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Abstract: Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyru-
vate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological
functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression
and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of
PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the
inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to
engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has
been recognized for its role in regulating gene expression and transcription factors critical for health
and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell
metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects
essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific
pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of
PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been
conducted. Findings from these studies enhance our understanding of PKM2 functions in various
diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential
therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has
focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through
its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has
gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in
PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent
physiological significance.
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1. Introduction

Globally, and in the U.S., cancer remains a leading cause of death and continues to
pose one of the most substantial burdens to humanity’s health and wellbeing [1]. Advances
in cancer research are constantly pushing the boundaries of our understanding of how the
nature of cancer metabolism may be exploited in order to establish improved therapeutic
strategies. The identified phenomena have revealed mechanisms through which cancer
cells can augment and rewire nutrient metabolism to support their accelerated growth
requirements. Indeed, cancer cells are capable of increasing the uptake and extracellu-
lar influx of nutrients, partially through upregulating the expression of glucose [2] and
amino acid transporters [3]. In some cases, cancer cells adopt mechanisms to acquire
proteins from the extracellular fluid and subsequently use them as a pool to synthesize
free amino acids [4]. In part, this mechanism enables cancer cells to obtain sufficient
glutamine [5] to prompt nucleotide synthesis [6]. Importantly, cancer cells could alter
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intracellular metabolism to favor anabolic pathways, such as the shift in metabolism ob-
served between oxidative phosphorylation and glycolysis [7]. This shift toward glycolysis
has been speculated to be driven by increased expression of multiple genes, including
HIF1α [8], c-Myc [9], and mTOR signaling [10]. Despite this, glycolysis is considered ener-
getically inefficient compared to oxidative phosphorylation, with only two ATP molecules
produced. However, glycolysis has been shown to generate its ATP at a faster rate [11].
Consequently, the increase in glycolysis and reduction in oxidative phosphorylation results
in the accumulation of glycolytic metabolites, which can be used as an intermediate for
the biosynthesis of both lipids [12] and amino acids [13]. Furthermore, the decrease in
oxidative phosphorylation promotes the buildup of tricarboxylic acid cycle (TCA cycle)
metabolites such as citrate, which then can be utilized as a precursor for lipid synthesis
through its conversion into acetyl-CoA [14]. Finally, it is worth noting that out of these
metabolic alterations, increased glycolysis remains the main and most extensively studied
hallmark of cancer. This unique metabolic transformation for producing energy was first
observed by Otto Warburg in 1926 [15] and became widely known as the Warburg effect.

The Warburg effect promotes cancer cell survival and expansion through several
proposed mechanisms [16–18]. Increased glucose uptake and production of lactate are
integral to tumor proliferation and remain the hallmark of the Warburg effect [15,16,19].
Moreover, Crabtree demonstrated that cancer cells could adapt to specific environmental
and genetic circumstances [20], allowing cancer cells to shift between respiration and
fermentation, thus promoting their evasive nature [16,20]. However, the Warburg effect
was not considered pathologically significant until its role in cancer cell metabolism became
more apparent [21,22]. Congruently, these findings created a high level of interest within
the scientific community and resulted in the emergence of the Warburg effect as a promising
target for pharmacological intervention and treatment of cancer [16,19,23].

In order to develop efficient therapeutic strategies targeting oncogenic transformation,
a complete understanding of cancer metabolism is required. Recent studies have iden-
tified the Warburg effect as an essential contributor to cell proliferation through several
mechanisms including the modulation of cell cycle machinery [24,25]. For instance, the
anaphase-promoting complex/cyclosome-Cdh1 (APC/C-Cdh1) pathway has been iden-
tified as a glycolytic and cell cycle regulator, and an extension of the Warburg effect [24].
Innovative approaches to targeting the biological complexity of oncogenesis continue to
reveal new possibilities.

Glycolysis is composed of multiple reactions that control the glycolytic flux, such
as the reaction catalyzed by pyruvate kinases (PK) to generate pyruvate and ATP [26,27].
Interestingly, cancer cells shift towards the preferential expression of a specific isoform
of PK known as PK isoform M2 (PKM2) [28]. PKM2 benefits cancer cells by promoting
their adaptability to varying environmental conditions and improving their chances for
survival [28]. Additionally, the cellular expression of PKM2 results in increased lactate
production even under aerobic conditions [15,29]. The conversion of pyruvate into lactate
excludes mitochondrial respiration and would seem energetically unfavorable [30]. These
differences in metabolism between normal and cancer cells emerged as a focal point of
cancer research and led to the pursuit of novel approaches targeting PKM2 as a potential
target for cancer therapy [28,29]. In this review, we explore the different PKM2 functions,
post-translational modifications, molecular mechanisms of regulation, and its overall
contribution to healthy and pathological conditions. In addition, we will discuss the
emergence and outcomes of novel findings demonstrating the potential of microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs) as potent regulators of PKM2 expression
and functions.

2. PKM2: Uncovering the Origin
2.1. PKM2 Transcription and Dynamic Regulation

Mammalian pyruvate kinase is expressed as one of four different isoforms (M1, M2, L,
and R) encoded by two distinct genes (PKM and PKLR) [30]. These isoforms share similar
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features, where they catalyze the final step in glycolysis and exhibit the same primary
structure containing four major domains: A, B, C, and N [31–34]. However, the PK isoforms
differ in their enzymatic potential, allosteric regulation [35], amino acid sequence, tissue
distribution [14,36], and contribution to health and disease [37,38]. PKM1 and PKM2 are
both expressed from the PKM gene and conversed across vertebrates [39]. The amino acid
sequence for PKM2 is highly similar between humans and mice at 82% similarity [40].
The PKM gene is located on chromosome 15 in humans and chromosome 9 in mice [41].
The human PKM gene has 12 exons and 11 introns [42]. The two PK transcript isoforms
M1 and M2 result from alternative splicing regulated by several spliceosomes including
the heterogeneous nuclear ribonucleoprotein A1 and A2 (hnRNPA1 and hnRNPA2) and
polypyrimidine tract binding protein (PTB) [43,44]. The inclusion of exon 9 and exclusion
of exon 10 produces PKM1, whereas PKM2 includes exon 10 but not exon 9 [42]. Moreover,
recent studies have shown that the insertion of exon 10 into the final PKM2 RNA is
promoted through the action of the serine/arginine-rich splicing factor 3 (SRSF3) [45]. Both
exon 9 and exon 10 are 167 base pairs and 56 amino acids in length [46], and the human
PKM1 and PKM2 isoforms are both 531 amino acids long [32]. Consequently, the resulting
M1 and the M2 isoforms differ by 22 amino acids located between amino acids 389 and 433
of the C-terminus domain [32]. The other two PK isozymes, PKL and PKR, are encoded by
the PKLR gene, which is on chromosome 1 in humans and distinct from the PKM gene [47].
The human PKL and PKR isozymes still share approximately 71–72% amino acid similarity
with PKM1 and PKM2, despite being transcribed from different genes [47]. Alternative
splicing produces the R isoform [48], a 574 amino acid long protein that is strictly expressed
in erythrocytes, and the L isoform, a 543 amino acid long protein that is highly expressed
in the liver [30] and other tissues [49,50].

Even though all PK isoforms perform a similar enzymatic function, these isoforms
differ in their kinetic properties and affinity towards phosphoenolpyruvate (PEP), while
their affinity potential toward ADP remains comparable [33]. PKM2 exhibits the lowest
basal enzymatic activity [51] and is the only isoform, to our knowledge, capable of existing
in the enzymatically active “R-State” or inactive tetramer “T-State”, dimer, and monomer
configurations [52]. This enables PKM2 to substantially alter its dynamics by existing
in either the dimeric (high Km for PEP) and tetrameric forms (low Km for PEP) [53] to
meet differential metabolic demands. The equilibrium of PKM2 configurations is tightly
regulated by allosteric effectors, altering PKM2 kinetics and Km values for PEP [54]. In
contrast, PKM1 predominantly exists in an active tetrameric form [55]. Similarly, the
unphosphorylated PKL is considered active with higher affinity for PEP (K0.5 = 0.3 mM) in
comparison to the phosphorylated form (K0.5 = 0.8 mM) [56]. However, under abnormal
conditions, PKR was reported to exist in a mutated form with a tendency to dissociate
into dimeric or monomeric configurations with altered Km value compared to unmutated
enzyme [57]. Furthermore, PKM2 exhibits lower Vmax compared to PKM1 [52], even
though the fructose-1,6-bisphosphate (FBP) binding pockets of M1 and M2 are almost
identical. The only reported difference is the presence of a glutamate residue in the M1
isoform instead of lysine in the M2 isoform [58]. Although minor, this difference was
demonstrated to play a significant role in blocking the allosteric regulation of FBP in PKM1;
however, it does not fully explain the kinetic variation between PKM isoforms.

Notably, the different PK isoforms are expressed in a tissue-specific manner that seems
to be dependent upon energy requirements and the availability of nutrients [26,59]. For
instance, PKL plays a role in gluconeogenic organs such as the kidney, liver, and small
intestine [26,60] and can be phosphorylated and inhibited in response to high cellular
levels of glucagon and ATP [59]. On the other hand, PKM1 is highly abundant amongst
differentiated tissues (heart, brain, muscle, stomach, bone, skin, among others) where
energy is produced and used rapidly [59]. PKM2, however, is expressed in the embryonic
stages initially and, in most cases, is gradually replaced by other PK isoforms [14]. Notably,
it has been revealed that various differentiated tissues continue to express PKM2 across the
lifespan [30,61]. PKM2 also differs from other PK isoforms through its ability to translocate
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to the nucleus and regulate the transcription of numerous genes with key functions in a
plethora of cellular processes further discussed below [62]. Additionally, while other PK
isoforms exist in a stable tetrameric configuration, PKM2 may switch between the dimer
or tetramer form in response to biological circumstances and metabolic needs [28]. This
unique property of PKM2 allows for dynamic metabolic regulation, due in part to the
variation in the affinity of the dimer and tetramer configurations of PKM2 to PEP.

2.2. Impact of PKM2 Mutations on Gene Expression

PKM2 expression, subcellular localization, and activity are regulated by several mech-
anisms. At the gene level, earlier studies have identified two missense mutations of PKM2
(H391Y and K422R) that could support the aggressive nature of cancer metabolism [63].
The two mutations are both specific to PKM2 but not PKM1 since they are encoded by
exon 10 and were discovered in Bloom syndrome cells (H391Y) and a Bloom syndrome
patient (K422R) [64]. Iqbal et al. transfected H1299 cells with either mutant or wild-type
PKM2 mimicking the missense mutations, H391Y and K422R, and demonstrated that these
missense mutations promote cancer proliferation through a variety of proposed metabolic
alterations [63]. Cells transfected with the mutant PKM2 exhibited higher glucose uptake
and lactate production, concomitant with a reduction in oxidative stress [63]. Moreover, in
recent studies by Chen and colleagues, mutations in the exon 10 region of the PKM gene
have been proposed to promote the translocation of PKM2 to the nucleus and have been
associated with increased activity of the hypoxia-inducible factor 1-alpha (HIF-1α) [65].
HIF-1α is a well-established oxygen sensor in tumor cells and also a modulator of glycoly-
sis and PKM2 expression through direct regulation of the c-Myc/hnRNP splicing axis to
favor PKM2 expression [61]. In another study by M.V. Vander Heiden’s group, the authors
argued that since PKM2 is not required for the growth of several cancers, as demonstrated
by earlier studies, loss-of-function mutations observed in some human tumors are not
oncogenic but rather help to create a metabolic state that favors the proliferation of tumor
cells [33]. Further efforts towards a comprehensive understanding of the metabolic and
physiological consequences of PKM2 mutations as well as their associated clinical outcomes
are needed.

As noted above, PKM2 is highly expressed during neonatal stages and phases of
proliferation, a fact that may explain the increase in PKM2 expression in tumors given their
highly proliferative nature and the associated metabolic requirements. For instance, the
oncogenic transcription factor c-Myc enhances the expression of PKM2 through upregulat-
ing the expression of PKM spliceosomes [44]. Similarly, the activation of the rapamycin
(RTK/PI3K/AKT/mTOR) signaling pathway in tumor suppressor (Tsc1/2) deficient mouse
embryonic fibroblasts (MEF) leads to a cascade of events that upregulates the levels of
HIF-1α and, subsequently, increased PKM2 levels. Comparable to c-Myc, mTOR activation
can promote tumorigenesis and metabolic transformation [66] and was shown to be integral
to the oncogenesis, and the transition towards the Warburg effect [61].

A large number of factors have been shown to modulate the quaternary structure
and physical configuration of PKM2, thus altering its enzymatic activity and subcellular
localization acids long [30,32]. For example, the cis-trans isomerization plays a critical
role in mediating the non-enzymatic function of PKM2 [67–69] through its conversion
from a tetramer to a dimer or monomer. Although the tetrameric form is considered
the active form and a higher tetramer/dimer ratio results in a higher conversion rate
of PEP to pyruvate [30,60], PKM2 in tumor cells exists predominantly in the dimeric
form and has been directly correlated with increased levels of lactate. It is likely that
the high levels of dimer PKM2 relate to the “damming up effect” or the accumulation of
glycolytic phospho-metabolites [30]. Meanwhile, the cis-trans isomerization of PKM2 and
its transition between the tetramer and dimer forms can drastically alter its localization
and functions. In tumors, the altered configuration of PKM2 provides cancer cells with
the excess amino acids, nucleotides, and phospholipids needed for biosynthetic pathways
during proliferation [30]. Notably, post-translational modifications play a key role in
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regulating the cis-trans isomerization of PKM2 and the associated metabolic consequences.
For example, serine phosphorylation of PKM2 at position 37 (Ser-37) by ERK1/2 facilitates
the recruitment of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), which
mediates PKM2 cis-trans isomerization [67,69]. This conformational change exposes the
nuclear localization signal (NLS) and results in the translocation of PKM2 to the nucleus, a
process that requires the binding of PKM2 to importin α5 [67].

In addition to the cis-trans regulation of PKM2, several other factors were demonstrated
to alter the quaternary structure and physical configuration of PKM2 acids long [30,32], PKM2
subcellular localization, and, subsequently, its functions. For instance, it is well established
that phenylalanine acts as an allosteric inhibitor for both PKM1 [70] and PKM2 [52], thus
reducing their affinity to PEP. FBP, on the other hand, is an allosteric regulator that promotes
PKM2 tetramerization [71], resulting in PKM2 activation and the subsequent increase in
glucose utilization [72]. Unlike PKM2, PKM1 lacks the regulatory effect of FBP due to
differences in the orientation of the FBP-activating loop [32], which results in a significant
reduction in PKM1’s ability to sense glucose. Accordingly, PKM2 missense mutations
could potentially alter glucose uptake in cancer cells [63]. Moreover, SAICAR (succinyl-5′-
phosphoribosyl-5-amino-4-imidazole carboxamide) and serine have also been identified
as independent stimulants of PKM2 activity [73,74]. SAICAR allosterically stimulates
PKM2 in a nutrient-dependent manner [74], while serine acts as an allosteric activator and
ligand of PKM2 and both may play a critical role in the metabolic transformation required
in oncogenesis [73]. These allosteric regulators could aid cancer cells in the metabolic
transformation, allowing them to thrive in an environment limited in nutrients [51].

Moreover, post-translational modifications of PKM2 through oxidation, phosphory-
lation, and acetylation can also modify its activity, conformation, and localization [51].
Phosphorylation of PKM2 at tyrosine 105 residue (Tyr-105) stabilizes the dimer configu-
ration, leading to inactivation of PKM2’s glycolytic activity [27]. A similar reduction in
glycolytic function was also seen in response to PKM2 oxidation at cysteine (Cys)-358
which results in the entrance of glucose into the pentose phosphate pathway [75]. PKM2
is sensitive to oxidation by several oxidants including nitric oxide (NO), endothelial NO
synthase (eNOS), and hydrogen peroxide (H2O2), all of which were demonstrated to
be capable of regulating PKM2’s activity and its subcellular localization [14]. Notably,
the redox regulation of PKM2 was shown to have substantial effects on both cancerous
and non-cancerous metabolic outcomes. Therefore, it is imperative to consider redox
homeostasis when investigating PKM2, although more research is still needed for a better
understanding of the clinical impact of the full scope of oxidants and their regulation of
PKM2 in metabolic transformation. It is worth noting, however, that alterations in PKM2
activity through oxidation in tumors facilitate cancer cells’ adaptation to oxidative stress
through multiple distinct pathways. Post-translational modifications that reduce PKM2
activity, such as the oxidation of Cys-358 [75] and the dessuccinylation of Lys-498 [76]
residues, increase the accumulation of glycolytic metabolites that promote glucose entrance
into the pentose phosphate pathway, which generates reduced equivalents in the form
of NADPH to clear excessive oxidant accumulation and maintain cancer cell survival.
In addition, recent studies have shown that the PKM2-specific Cys-424 plays a crucial
role in its conformational change and the transition between the tetrameric and dimeric
forms. Mutation of this residue to leucine resulted in a higher tetramer to dimer ratio and
resistance to oxidative stress-induced oxidation and inhibition of PKM2 [77].

