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Introduction
A revolution within French hospitals started with the comput-
erized recording of almost all data (administrative and medical) 
concerning patients, resulting in a massive amount of data gen-
erated by many hospital sources. From these data the establish-
ment of clinical data warehouses (CDW) constitutes a key 
element in optimizing the opportunity for clinical and transla-
tional research.1,2

Generic frameworks and components for CDWs are avail-
able, such as I2b2, a data mart used by more than 200 hospitals 
worldwide.3,4 However, it does not currently provide the level 
of detailed analysis necessary for clinical and translational can-
cer research.

Because cancer evolves over time, a cancer CDW must 
integrate electronic health record (EHR) data with temporal 
information. Some existing cancer warehouses consist of 

enterprise-wide databases across multiple cancer types, while 
others are focused on particular tumor types.5-14

Only medical data warehouses with multiple sources of 
patient data allow the pathways of cancer patient care.

We have created a targeted clinical research real-word ware-
house for cancers (the Regional Basis of Solid Tumor [RBST]) 
that centralizes information related to cancer patient care in 5 
health establishments of 2 French departments.

The retrospective and prospective collected data were hetero-
geneous in their nature and semantics, including structured, par-
tially structured, and unstructured clinical data of various data 
types and different levels of granularity. A web Application 
Programming Interface has been created and hence only data 
with a patient agreement are extracted. The RBST database by its 
capacity to automatically embend standardized data from multi-
ple sources creates a critical mass of knowledge and expertise.
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ABSTRACT

BACkgRounD: The Regional Basis of Solid Tumor (RBST), a clinical data warehouse, centralizes information related to cancer patient care 
in 5 health establishments in 2 French departments.

PuRPoSe: To develop algorithms matching heterogeneous data to “real” patients and “real” tumors with respect to patient identification (PI) 
and tumor identification (TI).

MeThoDS: A graph database programed in java Neo4j was used to build the RBST with data from ~20 000 patients. The PI algorithm using 
the Levenshtein distance was based on the regulatory criteria identifying a patient. A TI algorithm was built on 6 characteristics: tumor loca-
tion and laterality, date of diagnosis, histology, primary and metastatic status. Given the heterogeneous nature and semantics of the col-
lected data, the creation of repositories (organ, synonym, and histology repositories) was required. The TI algorithm used the Dice coefficient 
to match tumors.

ReSulTS: Patients matched if there was complete agreement of the given name, surname, sex, and date/month/year of birth. These 
parameters were assigned weights of 28%, 28%, 21%, and 23% (with 18% for year, 2.5% for month, and 2.5% for day), respectively. The 
algorithm had a sensitivity of 99.69% (95% confidence interval [CI] [98.89%, 99.96%]) and a specificity of 100% (95% CI [99.72%, 100%]). 
The TI algorithm used repositories, weights were assigned to the diagnosis date and associated organ (37.5% and 37.5%, respectively), 
laterality (16%) histology (5%), and metastatic status (4%). This algorithm had a sensitivity of 71% (95% CI [62.68%, 78.25%]) and a speci-
ficity of 100% (95% CI [94.31%, 100%]).

ConCluSIon: The RBST encompasses 2 quality controls: PI and TI. It facilitates the implementation of transversal structuring and assess-
ments of the performance of the provided care.
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Two major challenges have hindered the establishment of 
CDWs, related to patient identification (PI) and tumor identi-
fication (TI). However, 2 specific quality programs permitted 
accurate PI (https://www.identito-na.fr) and the matching of 
clinical data to “real” patients and “real” tumors. The RBST inte-
grates data from health institutions that do not share a common 
patient identifier and hence the first step was the creation of a 
centralized PI management system. The challenge in TI was to 
link all tumor characteristics to the actual tumor, considering 
that multiple primary malignancies can be diagnosed concomi-
tantly or not to the same patient and that the clinical and bio-
logical parameters of the primary tumor can evolve over time. 
Moreover, sequential or multiple recurrences may occur in the 
same patient and tumors may spread locoregionally to organ or 
contiguous organs and/or metastasize to distant organs.15,16

In this study data quality in a cancer-specific CDW was 
assessed based on PI (using multiple sources) and TI (depend-
ing on the time of occurrence). The quality program was 
assessed by a multidisciplinary team composed of a clinical 
team and technology staff. The group was formed by medical 
oncologists, mathematicians, radiation oncologists, breast sur-
geons, organ specialists and computer scientists.

