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Abstract: A mononuclear complex [Dy(phenN6)(HL′)2]PF6·CH2Cl2 (H2L′ = R/S-1,1′-
binaphthyl-2,2′-diphenol) with local D6h symmetry was synthesized. Structural deter-
mination shows that Dy3+ was encapsulated within the coordination cavity of the neutral
hexaaza macrocyclic ligand phenN6, forming a non-planar coordination environment. The
axial positions are occupied by two phenoxy groups of binaphthol in the trans form. The
local geometry of Dy3+ closely resembles a regular hexagonal bipyramid D6h configura-
tion. The axial Dy-Ophenoxy distances are 2.189(5) and 2.145(5) Å, respectively, while the
Dy-N bond lengths in the equatorial plane are in the range of 2.524(7)–2.717(5) Å. The
axial Ophthalmoxy-Dy-Ophthalmoxy bond angle is 162.91(17)◦, which deviates from the ideal
linearity. Under the excitation at 320 nm, the complex exhibits a characteristic emission
peak at 360 nm, corresponding to the naphthalene ring. The AC susceptibility measure-
ments under an applied DC field of 1800 Oe show distinct temperature-dependent and
frequency-dependent AC magnetic susceptibility, typical of single-molecule magnetic be-
havior. The Cole–Cole plot in the temperature range of 6.0–28.0 K was fitted using a model
incorporating Orbach and Raman relaxation mechanisms, giving an effective energy barrier
of Ueff = 300.2 K. Theoretical calculations on complex 1 reveal that the magnetization relax-
ation proceeds through the first excited Kramers doublets with a calculated magnetization
blocking barrier of 404.1 cm−1 (581.4 K).

Keywords: chirality; single-molecule magnet; hexaaza macrocycle; Dy; D6h

1. Introduction
Single-molecule magnets (SMMs), integrating slow magnetization relaxation and

quantum tunneling effects, are potentially utilized in the fabrication of nanoscale display
devices and high-density data storage media, as well as quantum computing [1–4]. How-
ever, the operating thresholds of SMMs are predominantly confined to extreme cryogenic
regimes, where the magnitude of the anisotropic barrier and the blocking temperature are
critical factors in determining their ambient-temperature functions [5–8]. Lanthanide-based
single-molecule magnets (Ln-SMMs) have emerged as highly promising candidates for
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advancing high-performance magnetic materials, taking advantage of the enhanced mag-
netic anisotropy and large magnetic moments inherent to rare-earth elements [9–12]. The
multi-functionality of lanthanides and the rational selection of functional ligands enables
the development of intelligent materials for practical applications, such as luminescent,
mechanochromic, and photo-responsive Ln-SMMs [13–16].

The performance of Ln-SMMs fundamentally depends on increasing magnetic
anisotropy while suppressing the quantum tunneling interference in relaxation dynam-
ics [17–19]. The magnitude of magnetic anisotropy in these systems is predominantly
governed by two competing factors: spin–orbit coupling (SOC) strength and electrostatic
crystal field effects [20–22]. Weak isotropic equatorial coordination minimizes 4f elec-
tron cloud repulsion within the equatorial plane, which is beneficial for SMM proper-
ties. In contrast, the axial coordination of strong-field ligands, e.g., phenoxide, alkoxide,
or siloxide, maximizes axial magnetic anisotropy, which is conducive to SMMs [23,24].
Quantum tunneling and Raman relaxation processes, adverse to SMM properties, can be
effectively suppressed by high-symmetry crystal fields (D4d, D5h, and D6h coordination
geometries) [25,26], and the rigidity of equatorial-plane ligands that hinders molecular
vibration and inhibits Raman relaxation. For instance, a stable D6h dysprosium single-
molecule magnet (Dy-SMM) incorporating a rigid hexaazamacrocyclic ligand exhibits an
effective energy barrier (Ueff) as high as 1833 K and an open hysteresis loop at 20 K [27]. In
contrast, well-known high-temperature Dy-SMMs [Dy(Cp*)2]+ (Cp* = {C5Me5}−) with an
open hysteresis loop of up to 80 K are not stable under aerobic conditions and are hard to
synthesize [12].