2.3. Regulation of PKM2 Subcellular Distribution

The functions of PKM2 and its location within the cells are heavily dependent on its
final assembled structure [30]. In the cytosol, PKM2 exhibits both tetrameric and dimeric
isoforms and mainly converts PEP to pyruvate and controls a key regulatory step in glycol-
ysis [29]. However, within the nucleus, PKM2 exists in the dimeric form and is involved in
the regulation of gene expression [62]. The nuclear translocation of PKM2 is shown to be
dependent upon a variety of complex protein–protein interactions. Recently, it has been
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demonstrated that the phosphorylation of PKM2 at Ser-37 by extracellular signal-regulated
kinase 2 (ERK2) could ultimately allow the proper conformational change required for
PKM2 translocation into the nucleus [62], a process that requires the binding of PKM2 to
importin α5 [62]. The nuclear accumulation of PKM2 promotes the phosphorylation of
histone H3, which can promote mitotic chromatin condensation [78], and upregulates the
transcription of cell-cycle-regulating genes including MYC and CCND1 [62]. Additionally,
nuclear PKM2 was shown to play a key role in breast cancer cell proliferation and angio-
genesis through modulation of epidermal growth factor receptor (EGFR) signaling and
its downstream miR-148a and miR-152 genes. Furthermore, evidence suggests a direct
interaction between PKM2 and the p65 subunit of nuclear factor kappa light chain enhancer
of activated B cells (NF-κB), a well-established factor involved in cancer development and
progression [79]. Furthermore, the nuclear translocation of the dimeric form of PKM2
was shown to be responsible for mediating HIF-1α function in the transition towards
aerobic glycolysis [80]. According to recent studies, the interaction between PKM2 and
HIF-1α leading to the activation of the latter’s transcriptional activity is dependent upon
PKM2 hydroxylation at proline residues 403 and 408 by prolyl hydroxylase 3 (PHD3) [81].
Importantly, this interaction between the two proteins underscores the role of PKM2 in
several aspects of cancer biology, given the role of HIF-1α in tumor progression, angiogen-
esis, invasion, metastasis, as well as adaptation to oxidative stress caused by exposure to
chemicals and radiation [82–84].

In the nucleus, PKM2 was also shown to play a critical role in regulating β-catenin
expression and downstream signaling with profound effects on the cell cycle, survival, and
proliferation of tumor cells. Increased β-catenin levels have been implemented as a poten-
tial contributor to cancer development and proliferation [62,85]. The precise mechanisms
by which PKM2 interacts and regulates β-catenin have been described previously [62,86,87]
and were suggested to be essential to cancer cell proliferation [62,87]. Yang et al. iden-
tified that EGFR-activated ERK phosphorylates PKM2 but not PKM1, promoting PKM2
binding to importin α5 and its subsequent nuclear translocation [67]. Within the nucleus,
PKM2-mediated phosphorylation of β-catenin at Y333 results in the subsequent induction
of c-Myc [62]. Supportively, in another study, the activation of EGFR signaling resulted
in PKM2-dependent β-catenin phosphorylation at Y333 and subsequent upregulation of
c-Myc expression [87]. Consistent with these findings, in a more recent study, PKM2 silenc-
ing reduced the nuclear accumulation of β-catenin [88]. Likewise, the downregulation of
PKM2 expression in Hep3B cells suppressed β-catenin activity and promoted its proteolytic
degradation [89]. Conversely, the overexpression of PKM2 negatively modulated β-catenin
signaling through a mechanism that was proposed to be dependent on the upregulation of
miR-200a [86]. Interestingly, in thyroid cancer (TC) cells, the interaction between PKM2
and β-catenin was recently demonstrated to be dependent upon AMPK activation [90].
In this study, the binding of AMPK to PKM2 promoted β-catenin nuclear translocation
and was deemed necessary for the migration of TC cells. Notably, findings from this
study suggest that PKM2/β-catenin interaction and perhaps phosphorylation occur in
the nucleus as PKM2 deficiency suppressed the nuclear accumulation of β-catenin, but
not AMPK. Regardless, when combined, these studies emphasize the importance of the
regulatory actions that PKM2 can exert on the β-catenin pathway. Moreover, the evidence
shows that the induced nuclear activity and translocation of PKM2 can result in diverse
cellular and metabolic outcomes, warranting continued exploration beyond its known
cytosolic functions.

Outside the nucleus, PKM2 has been detected within other subcellular fractions
including the mitochondria [91,92] and exosomes [93,94]. Under increasing oxidative
stress, PKM2 can translocate to the mitochondria, where it can inhibit apoptosis through
the phosphorylation and stabilization of BCL2 [91]. Likewise, glucose deprivation can lead
to PKM2 succinylation and its mitochondrial translocation in HCT116 cells. Subsequently,
this translocation resulted in an increase in ATP generation and mitochondrial permeability
through inhibiting voltage-dependent anion channel 3 (VDAC3) ubiquitination, promoting
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cancer cell survival [92]. Recent studies have also identified a novel mechanism through
which PKM2 regulates cancer cells’ interaction with their microenvironment through
exosome release. Indeed, Wei and colleagues demonstrated that PKM2 could enable the
release of exosomes through the phosphorylation of synaptosome-associated protein 23
(SNAP-23) and subsequent formation of the SNARE complex [93]. Exosomes have been
shown to play critical roles in tumorigenesis through their role in promoting growth and
expansion [95]. Taken together, these findings emphasize the crucial role that PKM2 may
exhibit as a key regulator of various aspects of tumorigenesis through its ability to modulate
multiple signaling pathways at different subcellular locations.

3. “Metabolic” and “Non-Metabolic” Functions of PKM2
3.1. PKM2 Glycolytic Function

Integral to the glycolytic pathway, PK results in the conversion of PEP + ADP into
pyruvate and ATP, which then enter into the TCA cycle and ultimately undergo oxidative
phosphorylation [96]. However, as mentioned above, different PK isoforms can result in
varying metabolic fates and cellular outcomes. For example, it is well known that PKM1 is
expressed in tissues that display high oxidative phosphorylation and overall mitochondrial
ATP production. Conversely, PKM2 expression directly correlates with increased lactate
production within in vivo and in vitro experimental models [71]. Dimeric PKM2 is able to
shunt the energy production generated by the TCA cycle, in part due to less availability of
pyruvate and acetyl-CoA for oxidative phosphorylation [30,97]. As evidenced, PKM2 has
also been identified in the mediation of various non-glycolytic roles and functions.

3.2. PKM2 Non-Glycolytic Functions

Recently, research investigating the various functions and interactions of PKM2 be-
yond glycolytic function has emerged [27,51,98,99]. Indeed, substantial evidence suggests
that PKM2 plays a key role in the adaptation of tumor cells to oxidative stress. This
is evident through its critical roles in the regulation of HIF-1α and its downstream tar-
get genes [44]. As previously mentioned, HIF-1α plays a regulatory role within cancer
metabolism through its ability to shift cancer cells towards the Warburg effect [100]. In ad-
dition, HIF-1α acts as an activator for PKM2 transcription, potentially creating a reciprocal
transcriptional regulatory loop between PKM2 and HIF-1α [96]. Supportively, HIF-1α has
been suggested as a potential PKM2 metabolic upregulation factor within fibroblasts [98].
Therefore, HIF-1α can influence PKM2 and cellular reprogramming, demonstrating the
intricate nature of PKM2 in cancer and beyond [98,100].

The role of PKM2 in promoting adaptation to changes in the redox microenvironment
of cancer cells is also evident through its function as a modulator of the activity of the
tumor suppressor protein P53. Based on the intracellular redox state, PKM2 either reduces
or promotes the activity of P53. In highly oxidized environments, the tetrameric form
of PKM2 suppresses P53 activity concomitant with a reduction in apoptotic cell death,
while in a reduced environment, PKM2 has an opposite regulatory effect on P53 [101].
This role of PKM2 in enhancing the adaptation of cancer cells to oxidative stress increased
the therapeutic interest of targeting PKM2 in conjugation with chemotherapy to mediate
oxidative stress-induced cell death [75,102].

Beyond cancer, preferential PKM2 structural transformation has been observed in
non-cancerous conditions. For instance, increased PKM2 dimerization has been observed in
a murine model of colitis [103]. The study revealed that Sirt5 KO mice with induced colitis
exhibited increased levels of PKM2 in the dimer form. Dimeric PKM2 has also been reported
to exhibit protein kinase activity [62]. A specific example of dimer PKM2 kinase activity is
the activation of MEK5 transcription through the phosphorylation of STAT3 [62]. Indeed,
PKM2 phosphorylates STAT3 to initiate an inflammatory response-signaling cascade and
participates in increasing cancer proliferation [62,104,105]. This mechanism of interaction
in which PKM2 acts as a protein kinase could further upregulate a feedforward stimulation
process that promotes oncogenic cellular expansion [62]. However, these findings were
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later contradicted by Hosios and colleagues, who found no evidence of PKM2’s activity as a
protein kinase [106]. Regardless, more work is needed to uncover the clinical significance of
the role of structural configuration and kinase activity in mediating PKM2 function in tumor
cells. Additionally, because the biological complexities and importance of PKM2 are not
merely limited to its protein and structural interactions, a comprehensive understanding
of PKM2 regulation and modification could have profound and diverse implications.
Therefore, understanding how these diversified aspects of PKM2 signaling modify the
outcomes of essential cellular processes such as apoptosis and inflammation could prove
monumental to fully uncover its biological importance. The following will centralize
around another fundamental role of PKM2, its functions, and its mechanisms of regulation.

3.3. PKM2 and Apoptosis

Apoptosis is the regulatory process of programmed cell death through which the
homeostatic balance between cell death and proliferation is maintained [107,108]. This
process is essential for normal cell turnover, immune system function, metamorphosis,
hormone dependent atrophy, and chemical-induced cell death [107,108]. Alterations in
apoptosis can become detrimental to the organism in a dysfunctional state [107]. This
imbalance can result in biological disturbances that promote cancer, autoimmune disor-
ders, organ damage, and many other pathological conditions [107]. The intrinsic pathway
(mitochondria-associated apoptosis) and the extrinsic pathway (receptor-mediated apopto-
sis) are the two main pathways of apoptotic cell death. Resistance to antineoplastic agents
constitutes a major obstacle in the treatment of many types of cancer.

PKM2 is a key player and regulator in the apoptotic pathways of a variety of cancers.
B-cell lymphoma 2 (BCL2), a member of the BCL-2 family that is well known for its
anti-apoptotic functions [91], was demonstrated to be both a direct and indirect target
for PKM2. Studies in human glioblastoma multiforme (GBM) cells identified that PKM2
under oxidative stress translocates to the mitochondria, where it phosphorylates BCL-2 at
threonine 69 to prevent its ubiquitination by E3 ligase and its subsequent degradation. This
process is facilitated by the ATPase activity of HSP90 subunit HSP90α1, which mediates
the interaction between PKM2 and BCL2. The disruption of PKM2-mediated stabilization
of BCL-2 sensitized glioma cells to oxidative stress-induced apoptosis and impaired the
formation of brain tumors in an orthotopic xenograft model [91]. Consistent with these
findings, shRNA-mediated knockdown of PKM2 in HepG2 cells resulted in a significant
reduction in BCL-2 levels, concomitant with decreased tumor growth upon subcutaneous
inoculation in BALB/c nude mice [109]. Interestingly, in a recent study, the inhibition of
BCL-2 using ABT737 in ovarian cancer cells resulted in lower glycolysis and PKM2 levels in
a mechanism mediated by the Sirt3-HIF1α axis [110], suggesting a potential role of BCL-2
in regulating PKM2, a finding that requires further exploration.

PKM2’s anti-apoptotic effects seem to extend beyond its role in stabilizing BCL2
to also include other members of the BCL2 family such as BCL-XL and BIM (Figure 1).
In a recent study, shRNA-mediated PKM2 knockdown in gastric cancer cells led to a
decrease in BCL-XL expression and promoted apoptotic cell death via an NF-κB-dependent
mechanism [111]. Likewise, PKM2 deficiency in hepatocellular carcinoma (HCC) cells led
to an increase in apoptosis through the stabilization of BIM [112,113]. BIM is a pro-apoptotic
member of the BCL-2 family of proteins and belongs to a subgroup of proteins that contains
the BCL-2 homology domain 3 (BH3) only. BH3-only proteins provoke apoptosis either
by direct activation of pro-apoptotic BAX/BAK or by neutralizing anti-apoptotic BCL-2
proteins including BCL-2, BCL-XL, BCL-w, MCL-1, and A-1 [114]. Regarding homeostasis,
a balanced ratio of anti-/pro-apoptotic members is essential for cell survival. Alterations to
this ratio by upstream apoptotic events may lead to cell death through several mechanisms
including the destabilization and permeabilization of the mitochondrial outer membrane
(MOMP). MOMP irrevocably commits the cell to apoptosis through a sequence of events
that involves the release of several pro-apoptotic proteins from the mitochondria into the
cytosol and activates a signaling cascade that leads to apoptosis [115]. Central to this critical
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functionality, recent studies identified BIM as a critical mediator of PKM2’s anti-apoptotic
function. In HCC cells, PKM2 deficiency resulted in the stabilization of BIM, a collapse in
MOMP, and the activation of the mitochondrial pathway of apoptosis [112].
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Figure 1. Intrinsic role of PKM2 in apoptotic cancer cell death. (1) PKM2 knockdown induces apoptosis through the
stabilization of Bim, decreases in mitochondrial membrane potential (MMP), and the activation of Caspase-3 [112]. (2)
H2O2-induced oxidative stress promotes the mitochondrial translocation of PKM2, where it is then chaperoned by HSP90α1
in order to phosphorylate and stabilize Bcl2 [91]. (3) PKM2 forms a complex with p53 and MDM2, a master regulator
protein of pro-apoptotic genes [116]. (4) In the nucleus, PKM2 interacts with P53 to reduce P53 transcriptional activity and
suppress P53-induced P21 transactivation [117]. (5) Ionizing radiation-induced apoptosis is enhanced in PKM2 knockdown
cells concomitant with reduced Akt phosphorylation and increased levels of phosphorylated ERK [118]. (6) HSP90 mediates
the complex of PKM2 and glycogen synthase kinase-3β (GSK-3β), leading to the subsequent PKM2 phosphorylation and
the inhibition of apoptosis [119]. (7) PKM2 knockdown decreases Bcl-xL gene transcription, potentially through PKM2
stabilization of NF-κB [111]. (8) Modulation of PKM2 levels and/or activity alters the cleavage/activation of caspases 3, 8,
and 9 to increase apoptosis [112,120]. (9) Inhibition of PKM2 induces apoptosis through altering the Bax/Bcl-2 ratio and the
subsequent release of cytochrome c from the mitochondria [121].

Interestingly, BIM was also suggested to play a critical role in mediating the anti-
apoptotic role of HSP90 in several vemurafenib-resistant melanoma cell lines [122]. These
findings are also in support of the role of HSP90 in mediating the anti-apoptotic function
of PKM2. Indeed, a recent study reported a direct correlation between the levels of HSP90
and PKM2 in human hepatocellular carcinoma tissue samples that were paralleled with
negative clinical pathological features [119]. In vitro studies further confirmed that HSP90
enhances glycolysis, reduces apoptosis, and promotes the proliferation of HCC cells in
a PKM2-dependent manner. The findings also demonstrated that, in HCC cells, HSP90
enhances the stability of PKM2 by reducing its proteasomal degradation, a process that
seems to require PKM2 phosphorylation at Thr-328 [119]. Taken together, these studies
identify the BCL-2 family as a major contributor to the role of PKM2 in tumor survival and
resistance to therapy, but also provide new avenues for cancer treatment strategies.

In support, PKM2 inhibition using shikonin (a natural naphthoquinone extract from
Lithospermum erythrorhizon, purple gromwell) increased the rate of apoptosis and in-
duced the cleavage of caspase-3, caspase-8, and caspase-9 in human gastric cancer cells



Int. J. Mol. Sci. 2021, 22, 1171 10 of 55

(HGC-27) [123]. In line with these findings, the effectiveness of ionizing radiation in in-
ducing apoptosis was enhanced in PKM2 knockdown non-small cell lung cancer cells
(NSCLC) [118]. The resulting increase in apoptosis was accompanied by an increase in the
phosphorylation of PDK1 and GSK3β, along with AKT downregulation and increased ERK
expression [118]. Another recent study revealed that resveratrol treatment of melanoma
cells promoted BCL-2 degradation and increased both BAX and cytochrome c [121]. Fur-
thermore, overexpression of PKM2 stabilized BCL-2 and prevented resveratrol’s ability to
induce apoptosis [121]. These findings open new possibilities for further developments
in herbal extracts and bioactive compounds targeting PKM2 as a novel approach for the
disruption of cancer cell metabolism and homeostasis.