Materials and Methods
Materials

Description of the RBST. The RBST, a graph database pro-
gramed in Java (Figure 1), is composed of 2 modules:  
RBST-Evaluation, which permits the recording and visuali-
zation of data related to patient care and follow-up, and 
RBST-Research, in which de-identified data permit the 

Figure 1. Description of the RBST. The graph database programed in JAVA is composed of 2 modules: RBST-Evaluation, which permits the recording 

and visualization of patient care and follow-up data, and RBST-Research, corresponding to de-identified data allowing the development of translational 

research and clinical projects following the implementation of a complex queries tool.
Abbreviations: API, application programing interface; ETL, extract, transform, and load; NLP, natural language processing.

development of translational research and clinical projects 
following the use of a complex queries tool.

The working group defined essential criteria for tumors and 
validation process repeated during program development. The 
data were classified as defined data automatically extracted, 
structured data requiring classification or modification and 
unstructured data requiring natural language processing.

Data extraction (from 2005 forward) and data integration 
in the RBST are automated by the implementation of extract, 
transform, and load (ETL) tools. Depending on the source 
software, the RBST can be updated weekly or monthly in 
delta- or full-mode extraction. Data extraction involves data 
from homogeneous or heterogeneous sources; data transfor-
mation involves cleaning data and transforming them into a 
format appropriate for analysis and querying.

Data stored on the platform are annotated with standard 
vocabularies (such as SNOMED CT, ICD-10, CCAM, and 
LOIN), synonyms to allow the analysis of associations or using 
data repositories.17,18

Thus far, the RBST has accumulated health data for more 
than 20 000 cancer patients followed at 5 health institutions. 
This CDW is hosted by the French public interest group GIP 
OKANTIS which is certified for hosting health and personal 
data.

Technical management of the servers is carried out by 
OKANTIS (backup, supervision, and network control). 
Development and application management are carried out by 
the Advanced Schema Co.

Approval for this study was obtained from the French 
National Commission on Informatics and Liberty (1884667 v 1) 

https://www.identito-na.fr
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and the Limoges Ethics Committee (avis-200-2016-14). 
Informed consent was obtained from the patients for extraction 
of all medical and administrative data from the health facilities’ 
sources and the integration of the data in a trust file.

Datasets. All file formats are accepted (csv, json, xml, txt, and 
pdf ). Those collected by the platform are listed in Table 1.

Methods

Patient identif ication. The objective of PI is to match the 
patient’s trust data identity to the patient’s software data 
identity.

Health establishment partners follow the regional rules for 
patient identification.19 These rules use strict patient identifiers 
for all of the collected medical data (birth surname, given name, 
birth date, and sex) and possible extended traits, such as mar-
ried name, given name, and place of birth. Despite these rules, 
mistakes can occur.

In French healthcare institutions, a numerical key called 
the Patient Permanent Identifier (PPI) is created after a 
medical file is produced. The PPI remains the same for the 
rest of the patient’s life. In addition, each French healthcare 
establishment has a unique identifier, called the FINESS 
number. The RBST integrates data from 5 institutions. 
Furthermore, private health institutions have multiple elec-
tronic health information systems (administrative billing 
systems, consultations, and hospitalization) that assign mul-
tiple patient identifiers.