Due to this interest in multi-functional and stable D6h Dy-SMMs, we made an ef-
fort to prepare such species by incorporating chiral and fluorescent ligands. With the
help of theoretical calculations, we can deeply understand the magneto-structural corre-
lation of D6h Dy-SMMs. In this work, we report a mononuclear octa-coordinate complex
[Dy(phenN6)(HL′)2]PF6·CH2Cl2 (H2L′ = R/S-1,1′-binaphthyl-2,2′-diphenol), featuring lo-
cal D6h symmetry. The flexible cyclic polydentate ligand phenN6 (Scheme 1) provides a
weak coordination environment in the equatorial plane, forming a non-planar coordina-
tion sphere around Dy3+. The axial positions are occupied by chiral fluorescent phenoxy
ligands (HL′)−, generating two short Dy-Ophenoxy coordination bonds. By constructing
a pseudo-D6h local configuration with strong axial coordination bonds, the magnetic
anisotropy along the axial direction is maximized, thereby enhancing the effective energy
barrier (Ueff). AC susceptibility measurements reveal distinct temperature-dependent and
frequency-dependent characteristics in the AC magnetic signals, typical of single-molecule
magnet behavior.
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2. Results and Discussion
2.1. Synthesis and Circular Dichroism Spectra

The electrostatic repulsion model suggests that the strategy most ideal for enhancing
the magnetic performance of flattened Dy3+ ions involves concentrating ligands in the
axial direction to form a monodentate coordination compound (coordination number = 1).
However, lanthanide ions exhibit diverse coordination numbers and complicated configu-
rations, making it challenging to obtain even bidentate structures, let alone monodentate
ones. In order to obtain a D6h high-performance Dy(III) SMM, we adopted a two-step
strategy. This involved intentionally weakening equatorial coordinating atoms using a
hexaazamacryclic ligand (phenN6) and then strategically enhancing the axial coordination
by positioning the phenoxyl oxygen atoms of HL− along the anisotropy axis [17,21]. The
two-step synthesis of complex 1 is shown in Scheme 1. Through the reaction of HL− with
Dy(phenN6)Cl3 in CH2Cl2, we successfully obtained complex 1, which exhibits local D6h

symmetry. The purity of the complex was confirmed by micro-elemental CHN analyses.
The crystals show the partial loss of the CH2Cl2 solvent and slight solubility in acetoni-
trile. The thermogravimetric analysis (TGA) of complexes 1(R/S) reveals that all CH2Cl2
solvents are gradually lost from room temperature to 185 ◦C (Figure S1). The infrared
spectrum of complex 1 shows strong absorption peaks at 1600 cm−1 and 830 cm−1, which
are due to the C=N stretching vibration of the Schiff base ligand and the P-F stretching
vibration in PF6

− ions (Figure S2). The fluorescence spectra of complexes 1(R) and 1(S) in
the acetonitrile solution (1 × 10−5 M) with an excitation wavelength of 320 nm show the
characteristic emission at 360 nm for 1,1′-bi-2-naphthol (Figure S3).

The chirality of ligands can produce chiral complexes through coordination. 1,1′-bi-
2-naphthol is a common chiral compound. After coordination with Dy3+, a pair of chiral
mononuclear complexes, 1(R) and 1(S), are formed, which are mirror images of each other
in their crystal structures. The circular dichroism (CD) spectra in acetonitrile solution
further prove that they are enantiomers. As shown in Figure 1, the CD spectrum of the
complex 1(R) shows a positive Cotton effect at 221 nm and a negative Cotton effect at
235 nm, which arises from the π → π* charge transfer in the binaphthyl benzene ring.
Conversely, the CD spectrum of complex 1(S) shows a mirror-image signal completely
opposite to that of 1(R) at the same wavelength, indicating that 1(R) and 1(S) are a pair of
Dy(III) enantiomers.
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2.2. Structure