It is worth noting that several BH3-only members of the Bcl-2 family can be transcrip-
tionally regulated by the tumor suppressor P53 [124]. As mentioned above, P53 plays a
crucial role in preventing cancer through promoting apoptotic cell death. However, in more
than half of human cancers, the P53 gene is mutated into a form that exhibits oncogenic
potential [125]. In malignant cells, this mutation of P53 can promote resistance to several
chemotherapeutic agents, particularly DNA-damaging drugs [125]. In a recent report, it
was demonstrated that PKM2 could bind and form a complex with MDM2 and tumor
suppressor P53 [116]. Dimeric PKM2 enhanced this effect, and through ubiquitination, P53
may lose its ability to transcriptionally regulate the pro-apoptotic response [116]. Through
continued exploration, the relationship and interactions exerted by PKM2 on apoptotic
outcomes have become more apparent. However, future studies considering the overall bi-
ological impact and metabolic consequences of PKM2 for apoptosis could reveal significant
findings. Further investigating these relationships may uncover many mysteries regarding
the nature of pathological disease progression and cancer immortalization.

3.4. PKM2 as an Inflammatory Regulator

The inflammatory response is a complex series of events where bodily injury and
damaged tissues trigger the recruitment of leukocytes and neutrophils to the inflamed
area [126]. Although the inflammatory response is an essential protective and healing
process for the organism [126], it can also lead to autoimmune complications, with side
effects such as prolonged swelling and chronic pain. Intriguingly, it has been shown that
the metabolic reprogramming that occurs within the inflammatory response resembles the
Warburg effect and involves PKM2 [127]. Recently, the role of PKM2 within inflammation
has begun to be characterized [128–131]. In response to lipopolysaccharide (LPS) treatment,
PKM2 was significantly upregulated in activated macrophages, concomitant with an in-
crease in its dimeric form [128,130], resulting in metabolic reprogramming that promoted
aerobic glycolysis. Furthermore, LPS induced the translocation of PKM2 into the nucleus
and the subsequent activation of HIF-1α and the transcription of IL-1β [127,128]. Addition-
ally, the pro-inflammatory cytokine high mobility group box-1 (HMGB1) was shown to be
regulated by PKM2 through a mechanism involving metabolic reprogramming [132,133].
The findings revealed that in macrophages, PKM2 might interact with HIF1α to promote
aerobic glycolysis through the activation of HIF1α-dependent enzymatic transcription, and
PKM2 knockdown reduced lactate and HMGB1 release. HMGB1 is highly sensitive to
redox modification, and its release can provoke cytokine induction and chemotaxis [134].
Furthermore, HMGB1 is often highly expressed in various autoimmune and inflamma-
tory disorders. Therefore, finding safe and effective approaches for inactivating HMGB1
could counter the anti-apoptotic functions of PKM2 and may be of therapeutic value. For
instance, shikonin-induced PKM2 inhibition in activated macrophages led to a reduction
in the release of HMGB1 and protected against LPS-induced endotoxemia and sepsis in
mice [133]. In another study, also focused on the roles of PKM2 and HMGB1 in sepsis, the
authors demonstrated that macrophage inflammasome activation and aerobic glycolysis
might promote the pathological progression of the disease [135]. The study also revealed
that PKM2 inhibition reduces macrophage release of IL-1β, IL-18, and HMGB1, in response
to a reduction in AIM2 and NLRP3 inflammasome activation.
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Beyond its role in sepsis, PKM2 was also shown capable of promoting inflammation
in other pathological states, a role exhibiting dependence on the structural configuration.
As previously demonstrated, dimeric PKM2 has been linked to the inflammatory behavior
of macrophages taken from patients with coronary artery disease (CAD) [127,130]. Dimeric
PKM2 translocation into the nucleus resulted in the potential phosphorylation of STAT3 in
CAD macrophages and the upregulation of IL-6 and IL-1β [130]. Xiao et al. demonstrated
a potential tumor-suppressive role of eukaryotic elongation factor-2 kinase (eEF2K) in lung
cancer cells through phosphorylation of PKM2 at Thr129 and the subsequent alteration
in its nuclear translocation and STAT3 activation [136]. Notably, both eFK2K [137] and
STAT3 [138] were demonstrated to play critical functions in the inflammatory response
observed in several other inflammatory and fibrotic diseases, which may indicate a novel
role for PKM2 in the pathogenesis of these diseases. As such, a broad spectrum of research
has focused on delineating the role of PKM2 in inflammatory-associated diseases. Indeed,
PKM2 has been shown to play a role in diabetic nephropathy [139], asthma [140], arthri-
tis [131], osteoarthritis [141], and ischemic stroke [142]. In most cases, inhibiting PKM2
exerted beneficial outcomes, promoting its potential as a promising therapeutic target
for the various mentioned conditions. Collectively, these studies identify PKM2 as a key
signaling molecule in the inflammatory process in tumors and potentially in non-cancer
cells [127].

3.5. PKM2 and Oncogenesis

PKM2’s role in aerobic glycolysis and cancer metabolism has been the focus of most
of the literature and research to date [28,29,71,143]. Xenograft studies in mice injected
with H1299 lung cancer cells overexpressing the mouse PKM1 or PKM2 isoforms then
stably knocked down for the endogenous PKM2 revealed that PKM2 is necessary for
aerobic glycolysis. Mice injected with PKM1-rescued cells showed less tumor proliferation
and slower developmental time compared to mice injected with PKM2-rescued cells [71].
These results supported the theory that PKM2 plays a key role in providing tumor cells
with a selective growth advantage. Follow-up studies have supported the hypothesis
of a tissue-specific transcriptional switch from PKM1 to PKM2, which explains the high
expression levels of PKM2 in some human cancers [144–146]. However, several other
studies have challenged this theory [26,147], with some suggesting that the elevated level
of PKM2 in tumors is rather caused by an increase in the transcription of the PKM gene.
Notably, the study by Zhan and colleagues found that, while there is a decrease in the
expression and proportion of PKM1 to total transcript variants of the PKM gene, a switch
from PKM1 to other PK variants occurs in tumors [147]. This adds a level of complexity
to the role of pyruvate kinases in oncogenesis that requires further examination as to the
clinical significance and the contribution of these variants to tumor growth and survival.
Regardless, over the last decade, PKM2 genetic deletion or pharmaceutical inhibition has
become a central approach to the study of PKM2 in cancer.

Many studies have supported the idea that PKM2 knockdown and deletion suppress
the development of cancer [71,148,149]. Conversely, a recent study found conflicting data
regarding PKM2 deficiency and its ability to attenuate tumor proliferation. Indeed, PKM2
deletion in a mouse model of breast cancer accelerated tumor formation and promoted
liver metastasis. Interestingly, the study also found variable PKM1 protein levels in PKM2-
deficient tumors and the study concluded that PKM2 is not required by all tumor cells
and that there is a differential requirement for pyruvate kinase among different tumor
cell populations [148]. On the other hand, a growing body of evidence suggests that the
nuclear function of PKM2 is required for the growth of some tumors, including EGFR-
mutant cancers. Li and colleagues demonstrated that inhibition of the Poly (ADP-ribose)
polymerase (PARP), a protein responsible for repairing damaged DNA, prevented the
nuclear translocation and retention of PKM2, concomitant with a reduction in EGFR-
mutant lung cancer cell growth [150]. As such, much of the current literature supports the
idea that PKM2 inhibition, deletion, and suppression could prove effective in the treatment
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of various cancers [29,148,149]. However, it is integral to consider all angles when exploring
the vast array of complexities involving cancer metabolism. The discrepancies within the
results of some studies could be due to the intricate morphological variations observed in
the many unique forms of cancer and experimental models utilized.

4. Emerging Areas of Research Involving PKM2
4.1. Role of PKM2 beyond Cancer

In recent times, the role of PKM2 in non-cancerous tissues has become an area of
interest [25,151]. Investigations targeting compounds promoting PKM2 inhibition or
activation are currently in the early developmental stages, and tissue-specific side ef-
fects of these compounds could derail the human trials [152]. Therefore, future research
aimed at PKM2 tissue-specific functions could be integral to the success of PKM2 in-
hibitors targeting cancer or non-cancerous disorders. PKM2 is expressed in other differ-
entiated tissues including lung, heart, pancreas, liver, and adipose tissues (both white
and brown) [25,29,30,61,62,151,153]. Many studies have reported possible novel func-
tions of PKM2 since the turn of the century [25,151,154,155]. Recently, the role of PKM2
in relation to glucose homeostasis, insulin secretion, and pancreatic function has been
explored [27,155–157]. Therefore, it is vital to better understand the metabolic and non-
metabolic functions of PKM2 within these tissues in order to develop effective therapeutic
strategies with enhanced targeting efficacy.

4.2. PKM2 and Metabolic Homeostasis

Type 2 diabetes (T2D) has become one of the leading health epidemics worldwide.
The development of T2D centralizes around β-cell dysfunction leading to decreased insulin
secretion and is often accompanied by dysregulated glucose uptake in response to insulin
resistance [158–160]. Pancreatic β islets are responsible for the release of insulin and
essential to maintain glucose homeostasis. β-cell function or dysfunction is often measured
by the ability of β-cells to adequately sense glucose and respond by secreting insulin in a
tightly controlled process [158,161,162]. Glucose-stimulated insulin secretion (GSIS) occurs
through the uptake of glucose into β-cells, which leads to an eventual rise in intracellular
Ca2+, resulting in the subsequent insulin secretion [163]. This process is dependent upon the
depolarization of the KATP channel and caused by an increased ATP/ADP ratio [163,164].
When exposed to prolonged hyperglycemic conditions, the β-cells can begin to exhibit
decreased mass and impaired function, leading to impaired insulin secretion [165].

PKM2 has been demonstrated to play critical functions within the pancreas and
specifically within the β-cells, in part, because of the expression pattern of both PKM1 and
PKM2 within the pancreas. According to a recent study, immunohistochemistry analysis of
PKM1 and PKM2 expression in the mouse pancreas revealed the significant expression of
both isoforms in the islets with minimal staining in other parts of the pancreas [166]. These
findings highlight a potential role in insulin secretion. Cysteine is a metabolite that has been
linked to increased BMI and fat mass [90], which are biomarkers for obesity and increased
risk for T2D development [167]. Plasma L-cysteine concentrations have been utilized as
a potential marker of β-cell and pancreatic function [168]. Increased levels of L-cysteine
reversibly inhibit glucose-induced biphasic insulin secretion and ATP production through
direct binding to PKM2, leading to the dissociation of its tetrameric form and inhibition
of its kinase activity. The role of PKM2 in insulin secretion was further supported in a
later study where a novel signaling pathway through which PKM2 potentially promotes
insulin secretion and β-cell function was identified [157]. The study demonstrated that
PKM2 could promote insulin secretion and β-cell proliferation through the activation of
the Wnt/CTNNB1 pathway [157].

Numerous impairments can lead to insulin resistance and dysregulated glucose uptake
into skeletal muscle cells and adipocytes. Insulin resistance can occur in response to a wide
variety of pathological conditions such as inflammation and oxidative stress [169]. Beyond
its various roles and effects on insulin secretion, the functional association between insulin
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signaling and PKM2 within adipocytes is emerging as a novel area of study. Earlier studies
demonstrated that exposure of 3T3-L1 adipocytes to varying levels of insulin resulted
in significant increases in PKM2 mRNA levels, independent of the levels of glucose and
glucosamine in the media. Moreover, pharmacological inhibition of the insulin signaling
pathways using wortmannin or PD98059 to inhibit phosphatidylinositol 3-kinase (PI3K)
or mitogen-activated protein kinase (MAPK), respectively, resulted in converse results,
identifying insulin as an upstream modulator of PKM2 expression in adipocytes and
possibly the adipose tissue [151]. Notably, our recent studies have identified PKM2 as a
potential contributor to insulin resistance in the adipose tissue and made an association
between alterations in PKM2 tyrosine phosphorylation at Tyr-105 and the metabolic status
of rodents, primates, and humans, with increased PKM2 Y105 phosphorylation correlating
with a favorable metabolic profile [154].

Beyond the reported effects on insulin signaling and responsiveness, a recent study
has shown that PKM2 may play a role in brown fat adipogenesis. Isidor et al. identified
that the level of PKM2 is higher in murine brown adipose in comparison to white adipose
tissue [170]. Notably, PKM2 knockdown in mature brown adipocytes resulted in increased
levels of thermogenic genes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21
(Fgf21). The authors postulated that this may have occurred through PKM2’s ability to
modify adipocyte gene expression. However, while the molecular mechanisms mediating
PKM2’s function in brown fat adipogenesis are yet to be determined, these findings suggest
a novel role for PKM2 in regulating body mass and energy expenditure [170], which
warrants additional investigation into the contribution of PKM2 to obesity, thermogenesis,
glucose homeostasis, insulin resistance, and their associated metabolic disorders.

PKM2 has also been reported for its involvement in the pathogenesis of diabetes
nephropathy (DN) and its role in mitochondrial function within the renal glomeruli [25].
DN can result from mitochondrial dysfunction, leading to the increased synthesis of toxic
glucose metabolites, resulting in detrimental translational outcomes [25]. Explorations
targeting the contribution of PKM2 to DN and to alterations to podocyte homeostasis
revealed that PKM2 activation might attenuate mitochondrial dysfunction through im-
proved metabolic functionality and induced biogenesis [25]. Furthermore, PKM2 activation
increased glucose metabolic flux and lowered toxic glucose metabolite production [25].
These findings support the idea that PKM2 activation may act as a preventative mechanism
through which the progression of diabetic nephropathy could be halted [25]. However,
while PKM2 activation exhibits some degree of therapeutic potential, inverse findings
were discovered when PKM2 was targeted in other parts of the kidney. For instance, the
reduction in PKM2 enzymatic activity in proximal tubules mediated a beneficial effect
against ischemia reperfusion (IR)-induced acute renal injury (AKI). The genetic deletion of
aldo-keto reductase family 1 member 1 (AKR1A1) increased the S-nitrosylation of PKM2
and reduced its enzymatic activity by inhibiting PKM2 tetramer formation. This blockade
of the last step of glycolysis was suggested to shift glycolytic metabolites towards the
pentose phosphate pathway and generate precursors necessary for antioxidant defense.
This hypothesis was further confirmed by the deletion of PKM2 in proximal tubules. In
response to IR-induced AKI, the serum creatinine and blood urea nitrogen levels were
lower in the PKM2-deficient mice compared to the wild type, while the NADPH to NADP
ratio was higher. The increase in NADPH levels was concomitant with a reduction in
oxidized glutathione relative to its reduced form, which further confirms that the beneficial
effect of deleting PKM2 against AKI is mediated by increasing the antioxidant defense
capacity [171]. Given these conflicting data, further investigations into the tissue- and,
perhaps, cell-specific roles of PKM2 in response to alterations to insulin secretion and
glucose homeostasis may aid in our pursuit to understand the biological importance of
these intricacies.
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4.3. Regulators of PKM2

PKM2 regulation through either inhibition, activation, or deletion could offer potential
as treatment options. However, in order to receive these benefits and avoid potential
off-target effects, the full scope of their biological impact must be well understood. Re-
searchers have begun focusing on how PKM2 regulation could be safely achieved [172,173].
Most current research focuses on the ability of either natural or synthetic compounds to
potentially inhibit PKM2 [172,173]. While inhibitors have been thoroughly investigated,
compounds acting as PKM2 activators have received far less attention. The following will
focus on some of the emerging and more heavily studied compounds shown to alter PKM2
activity and functions within various experimental models of human disease.

4.3.1. PKM2 Activators

An emerging approach revolves around targeting the metabolically active tetrameric
form of PKM2. In search of understanding the metabolic, kinetic, and oncogenic effects of
small-molecule activators of PKM2, Anastasiou et al. investigated two separate compounds,
TEPP-46 and DASA-58 (hereinafter referred to as TEPP and DASA, respectively) [174],
and demonstrated that these small-molecule activators increased the level of tetrameric
PKM2 enzymatic activity and increased the resistance of PKM2 to inhibition [174]. TEPP-
mediated activation of PKM2 has shown promising effects in delaying the formation of
xenograft tumors and reducing tumor burden [174,175] (Figure 2). On the other hand,
DASA-mediated activation of PKM2 in vascular resident endothelial progenitor cells (VR-
EPCs) promoted the activation of MAPK, AKT, and FAk signaling pathways, increased
glycolysis and mitochondrial fusion, and enhanced the capability of VR-EPCs to maintain a
low level of ROS. Subsequently, these effects were translated into accelerated angiogenesis,
invasion, and migration capacity. Conversely, treatment with PKM2 inhibitor C3k resulted
in reduced migration, invasion, and angiogenesis [176]. Likewise, the use of small-molecule
activators of PKM2 resulted in reduced xenografted cancer cell proliferation [174], further
confirming the detrimental effects of PKM2 activation.

In a computational high-throughput analysis of compounds with PKM2 molecular
docking affinity, compound 0089-0022 was identified as a direct activator of PKM2 through
kinase pocket binding [177]. Surprisingly, in vitro 0089-0022-mediated activation of PKM2
in NSCLC cells induced apoptosis in a dose-dependent manner. Moreover, 0089-0022 pro-
apoptotic effects were mediated, at least in part through inhibition of AKT phosphorylation.
Taken together, these studies highlight the differential behaviors of PKM2 activators and the
requirement for more in-depth investigations into the proposed mechanisms of action and
subsequent physiological, biochemical, and clinical outcomes of using these compounds as
a potential therapeutic approach for the treatment of cancer.