The PI algorithm was developed in 2 steps; in the first one, 
matching of the PPI/FINESS couples was checked. In case of 
an absence or error in the PPI/FINESS couple, the second 
step, based on patient traits, was triggered. Here, the 
Levenshtein distance was used to measure the difference 
between 2 words.20

Different weights were assigned to each of the PI character-
istics using a heuristic method which can be possibly improved 
in the future. The influence of the weights was tested by com-
paring extracted data with the real data for more than 1000 
randomly selected patients.

Tumor identif ication. The TI algorithm was built step by step 
using data from the first 12,376 included patients. Three main 
features define a tumor: (1) location and laterality, (2) first 
diagnosis date and the evolution date of the tumor events, (3) 
tumor histologies.

Given the heterogeneity of the terms used to describe, for 
instance, tumor location or histology, 2 repositories (organ and 
synonym) were created by a multidisciplinary group.

Step 1: The locations of the tumor and its status as primary or 
metastasis were identified using the ICD-10 codes or free text.

Laterality was resolved by detecting the words: left, right, 
bilateral, and not applicable in the text and by using anatomical 
descriptions, such as right for the cecum location and left for 
the sigmoid location. Segmentation rather than laterality was 
preferred for some organs, such as the liver, with segments I to 
VIII, and the pancreas, with a head, body, and tail.

If the CIM10, tumor location, and the laterality of the source 
did not correspond to the 2 repositories (organ and synonym), 
as required, an algorithm based on the Dice coefficient21 was 
run to detect the similarities of sequences between the source 
and the synonym repository.

Step 2: The diagnosis date was determined. If the diagnostic 
date in hospital software was not identified, the first date 
found in clinical reports of biopsy or surgical treatment was 
used as the date of diagnosis. However, for local or meta-
static recurrences, a biopsy-based histological diagnosis or a 
diagnosis based on pathological imaging may yield multiple 
diagnostic dates.

Step 3: The tumor histology was determined. Histological 
results (free text or ADICAP codes22) of biopsies and sur-
geries were used to accurately define the tumors. To resolve 
problems generated by the heterogeneity of the histologi-
cal results, a repository of the histological classification of 
tumors with their synonyms was created.

The 3 steps above were followed by the development of an 
algorithm aimed at matching tumors from different sources. 
As for PI, different weights were assigned to each of the tumor 
characteristics.

The computation of the score allowing to identify matching 
tumor data was performed for each item: localization in12 126 
tumors, diagnosis date in 17 527 tumors, and pathology in 
7693 tumors.

Table 1. Detailed data sets in the 6 areas depicting evolution of cancer 
patients.

DATA SETS AREAS

Patients Sex, birth date, co morbidity, family cancer history,

Disease Diagnosis date, location primary tumor, laterality, 
metastatic site, histology, way to obtain histology, 
TNM stage or organ specific stage

Genomics Studied site, method, date, rearrangement, 
mutations, EGFR, ALK, ROS1, HER2, BRAF, 
KRAS

Labs Tumor marker

Treatment Surgery: date, types of surgery
Radiotherapy: location, doses and duration
Chemotherapy: adjuvant, neoadjuvant, curative, 
palliative, drugs, total dosage, start date, end date

Imagery Type of imagery, date, results
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Statistical methods

The outcome of the algorithm is binary (match or mis-
match). To validate these classifiers, their accuracy was esti-
mated using statistical analysis based on standard 
performance measures, including sensitivity, specificity, pos-
itive predictive value (PPV), and negative predictive value 
(NPV). These indicators were computed as TP/(TP + FN), 
TN/(TN + FP), TP/(TP + FP), and TN/(TN + FN), where 
TP, FN, TN, and FP were the numbers of true positives, 
false negatives, true negatives, and false positives, respec-
tively. To estimate these indicators, their 95% confidence 
intervals were computed as well, using the Clopper-Pearson 
method23 and based on a simple random sampling for both 
PI and TI.

All computations were conducted using the R programing 
language.24

Results
Patient identif ication

The first step in PI was to detect duplicate or multiple records 
in the trust file, which led to the detection of 310 possible 
duplicates over 20 000 actual patients. These records were 
manually analyzed and removed if a duplicate was confirmed 
by the RBST administrator.