Mononuclear complexes 1(R) and 1(S) crystallize in polar space group P1, and the
crystallographic data are summarized in Table S1. Selected bond distances and bond angles
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are given in Table S2. The molecular structure of the [Dy(phenN6)(HL)2]+ cation for com-
plexes 1(R) and 1(S) is depicted in Figure 2. The chirality of the complexes, corresponding
to S/R configurations, can be determined by the orientation of the uncoordinated phenol
oxygen bonds in the 1,1′-binaphthyl-2,2′-diphenol ligands. The independent asymmetric
unit contains a Dy3+ ion, a neutral cyclic ligand (phenN6), two monovalent axial ligands
(HL′)−, a charge-balancing anion PF6

−, and a lattice solvent molecule (CH2Cl2). As de-
signed, Dy3+ is indeed encapsulated within the coordination cavity formed by the hexaaza
N6 ligand. The rigid o-phenanthroline constrains the equatorial coordination atoms to
be coplanar at the head of the macrocycle, while the flexible aliphatic amine chain at the
tail deviates from the equatorial plane upon coordination (N5), resulting in a non-planar
equatorial coordination. A similar distortion can be observed in less distorted complexes
[Dy(bpyN6)(Ph3SiO)2](BPh4) and [Dy(phenN6)(Ph3SiO)2](PF6) [17,21]. The axial positions
are occupied by the phenoxy group of binaphthol ligands. According to the SHAPE cal-
culation (version 2.1), the local geometry of Dy3+ is close to the compressed hexagonal
bipyramidal D6h configuration with a deviation parameter of 5.478 (Table S3). The axial Dy-
Ophenoxy bond distances are 2.189(5) and 2.144(5) Å, respectively, while the bond lengths of
Dy-N in the equatorial plane are in the range of 2.524(7)–2.717(5) Å, which are significantly
longer than the axial Dy-Ophenoxy bond lengths for 1(R). The axial Ophenoxy-Dy-Ophenoxy

bond angle of 162.91(17)◦ for 1(R) deviates markedly from the ideal linearity, likely due
to the spatial hindrance induced by the non-planarity of the equatorial phenN6 ligand. In
the crystal lattice, free CH2Cl2 and PF6

− are situated adjacent to the [Dy(phenN6)(HL)2]+

cations (Figure 3) and form abundant weak intermolecular interactions. The nearest inter-
molecular Dy---Dy distance is 9.224 Å for 1(R).
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2.3. Magnetism

Variable-temperature magnetic susceptibility measurements for complex 1 were con-
ducted under a 1000 Oe DC field across the 2–300 K range. As shown in Figure 4a,
the room-temperature χMT value of 13.9 cm3·mol−1·K is close to the theoretical value
(14.17 cm3·mol−1·K) for a non-interacting Dy3+ ion (6H15/2, S = 5/2, L = 5, gJ = 4/3). The
χMT profile of mononuclear complex 1 remains nearly constant upon cooling before grad-
ually decreasing to a minimum of 11.79 cm3·mol−1·K at 2 K, which is indicative of weak
intermolecular antiferromagnetic interactions between Dy3+ centers. The magnetization
curve of complex 1 at 2.0 K (Inset of Figure 4a) shows that the magnetization in the region
of 0–10 kOe increases nearly linearly with the increase in the external magnetic field, and
then gradually to 5.6 Nβ at 50 kOe, which is far lower than the theoretical saturation value
of 10 Nβ (gJ × J) for Dy(III) complexes. As shown in Figure 4b, complex 1 has a small
hysteresis loop at 1.9 K without residual magnetization at the external zero dc field.
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Inset: field dependences of magnetization at 2 K; (b) hysteresis loop at 1.9 K.