Similar to cancer studies, efforts to investigate the effects of PKM2 activators under
pathological conditions in non-cancerous tissues have met mixed success. As indicated
earlier, DASA-mediated activation of PKM2 promoted bone loss and reduced osteogenic
differentiation and the formation of calcium nodules in bone marrow mesenchymal stem
cells. These effects were mediated, at least in part, through increased ROS production and
alterations in mitochondrial function. Additionally, when these same cells were induced to
differentiate into adipocytes, both the expression of adipogenic markers and lipid accumu-
lation were significantly higher in DASA-treated cells [178], suggesting a pro-adipogenic
role of PKM2. These findings also highlight a novel aspect of metabolic reprogramming
and the critical need for developing promising strategies that target metabolism for therapy
of both metabolic and non-metabolic diseases.

It is widely acknowledged that metabolic reprogramming also impacts immune cell
differentiation, homeostasis, and functionality, and thus, plays a critical role in immunity
and inflammation. Central to the pathophysiology of septic shock is the activation and
production of inflammatory mediators. DASA- and TEPP-mediated PKM2 activation
inhibited LPS-induced IL-1β and HIF-1α, as well as the expression of their downstream
genes. PKM2 activation also attenuated LPS-induced M1 macrophage polarization in
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bone marrow-derived macrophages (BMDMs) in vitro. In vivo, PKM2 activation using
TEPP resulted in increased bacterial load in the spleen and liver of mice intraperitoneally
infected with S. typhimurium, possibly because of the reduced production of IL-1β and
the subsequent alterations in the immune response [128].
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Consistent with these findings, TEPP-mediated activation of PKM2 in a murine solid
CT26 tumor model reduced the ability of macrophages, dendritic cells, T cells, and tumor
cells to express programmed death-1 (PD-1) ligand 1 (PD-L1) [179] (Figure 2). Acting as
a signaling gatekeeper, PD-L1 plays a key role in the development of immune tolerance
to prevent excessive response [180], but also in blocking the development of the T cell
response against tumor cells ([179]. In the same line of thought, treatment of resting
CD4+ CD62L+ T cells with TEPP halted their proliferation and activation. Additionally,
in vitro studies demonstrated that PKM2 activation using DASA and TEPP slowed the
development of T helper 17 (Th17) cells and reduced the production of tumor necrosis
factor alpha (TNF-α). Similarly, both activators decreased the development of Th1 cells
and their ability to produce IFN-γ and TNF-α. In vivo, PKM2 activation using TEPP in
an experimental model of autoimmune encephalomyelitis (EAE) reduced the percentage
of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells.
Together, these studies have broadened our understanding of how PKM2 may modulate
autoimmunity and T cell responses [181]. However, in a recent study by Seki and colleagues
looking at the effects of PKM2 activation on T cell-mediated autoimmunity in a mouse
model of multiple sclerosis (MS) using both TEPP and DASA, both compounds increased
the generation of GM-CSF-producing cells [182]. Given the role of GM-CSF-producing
cells in EAE, the authors examined the infiltration of immune cells within different parts
of the brain and found a significant increase in the accumulation of CD45+ cells in the
periventricular regions of the brain, with fewer cells in the spinal cord, eliciting a higher
encephalitogenic phenotype [182]. These differences in outcomes between studies are
intriguing and warrant further investigation as the effects of PKM2 activation seem to
yield different outcomes in different immune cells. In recent studies, the effects of PKM2
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activation on immune responsive cells were shown to be mediated at least in part through
modulation of the transcriptional regulation and activity of STAT5, HIF1α, and cMyc
in CD4+ T cells [181], but not in natural killer (NK) cells [183] (Figure 2). It is worth
noting that, in normal NK cells, TEPP-mediated activation of PKM2 inhibited cell growth
and biosynthetic pathways and reduced the production of pro-inflammatory cytokine in
response to biosynthetic pathways [181]. Together, these findings have further fueled the
growing interest in targeting PKM2 as a valuable therapeutic approach to inflammatory
and autoimmune diseases [181].

Given its critical role in the regulation of inflammation and the activation of im-
mune cells, NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflamma-
somes have attracted wide attention. For instance, NLRP3-mediated IL-1β production
by macrophages exerts a key role in the development and pathogenesis of several in-
flammatory diseases [184], and thus, its mechanisms of regulation became an attractive
therapeutic target for a spectrum of diseases. Recent studies on the role of PKM2 in
mediating the activation of NLRP3 inflammasome have produced mixed results. In a
study by Xie and colleagues, PKM2 deficiency and pharmacological inhibition blocked
inflammasome activation as well as the cleavage and secretion of IL-1β progression of
the disease [135]. These findings were further supported by Li et al. demonstrating
that co-treatment of human monocytic THP-1 cells with TEPP-46 and 2-deoxy-D-glucose
reversed hyperglycemia-induced NLRP3 activation [185] (Figure 2). Conversely, TEPP-46-
mediated activation of PKM2 inhibited NLRP3 inflammasome-mediated IL-1β secretion in
a β-aminopropionitrile fumarate (BAPN)-treated mouse model of thoracic aortic aneurysm
and dissection (TAAD) [186]. These findings are in line with those of the O’Neill group,
demonstrating that PKM2 activation in vivo using TEPP inhibits IL-1β production in an ex-
perimental model of Salmonella typhimurium infection [128]. Likewise, activation of PKM2
using TEPP-attenuated Sirt5-deficiency-mediated IL-1β upregulation in LPS-stimulated
macrophages in vitro and in dextran sulfate sodium (DSS)-induced colitis in mice [187].
Together, these findings provide compelling evidence that PKM2 is a key regulator of the in-
flammatory response and prompted many scientists to explore the metabolic consequences
of metabolic reprogramming using PKM2 activators in metabolic diseases. This interest is
supported by recent discoveries demonstrating that PKM2 activation ameliorates kidney
function in experimental models of diabetic nephropathy. Indeed, TEPP was recently
found to be beneficial in reversing inflammation, alterations to renal function, as well as
the associated metabolic abnormalities caused by hyperglycemia [25,139]. We anticipate
the outcomes of current and future research in this area to yield novel insight into the
therapeutic potential of PKM2 activator in metabolic diseases, including obesity, diabetes,
and their complications.

4.3.2. PKM2 Inhibitors

In comparison to activators, PKM2 inhibitors have been much more heavily inves-
tigated, revealing a wide range of effects in both cancerous and non-cancerous tissue.
Numerous synthetic compounds and small-molecule inhibitors such as compound C3k
and analogue derivatives C3f and 3h were demonstrated to be efficient in inhibiting
PKM2 [188,189] and have shown promising outcomes. Initially, Ning et al. investigated the
efficacy of synthesized naphthoquinone derivatives to act as small-molecule inhibitors of
PKM2 [188]. They demonstrated that compound C3k exerted a higher degree of inhibitory
activity against PKM2 in comparison to the well-established natural inhibitor, shikonin. In
addition, compound C3k treatment within the nanomolar range resulted in antiprolifera-
tive effects in several cancer cell lines including HeLa and HCT116 cells [189] (Figure 3).
Beyond its role in cancer, C3k-mediated inhibition of PKM2 prevented ovariectomy (OVX)-
induced bone loss and adipogenesis in vivo through modulation of the Wnt/β-catenin
pathway. Furthermore, bone marrow mesenchymal stem cells treated with C3k exhib-
ited a reduction in osteoclastogenesis, accompanied by reduced expression of several
adipogenic markers including adipsin, FABP4, and PPARγ under adipogenic differentia-
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tion [178]. These findings on adipogenesis are consistent with the anti-adipogenic effects of
shikonin [190–194] and further demonstrate that PKM2 is a key regulator of both osteogen-
esis and adipogenesis and suggest that targeting PKM2 might be of clinical significance in
metabolic and genetic bone diseases.

Recently, Gliotoxin, a marine fungi metabolite, has been identified as a novel PKM2
inhibitor that directly binds to PKM2 to suppress its enzymatic and kinase activity. Presum-
ably, Gliotoxin is a potentially specific PKM2 inhibitor as no changes to PKM1 enzymatic
activity were observed when cell-free PK activity assay was used. Notably, preliminary
studies revealed that Gliotoxin exhibits antiproliferative activity in several cancer cell
lines including U87, U251, HL-60, K562, MCF-7, NCI–H1975, PC-3, HCT116, and HeLa
cells [195] (Figure 3). However, while some effort towards uncovering the potential for
synthetic compounds and their derivatives, a large number of studies have investigated
various natural compounds and their analogues as PKM2 inhibitors.

4.3.3. Natural Compounds

Resveratrol is a natural compound that has shown promise as a target for reduced
cancer proliferation and cancer prevention [196–199]. Resveratrol has been linked to
possible anticancer potential through its interaction with multiple pathways, including p53,
NF-κB, SIRT1-dependent AMPK activation, and mTOR inhibition [196,200–202]. Recently,
resveratrol has also been studied for its possible role as a PKM2 inhibitor [173]. Iqbal and
Bamezai demonstrated that resveratrol could reduce PKM2 expression, inhibit mTOR, and
disrupt both aerobic glycolysis and the anabolic capacity, resulting in reduced proliferation
of several different cancer cell lines [173] (Figure 3). Conversely, PKM2 overexpression
abolished these effects while shRNA silencing of PKM2 recapitulated the beneficial effects
of resveratrol. This discovery could lay the foundation for how resveratrol interacts with
cancer metabolism [173].
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Vitamin K, a class of fat-soluble vitamers with vital physiological roles, have shown
potential as anticancer agents [203–210]. Early studies have shown that menadione (also
known as vitamin K3), a synthetic analogue of 1,4-naphthoquinone, reduced cell viability
and induced a caspase-independent, but iron- and oxygen-dependent, cell death process
that was termed ferroxitosis [211] (Figure 3). Recent studies have confirmed the cytotoxic
effects of vitamin K analogues in cancer cells and demonstrated that treatment of HeLa
cells with two vitamin K analogues (VK3 and VK5) resulted in reduced cell survival
through modulation of glycolysis and PKM2 activity [172]. In addition to vitamin K, a
recent study demonstrated that vitamin B6 (pyridoxine) exerts its neuroprotective effects
through promoting the dimerization of PKM2, which results in Nrf2 transactivation and the
upregulation of glutathione synthesis [212]. Further research efforts towards uncovering
the role of vitamins K and B6 in regulating PKM2 activity and the translational significance
of these discoveries may be integral to fully characterize their therapeutic potential as
natural modulators of PKM2 activity.

Shikonin, on the other hand, and as mentioned above, is another natural compound
extracted from the roots of Lithospermum erythrorhizon (also known as “Zicao”) that has
been recognized for its potential anti-inflammatory, antimicrobial, and anticancer prop-
erties [213–216], so as for its analogue (alkannin) [172]. Treatment with either shikonin
or alkannin led to PKM2 inhibition and decreased lactate production in cancer cells [172].
The results also attributed shikonin’s effects to the preferential targeting of PKM2, with no
effects on PKM1 [172]. The findings identified that shikonin and its analogue could possess
anticancer potential through the disruption of cancer cell glycolysis [172]. Supportively,
a more recent study demonstrated that shikonin inhibits cell proliferation and survival
and exacerbates cisplatin-induced cell death in T24 bladder cancer (BC) cells. These effects
were postulated to be mediated, at least in part, through the direct binding of shikonin to
PKM2. Notably, shikonin did not result in a reduction in overall PK activity [217]. Further-
more, shikonin treatment resulted in a reduction in actin polymerization, suggesting that
shikonin could be effective in preventing cancer cell invasion and migration. However,
several studies have revealed that shikonin may not be specific to only PKM2 as origi-
nally reported/postulated. Indeed, recent studies have demonstrated that shikonin is also
capable of inhibiting other proteins, including protein-tyrosine phosphatase 1B (PTP1B)
and the tumor suppressor phosphatase and tensin homolog (PTEN) [218]. Importantly,
both PTEN [219,220] and PTP1B [221] have been identified in various roles essential for
tumorigenesis. More recently, the effects of shikonin on hepatocellular carcinoma (HCC)
were explored. Shikonin treatment inhibited PKM2, resulting in apoptosis induction, in-
hibited glycolysis, and reduced proliferation [222]. In another recent pancreatic ductal
adenocarcinoma (PDAC) study, the biomechanical role of PKM2 in the regulation of Ca2+-
dependent cell death was explored. The authors demonstrated that through depleting
ATP, reducing glycolysis, increasing the level of free Ca2+, and inhibiting the capacity of
the plasma membrane calcium pumps (PMCA), shikonin inhibition of PKM2 resulted
in increased cell death and reduced metastatic potential and proliferation in human Mia
PaCa-2 cells and PDAC cells [223]. While diversified and promising, the effects of shikonin
are not limited only to carcinogenesis.

Beyond cancer, a wide variety of potentially beneficial and therapeutic effects of
shikonin have been revealed. As reviewed by Chuanjie et al. numerous studies have
identified that shikonin may possess anti-inflammatory capabilities through regulatory
actions exerted on a wide variety of proposed signaling molecules and pathways involving
NF-κB, TLR4, ERK, JNK, MAPKs, STAT3, cytokines, and more [224]. While limited, the
involvement of PKM2 in the anti-inflammatory actions of shikonin has been investigated.
Wang et al. demonstrated that treatment with shikonin resulted in a reduction in serum
lactate and HMGB1 levels and protected against cecal ligation and puncture (CLP)-induced
sepsis and in a murine model of LPS-induced endotoxemia [133] (Figure 4A). Additionally,
shikonin-mediated inhibition of PKM2 abrogated oxidized low-density lipoprotein-(Ox-
LDL)-induced atherosclerosis and the expression of HIF-1α target genes. Furthermore,
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shikonin treatment led to a reduction in IL-1β production in an experimental model of
atherosclerotic coronary artery disease [225]. These anti-inflammatory effects of shikonin-
mediated inhibition of PKM2 were further confirmed in several experimental models of
human inflammatory diseases [226–229] (Figure 4A). For instance, shikonin treatment
promoted wound healing and alleviated burn-induced inflammation in rodents [229],
preserved redox homeostasis and abrogated IL-1β-induced expression of ICAM1 and
VCAM1 in human endothelial cells, and protected against vascular oxidative stress in
apolipoprotein E-deficient (ApoE−/−) mice subjected to partial ligation of the left carotid
artery and fed a cholesterol-rich diet. Additionally, shikonin reduced macrophage infil-
tration into the carotid arteries of ApoE−/− mice [230], alleviated UUO-induced mouse
renal fibrosis and TGF-β1-stimulated myofibroblast activation [231], and inhibited the
proliferation of fibroblasts from the pulmonary hypertensive vessel (PH-Fibs) and the
subsequent activation of macrophages [226]. Furthermore, mice treated with shikonin
were protected against hepatic stellate cell activation and liver fibrosis [228]. Shikonin
was also shown to suppress the inflammatory immune response through modulation of
glycolysis and PKM2 activity. In an experimental study of severe aplastic anemia, shikonin
suppressed the activation and proliferation of myeloid dendritic cells [232]. Likewise,
PKM2 inhibition using shikonin impaired Th1 and Th17 cell differentiation, reduced the
percentages of IFN-γ and IL-17A-producing CD4+ T cells, and ameliorated experimental
autoimmune encephalomyelitis [233,234]. Shikonin treatment was also shown to be ef-
fective in reducing hyperhomocysteinemia (HHcy)-induced CD4+ T cell activation and
infiltration of pro-inflammatory macrophages into plaques [235] and in attenuating HHcy-
accelerated atherosclerotic lesion formation in ApoE−/− mice [236] (Figure 4A). Future
efforts towards uncovering the anti-inflammatory potential of shikonin may prove sig-
nificant. Further promoting the importance of future investigations, shikonin has shown
significant promise as an antimicrobial and antiviral agent, as well as a wound healing
promoter [224,229,237–242] (Figure 4B). Nevertheless, it remains to be determined whether
these beneficial properties of shikonin are mediated through modulation of PKM2 activ-
ity. Similarly, it remains unclear whether the anti-obesogenic and antidiabetic effects of
shikonin are mediated through inhibition of PKM2; however, the health-promoting effects
of shikonin may uncover novel roles of PKM2 in the pathogenesis of various metabolic
and non-metabolic human diseases. Recent studies have shown that shikonin exerts pro-
tective effects against high fat diet-(HFD) induced obesity in mice [243,244] and rats [245].
Shikonin also alleviated HFD-induced hepatic lipid accumulation, enhanced β-oxidation
and energy expenditure in mice [243,246], and prevented HFD-induced liver fibrosis in
rats [247]. Additionally, in vitro studies have repeatedly demonstrated that shikonin and
its derivatives inhibit adipocyte differentiation [190–194,248,249], promote lipolysis [245],
and downregulate preadipocyte-derived exosomal signaling pathways directed towards
cancer stem cells [248] (Figure 4B).