In case of absence or error of the PPI/FINESS couple 
(55.4% of patients), the second step was triggered.

As shown in flowchart (Figure 2), patients were considered 
matched if there was a complete agreement of the given name, 
surname, sex, and year/month/day of birth. These parameters 
were assigned with weights of 28%, 28%, 21%, and 23% (with 
18% for year, 2.5% for month, and 2.5% for day), respectively.

A score of 100% permitted automatic integration of the 
patient data. Manual linkage by the RBST administrators was 
required when the global score was 80%-99% (Figure 3). This 
reconciliation was automatic for the subsequent integration of 
the data from the patient. Patient data with a score strictly less 
than 80% were rejected.

The most common causes of mismatches in the trust file 
were:

••   Missing and false values in the PPI field: 1% and 40%-
70% respectively;

••  Mismatches due to a blank entry in one field;
••   Mismatches in the given name field that were a result 

of initials having been entered in one record and the 
complete given name in the other record;

••   Mismatches due to typographical errors in the birth 
surname, given name, birth date, sex, or married 
surname;

These mismatches were automatically or manually corrected.
Using this algorithm, 91% of 20 000 (95% CI [90.59%, 

91.39%]) patients were automatically integrated and 9% were 
reconciled by the RBST administrator.

The algorithm indicators controlled by manual observations 
are presented in Table 2. To calculate PI algorithm perfor-
mance measures, we have performed a manual validation over 
1996 randomly selected records: 644 automatic matches (all 
true positive), 233 rejected matches (all true negative), and 
1129 records requiring manual verification (1127 true nega-
tives and 2 false negatives).

In total, there were 644 (100%, 95% CI [99.42%, 100%]) 
correct automatic matches with a score of 100%; 287 of the 644 

Figure 2. PI and TI algorithm flowcharts: (A) Patient identification and (B) tumor identification.
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(44.57%, 95% CI [40.68%, 48.49%]) matches in the PPI field 
were considered valid and 357 of the 644 (55.43%, 95% CI 
[51.50%, 59.31%]) matches with patient traits were considered 
valid. For automatically rejected matches based on a score of 
strictly less than 80%, 223 (100%, 95% CI [98.35%, 100%]) 
observations were considered valid. For a PI score of 80%-99%, 
1129 controls were performed: for a score of 80%-85%, 975 
(100%, 95% CI [99.62, 100%]) were negative and thus consid-
ered valid; for a score of 86%-89%, 73 (100%, 95% CI [95.07%, 
100%]) were negative and valid, and for a score of 90%-99%, 79 
of 81 (97.53%, 95% CI [91.36%, 99.70%]) were negative and 
valid. Among 1129 controls, 2 observations were negative and 
invalid (0.18%, 95% CI [0.02%, 0.64%]). The sensitivity was 
644 true positives among 646 positives (99.69%, 95% CI 
[98.89%, 99.96%]); the specificity was 1350 true negatives 
among 1350 negatives (100%, 95% CI [99.72%, 100%]); the 
PPV was 644/644 (100%, 95% CI [99.42%, 100%]); and the 
NPV was 1350/1352 (99.85%, 95% CI [99.47%, 99.98%]).

Figure 3. Manual patient identification interface. Trust file with a list of patients whose data required reconciliation (A). In the example framed in red 

(5/5/2/0/0), the RBST administrator flagged 5 cases, with the mistakes shown in red (B), 5 cases with a suggested match (B), 2 cases with an automatic 

match (C), 0 manual matches realized, and 0 duplicates. Only the name and surname were changed to hide identity.

Table 2. Statistics of the patient identification (PI) and tumor identification (TI) algorithms.

