redox imbalance, a condition similar to what occurs
during muscle contraction [73], we can speculate that our observations in vitro about the
intramuscular steroidogenesis might be extended in vivo, in order to better understand
muscle function and adaptation related to exercise.

This area of research is clearly in its early stages and warrants extended additional
investigations in humans.

5. Materials and Methods

All chemical reagents, unless otherwise specified, were purchased from Sigma-Aldrich
Chemical (St. Louis, MO, USA).

5.1. Cell Culture

C2C12 myoblasts (2 × 103 cm2, passage number 6; ATCC, Manassas, VA, USA) were
cultured in 25 cm2 culture flasks with Dulbecco’s modified Eagle’s medium (DMEM;
HyClone, Oud-Beijerland, Holland) supplemented with Glutamax-I (4 mM L-alanyl-L-
glutamine), 4.5 g/L glucose (Invitrogen, Carlsbad, CA, USA), and 10% heat-inactivated
fetal bovine serum (FBS; Hy-Clone, Oud-Beijerland, Holland). The cells were incubated at
37 ◦C with 5% CO2 in a humidified atmosphere. Cells were split 1:6 twice weekly and fed
24 h before each experiment. Differentiation into myotubes was achieved via culturing pre-
confluent cells (85% confluency) in a medium containing 2% FBS, and they were monitored
via microscopy, and for myogenin and MHC expression, via Western blot analysis [74,75].

5.2. Cell Treatments

C2C12 myotubes were treated with H2O2 (500 µM) alone or after pre-treatment with
tadalafil (1 µM, 30 min) and in combined treatments for the following 1, 6, and 24 h.

MTT assay was performed, and no statistically significant differences were found after
H2O2 treatment (data not shown).

The same experiments were also performed using a medium without phenol red and
FBS using DHEA (500 nM) as positive control. Each experiment was performed in triplicate.

5.3. Morphological Imaging

Morphological changes and cell apoptosis were assessed by analyzing photomicro-
graphs obtained under an inverted phase-contrast microscope (Nikon Eclipse TS100. Nikon
Europe BV, Amsterdam, The Netherlands) with a digital camera (Canon Europe, Am-
stelveen, The Netherlands). Cellular analysis was performed by evaluating at least five
different fields for each well.

5.4. Protein Expression Analysis

C2C12 myotubes with or without tadalafil (1 µM), and then stimulated for 1 h or 24 h
with 500 µM H2O2, were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 8, 1 mM
EDTA, 1% NP40, 0.25% sodium deoxycholate, 0.1% SDS, water to volume), supplemented
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with protease and phosphatase inhibitor cocktails (Sigma–Aldrich, Darmstadt, Germany).
As previously described [76–78], for the immunoblot analysis, an equal amount of proteins
(20–30 µg) was resolved in SDS-polyacrylamide (BIO-RAD) gels (10–12%), and transferred
onto nitrocellulose membranes (Amersham, Little Chalfont, UK). Thereafter, membranes
were incubated with primary antibodies appropriately diluted in Tween Tris-buffered saline
(TTBS). Proteins were revealed by the enhanced chemiluminescence system (Amersham
Biosciences, GE Healthcare Europe GmbH, Glattbrugg, Switzerland). Image acquisition
was performed with Image Quant Las 4000 software (GE Healthcare, Chicago, IL, USA),
and densitometric analysis, with Quantity One® software (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). The following antibodies were utilized: p-CRYAB, CRYAB, Bcl-2, Bax,
caspase-3, and β-actin from Santa Cruz (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

5.5. Testosterone and Dihydrotestosterone Levels

Following each experimental point, the culture medium was collected and stored at
−20 ◦C until it was assayed for DHT and testosterone (T). DHT concentration was measured
via enzyme-linked immunosorbent assay, using commercial kits (DRG International Inc.,
Marburg, Germany).

T concentration was measured via radioimmunoassay, using commercial kits (Im-
munotech, Radiova, Prague, Czech Republic, and Orion Diagnostica Oy, Espoo, Finland).
All samples were analyzed in duplicate within the same assay. The sensitivity of the method
was 7.23 pg/mL for DHT, and 0.1 nmol/L for T. The coefficients of variation for intra-assays
and inter-assays were 6.25% and 7.47% for DHT, and 7.5% and 7.0% for T, respectively.

5.6. RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR

Total RNA was obtained from ≈3.5 × 104 cells using TRIZOL, according to the
manufacturer’s instructions and as previously described [65,79]. Treatment with DNase
enzyme was performed to remove genomic DNA contamination. cDNA was obtained via
reverse transcription of 500 ng of total RNA. RT-qPCRs were performed, as previously
described [24,80]. Fluorescence intensities were analyzed using the manufacturer’s software
(7500 Software v2.05, Applied Biosystem, Waltham, MA, USA), and relative amounts were
evaluated using the 2−∆Ct method and normalized for β-actin. Data are expressed as a
fold increase. Sequences of primers are shown in Table 2.

Table 2. Sequences of primers for RT-PCR analysis.

Gene Name Forward (5′-3′) Reverse (5′-3′)

5α-R2 TGGAGGGCATGGTGCTAAAG TCTCTCACTTAGCACGGGGA

17β-HSD TTTGCGCTCGAAGGTTTGTG GCAGTCAAGAAGAGCTCCGT

3β-HSD ACCTTGTGGCTGACCATCTC TGCTCTTCCTCGTTGCCATT

CYP-19 AACCCCATGCAGTATAATGTCAC AGGACCTGGTATTGAAGACGAG

β-actin CTGAACCCCAAGGCCAAC AGCCTGGATAGCAACGTACA

5.7. Statistical Analysis

All data are expressed as means ± SE of three independent experiments, each per-
formed in triplicate. A one-way ANOVA and Bonferroni post hoc analysis were used to
determine significant variations among groups for each parameter evaluated; p < 0.05 was
accepted as significant. The SPSS statistical package (Version 17.0 for Windows; SPSS Inc.,
Chicago, IL, USA) was used for statistical analysis.
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