The magnetic susceptibilities (χ′′) of the temperature-dependent out-of-phase alter-
nating current (ac) of complex 1 under the zero DC field are shown in Figure 5a. The
presence of non-zero χ′′ signals across the 10–997 Hz range, in the absence of distinct peaks,
suggests that significant quantum tunneling of magnetization (QTM) exists. To mitigate
this effect, field-dependent AC susceptibility measurements were conducted at 10 K and
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997 Hz to identify the optimal suppressing DC field. As revealed in Figure 5b, the χ′′

response exhibits a maximum value near 1800 Oe, indicating effective QTM suppression
in this field. Subsequent AC susceptibility tests were thus performed under an applied
1800-Oe DC field.
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Figure 6 demonstrates the temperature- and frequency-dependent out-of-phase (χM
′′)

AC susceptibility signals for 1, which are characteristic of single-molecule magnet (SMM)
behavior. Cole–Cole plots between 6.0 and 28.0 K (Figure 6c) display semicircular profiles
that were well fitted using the generalized Debye model (Table S4). The small α values
(α < 0.17) manifest a narrow distribution of relaxation time.
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An Arrhenius analysis of the extracted relaxation times (lnτ vs. T−1) reveals two dis-
tinct regimes: (i) a linear high-temperature region (T > 15 K) governed by the Orbach
process, and (ii) a curved low-temperature region (T < 15 K) dominated by a Raman



Molecules 2025, 30, 2043 7 of 12

relaxation mechanism (Figure 6d). Consequently, the entire temperature range was fit-
ted using Equation τ−1 = CTn + τ−1

0 exp
(
−Ueff

kBT

)
incorporating both Orbach and Raman

relaxation mechanisms, yielding the parameters of n = 4.24(12), C = 0.001(1) s−1·K−n,
Ueff = 300.2(20) K, and τ0 = 6.7(3) × 10−7 s. For classical Raman relaxation, n varies in the
range of 2–9 for a phonon bottleneck (n = 2) and an ideal Kramers ion (n = 9). In many
SMMs, n may be smaller when acoustic and optical phonons are present (usually n = 2–6,
Table S5) [17,19,20,28].

In order to investigate the magneto-structural correlation, D6h Dy-SMMs (37 cases)
with Ueff values in the range of 35–2437 K were collected (Table S5) [17–21,27,29–39]. It
is well documented that for mononuclear D6h-Dy single-molecule magnets, the rigidity
and electrical properties of the equatorial ligands, the electronegativity of the coordination
atoms, and the steric hindrance of the axial ligands change the structure and local coordina-
tion configuration (coplanarity) of the complex, and then alter the strength of the crystal
field around Dy(III), thus regulating the magnetic anisotropy of Dy(III). A comparison of
the magnetic properties for D6h high-performance Dy-SMMs in Table S5 suggests that the
axial O-Dy-O bond angle plays the most critical role, i.e., larger bond angles correspond
to better magnetic anisotropy and higher Ueff. In addition, the coplanarity, electrical neu-
trality, and electronegativity of equatorial coordination atoms play a favorable secondary
role. In complex 1, the Dy3+ center adopts a compressed D6h configuration with a neutral
hexaaza macrocyclic ligand, showing a medium Ueff among similar pseudo-D6h Dy-SMMs
(Table S5). The small axial O-Dy-O bond angle of 162.89(18)◦ for 1 should be responsible
for the situation. Previous theoretical calculation results indicate that the large deviation
from the ideal D6h usually brings about the QTM process occurring in the first excited state,
which leads to the failure of the energy barrier flip in the second excited state and, finally, a
small effective energy barrier. In contrast, an ideal D6h could make the anisotropic axis of
the first excited state and even the higher excited states coincide with the ground state, and
the QTM in the first or higher excited states can be effectively suppressed, thus significantly
improving the effective energy barrier [34].