TOPIC N TRUE 
POSITIVE

TRUE 
NEGATIVE

FALSE 
POSITIVE

FALSE 
NEGATIVE

SENSITIVITy SPECIFICITy PPV NPV

PI 1996 644 1350 0 2 99.69% 
[98.89%, 
99.96%]

100% 
[99.72%, 
100%]

100% 
[99.42%, 
100%]

99.85% 
[99.47%,99.98%]

TI 204 100 63 0 41 70.92% 
[62.68%, 
78.26%]

100% 
[94.31%, 
100%]

100% 
[96.37%, 
100%]

60.57% 
[50.51%,70.02%]

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.

Tumor identif ication

Step 1: Identify tumor location and laterality from different 
software sources. The first 12 376 first patients in the study 
population had 21 570 solid tumors, with 7.2% of the patients 
presenting multiple primary cancers. Thyroid cancers or skin 
tumors as well as basal cell carcinomas and melanoma were 
included in the RBST. Multiple locations of head and neck 
cancers were not counted as multiple cancers.

Before the repositories were used, Step 1 indicated that 90% 
of the tumors did not match the parameters location and later-
ality. After the repositories of organs and synonyms were used, 
97% of the tumors were assigned to an organ and a laterality. 
The remaining tumors were associated with a “poorly defined 
organ,” corresponding to an initial diagnosis of metastatic phase 
or a biliopancreatic or neuroendocrine origin of the tumor.

Step 2: Determine the diagnosis date. A match with a 
diagnosis date was possible for 87% of the tumors of 12 376 
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patients. A manual match had to be performed for the remain-
ing (13%).

Step 3: Characterize the tumors using the histology of each 
tumor. Specific histological results were available from the 
various sources for 62% of the tumors. The majority of the his-
tological results were in the free text fields. However, the fol-
lowing had to be taken into consideration: in some cases, these 
results were expressed using older versions of ADICAP codes, 
as was determined for many pathological results, such as those 
of breast cancers. In clinical reports, these cancers were possibly 
referred to as cancer or adenocarcinoma or by their pathologi-
cal class (lobular, ductal, medullary, mucinous, papillary, tubu-
lar, Paget). The use of the repositories permitted to solve these 
difficulties.

Difficulty persisted for tumors encoded as “malignant (pri-
mary) neoplasms, unspecified or unknown.” The primary ori-
gin of these tumors may have been characterized later, leading 
to the recording of 2 tumors.

After these 3 steps, an algorithm was manually established 
using the results of each one to match 2000 tumors from dif-
ferent sources. A different weight was assigned to each of the 
tumor characteristics: 75% for diagnosis date and associated 
organ (37.5% for diagnosis date and 37.5% for organ), 16% for 
laterality, 5% for histology, and 4% for status (primary or 
metastasis). In detail, for the date of diagnosis, 1% of this item 

score was subtracted from 37.5% for each 1-day difference 
between dates. In situations in which the date of diagnosis was 
strictly identical but the organ was not indicated, a score of 
75% was assigned. A difference in each characteristic between 
2 tumors was counted as 0. If no information was given for 
some characteristics, the percentages corresponding to those 
characteristics were removed and an intermediate score was 
calculated. In summary, 2 tumors with a score greater or equal 
than 85% were matched automatically. Manual linkage by the 
RBST administrators was required when the global score was 
75%-84% (Figure 4). Two different tumors had a matching 
score strictly less than 75%.

For the TI algorithm indicators validation, manual 
observations were performed on a sample of 204 randomly 
selected data (Table 2). In total, there were 100 (100%, 95% CI 
[96.38%, 100%]) correct automatic matches with a score of 
100%; these were considered as valid. For the automatically 
rejected matches, 104 manuals validations were performed, 
with 63 of these matches (60.6%, 95% CI [50.5%, 70%]) con-
sidered valid. Among them, 47 (74.60%, 95% CI [62.06%, 
84.73%]) corresponded to multiple localizations or multiple 
cancers, and 16 (25.40%, 95% CI [15.27%, 37.94%]) to pri-
mary or metastatic cancers; the remaining 41 (39.4%, 95% CI 
[30%, 49.5%]) were considered non-valid (as they corre-
sponded to recurrences of the same tumor or delays between 

