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Letter in response to: Coagulation markers are independent 
predictors of increased oxygen requirements and thrombosis in 
COVID-19

We read with interest the recent publication by Rauche et al and 
congratulate them on highlighting the potentially significant role von 
Willebrand factor (VWF) may play in the progression and prognosis 
of COVID-19.1 Since SARS-Cov2 first presented there has been an 
increasing recognition that the disease may trigger a widespread en-
dotheliopathy. This fact could help to explain the highly varied pre-
sentation of patients with COVID-19 from bowel ischemia to large 
vessel occlusion causing strokes in addition to the more common 
presentation of respiratory symptoms. At the same time there has 
been an increased understanding that the infection may result in mi-
crothrombosis as well as macrothrombosis both on the arterial and 
venous side of the circulation. Contrast enhanced ultrasound was 
recently used to identify microthrombi and wedge-shaped perfusion 
defects in vivo in the pulmonary, renal, and gastrointestinal beds.2,3 
Routine imaging methods, such as computed tomography (CT) and 
CT angiography, do not have the spatial or contrast resolution to 
detect microvascular thrombosis and therefore, the demonstration 
of perfusion defects in vivo has been delayed. Post mortem studies 

have also shown microthrombosis within the lungs confirming the in 
vivo imaging findings. In the study of Carsana et al, microthrombi, 
in vessels < 1mm in diameter, were seen in 87% of cases.4 A further 
case series of COVID-19 pulmonary autopsies revealed that, along-
side diffuse alveolar damage, numerous localized platelet-rich mi-
crothrombi, and foci of hemorrhage were present in the lungs.5 The 
authors posited a pulmonary-localised thrombotic microangiopathy 
as key to the pathogenesis of COVID-19 with others also suggesting 
the micro-thrombosis is a critical driver in the disease process.6

Von Willebrand factor is synthesized only in megakaryocytes 
and endothelial cells (ECs). The vast majority of VWF found in the 
plasma is derived from the VWF synthesized within the ECs, where 
it is stored within the Weibel-Palade bodies (WPB). Although re-
stricted to ECs there are differences in the synthesis of VWF within 
the different vascular beds of the body with the small vessels of the 
lung and brain expressing higher levels of VWF than similar sized 
vessels of the liver or kidney and higher levels in venous rather than 
arterial ECs.7 A major portion of the VWF stored in the WPBs of 
endothelial cells is made up of ultra-large VWF (ULVWF). These 
larger multimers are more adhesive than the smaller multimers in 
the circulation and upon secretion ULVWF can spontaneously bind 
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platelets and cause occlusion of small vessels. The secreted VWF, 
which partly enters the circulation and partly binds to the endothe-
lium, is sensitive to shear stress. This shear stress unfolds the VWF 
and exposes sites for platelet binding and self-association as well 
as for cleavage via the enzyme ADAMTS13. It has previously been 
shown these VWF molecules can self-associate into long “strings” 
in the direction of flow, both arterial and venous, that bind to plate-
lets and are adherent to the endothelium.8-10 The ULVWF multimers 
released from the WPBs unfold at lower levels of shear stress and 
therefore may represent the initiating molecules for this self-as-
sembly process, which leads to hyper-adhesive strings capturing 
platelets. Preventing the binding of platelets to ULVWF may rep-
resent an attractive target to prevent microthrombosis formation. 
Inflammatory cytokines, such as interleukin (IL)-1 and tumor necro-
sis factor (TNF)-alpha, as well as hypoxia, can trigger the exocyto-
sis of WPBs with release of their contents while IL-6 can inhibit the 
cleavage of ULVWF–platelet strings.11 Furthermore, the synthesis 
of ADAMTS13, at least in cultured cells, is dramatically inhibited by 
a variety of cytokines including IL-6 and TNF-alpha.12 This suggests 
that hypoxia, the cytokine storm, and particularly IL-6, may help to 
propagate the microthrombosis.

One of the most interesting findings of the published work was 
that the 10 patients presenting with normal VWF levels were all 
discharged from the emergency department with out-patient fol-
low-up. Although only a very small cohort, we found it interesting 

that the group with normal VWF levels did not require admis-
sion or treatment with oxygen and we believe that this supports 
the concept that VWF plays a critical role in the pathogenesis. 
Furthermore, it is possible that VWF levels and the VWF:factor 
VIII (FVIII) ratio could act as biomarkers for determining which pa-
tients are likely to progress as well as those that are responding to 
treatment. The recent finding of ABO blood type and disease se-
verity also points to a potential link with VWF with those patients 
with type O blood group being at lowest risk and those with type 
A being at highest risk.13 Patients with type O have lower levels of 
VWF compared to those with non-O blood group and those with 
non-O blood group are at higher risk of arterial thromboembolic 
disease such as a ischemic heart disease and peripheral vascular 
disease. Although the exact nature of the interaction remains 
unknown it has been suggested that ABO blood group determi-
nants may be important in influencing the susceptibility of plasma 
VWF to proteolysis by ADAMTS13.14 Therefore, it is possible pa-
tients more susceptible to severe disease are already predisposed 
to thromboembolic diseases and that the sudden surge in VWF, 
particularly ULVWF, triggered by a widespread endotheliopathy 
overwhelms the body's innate ability to break down VWF via 
ADMTS13. Further evidence for this comes from the recent work 
of Ladikou et al,15 who are the first to show a marked drop in circu-
lating ADAMTS13 levels (49.7% of normal) with the authors stat-
ing “we speculate that excess release of VWF seen in COVID-19 
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patients leads to depletion of ADAMTS13 and contributes to the 
prothrombotic state.”

If thromboembolic complications play a significant role in the 
pathogenesis of the disease as it is now widely accepted, then tar-
geting this seems a natural course of action. In the recent propensity 
score–matched study by Tremblay et al16 there was no difference 
in the outcome of patients who were on prior anti-platelet or an-
ti-coagulant medication compared to those who were not. This may 
suggest that that standard approaches to anti-aggregation and or 
anti-coagulation are insufficient. This could be explained by the fact 
that the ULVWF strings mentioned earlier are sufficient to occlude 
vessels alone and this will not be inhibited by standard treatments.

Taking all of this into account we believe that there is now com-
pelling evidence for a critical role of VWF in COVID-19. Rather than 
merely representing a biomarker we believe it plays a pivotal role 
in the pathogenesis and prognosis of the disease. Targeting VWF, 
particularly early in the disease course, through agents such as ca-
placizumab or anfibatide, both of which inhibit binding of platelets 
to the VWF at the glycoprotein IX-Ib receptor, presents an attractive 
opportunity that is yet to be explored (Figure 1).
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