Consistent with the anti-inflammatory outcomes of shikonin-mediated inhibition of
PKM2, in vitro and in vivo studies have recognized shikonin for its protective roles against
oxidative stress and its associated tissue and organ damage in a number of experimental
models of human diseases. For example, shikonin was shown to be capable of alleviating
LPS-induced renal injury and oxidative damage [250], high glucose-induced renal tubular
epithelial cell injury in vitro [251], and unilateral ureteral obstruction (UUO)-induced tubu-
lar apoptosis and macrophage infiltration [252]. Similar findings were obtained in experi-
mental models of cardiac dysfunction [253], acute lung [254–256], liver [257–262], and ear
injuries [263]. Shikonin also protected against cerebral ischemia/reperfusion- and autoim-
mune encephalomyelitis-induced brain injury through reducing oxidative stress [264,265]
and protected microglial cells against LPS-induced cell death [266] (Figure 4B).
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4.3.4. PKM2 microRNAs
microRNA Introduction

In recent times, gene expression regulation by a specific class of small, non-coding
RNA molecules known as microRNAs (miRNAs) has drawn great interest due to the
diverse biological effects and modifications of miRNAs. The regulatory capability and
transcription of miRNAs is propagated through a complex series of events [267,268]. The
dominant canonical pathway begins in the nucleus, where primary-miRNA (pri-miRNA)
transcription occurs by RNA polymerase II (Pol II) generating the initial hairpin structure
of the gene [267]. This is followed by micro-processing by Drosha (RNase III protein)
and DiGeorge syndrome critical region 8 (DGCR8) into pre-miRNA for export into the
cytoplasm through a nuclear pore transport complex involving exportin 5 (EXP5). Once in
the cytoplasm, RNase III protein and endonuclease, Dicer, binds to the 5′ end and cleaves
the pre-miRNA into a small 22-nucleotide RNA duplex containing a guide and passenger
strand. Sequentially, highly regulated argonaute (AGO) proteins are loaded with the RNA
duplex to form the RNA-induced silencing complex (RISC). The RISC fully matures upon
removal of the passenger strand of mRNA, allowing it to bind to and degrade mRNA [267].
Ultimately, this degradation can result in reduced protein translation. Dysregulation of this
process can lead to profound metabolic and pathological consequences [268]. Numerous
alterations to miRNAs, such as single-nucleotide polymorphisms (SNPs), methylation, and
stabilization, could, in some cases, be pathologically advantageous for the development of
cancer [268]. Importantly, miRNAs could prove invaluable as prognostic and diagnostic
biomarkers in a wide variety of cancers, potentially improving our understanding of clinical
adversities to treatment and preventative care [269–271]. Recent explorations continue to
pioneer our understanding of the diverse roles of miRNAs and gene silencing in cancer
research. In this review, we sought to comprehensively analyze the collective findings
of research targeting the specific interactions and effects of non-coding RNAs including
miRNA, lncRNAs, and circRNAs on PKM2 functions in cancer and beyond.

miRNAs in Cancer

In search of identifying novel tumor suppressors against B-cell chronic lymphocytic
leukemia cells, two distinct miRNA genes, miR-15a and miR-16-1, were discovered [272].
Further investigations revealed that these genes were frequently dysregulated in clinical
cases of chronic lymphocytic leukemia and that they could repress BCL-2 and induce
apoptosis [273,274]. Following these discoveries, the role of miRNA dysregulation in cancer
has become increasingly more evident. As displayed in the ever-expanding scope of miRNA
cancer research, alterations in miRNA expression can generate either tumor suppressive or
oncogenic effects. Variations in miRNA expression can result in consequential effects on the
development, progression, and metastatic potential of cancer [275]. Furthermore, a wide
array of cancer research has investigated the effects of various miRNAs on PKM2 expression
and activity, as well as their ability to modulate tumorigenesis. Through targeting either
tumor suppressors such as P53 [276] or oncogenes such as c-Myc [9], miRNAs can have
profound effects on the proliferative and metabolic outcomes of cancer. For instance,
miR-33b [277], miR-let-7a [278], and miR-143 and 145 [279] can act to downregulate c-Myc
and lead to antitumorigenic effects [9]. Critical revelations regarding the intricacies of
tumorigenesis could occur through further investigating the emerging roles of miRNAs in
cancer development and proliferation.

miRNAs Regulation of PKM2 in Cancer

The research on miRNAs continues, with a large body of research revealing the dy-
namic interactions between miRNAs and PKM2 in tumorigenic processes. Collectively, a
large majority of the investigated miRNAs suppress PKM2 activity, resulting in antitumori-
genic effects in a wide variety of cancers [280–286]. Through direct binding to the 3′UTR
region of the PKM gene, miRNAs can effectively modulate several metabolic and biological
processes. Although PKM1 and PKM2 share the same 3′UTR region [287], most research
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on miRNA has focused on PKM2 due to its significant contribution to cancer pathology.
As outlined in the following section, PKM2 regulation by miRNAs results in alterations to
biomarkers evident of changes in glycolysis [280–282,284,288,289], metastasis [282,290,291],
and cellular proliferation [286,292,293]. However, because the expression of both PKM2
and miRNAs can be restricted to specific tissues [294] and/or specific conditions, under-
standing the tissue and function specificity of miRNAs could prove invaluable to the
implementation and translation of miRNA research into therapeutic application. Here, we
provide an overall review of miRNAs to regulate PKM2 and modify biological outcomes
in both an oncogenic and tumor-suppressive fashion.

miRNAs/PKM2-Mediated Metabolic Reprogramming in Cancer. As previously described,
PKM2 regulation and modification can result in alterations in glucose utilization, lactate
production, relative ATP levels, and many other aspects of glycolysis in cancer cells. Nev-
ertheless, only miR-214 has been reported to potentially regulate PKM2 and glycolysis
in a manner promoting oncogenesis. In a study by Zhang et al. the downregulation of
miR-214 in NSCLC cells resulted in reduced PKM2 expression, decreased glucose con-
sumption and lactate production along with halted cell proliferation [295]. Interestingly,
the most extensively investigated cancer research model of miRNA/PKM2 interaction
has centralized around the effects of alterations in the expression of various miRNAs on
HCC. Several miRNAs have been shown to target PKM2 in HCC. For example, miR-122
can effectively reduce PKM2 expression at both the protein and mRNA level [287], de-
crease glycolysis [287,288], reduce proliferation [296], and increase apoptosis [288,296].
In addition, clinical analysis of HCC tissue samples revealed that reduced expression of
miR-122 was correlated with poor three-year survival outcomes [296]. These findings
suggest that miR-122 overexpression could inhibit growth and the metastatic potential
of HCC. Likewise, miR-122 has been shown to reduce PKM2 expression, glucose uptake,
and lactate production in human colon cancer cells including HCT-116 and HT-29 [280].
Numerous other miRNAs, such as miR-374b [297], miR-199a [281], miR-338-3p [282],
and miR-491-5p [298], have demonstrated similar metabolic reprogramming effects in
HCC models. These effects seem to be generalizable to other types of cancers as similar
outcomes were also observed in gallbladder carcinoma [283], clear-cell renal cell carci-
noma (ccRCC) [284], breast cancer (BC) [299], ovarian cancer [286,300,301], glioma [302],
NSCLC [303], and melanoma [293]. In addition to their role in metabolic reprogram-
ming, many miRNAs can also regulate other aspects of carcinogenesis such as cell migra-
tion [282,283], proliferation [112,284,286,289,293,296,298], tumor formation [112,301], cell
death [288,291,292,296,304,305], and resistance to chemotherapy [280,297].

miRNAs’ Effects on Apoptosis and Proliferation. Emerging strategies show that a wide
variety of both conventional and unconventional therapies can be effective at inducing
apoptosis and ultimately cell death in cancer [306]. As indicated above, aberrant regu-
lation of miRNAs can alter the apoptotic process, paralleled with a reduction in PKM2
expression in several cancer models. This tumor-suppressive pattern of the apoptotic
machinery has been demonstrated in numerous experimental models of human cancer
including miR-122 in HCC [288,296], miR-326 and miR-let-7a in cervical cancer [291,305],
and miR133a and finally miR-133b in tongue squamous cell carcinoma (SCC) [292]. On the
other hand, miR-4417 acted as an oncogene, where it decreased the expression of TRIM35,
a protein previously identified as a tumor suppressor [307], promoted PKM2 Tyr-105
phosphorylation, increased proliferation, and reduced apoptosis in an HCC model [308].
In many cases, the effects on apoptosis were in direct accordance with reductions in cell
proliferation [291,292,296,305] (Table 1).

Beyond their role in apoptosis, several PKM2 regulatory miRNAs were shown to
modulate other signaling pathways such as autophagy. Autophagy is a vital process that
often functions to catabolize cellular components in an attempt to reestablish homeosta-
sis [309]. However, autophagy can become dysregulated in cancer and can either promote
or inhibit tumorigenesis [310]. In an in vitro pancreatic ductal adenocarcinoma (PDAC)
model, miR-124-induced downregulation of PKM2 expression was accompanied by a



Int. J. Mol. Sci. 2021, 22, 1171 23 of 55

reduction in autophagic flux and enhanced gemcitabine-induced apoptosis [304]. However,
an increase in the PKM1 to PKM2 ratio through miR-124’s suppression of PTBP1 resulted
in increased oxidative stress, apoptosis, and autophagy in an in vitro CRC model. Similarly,
miR-133b and miR-1 decreased PKM2 levels through a mechanism of indirect regulation
mediated by decreased PTBP1 levels, resulting in autophagy induction, increased ROS and
ATP, and reduced xenograft tumor volume in a CRC model [311]. More research targeting
the differential roles of miRNAs in modulating PKM2 and autophagy could reveal vital
aspects of carcinogenesis regarding the promotion or disruption of cancer cell homeostasis.

Many miRNAs that downregulate PKM2 are also capable of reducing tumor growth
and proliferation. This includes miR-122 [312] and miR-139-5p (gallbladder cancer) [283],
miR-199a (HCC) [112], miR-let-7a in (GC and cervical cancer) [291,313], miR-124 [289,314],
miR-133b, miR-1 [311], miR-137 and miR-340 (CRC) [289], miR-184 (ccRCC) [284], miR-152
(breast cancer) [285], miR-338-3p (ovarian cancer) [286], miR-625-5p (melanoma) [293], and
miR-491-5p (osteosarcoma and HCC) [298,315]. Inversely, in NSCLC, miR-214 exhibited
an oncogenic role as it increased PKM2 mRNA and protein levels and promoted glucose
utilization, lactate production, and cellular proliferation [295]. Beyond their effects on
proliferation and apoptotic cell death, miRNAs have also been shown to exert varied
effects on aspects important to tumor expansion, migration, and metastasis, as outlined in
Table 1 [282,283,290,291,298].

miRNAs Effects on Metastatic Potential. Cancerous lesions spread through their ability to
proliferate and invade the surrounding tissue through a process known as metastasis. This
process can allow tumors to spread throughout various interconnected tissues in the body.
While killing or removing cancer completely is often the primary treatment goal, inhibiting
its capacity to spread remains a central concern of healthcare providers. Studies on the
role of PKM2-regulating miRNAs reveal their potential in disrupting the metastatic tumor
initiation and progression of numerous forms of cancer. As reported by Lu et al. miR-122
can disrupt gallbladder cancer cellular malignancy through preventing TGF-β-induced
epithelium mesenchymal transformation and downregulation of PKM2 expression [312].
Similarly, overexpression of miR-139-5p resulted in reduced gallbladder cancer cellular
proliferation, migration, and invasion. These effects were also mediated through sup-
pression of PKM2 expression [283]. In another study, a gene-profiling analysis in human
HCC revealed a strong association between higher expression levels of circMAT2B and
glycolysis. Remarkably, overexpression of circMAT2B increased glycolysis both in vitro
and in vivo and promoted tumor growth and metastasis in vivo through modulation of
miR-338-3p activity and its downstream target PKM2 [282]. On the other hand, recent
studies have found a strong correlation between miR-let-7a and PKM2 expression and
clinical characteristics of cervical cancer [291]. In this study, miR-let-7a expression levels in
tissue samples of cervical cancer negatively correlate with PKM2 expression and clinico-
pathological indicators of the disease [291]. Conversely, the overexpression of miR-let-7a
suppressed the cell migration and invasion of two established in vitro models of human
cancer of the cervix uteri (SiHa and HeLa cells) [291]. Similar findings were observed
using gastric cancer cells (SGC-7901 and BGC-823), where increased levels of miR-let-7a
led to a reduction in PKM2 levels through modulation of the transcriptional activity of
c-Myc and hnRNPA1 [313]. Lastly, miR-148a and miR-326 were both shown to reduce
colonic expansion and the overall metastasis of thyroid cancer by downregulating PKM2
levels [290]. Taken together, these findings clearly demonstrate that miRNAs can play
multifactorial roles through their effects on tumor metabolism, proliferation, apoptosis,
and autophagy.
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Table 1. Roles of some PKM2-associated microRNAs in cancer.

miRNA Research Model Targeted Pathways Effects on PKM2 Expression Biological/Physiological Effects Significance

miR-122

Hepatocellular Carcinoma
(HCC)

Glycolysis
Proliferation
Apoptosis

Decreased PKM2 mRNA and
protein levels (direct targeting)

Reduction of lactate production
Increased oxygen consumption [287]

Decreased glucose uptake and ATP production [288]
Induction of apoptosis [288,296]

Reduced tumor cell proliferation [296]

Targeting PKM2 through its negative
regulator miR-122 may serve as a
therapeutic approach to improve

chemosensitivity [288] and survival
among patients with HCC [296]

Colon Cancer Glycolysis
Decreased PKM2 protein levels

through direct binding to
PKM2 mRNA

Reduced glucose uptake and lactate production
Reduced tumor cell viability and tumor volume

Sensitization to 5-Fluorouracil therapy [280]

Targeting PKM2 through stabilization of
miR-122 in colon cancer may enhance the

effectiveness of chemotherapy in
colon cancer

Gallbladder Cancer Proliferation
Metastasis Decreased PKM2 expression

Inhibits TGF-β-induced epithelium mesenchymal
transformation

Decreases proliferation and metastatic potential [312]

Targeting PKM2 through its negative
regulator miR-122 may potentiate the

effect on reducing cell invasion in
gallbladder cancer

miR-372

HCC

β-catenin/Transcription
Factor 4

Glycolysis

Increases the activity and
expression of PKM2

Promoted liver cancer cell cycle progression via
activation of the cell cycle complex CDK2-cyclin

E-P21/Cip1/WAF1. Effects are mediated through
miR372-YB-1-β-catenin-LEF/TCF4-PKM2-erbB-2

axis [316]

Targeting miR-372 may be of therapeutic
value for the treatment of HCC

miR-374b Glycolysis
Decreased PKM2 mRNA level
(indirect regulation mediated
through hnRNPA1 inhibition)

Sensitization to sorafenib therapy
Reduces the number of developed colonies [297]

Enhancing miR-374b expression may
promote the effectiveness of

chemotherapy, halt tumor growth, and
increase patient survival likelihood.

These effects are mediated through the
suppression of hnRNPA1 and its

downstream effector PKM2

miR-199a Glycolysis
Decreased PKM2 mRNA and

protein levels (direct
regulation)

Decreased glucose consumption and lactate
production [317]

Decreased cancer cell proliferation and survival
Reduced tumor growth [112]

Using natural compounds that enhance
miR-199a expression to suppress PKM2
may potentiate the effectiveness of HCC

treatment [317]

miR-4417 Proliferation
Apoptosis

No effect on PKM2 mRNA or
protein levels

Decreased expression of TRIM35
Increased PKM2 Tyr-105 phosphorylation

Increased proliferation
Reduced apoptosis [308]

Targeting miR-4417 may serve as an
adjuvant therapy to induce apoptosis and
halt HCC growth mediated by inhibiting
PKM2 Tyr-105 tyrosine phosphorylation

miR-199a-5p HIF-1α
Decreased PKM2 mRNA level

(indirectly by suppressing
HIF-1α)

Decreased cell growth
Reduced glucose uptake and lactate production [318]

Promoting miR-199a-5p expression may
increase patient survival rate through
suppressing the expression of HIF-1α

and PKM2

miR-338-3p Glycolysis
Cell Migration

Decreased PKM2 mRNA level
(direct binding leading to

PKM2 mRNA degradation)

Sponging miR-338-3p mediated by circMAT2B
resulted in increased glucose utilization, tumor

expansion, and metastatic potential [282]

Enhancing miR-338-3p expression may
reduce the progression of HCC and its

metastatic potential
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Table 1. Cont.

miRNA Research Model Targeted Pathways Effects on PKM2 Expression Biological/Physiological Effects Significance

MiR-139-5p Gallbladder Carcinoma Glycolysis
Decreased PKM2 mRNA and

protein levels (direct
regulation)

Decreased glucose consumption, lactate production,
and ATP availability

Reduced cell proliferation and migration [283]

Overexpressing miR-139-5p may serve as
a therapeutic approach to halt GBC

progression and improve GBC patient
outcomes

MiR-let-7a Gastric Cancer (GC) c-Myc
hnRNPA1

Decreased PKM2 mRNA and
protein levels (indirect

regulation mediated through
the reduction in c-Myc and

hnRNPA1 expression)

Decreased cell proliferation and migration
Reduced tumor size [313]

MiR-let-7a was reduced in GC tissues and
enhancing its expression in GC might be
capable of decreasing proliferation and

metastatic potential

miR-124

Colorectal Cancer
(CRC)

Colorectal Adenoma (CRA)
PTBP1
DDX6

Increased PKM1 to PKM2
mRNAs ratio (indirect

regulation mediated through
the suppression of

PTBP1) [314]

Increased oxidative stress, apoptosis, and
autophagy [314]

Modulation of the Warburg effect [314]