Complete-active-space self-consistent field (CASSCF) calculations on complex 1
(Figure S4) on the basis of an X-ray-determined geometry were carried out with OpenMol-
cas [40] and SINGLE_ANISO [41–43] programs (see Supporting Information for details) to
deeply understand the relaxation mechanism of complex 1. The energy levels (cm−1), g (gx,
gy, gz) tensors, and predominate mJ of the lowest eight Kramers doublets (KDs) of complex
1 are shown in Table S6, where mJ is equal to ±15/2 in its ground Kramers doublets (KD0)
with gz ≈ 20.000 > gx,y ≈ 0.000, indicating a nearly perfectly axial anisotropy for 1. The
mixed mJ components for the lowest eight KDs of 1 (Table S7) show that the KD0 is mostly
composed of mJ = ±15/2, leading to a small transversal magnetic moment in the KD0.
However, the first excited state KD1 for 1 comprises 75.9%|+13/2> and 22.6%|−13/2>,
which causes a large transversal magnetic moment within KD1, as shown in Figure 7a.
As expected, the main magnetic axis on the DyIII ion of 1 in the KD0 is aligned along the
O-Dy-O direction in Figure 7b.

In Figure 7a, the transversal magnetic moment in the KD0 for 1 is 0.78 × 10−3 µB,
which is too small, meaning a fast QTM in the KD0 is suppressed at low temperatures.
By contrast, the transversal magnetic moment in the KD1 is 0.72 × 10−1 µB, allowing for
a fast thermal-assisted QTM. Hence, the magnetic relaxation of 1 can probably proceed
through KD1. Thus, the calculated magnetization blocking barrier for 1 is 404.1 cm−1,
which is higher than the experimental energy barrier value of 300.2 K (208.6 cm−1). The
difference is due to unfavorable effects, such as anharmonic phonons, Raman magnetic
relaxation, QTM, etc., on the energy barrier, which has been frequently observed in Dy-
SMMs. Nevertheless, the calculation results for 1 suggest that the short axial Dy-Ophenoxy
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distances of 2.189(5) and 2.145(5) Å give rise to large energy splitting between KD1 and
KD0, while the distortion from perfect D6h leads to relaxation through KD1. Obviously, this
phenomenon is consistent with the experimental results.
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3. Materials and Methods
3.1. Synthesis

All of the reagents were commercially available and were used without further purification.

3.1.1. Synthesis of the Precursor phenN6-DyCl3
In total, 1.18 g (5.00 mmol) of 1,10-o-phenanthroline-2,9-dicarbaldehyde was dissolved

in 30 mL of hot ethanol; then, 800 µL (5.00 mmol) of triethylenetetramine was added,
and the reaction system began to slowly produce turbidity. Then, 1.92 g (5.00 mmol) of
dysprosium chloride hexahydrate was added. The mixture was heated to reflux for 6 h.
After the reaction, a large amount of light brown precipitate was produced at the bottom
of the round-bottomed flask. The reaction product was collected by suction filtration and
was repeatedly washed with ice ethanol. Finally, the potential coordination solvent was
removed by vacuum drying at 80 ◦C for 5 h, and finally, about 1.80 g (2.9 mmol) of brown
powder phenN6-DyCl3 was obtained with a yield of about 65%.

3.1.2. Synthesis of Complexes [Dy(phenN6)(HL′)2]PF6·CH2Cl2 (1R/1S)

The precursors phenN6-DyCl3 (30.8 mg, 0.0500 mmol), R/S-1,1′-binaphthyl-2,2′-
diphenol (H2L′, 28.6 mg, 0.100 mmol), KPF6 (18.4 mg, 0.100 mmol), and triethylamine
(13.8 µL, 0.100 mmol) were, respectively, added into 10 mL of dichloromethane solvent,
and then 10 mL of deionized water was added into the mixed system under stirring at
room temperature. Subsequently, the reaction system was refluxed for 2 h. The solution
was allowed to cool at room temperature. The dichloromethane layer was separated and
filtered, and the crimson filtrate was allowed to stand and evaporate slowly in a small bottle
with a hole. Two days later, red, flaky crystals (34.7 mg, 0.0265 mmol) were precipitated
with a yield of about 53% (based on the amount of precursor phenN6-DyCl3). Elemental
analysis (%) was calcd for C61H50Cl2DyF6N6O4P (FW = 1309.44 g·mol−1): C, 55.95; H, 3.85;
and N, 6.42. The following were measured: C, 55.8; H, 3.7; and N, 6.8. IR (KBr disks, cm−1):
1600 (s), 830 (s). TGA yielded the following: 4.5% (-CH2Cl2, 4.5% calcd).
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3.2. Physical Measurements