Figure 4. Manual tumor identification interface. A list of patients with tumors requiring reconciliation (A) is shown on the left. In this example, encircled in 

red (4/3/1), the patient had 4 tumors: 3 were directly proposed for reconciliation after treatment by the 3 tumor identification steps (B) and the fourth tumor 

was not reconciled automatically and had to be reconciled manually (C). The organ repository used to select the organ where the tumor was located (D) is 

shown on the right. Only the name and surname were changed to hide identity.
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diagnosis and surgery, multiple biopsies in the follow-up of 
the same tumor, or a mistake in one source). The sensitivity 
was 70.92%, 95% CI [62.68%, 78.26%]; the specificity was 
100%, 95% CI [94.31%, 100%]; the PPV was 100%, 95% CI 
[96.37%, 100%] and the NPV was 60.57%, 95% CI [50.51%, 
70.02%].

Discussion
A major challenge in the establishment of the RBST oncology 
specific CDW was that the data were collected in the context 
of patient care rather than systematically for research purposes 
(“secondary use”).25-27 As the RBST requires the integration of 
data from multiple health institutions, patient identification is 
of the highest priority for quality control.

In the establishment of the RBST’s PI algorithm, only 
patients with an identification score of 100% were matched, 
which involved manual controls in 9% of the cases. The PI 
algorithm matched most of the cases using traits (55.43%) 
rather than the PPI/FINESS couple (44.57%). However, trait-
based identification is inherently more error prone because it 
relies on multiple fields (such as surname, name, date of birth), 
which, unlike PPI/FINESS matching, is often more vulnerable 
to human error and/or partial data insertion (eg, name 
abbreviations).

The second challenge in the establishment of the RBST 
involved matching tumors from different software programs, 
given the different formats of data collection from the different 
sources and classical tumor evolution over time.28 Indeed, as 
described previously,26 the data presented mistakes and missing 
information.

In a CDW, temporal information must be well defined. It 
includes, for example, the date of birth or the date of an event 
such as the date of a treatment or a biopsy, but also an interval 
between 2 dates, such as the beginning and the end of an event.

Tumor location must be correctly defined, which requires 
consideration of the following: (1) tumor location is designated 
differently according to the software, such as a designation of 
hepatic versus liver tumors. (2) Other information in the free-
text field regarding the location of the tumor, such as laterality, 
is associated with the word used to express the organ; for exam-
ple, a tumor may be described in the “right lung,” “the superior 
lobe of the right lung,” or “the lung with right laterality,” result-
ing in different terms that describe the same tumor. (3) Some 
data sources have inconsistencies in their listing of standard 
terminology because of updates to these standards over time. 
These parameters explain the different results obtained at the 
beginning of the CDW installation without specific reposito-
ries were used.

The process of cancer evolution despite treatment explains the 
challenge of linking all tumor characteristics to the actual tumor. 
Moreover, multiple primary malignancies can be diagnosed in the 
same patient (7% in our sample). The primary tumor evolves over 

time. Furthermore, tumors characterized by different methods 
(surgery or biopsy) may not have the same characteristics.

The number of patients with several primary tumors 
described in this CDW demonstrates the importance of creat-
ing a multiple cancer CDW. Complete tumor identification is 
not always possible because it dependents on the quality of the 
data source. In this context, repositories are essential to reconcile 
different unstructured data, such as the metadata repository 
described by Juárez et al.29 The actual RBST tumor algorithm, 
based on weights attributed to tumor characteristics, including 
date of diagnosis, organ, laterality, histology, and status (primary 
or metastasis), can be adapted to all cancer-affected organs and 
permits quality control of heterogeneous data.

The success of our approach to the RBST will provide per-
manent multidisciplinary communication and allow iterative 
prototyping.28

Conclusion
An effective assessment of data quality constitutes the first step 
in data improvement in a CDW. This work on TI and PI pro-
vides guidance for an oncological-specific CDW creation and 
quality control.
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