Expression of miR-124 is reduced in CRA
and CRC. Its stabilization could suppress

tumorigenesis through modulation of
PKM1 to PKM2 ratio [314]

Prostate Cancer Proliferation Decreased PKM2 protein levels Reduced cell proliferation [319]
May suppress tumor growth through
reducing the proliferation of prostate

cancer cells

Pancreatic Cancer
(PDAC)

Autophagy
Apoptosis

Decreased PKM2 protein levels
(possibly mediated through the

suppression of PTBP1)

Reduced autophagy and enhanced
gemcitabine-induced apoptosis [304]

miR-124/PTBP1/PKM2 axis could play a
pivotal role in gemcitabine resistance and

miR-124 overexpression may have
therapeutic potential

miR-124
miR-137
miR-340

CRC Glycolysis
Oxidative Phosphorylation

Increased PKM1 to PKM2
mRNAs ratio. Reduced PKM2

expression through indirect
regulation mediated by PTBP1,
hnRNAPA1, and hnRNAPA2

Decreased glycolysis rate and lactate production
Increased oxygen consumption
Inhibition of cell growth [289]

Enhancing the expression of any of the
three miRNAs may increase survival rates
and could exhibit antitumorigenic effects

miR-184
Clear-Cell Renal Cell

Carcinoma
(ccRCC)

Glycolysis
Decreased PKM2 mRNA and

protein levels (direct binding to
PKM2 mRNA)

Reduced glucose consumption and lactate production
Reduced cell proliferation [284]

The negative correlation between
miR-184 and PKM2 expression in human

ccRCC samples suggests that targeting
miR-184 may be of therapeutic value

miR-152

Breast Cancer (BC)

β-catenin
Proliferation

Decreased PKM2 protein level
(direct binding to PKM2

mRNA)

Reduced β-catenin
Reduced cell proliferation and colony

development [285]

Enhancing miR-152 may inhibit cancer
cell proliferation and sensitize cancer cells
to paclitaxel therapy through modulating

the β-catenin pathway

miR-155

PIK3R1
FOXO3a

c-Myc
Glycolysis

miR-155 knockout caused a
reduction in PKM2 mRNA and

protein levels (indirect
regulation mediated through

the FOXO3a/c-Myc axis)

Increased glucose utilization [299]

miR-155 may promote tumorigenesis
through upregulation of PKM2 and

glucose metabolism. Reducing miR-155
levels could serve as a new therapeutic

approach for breast cancer
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Table 1. Cont.

miRNA Research Model Targeted Pathways Effects on PKM2 Expression Biological/Physiological Effects Significance

miR-532-3p

Ovarian Cancer

Glycolysis
DNMT3A

Decreased PKM2 protein level
(an indirect

regulation/unknown
mechanism)

Decreased glucose consumption and lactate
production [300]

Targeting miR-532-3p/PKM2 axis using
glycosylated triterpenes such as 20(S)-Rg3
may prove a safe and effective therapeutic
option and warrants further exploration

miR-29b Glycolysis
AKT2/3

Inhibition of miR-29b increased
PKM2 mRNA and protein
levels (indirect regulation

mediated through the
activation of AKT2/3)

Reduced glucose uptake and lactate production
Reduced xenograft tumor formation [301]

miR-29b may disrupt glucose metabolism
and suppress epithelial ovarian cancer
growth by reducing AKT2-AKT3 and

PKM2 levels

miR-338-3p Glycolysis
Proliferation

Decreased PKM2 mRNA and
protein levels (direct binding to

PKM2 mRNA)

Decreased ATP and lactate production
Reduced cell proliferation [286]

Promoting miR-338-3p expression might
be of therapeutic value due to its negative

regulation of PKM2 in ovarian
cancer cells

miR-145
Glycolysis

Lactate Production
Cell Growth

Decreased PKM2 protein levels
(indirect mechanism mediated

through upregulation of the
c-Myc/miR133-b pathway)

Decreased glucose consumption and
lactate production

Reduced cell proliferation [320]

Promoting miR-145 expression might be a
therapeutic strategy for the treatment of

ovarian cancer through modulation of the
Warburg effect

miR-148a
miR-326 Thyroid Cancer Cell Growth

Apoptosis

Decreased PKM2 mRNA and
protein levels (direct binding to

PKM2 mRNA)

Reduced colony development and overall
metastatic potential [290]

miR-326 induced apoptosis in HeLa cells [305]

miR-148a and miR-326 may exhibit
tumor-suppressive effects and reduce the

metastatic potential of thyroid cancer
cells [290]

Identification of natural compounds that
could regulate miR-326 such as

resveratrol may serve as adjuvant therapy
for thyroid cancer [305]

miR-326

Glioma

Metabolic Activity
Decreased PKM2 protein levels

through direct binding to
PKM2 mRNA

Reduced ATP levels [302]
miR-326 may exhibit tumor-suppressive

effects through decreased PKM2
expression

miR-181b Glucose Metabolism
Colony Formation

Decreased PKM2 protein levels
mediated by downregulation
of Specificity protein 1 (SP1)

Reduced glycolysis, proliferation, and colony
number [321]

Promoting miR-181b expression might be
of therapeutic potential for glioblastoma

multiforme

miR-214 Non-Small-Cell Lung Cancer
(NSCLC)

Glycolysis
PTEN
Akt

mTOR

Increased PKM2 mRNA and
protein levels (indirect

regulation mediated through
PTEN and the AKT/mTOR

pathway)

Increased glucose consumption and lactate production
Increased cell proliferation [295]

miR-214 may act as an oncogene.
miR-214 suppression could reduce PKM2

expression and cancer growth

miR-625-5p Melanoma Glycolysis
Proliferation

Decreased PKM2 mRNA and
protein levels (direct

regulation)

Decreased glucose consumption, ATP and lactate
production

Reduced cell proliferation [293]

miR-625-5p may serve as a potential
target to reduce cancer growth and

glycolysis in human melanoma
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Table 1. Cont.

miRNA Research Model Targeted Pathways Effects on PKM2 Expression Biological/Physiological Effects Significance

miR-133a
miR-133b

Tongue Squamous Cell
Carcinoma

(SCC)
Proliferation
Apoptosis

Decreased PKM2 protein levels
(direct regulation)

Decreased cell proliferation and induction of
apoptosis [292]

miR133a and miR-133b may exhibit
antitumorigenic potential and could serve
as a potential therapeutic strategy for SCC

miR-133b
miR-1 CRC Proliferation

Autophagy

Decreased PKM2 to PKM1
mRNA ratio and PKM2 protein

expression levels (indirect
regulation mediated through

decreased PTBP1 levels)

Increased ROS
Decreased lactate production

Increased ATP level
Induction of autophagy

Reduced xenograft tumor volume [311]

Both miRNAs may have
tumor-suppressive potential through

their effects on PKM2 and glucose
metabolism

miR-133b NSCLC Glycolysis Decreased PKM2 protein levels
(direct regulation)

Reduced glucose uptake and lactate production
Sensitization of NSCLC to radiation [303]

May overcome radio-resistance and could
decrease glycolysis

mIR-140-5p Chronic Myeloid Leukemia
Glycolysis

Proliferation
Apoptosis

Decreased PKM2 protein levels
(indirect regulation through

modulation of sine oculis
homeobox 1 (SIX1) gene)

Overexpression miR-140-5p in chronic myeloid
leukemia cells inhibited cell proliferation and

promoted cell apoptosis [322]

Targeting the miR-140-5p/SIX1 axis may
be a potential therapeutic target for the
treatment of chronic myeloid leukemia

miR-let-7a Cervical Cancer
Proliferation

Cell Migration
Apoptosis

Decreased PKM2 protein level
through direct binding to

PKM2 mRNA

Decreased proliferation, metastasis, and tumor
growth [291]

miR-let-7a may have tumor-suppressive
potential against cervical cancer

miR-491-5p Osteosarcoma Proliferation
Decreased PKM2 mRNA and
protein levels through direct

binding to PKM2 mRNA
Decreased cell proliferation [315] Targeting PKM2 through its negative

regulator miR-491-5p by natural
compounds such as Oviductus Ranae
(OR) may reduce tumorigenesis [298]HCC

Glycolysis
Proliferation

Cell Migration

Decreased PKM2 mRNA level
through direct binding to

PKM2 mRNA

Decreased glucose consumption and lactate
production

Reduced cell proliferation and metastasis [298]

miR-1294 Osteosarcoma
Proliferation

Cell Migration
Invasion

Apoptosis

Decreased PKM2 mRNA and
protein levels through direct

binding to PKM2 mRNA

Reduced cell proliferation, invasion, and tumor
growth, while inducing apoptosis [323]

Enhancing miR-1294 expression
modulates PKM2 expression to suppress

tumorigenesis, which could serve as a
therapeutic strategy for osteosarcoma
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Overcoming Chemotherapy Resistance with PKM2-Associated miRNAs. While progress
towards safer and more effective chemotherapeutic treatments has progressed, many
hurdles still hinder the success and desirability of these therapies [324]. Issues facing
chemotherapeutics often centralize around collateral cytotoxicity and successful target
delivery [324]. Cancer researchers continue to explore innovative solutions to address
these problems. For instance, PKM2 inhibition has been demonstrated to enhance the
response of bladder cancer cells to cisplatin [217] and THP [325]. Consequently, several
PKM2-regulating miRNAs were demonstrated to be capable of enhancing the susceptibility
of cancer cells to chemotherapy (Table 1). For example, the overexpression of miR-122
inhibited PKM2 expression and resulted in the sensitization of human resistant colon cancer
cells to 5-Flourouracil treatment [280]. These chemo-sensitizing effects were recapitulated
in a xenografted murine model, showing a significant reduction in tumor volume in re-
sponse to miR-122 overexpression upon treatment with 5-Flourouracil. In a similar HCC
model, Zhang et al. identified that through its effects on the miR-374b/hnRNPA1/PKM2
axis, miR-374b overexpression antagonized glycolysis, resulting in sorafenib treatment
re-sensitization. In addition, clinical observations of sorafenib-resistant HCC patients
identified an inverse association between miR-374b and the upregulation of hnRNPA1
and PKM2 [297]. Likewise, the overexpression of miR-124 in a pancreatic cancer model
enhanced the gemcitabine induction of apoptosis, effects possibly attributable to the miR-
124/PTBP1/PKM2 axis. In a breast cancer model, enhanced expression of miR-152 may
sensitize cancer cells to paclitaxel therapy through modulation of the β-catenin path-
way [285]. Finally, miR-133b may overcome radio-resistance through reduced glucose
uptake and lactate production [303]. Therefore, further research aimed at uncovering
the clinical relevance of miRNAs in cancer exhibits profound multifaceted potential, as
evidenced by the diversified aspects of carcinogenesis affected by their expression.

Regulation of PKM2 by miRNAs in Non-Cancerous Tissues

Aside from its roles in cancer metabolism and pathology, PKM2 is also expressed in
various tissues, suggesting a possible role for PKM2 beyond cancer. As indicated in the
previous sections, several reports point to the possible contribution of PKM2 to metabolic
and inflammatory disorders [127] and identify PKM2 as a potential therapeutic target.
Therefore, in the following section, we will discuss the regulation of PKM2 by microRNAs
and the associated effects under healthy and disease conditions.

Liver. To our knowledge, PKM2 has not been reported to be expressed in adult healthy
livers, but it can be expressed under abnormal liver disease-associated conditions such as
steatohepatitis, non-alcoholic fatty liver [326], cirrhosis, and liver cancer [327]. Remarkably,
the expression of both PKM2 and miR-122 seems to be responsive to diet. Notably, in
an experimental model of high-fat diet-induced obesity in mice, PKM2 expression was
induced in hepatocytes [328], suggesting that PKM2 may play a role in the pathogenesis of
obesity-associated liver dysfunction. Overfeeding of geese resulted in decreased miR-122
levels within the liver [329]. This point is relevant because it introduces the hypothetical
concept of targeting PKM2 as a potential strategy to prevent fatty liver diseases. In support
of this hypothesis, miR-122 has been identified as one of the most abundantly expressed
microRNAs within healthy livers [330] and was demonstrated to inversely correlate with
the expression of PKM2 under pathological conditions [287,296]. This hypothesis is further
supported by the findings of the Zhiliang Gu group demonstrating that miR-122 depletion
in chicken hepatocytes increased PKM2 mRNA levels [331]. The clinical significance of
these findings is yet to be determined, although recent observations of liver tissues obtained
from obese females with non-alcoholic fatty liver disease were shown to exhibit decreased
levels of miR-122 [332], which were concomitant with the increase in PKM2 expression [326]
(Table 2). Collectively, these studies point to the possible role of liver miR-122 in the
regulation of lipid and glucose metabolism and suggest that the dysregulation of miR-
122 expression could contribute to the pathophysiology of fatty liver disease. Therefore,
identifying compounds targeting the miR-122/PKM2 axis might be of therapeutic value.
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Central Nervous System. Unlike the liver, both the brain [49] and spinal cord [333]
express high levels of PKM2. However, the function of PKM2 within the central nervous
system is largely unexplored. A recent study highlighted the possible beneficial effects of
targeting PKM2 against brain damage in a mouse model of ischemic stroke. Administrating
recombinant PKM2 (rPKM2) shortly after stroke resulted in an acute neuroprotective effect,
while late administration of rPKM2 was positively associated with improved functional
recovery [334]. In the same model, a decrease in PKM2 expression was associated with
increased miR-19a levels paralleled with decreased glucose uptake. Inhibition of miR-
19a in oxygen-glucose-deprived (OGD) neuronal cells, a model used to mimic hypoxic
neuronal damage, restored PKM2 expression and reduced apoptotic cell death. These
studies suggest that increased miR-19a could exacerbate cerebral ischemic injury, while
inhibiting miR-19a might be of therapeutic value in ischemic stroke therapy [335]. In
addition, recent studies have shown increased levels of miR-143 in rats with ischemic
brain injury and in cultured neurons deprived of oxygen and glucose (OGD). This increase
was accompanied by a decrease in the mRNA and protein levels of HK and PKM2 as
well as a reduction in glucose uptake. Inhibiting miR-143 protected cultured neurons
against OGD-induced caspase 3 activity and cell death, at least in part, through increased
glucose uptake [336] (Table 2). However, further research is needed to better elucidate
whether regulation of PKM2 mediates the anti-apoptotic effects of miR-143. Additionally,
research investigating the potential of targeting PKM2 using miRNAs as a novel therapeutic
approach to treat cerebral ischemic injury would provide valuable insights.

Cardiovascular Diseases. In addition to its role in maintaining CNS homeostasis, miR-
143 has been also reported to be associated with endothelial cell dysfunction and plaque
formation. The expression of miR-143 was shown to be upregulated in human atheroscle-
rotic plaque specimens compared to normal arteries, concomitant with a decrease in mRNA
levels of glycolytic enzymes including PKM2 and HK. These findings suggest a link be-
tween glycolysis and atherosclerotic plaque development. Overexpression of miR-143 in
endothelial cells decreased ATP and lactate production, as well as glucose uptake. Although
the effects of miR-143 on PKM2 are yet to be determined, Xu and colleagues demonstrated
that miR-143 directly binds to HK, leading to its degradation [337].