Single-crystal X-ray data were collected by Rigaku SuperNova, Dual, Cu at zero, and
AtlasS2, Rigaku Holdings Corporation, Tokyo, Japan. We used the Olex2 program (version
1.3) to solve the structure and used the full matrix least square method based on F2 to refine
it with the method of SHEXL-2018/3. Hydrogen atoms were added geometrically and
refined by the riding model. The temperature- and field-dependent magnetic susceptibility
were measured by the MPMS XL5 SQUID magnetometer of Quantum Design Company, San
Diego, CA, USA. Infrared spectra (KBr tablet) in the range of 400~4000 cm−1 were recorded
on WQF 510A FTIR equipment (EnviSense, Lublin, Poland), and the scanning interval was
2 cm−1. Thermogravimetric analyses were performed on a METTLER TOLEDO TGA/DSC1
instrument (METTLER TOLEDO, Hong Kong, China) in the temperature range of 30–800 ◦C
using a heating rate of 10 K·min−1 under N2 atmosphere. The photoluminescence spectrum
was measured by a Lengguang F98 fluorescence spectrophotometer (Shanghai, China).
The scanning speed was 1000 nm/min, and the scanning interval was 1 nm. The circular
dichroism (CD) spectrum was measured by the JASCO J-1500 spectrometer of JASCO
Corporation, Tokyo, Japan.

4. Conclusions
A chiral mononuclear complex [Dy(phenN6)(HL′)2]PF6·CH2Cl2 (H2L′ = R/S-1,1′-

binaphthyl-2,2′-diphenol) with local D6h symmetry was successfully constructed. The short
Dy–Ophenoxy coordination bonds formed through the axial coordination of chiral HL’− lig-
ands effectively enhanced magnetic anisotropy. AC magnetic susceptibility measurements
unambiguously confirmed the single-molecule magnet behavior with an effective energy
barrier of 300.2 K under 1800 Oe. This work reemphasizes the fact that the perfect D6h

coordination configuration of Dy(III) is in favor of high-performance Dy-SMMs. Future
work will involve the preparation of new multi-functional Ln-SMMs with sensitized rare
earth luminescence and improved SMM performance.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules30092043/s1. Figure S1: The thermogravimetric curves of
complex 1(R/S); Figure S2: Infrared spectrum of complex 1(R/S); Figure S3: Fluorescence emission
spectra of complex 1 in acetonitrile (1 × 10−5 M); Figure S4: Molecular structure of the cation for
complex 1 used for CASSCF calculations; H atoms are omitted for clarify; Table S1: Crystallographic
data of complexes 1R/S; Table S2: Selected bond distances (Å) and bond angles (◦) in complexes 1(R)
and 1(S); Table S3: Coordination geometry calculated by SHAPE 2.1 for complex 1R; Table S4: Cole–
Cole fitting parameters under the 1800 Oe DC field for complex 1; Table S5: Structural information
and the effective energy barrier for D6h Dy(III) SMMs; Table S6. Calculated energy levels (cm−1), g
(gx, gy, gz) tensors, and the predominate mJ of the lowest eight Kramers doublets (KDs) of complex 1
using CASSCF/RASSI-SO with OpenMolcas; Table S7. Wave functions with the definite projection
of the total moment |mJ > for the lowest eight KDs of complex 1 using CASSCF/RASSI-SO with
OpenMolcas. References [44,45] are cited in the Supplementary Materials.
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