Recently, Paola Caruso et al. demonstrated that an increase in glycolysis promotes
pulmonary artery endothelial cell growth, a hallmark of pulmonary arterial hypertension
(PAH) [338]. This increase in glycolysis was accompanied by a reduction in miR-124 levels
in blood outgrowth endothelial cells (BOECs) obtained from patients with PAH [338].
However, bone morphogenetic protein receptor 2 (BMPR2), a protein that is normally
mutated in heritable PHA and considered to be the major cause of PHA by promoting the
overgrowth of endothelial cells [338] and artery smooth muscle cells [339], was suggested
to regulate miR-124 expression. Silencing BMPR2 reduced miR-124 expression, revealing
a new possible mechanism for BMPR2 in mediating PHA. Overexpression of miR-124
reduced PTBP1 and glycolytic enzymes including PKM2 to normal levels. These effects
were associated with a reduction in cell proliferation and enhanced mitochondrial activity.
Likewise, silencing PTBP1 resulted in a phenotype similar to that observed in overex-
pressing miR-124, suggesting that miR-124 action on glycolysis and PKM2 is mediated
through inhibition of PTBP1 [338] (Table 2). In conclusion, targeting the BMPR2/miR-
124/PKM2 axis may restore glycolysis and normalize proliferation rates in cells critical to
pulmonary vasculature remodeling, which could serve as a novel therapeutic option for
PHA treatment.
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Table 2. Roles of some PKM2-associated microRNAs in non-cancer disease.

miRNA Tissue Expres-
sion/Distribution Research Model Target Genes/Pathways Effects on PKM2

Expression Biological/Physiological Effects Significance

miR-99a

Liver

Human liver cells
(cancerous and
noncancerous)

Glycolysis
mTOR
HIF-1α

Inhibited insulin-induced
PKM2 expression

Regulates insulin-induced mTOR and
HIF-1α expression

Regulates insulin-induced glucose
uptake and lactate production [340]

Insulin may inhibit miR-99a to
regulate PKM2 expression, which

provides a novel biological
mechanism of regulating glucose

metabolism in the liver that
warrants further investigation

miR-122

Chicken livers Liver metabolism
Inhibition of miR-122

increased PKM2 mRNA
level (direct regulation)

Inhibition of miR-122 decreased
FABP5 mRNA level [331]

miR-122 may regulate aspects of
liver function and homeostasis

including lipid and glucose
metabolism

Chicken livers and
hepatocytes

Autophagy
Oxidative stress

Decreased PKM2
protein levels

Overexpression of miR-122 promoted
autophagy and ameliorated

arsenic-induced liver damage via
decreasing PKM2 levels [341]

Reducing PKM2 expression through
promoting miR-122 may lead to

novel treatment strategies against
arsenic toxicity

miR-19a-3p

Brain

Astrocytes and neurons
Cerebral ischemic injury

Glycolysis
Apoptosis

(Bax, Caspase 3)
Adipor2)

Decreased PKM2
protein levels

Decreased glycolytic enzymes, glucose
consumption, and lactate production
Increased markers of apoptosis [335]

miR-19a-3p may play a role in the
regulation of neural cell function

and could serve as a potential target
against cerebral ischemic injury

miR-143

Ischemic stroke
Rat cortex neurons and

astrocytes
Glycolysis

HK2
Decreased PKM2 mRNA

and protein levels

Decreased glucose uptake and lactate
production [336]

miR-143 inhibition may have
neuroprotective potential during

ischemic brain injury (IBI)

Heart

Endothelial cells
Glycolysis

HK2
LDHA

Decreased PKM2
protein levels

Decreased ATP/ADP ratio, glucose
consumption, and lactate

production [337]

Overexpression of miR-143 may
contribute to EC dysfunction
through the suppression of

glycolytic activity

miR-124 Pulmonary arterial
hypertension (PAH)

Proliferation
Glycolysis

Mitochondrial
reprogramming

Decreased PKM2 mRNA
levels (indirect regulation
mediated through PTBP1)

Decreased glycolysis and lactate
production

Decreased the proliferation of blood
outgrowth endothelial cells (BOECs)

from patients with heritable PAH
Restored mitochondrial function [338]

Targeting the miR-124-PTBP1-PKM2
axis may be of therapeutic potential

for the treatment of PAH

miR125a Synovium Psoriatic arthritis (PsA)
Glycolysis
Migration
Invasion

Suppression of PKM2
expression

miR-125a inhibition promoted EC tube
formation, glycolysis, branching,

migration, and invasion [342]

Potential therapeutic approach for
the treatment of PsA
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4.3.5. Long Non-Coding RNA Targeting of PKM2

Similar to miRNAs, long non-coding RNA (lncRNAs) were once thought to be a part
of the “junk DNA” with no known functions [343,344]. Nonetheless, while comprising
only an infinitesimal portion of encoded genomic DNA, a growing body of literature has fo-
cused on the diverse impact and roles of lncRNAs in both healthy and diseased states [344].
LncRNAs differ from miRNAs in several ways, including being composed of 200 or more
nucleotides, making them considerably larger [344]. LncRNAs lack open reading frames
and often rely on their flexibility and conformational structure in order to exert their func-
tions. Important to cancer research, lncRNAs can function to regulate aspects of metastasis,
gene expression, chromatin remodeling, DNA methylation, and differentiation [344]. lncR-
NAs were demonstrated to interfere with the mRNA regulatory capability of miRNAs
through “sponging” [344,345]. Furthermore, lncRNAs’s ability to sponge miRNAs can
lead to changes in PKM2 expression levels and oncogenic outcomes [304,346]. Beyond
this action, numerous other effects including both tumor-suppressive [66,89,347,348] and
oncogenic functions [349–354] have been observed (Table 3). Therefore, the following will
shed light on the emergence of lncRNAs in cancer research and the impact that they can
have on tumor metabolism through regulating PKM2.

Tumor-Suppressive PKM2/lncRNAs

Tumor-suppressive roles of lncRNAs were only observed in liver and prostate cancer
experimental models. Several studies focused on lncRNA MEG3 and how it can possibly
inhibit cell proliferation [89] and reduce the migration and metastasis potential of hep-
atocellular carcinoma cells [66]. Regarding migration, the expression of lncRNA MEG3
was promoted following arsenic trioxide treatment and was negatively correlated with
PKM2 mRNA and protein levels [66]. Consequently, HCC migration and epithelial to
mesenchymal transition (EMT) capabilities were reduced. In an experimental model of
liver cancer, MEG3 was shown to promote miR-122 expression, leading to a reduction in
PKM2 expression and altered nuclear translocation capabilities [89]. This further resulted
in PTEN-dependent β-catenin inhibition and degradation, as evidenced by decreased
binding of β-catenin to its downstream target LEF/TCF4. The effect of MEG3 on β-catenin
activity was further validated using luciferase activity assay of LEF/TCF4, where the
overexpression of MEG3 reduced LEF/TCF4 activity. The reduced β-catenin activity was
suggested to be mediated through several mechanisms including the modulation of PKM2
function and subcellular distribution. Overexpression of MEG3 reduced the interaction
between phosphorylated PKM2 and β-catenin and the subsequent nuclear localization of β-
catenin. Additionally, MEG3 promoted the ubiquitination and degradation of β-catenin via
a PTEN-dependent mechanism. These effects resulted in reduced cellular proliferation and
tumor growth both in vitro and in vivo [89]. Similarly, ectopic expression of long intergenic
non-coding RNA (lincRNA) 01,554 in HCC led to a reduction in cell growth and colony
formation, through the reduction of PKM2 levels by ubiquitin-mediated degradation, and
inhibition of Akt/mTOR signaling pathway to reduced aerobic glycolysis [347]. Modu-
lation of the Akt/mTOR signaling pathway appears to mediate the suppressive effects
of other lncRNAs on PKM2 expression. For example, lincRNA-p21 indirectly downregu-
lated PKM2 expression in prostate cancer, through the PTEN/AKT/mTOR pathway [348].
Additionally, downregulation of lincRNA-p21 increased glucose consumption, lactate pro-
duction, pyruvate levels, proliferation, and tumorigenic potential. However, while some
examples of tumor-suppressive PKM2/lncRNAs have been identified, the vast majority
act to promote oncogenic outcomes (Table 3).
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Table 3. Role of some PKM2/long non-coding RNA in cancer.

LncRNA Research Model Targeted Pathways Mediator Effects on PKM2 Expression Biological/Physiological Effects Significance

LncRNA MAFG-AS1

CRC

Proliferation
Glycolysis
Cell cycle
Apoptosis

MiR-147b A general trend of increased
PKM2 mRNA levels

Increased proliferation, cell cycle
progression, and cell invasion

Decreased apoptosis [346]

MAFG-AS1 may sponge miR-147b to
promote tumorigenesis and may play

a role in CRC progression

LncRNA-FEZF1-AS1 Glycolysis Direct binding to PKM2
Increased PKM2 stability and
protein levels through direct

binding

Increased PK activity and lactate
production [349]

It is upregulated in CRC and
correlated with PKM2 expression.

The suppression of
LncRNA-FEZF1-AS1 could exhibit

therapeutic potential

LINC00689 Glioma

Glycolysis
Proliferation

Migration
Invasion

miR-338-3p Increased PKM2 protein levels
Silencing of LINC00689 suppressed

glycolysis, cell proliferation, migration,
and invasion [350]

The LINC00689/miR-338-3p/PKM2
axis may have oncogenic potential and

modulating this axis may prove
effective in glioma therapy

BCYRN1

NSCLC

Glycolysis
Proliferation

Invasion
miR-149 Increased PKM2 mRNA and

protein levels

Overexpression of BCYRN1 induced
glycolysis, cell proliferation, and

invasion [34] Inhibiting BCYRN1 or/and AC020978
might be a therapeutic target

for NSCLC
AC020978 Glycolysis

Proliferation

Increased PKM2 protein levels
and stability through direct

binding

AC020978 induced glycolysis and
proliferation partially through enhancing

PKM2 levels and its transactivation
capability on HIF-1α [355]

LINC01554

Liver Cancer

Glycolysis
Cell growth
Akt/mTOR

Decreased PKM2 protein levels
(promotes ubiquitin-mediated

degradation of PKM2)

Inhibited Akt/mTOR signaling to reduce
glycolysis

Reduced cell growth and colony formation
[347]

LINC01554 may exhibit tumor
suppressor activity and could serve as

a prognostic biomarker

lncRNA
MEG3

Epithelial to mesenchymal
transition (EMT)
Wound healing

Negatively correlates with PKM2
mRNA and protein levels

Arsenic trioxide inhibited HCC migration
and EMT through promoting MEG3 and

reducing PKM2 [66]

MEG3 may disrupt metastatic
potential after arsenic trioxide

treatment and may exhibit beneficial
effects through suppressing PKM2

expression

Cell growth miR-122 Decreased PKM2 protein levels

Promoted the expression of miR-122 to
downregulate PKM2 expression and its

nuclear translocation
Reduced β-catenin, cell proliferation, and

tumor growth [89]

MEG3 may act as a tumor suppressor
with potential in prognostic and
therapeutic clinical application

lncRNA HULC
Autophagy

PTEN
AKT-PI3K-mTOR pathway

Increased PKM2 protein levels
Increased LC3II and Sirt1, resulting in

elevated levels of autophagy
Increased cell growth [354]

HULC may play a critical role in the
progression of hepatocarcinogenesis

lncRNA-SOX2OT Glycolysis
Metastasis miR-122-5p Increased PKM2 protein levels

Increased glucose metabolism and PKM2
expression and exacerbates the metastatic

potential of HCC [356]

Suppressing SOX2OT might be of
therapeutic value to halt HCC

metastasis

Linc-ROR PDAC
Autophagy
Apoptosis

PTBP1
miR-124 Silencing ROR decreased PKM2

protein levels

Overexpression of ROR increased
autophagy

Silencing ROR enhanced
gemcitabine-induced apoptosis [304]

Linc-ROR may sponge miR-124 (a
negative regulator of PTBP1) to
increase PKM2 levels and confer

chemoresistance
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Table 3. Cont.

LncRNA Research Model Targeted Pathways Mediator Effects on PKM2 Expression Biological/Physiological Effects Significance

LncRNA XLOC_006390 Cervical Cancer Apoptosis
Cell migration miR-338-3p

Silencing XLOC_006390
decreased PKM2 mRNA and

protein levels

XLOC_006390 may act as a negative
regulator of miR-331-3p and miR-338-3p

Promoted tumorigenesis and
metastasis [353]

XLOC_006390 may hold value as a
marker for cervical cancer with
potential therapeutic targeting

application

LncRNA
RPPH1

Breast Cancer

Cell cycle
Proliferation

Colony formation miR-122 Increased PKM2 mRNA levels Promoted proliferation, colonization, and
cell cycle progression [352]

RPPH1 may act in an oncogenic
manner and its suppression could

possess therapeutic potential

Alzheimer’s Disease
Apoptosis

Endoplasmic reticulum (ER)
stress

miR-326 Increased PKM2 protein level
Ameliorated amyloid β (Aβ) induced ER

stress and apoptosis in neuroblastoma
cells [357]

RPPH1 might be of therapeutic
potential for future Alzheimer’s

treatment options

TP53TG1
PDAC

Gliomas/Brain Tumor
Cells

KRAS
Proliferation

Colony formation
Glycolysis

Proliferation
Migration

miR-96
ND

ND
Decreased PKM2 mRNA levels

under high and low glucose levels

Promoted cell proliferation and invasion
and inhibited apoptotic cell death [358]

Promoted cell proliferation and migration
and inhibited apoptotic cell death [359]

TP53TG1 may inhibit the Warburg
effect and halt cancer cell growth and

metastasis

HOXB-AS3

CRC

Glycolysis
PKM splicing

miR-18a processing hnRNP A1

Inhibition of hnRNP
A1-dependent PKM splicing and

PKM2 expression. Effects are
mediated through the HOXB-AS3

peptide and not the LncRNA.

HOXB-AS3 peptide inhibits tumorigenesis
and metabolic reprogramming in CRC

cells [360]
HOXB-AS3 and SNHG6 might be
viable targets for disrupting CRC

metabolism and tumor growth

SNHG6 Glycolysis
PKM splicing

Knockdown of SNHG6 decreased
PKM2/M1 ratio

SNHG6 promotes
hnRNPA1 to favor PKM2 expression and

the subsequent increase in glycolysis [361]

LncRNA H19

Ovarian Cancer Glycolysis miR-324-5p Increased PKM2 protein level Increased glucose consumption and lactate
production [351]

20(S)-Rg3 may inhibit the Warburg
effect and halt cancer cell growth

through the H19/miR-324-5p/PKM2
axis

NSCLC
EGFR
AKT

Decreased PKM2 protein levels
by promoting PKM2 ubiquitin

mediated degradation

Suppression of H19 exacerbated erlotinib
resistance (an EGFR inhibitor) by

increasing PKM2, and the subsequent
activation of AKT [362]

Targeting H19/PKM2 axis might be a
viable option to overcome erlotinib

resistance

LINC00504
Glycolysis

Proliferation
Apoptosis

miR-1244 Increased PKM2 mRNA and
protein levels

LINC00504 knockdown suppressed
proliferation and glycolysis, but induced

apoptosis [363]

Inhibiting LINC00504 may exhibit
therapeutic potential for ovarian

cancer treatment

LincRNA-p21 Prostate Cancer
Glycolysis

Proliferation
Tumorigenesis

Decreased PKM2 mRNA and
protein levels through indirect

regulation mediated by
PTEN/AKT/mTOR pathway

Reduced proliferation and tumorigenic
potential

Its downregulation increased glucose
consumption, lactate production, and

pyruvate levels [348]

LincRNA-p21 may be a viable target
for disrupting PC metabolism and

tumor growth
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Oncogenic PKM2/lncRNAs

As demonstrated in a CRC study, lncRNA-FEZF1-AS1 increased PKM2 stability and
protein levels through direct binding, and it increased lactate production and PK activ-
ity [349]. As previously mentioned, many PKM2/lncRNAs may act to promote some
aspect of carcinogenesis in a variety of cancers. In a CRC model, lncRNA MAF-AS1 may
sponge miR-147b to increase PKM2 mRNA levels, proliferation, cell cycle progression, and
cell invasion [346]. In liver cancer, lncRNA HULC increased PKM2 protein levels. HULC
also increased LC3II and Sirt1, resulting in elevated levels of autophagy and increased cell
growth [7]. Silencing of LncRNA XLOC_006390 resulted in decreased PKM2 mRNA and
protein levels and promoted tumorigenic potential in an experimental model of cervical
cancer. In addition, XLOC_006390 may act as a negative regulator of miR-331-3p and
miR-338-3p. Several other PKM2/lncRNAs including lncRNA RPPH1 in BC [10] and
lncRNA H19 ovarian cancer [351] were also shown to promote carcinogenesis, suggesting
their oncogenic function. Interestingly, red ginseng extract ginsenoside 20(S)-Rg3 has
been shown to inhibit the Warburg effect and halt cancer cell growth through the lncRNA
H19/miR-324-5p/PKM2 axis [351], where treatment with 20(S)-Rg3 indirectly enhanced
the suppression of PKM2 by miR-324-5p. Beyond lncRNAs, linc-ROR (PDAC) [304] and
linc-00689 (glioma) [350] both exhibit oncogenic and PKM2 regulatory potential. Silencing
of ROR decreased PKM2 protein levels and enhanced gemcitabine-induced apoptosis [304].
On the other hand, overexpression of ROR increased autophagy and, together, the ef-
fects show that ROR may sponge miR-124 (a negative regulator of PTBP1) to increase
PKM2 levels and confer chemoresistance [304]. In a glioma model, silencing of linc00689
suppressed glycolysis, cell proliferation, migration, and invasion [350]. Moreover, the
linc00689/miR-338-3p/PKM2 axis may have oncogenic potential and modulating this axis
could prove effective in glioma therapy [350]. Taken together, these studies reveal that
through silencing or overexpressing lncRNAs, important aspects of carcinogenesis such as
proliferation, glycolysis, apoptosis, autophagy, and metastatic potential may be modified
towards beneficial outcomes (Table 3). Thus, lncRNAs should be carefully considered for
the future development of novel approaches to cancer therapeutics and application.

PKM2/lncRNAs in Non-Cancer Diseases

While the role of some PKM2/lncRNAs in cancer has been extensively studied, the
physiological function and molecular mechanisms by which PKM2-regulated lncRNAs act
in non-cancer diseases remain to be elucidated. Recently, using an experimental model of
Alzheimer’s disease (AD), lncRNA RPPH1 was demonstrated to exhibit a protective effect
against ER stress and apoptosis induced by extracellular amyloid (Aβ) deposits in SH-SY5Y
cells. These effects were mediated, at least in part, through downregulating miR-326, which
acts as a suppressor of PKM2 expression. The overexpression of miR-326 was shown to
directly inhibit PKM2 expression and upregulate ER stress and apoptotic markers including
GRP78, CHOP, and caspase-12, whereas lncRNA RPPH1 overexpression decreases ER stress
and promotes survival by sponging and counteracting the inhibitory role of miR-326 on
PKM2 [357] (Table 4). Of note, miR-326 was previously shown to modulate ER stress
and mitochondrial fission [305], both of which are well-established contributors to the
pathogenesis of neurodegenerative diseases including Alzheimer’s disease [364]. Together,
these findings suggest that lncRNA RPPH1 could serve as a valuable therapeutic approach
in neurodegenerative disorders upstream of PKM2 [357]. Additionally, given PKM2’s role
in metabolic regulation, further characterization of these PKM2-associated lncRNAs will
provide a better understanding of lncRNA-mediated gene regulation in the pathogenesis
of a variety of metabolic and non-metabolic diseases. In a recent study, upregulation
of lncRNA-Malat1 was suggested to exert several beneficial effects on pancreatic β-cell
homeostasis and to prevent lipotoxicity-induced β-cell dysfunction through modulating
the Ptbp1/PKM2 axis [365] (Table 4). However, there is still more research needed to
explore the role of PKM2/lncRNAs in health and disease.
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4.3.6. CircularRNA

The metabolic and overall cellular consequences that can occur in response to miRNAs
regulation of PKM2 are becoming increasingly apparent. However, the complete perspective re-
garding the intricate nature of intracellular factors by which miRNAs exert control over cellular
transformation remains elusive. Beyond the metabolic and oncogenic contributions of miRNAs
and lncRNAs, other non-coding RNA such as circRNAs and piwi-RNAs have been identified
with diversified intracellular roles. Often categorized as a form of lncRNAs, circRNAs primarily
originate from pre-mRNA and are generated through back-splicing, where the upstream 5′

terminus of an exon is spliced to the downstream 3′ terminus of an exon [366]. The resulting cir-
cular form of the circRNA product lacks the 5′cap and 3′ tail found in linearity, which promotes
its resistance to degradation by RNase [366]. CircRNAs can functionally alter and regulate both
protein and gene expression, resulting in a wide variety of effects on cellular and physiological
processes important to proliferation, cell cycle, EMT, and cancer progression [367]. Furthermore,
it has been well defined that through their capability to simultaneously bind numerous miRNAs,
circRNAs can act to sponge and inhibit the activity of various miRNAs [366–371], and similar to
what is observed with many lncRNAs, this can result in profound alterations to the biological
and metabolic processes important to tumorigenesis [368]. Studies have revealed that various
circRNAs may act as oncogenic promoters in breast cancer [372], NSCLC [373], melanoma [374],
gastric cancer [375], gallbladder cancer [376], and CRC [377] models. Furthermore, some of
these studies have revealed that circRNAs may enhance carcinogenesis through impacting
glycolysis and PKM2 expression levels (Table 5). For instance, elevated levels of circMAT2B are
associated with hepatocellular carcinoma (HCC) and predict poor prognosis. Additionally, the
overexpression of circMAT2B under hypoxic conditions promotes glycolysis and malignancy
through modulation of the miR-338-3p/PKM2 axis [282]. Similarly, Tian et al. demonstrated
that circ-FOXM1 promotes melanoma cells’ proliferation and invasion through the regulation of
glycolysis and PKM2 and Flotillin 2 levels. These effects were mediated through the regulation
of miR-143-3p. Although the link between miR-143-3p and PKM2 is yet to be determined, the
overexpression of miR-143-3p abolished lactate production and glycolysis in A2058 and A375
melanoma cells [374]. Likewise, the expression level of circ-NRIP1 in gastric cancer tissue and
cells was shown to be upregulated. Conversely, the knockdown of circ-NRIP1 in AGS and
HGC-27 GC cells resulted in reduced PKM2 expression levels, proliferation, glycolysis, migra-
tion, and apoptosis induction [375]. It was postulated that these antitumorigenic effects might
have occurred, at least in part, through the competitive targeting of miR-186-5p. Parallel to these
findings, circ-FOXP1 was shown to promote the Warburg effect through sponging miR-370
and subsequent regulation of PKLR in gallbladder cancer cells [376]. In addition, circ-FOXP1
silencing resulted in a partial reduction in PKM2 in vitro. In another elaborate CRC model,
the role of exosome-delivered circular RNA hsa_circ_0005963 (ciRS-122) was investigated. The
findings demonstrated that in both in vitro and in vivo models, ciRS-122 was delivered by
exosome to chemosensitive cells and resultantly increased drug resistance and glycolysis by
sponging miR-122 and upregulating PKM2 expression. In addition, mouse studies revealed that,
through regulation of this ciRS-122/miR-122/PKM2 pathway, exosome-delivered small interfer-
ing (si)RNA targeting of ciRS-122 resulted in the reversion of chemoresistance and suppression
of glycolysis [377]. These findings promote this innovative exosomal, nanoparticle delivery
system as a potential therapeutic target with significant clinical implications. Collectively, the
body of work presented thus far has revealed that through sponging miRNAs and regulating
PKM2 expression, the various reported circRNAs may act as tumor promoters in numerous
cancerous forms. However, the findings are still rather limited, and further exploration targeting
the comprehensive effects of these circRNAs on the overall metabolic profile within normal
and disease states is needed. Beyond circRNAs, other forms of non-coding RNA such as
Piwi-interacting RNA (piRNA), a novel class of small non-coding RNAs [378], may be involved
in mediating PKM2’s functions in health and disease. However, limited knowledge on this
matter exists [379]. Nevertheless, the identified and emerging roles of piRNAs, suggesting their
capacity to regulate various aspects of cancer, warrant future investigation.
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Table 4. Roles of some PKM2/long non-coding RNAs in non-cancer diseases.

LncRNA Research Model Targeted pathways Mediator Effects on PKM2 Expression Biological/physiological Effects Significance

LncRNA RPPH1 Alzheimer’s disease
(AD)

Endoplasmic reticulum
stress (ER stress)

Apoptosis
miR-326

Not determined (a possible
increase through blocking the

role of MiR-326 in
downregulating PKM2

expression)

RPPH1 overexpression decreased
β25-35-induced apoptosis in

SH-SY5Y cells through
downregulating ER stress and

modulating PKM2 activity [357]

RPPH1 acts as a molecular sponge
for miR-326. LncRNA RPPH1

could attenuate ERS and apoptosis
in neurodegenerative disorders

LncRNA-Malat1 Type 2 diabetes (T2D)
Glucose-stimulated insulin

secretion
Cell death

Ptbp1 (Increased)

Silencing malat1 leads to β-cell
dysfunction and alterations in

glucose-stimulated insulin
secretion

LncRNA-Malat1 enhances Ptbp1
stability and PKM2 expression

[365]

LncRNA-Malat1 could possibly
serve as a potential therapeutic

target for T2D through
modulation of PKM2 activity

Table 5. Roles of CirRNAs associated with PKM2 in cancer.

CircRNA Research Model Targeted Pathways Mediator Effects on PKM2
Expression Biological/Physiological Effects Significance

Circ-MAT2B Hepatocellular
Carcinoma (HCC)

Glycolysis
Cell proliferation

Invasion
miR-338-3p

Overexpression of
Circ-MAT2B increased

protein and mRNA PKM2
levels

Circ-MAT2B overexpression increases
HCC glucose utilization, tumor growth,

and metastasis in vivo
Circ-MAT2B overexpression promoted
glycolysis, cell proliferation, migration,

and invasion in vitro under hypoxia [282]

Circ-MAT2B is associated with
and predicts poor prognosis of

HCC Targeting circ-MAT2B may
alleviate HCC burden

Circ-FOXM1 Melanoma
Proliferation
Glycolysis
Invasion

Apoptosis
miR-143-3p

Silencing CircFOXM1
decreased PKM2 protein

levels

Increased proliferation, glycolysis, motility,
and decreased apoptosis [374]

Circ-FOXM1 may promote
melanoma progression through

the miR-143-3p/FLOT2 axis

Circ-NRIP1 Gastric Cancer

Proliferation
Migration
Glycolysis
Apoptosis

miR-186-5p
Silencing of circ-NRIP1

decreased PKM2 protein
levels

Circ-NRIP1 KD decreased proliferation,
migration, and glycolysis but induced

apoptosis [375]

Circ-NRIP1 promoted
carcinogenesis and may have

potential in prognostic and clinical
application

Circ-FOXP1 Gallbladder
Cancer

Proliferation
Migration
Invasion

Apoptosis
Glycolysis

miR-370

Silencing of circFOXP1
resulted in a partial

reduction in PKM2 protein
level

Promotes proliferation, invasion,
migration and decreases apoptosis [376]

Circ-FOXP1 may sponge miR-370
and promote PKLR expression,
enhancing tumor progression

Circ-RNA
hsa_circ_0005963

(ciRS-122)
CRC Glycolysis

Apoptosis miR-122
Exosome delivery of

CiRS-122 upregulated
PKM2 levels

CiRS-122 delivery may promote drug
resistance and glycolysis, and

exosome-delivered siRNA appeared to
reverse the resistance to treatment [377]

CiRS-122 silencing may promote
enhanced therapeutic
effectiveness against

oxaliplatin-resistant CRC
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5. Conclusions

PKM2 research remains integral to the pursuit of better cancer treatment
options [27,29,96]. Understanding the functions and processes through which PKM2
affects the body and metabolism is intricate and complex. The effects on the genetic
transcription of the specific PK isoform to the shift in quaternary structures between the
active and inactive forms all play key functions in the overall metabolic and non-metabolic
functions of PKM2 [30,60,71]. In order to promote translation, all factors that alter PKM2
function must be taken into consideration when designing therapeutic interventions target-
ing PKM2. Groundbreaking studies focused on new angles that push the boundaries have
begun illuminating upon PKM2 roles previously undiscovered [25,91,154]. Moreover, it
will be of the utmost importance to continue the exploration of PKM2, from cancer to the
tissue- and hormone-specific effects [25,27,29,380]. Understanding PKM2 from all angles
remains central to developing treatment options with less side effects. Continued explo-
ration of the tissue-specific functions of PKM2 could lead to improved pharmacological
intervention with more precise targeting and potentially fewer side effects. Furthermore,
understanding the role of PKM2 within critical metabolic tissues, such as pancreas and
liver, aids in clarifying the interactions involving PKM2 and cancer.

Beyond its structural and metabolic functions, the role of PKM2 and its interactions
with miRNAs and lncRNAs have garnered increasing interest. Collectively, miRNAs and
lncRNAs silencing or overexpression may possess profound therapeutic potential through
the alleviation of off-target effects. The comprehensive finding suggests that through tissue-
specific targeting of PKM2, these miRNAs and lncRNAs may, in theory, reduce the risks
for side effects in both cancerous and non-cancerous disease states. Furthermore, recent
biotechnological advancements regarding both traditional and innovative approaches
may allow for improved targeting efficacy. One such avenue of interest revolves around
the idea of generating either natural or synthetic nanoparticles [381]. In cancer research,
the potential of nanoparticles is twofold, where they could be designed as nanoprobes to
improve disease screening methods and enhance the therapeutic targeting of miRNAs [381].
Moreover, recent advancements into genome editing technology such as the CRISPR/Cas9
system also have identified potential for the targeting of miRNAs in various research
models [382,383]. In addition, elevated serum levels of PKM2 have been observed in
patients with various forms of cancer [384–386], and recent research has revealed that
PKM2 serum levels may possess diagnostic potential as a biomarker for various diseases
including lung cancer [387] and inflammatory bowel disease (IBD) [388]. The cure for
cancer and the development of new and improved disease treatment and diagnostic
options could lie in unravelling the mysteries of PKM2 [27,29]. This may occur through the
implementation of these recent technological breakthroughs and further understanding
their potential to reduce side effects.
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Abbreviations

ACL ATP-citrate lyase
ACR albumin to creatinine ratio
AIF apoptosis-inducing factor
AIM2 absent in melanoma 2
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AKI acute kidney injury
AKR1A1 aldo-keto reductase family 1, member A1
ALDOA aldolase A
AMPK adenosine monophosphate-activated protein kinase
Apaf-1 apoptotic protease activating factor-1
APC/C-Cdh1 anaphase-promoting complex/cyclosome-Cdh1
APC adenomatous polyposis coli
ATF6 activating transcription factor 6
ATG autophagy related protein
ATP adenosine triphosphate
BAD blc-2 associated agonist of cell death
BAPN β-aminopropionitrile fumarate
BAX BCL2-associated X protein
BC breast cancer
Bcl2 b-cell lymphoma 2
BCL-2 b-cell lymphoma 2
bFGF basic fibroblast growth factor
BH3 bcl-2 homology domain 3
BIM Bcl-2-like protein 11
BMPR2 bone morphogenetic protein receptor 2
BUN blood urea nitrogen
CAD coronary artery disease
CARM coactivator-associated arginine methyltransferase
Caspase cysteine-aspartic acid protease
CCI chronic constriction injury
ccRCC clear-cell renal cell carcinoma
CD Crohn’s disease
CD31 cluster of differentiation 31
CGNP cerebellar granule neuron progenitor
CHOP C/EBP homologous protein
CircRNA circular RNA
COX cyclooxygenase
CRC colorectal cancer
DHAP dihydroxyacetone phosphate
DN diabetes nephropathy
DSS dextrin sulfate sodium
EAE autoimmune encephalomyelitis
eEF2K eukaryotic elongation factor-2
EGF epidermal growth factor
EGFR epidermal growth factor
EIF2AK2 eukaryotic translation initiation factor 2 alpha kinase 2
EIF2α eukaryotic translation initiation factor 2 alpha
EMT epithelial-mesenchymal transition
eNOS endothelial NO synthase
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
ESRD end-stage renal disease
FADD fas-associated protein with death domain
EXP5 exportin 5
FBP fructose 1,6-bisphosphate
FGF21 fibroblast growth factor 21
FIH-1 asparaginyl hydroxylase factor inhibiting
GFR glomerular filtration rate
GLUT1 glucose transporter 1
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GM-CSF granulocyte-macrophage colony-stimulating factor
GPR78 G protein-coupled receptor
GSK3β glycogen synthase kinase 3 beta
H2O2 hydrogen peroxide
HDAC histone deacetylase
HFD high-fat diet
hGBM human glioblastoma multiforme
HGC human gastric cancer
HIF 1α hypoxia-inducible factor 1-alpha
HK hexokinase
HMGB high mobility group box
hnRNPA heterogenous nuclear ribonucleoprotein A
HSP heat shock protein
IBD inflammatory bowel disease
ICAM intracellular adhesion molecule
IFNγ interferon gamma
IGF insulin growth factor
IL-1β interleukin-1beta
IL-6 interleukin-6
IRE1α inositol-requiring transmembrane kinase/endoribonuclease 1 alpha
JAK Janus kinase
JNKs c-Jun N-terminal kinases
LC3 microtubule-associated protein 1A/1B-light chain 3
LDHA lactate dehydrogenase A
LMW-PTPs low molecular weight protein tyrosine phosphatase
lncRNA long non-coding RNA
LPS lipopolysaccharides
MAPK mitogen-activated protein kinase
MDM2 mouse double minute 2
MEF mouse embryonic fibroblasts
miRNA microRNA
MLC-2 myosin regulatory light chain 2
MS multiple sclerosis
mTOR mammalian target of rapamycin
NAC n-acetyl-L-cysteine
NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor kappa light chain enhancer of activated B-cells
NK natural killer cells
NLRC4 NLR family CARD domain containing 4
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
NLS nuclear localization signal
NO nitric oxide
NO nitric oxide
OAA oxaloacetate
NPC nuclear pore complex
NSCLC non-small-cell lung cancer
OGD oxygen-glucose deprived
OXPHOS oxidative phosphorylation
PARP poly (ADP-ribose) polymerase
PDAC pancreatic ductal adenocarcinoma
PDK pyruvate dehydrogenase kinase
PD-L1 programmed death-1 (PD-1) ligand 1
PEP phosphoenolpyruvate
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PERK protein kinase RNA-like endoplasmic reticulum kinase
PFK phosphofructokinase
PHD pyruvate dehydrogenase
PHD3 prolyl hydroxylase 3
PHGDH phosphoglycerate dehydrogenase
PI3K phosphoinositide 3-kinase
PIN1 peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
PiRNA piwi-interacting RNA
PK pyruvate kinase
PKC protein kinase C
PKM pyruvate kinase M
Pol II polymerase II
PSAT1 phosphoserine aminotransferase
PTB polypyrimidine tract binding protein
PTEN phosphatase and tensin homolog
PTP protein-tyrosine phosphatase
PTP1B protein tyrosine phosphatase 1B
RBM4 RNA-binding motif
RISC RNA-induced silencing complex
ROS reactive oxygen species
rPKM2 recombinant PKM2
SCC squamous cell carcinoma
SIR systematic inflammatory responses
SIRT sirtuins
SOCS3 suppressor of cytokine signaling 3
SNAP synaptosome-associated protein
SNP single nucleotide polymorphism
SOD2 superoxide dismutase
SREBP sterol regulatory element binding proteins
SRSF3 serine/arginine-rich splicing factor
STAT signal transducer and activator of transcription
T2D type 2 diabetes
TGIF2 TGFB-induced factor homeobox 2
TAAD thoracic aortic aneurysm and dissection
Th17 T helper 17
TLR toll-like receptor
TNF-α tumor necrosis factor alpha
TRIM35 tripartite motif containing 35
UC ulcerative colitis
UCP1 uncoupling protein 1
VDAC voltage-dependent anion channel
VEGF vascular endothelial growth factor
Wnt wingless-related integration site
WT1 Wilms’ tumor 1
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