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a b s t r a c t 

Recent developments in artificial intelligence have generated increasing interest to deploy automated im- 

age analysis for diagnostic imaging and large-scale clinical applications. However, inaccuracy from au- 

tomated methods could lead to incorrect conclusions, diagnoses or even harm to patients. Manual in- 

spection for potential inaccuracies is labor-intensive and time-consuming, hampering progress towards 

fast and accurate clinical reporting in high volumes. To promote reliable fully-automated image analysis, 

we propose a quality control-driven (QCD) segmentation framework. It is an ensemble of neural net- 

works that integrate image analysis and quality control. The novelty of this framework is the selection 

of the most optimal segmentation based on predicted segmentation accuracy, on-the-fly. Additionally, 

this framework visualizes segmentation agreement to provide traceability of the quality control process. 

In this work, we demonstrated the utility of the framework in cardiovascular magnetic resonance T1- 

mapping - a quantitative technique for myocardial tissue characterization. The framework achieved near- 

perfect agreement with expert image analysts in estimating myocardial T1 value ( r = 0 . 987 , p < . 0 0 05 ; 

mean absolute error (MAE) = 11.3ms), with accurate segmentation quality prediction (Dice coefficient pre- 

diction MAE = 0.0339) and classification (accuracy = 0.99), and a fast average processing time of 0.39 sec- 

ond/image. In summary, the QCD framework can generate high-throughput automated image analysis 

with speed and accuracy that is highly desirable for large-scale clinical applications. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cardiovascular diseases (CVDs) are among the leading causes 

f death worldwide, killing more than 15 million people in 2016 

lone ( WHO, 2017 ). Approximately 10% (7 million) of the UK 

opulation have been diagnosed as having some form of CVD 

 British Heart Foundation, 2018 ). The high risk of mortality signi- 

es the enormous value of tackling these diseases. 

Cardiovascular magnetic resonance (CMR) is one of the ma- 

or non-invasive imaging modalities for comprehensive investiga- 

ion of the heart in current clinical practice. In particular, quan- 

itative T1 mapping is an emerging CMR technique for advanced 

yocardial tissue characterization on a pixel-by-pixel level ( Moon 

t al., 2013; Messroghli et al., 2017 ), and can detect disease beyond 

onventional CMR methods, such as late gadolinium enhancement 
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LGE) imaging. T1 mapping is designated as one of the six most in- 

ovative imaging methods for evaluating patients with heart fail- 

re by the European Society of Cardiology Heart Failure Associa- 

ion ( ̌Celutkiene et al., 2018 ). CMR T1 mapping is increasingly used 

n large-scale clinical studies ( Petersen et al., 2013; Kramer et al., 

015 ) to study various cardiac diseases, including the UK Biobank 

maging component ( Petersen et al., 2013 ), which aims to scan 

0 0,0 0 0 participants by 2021 (with > 48 , 0 0 0 datasets acquired al-

eady). 

In current practice, extraction of useful clinical parameters, such 

s the average myocardial T1 value, from a CMR T1 map requires 

anual segmentation of the left ventricular (LV) myocardium, 

hich is a tedious, time-consuming and subjective process. In the 

ase of the UK Biobank imaging component ( Petersen et al., 2013 ), 

his could potentially require years of manual contouring for a 

ingle analyst. While sharing work between multiple analysts can 

peed up the process, it introduces inter-observer variability, re- 

ucing consistency, which may increase the sample size required 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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o detect primary endpoints. Hence, there is a pressing need for 

rocessing large-scale CMR datasets consistently and efficiently. To 

ddress this need, it is desirable to develop robust, fully-automatic 

egmentation algorithms for advanced imaging techniques which 

re also reliable in quality on a per-case basis. 

However, popularly-used deep learning-based automatic seg- 

entation methods could still fail when analyzing CMR cine im- 

ges, despite their overall high accuracies ( Bernard et al., 2018 ). It 

s important to detect these segmentation failures automatically to 

void errors in diagnostic or research conclusions. Manual assess- 

ent of automatic segmentation quality requires visual inspection 

 Bai et al., 2018 ), at the least, and quantitative comparisons with 

anual contouring. The time spent on such manual quality control 

rocesses can offset the efficiency gained by automated segmenta- 

ion. 

.1. Related work 

Extensive research has been done on automating segmenta- 

ion of CMR short-axis cine images for measuring LV ejection frac- 

ion (LVEF), which can potentially be adapted for T1-map process- 

ng. More than 70 segmentation algorithms, utilizing different ap- 

roaches, various image-based information and statistical shape 

odels, have been reviewed for computer-aided segmentation of 

MR ( Petitjean and Dacher, 2011; Peng et al., 2016 ). Recent deep 

earning approaches require large training datasets, which are in- 

reasingly available with large population studies, such as the UK 

iobank ( Petersen et al., 2013 ). ( Bai et al., 2018 ) published excel-

ent results using a CNN-based cine MR segmentation algorithm, 

rained on datasets from over 40 0 0 subjects from the UK Biobank. 

 Irving et al., 2017 ) also used deep learning for automated liver T1

ap segmentation. 

Ensemble deep learning segmentation models have been ap- 

lied to various medical imaging applications. For example, 

 Zheng et al., 2019 ) combined 2D and 3D segmentation models 

ith a meta-learner to segment 3D cardiac MRI data. ( Kang and 

wak, 2019 ) combined two ResNet-based models for polyp seg- 

entation in colonoscopy images. ( Winzeck et al., 2019 ) used an 

nsemble of 5 CNNs to segment ischemic lesions in brain MRI. 

hese studies showed that ensemble neural networks can improve 

egmentation accuracy. Further, the use of ensemble deep neural 

etworks to estimate uncertainty in image classification has been 

roposed in ( Lakshminarayanan et al., 2017 ). Recent research found 

hat ensemble deep neural networks can make highly diverse pre- 

ictions, compared to other state-of-the-art approaches such as 

ayesian neural networks ( Fort et al., 2020 ). Thus, it is a promising

pproach to estimate uncertainty. However, the application of en- 

emble deep neural networks for predicting segmentation quality 

emains unexplored. 

For cardiac T1 mapping, there is limited published literature on 

utomatic segmentation. A non-machine-learning approach was re- 

ently proposed for automatic LV segmentation and regional anal- 

sis of myocardial native T1 values ( Huang et al., 2018 ). However, 

t was developed and validated only on a small cohort of healthy 

ontrols (10 subjects), which did not capture the wide range of im- 

ge variability in larger databases of normal and pathological cases 

ommonly encountered in real-life clinical practice. ( Fahmy et al., 

018 ) proposed a fully-convolutional neural network method to 

egment T1 weighted images to reconstruct myocardial T1 maps. 

owever, no mechanism of segmentation quality control for T1 

apping has been proposed. 

Early research on segmentation quality control in medical imag- 

ng focused on addressing interobserver variability by deriving a 

eference standard from multiple manual or automatic segmen- 

ations. To estimate such reference segmentation, a simple label 

oting scheme can be deployed ( Li et al., 2011 ), as well as using
2 
robabilistic schemes ( Warfield et al., 2004; Cardoso et al., 2013 ), 

hich maximize expectation to obtain a reference segmentation. 

 Li et al., 2011 ) showed that the label voting scheme achieved 

etter performance over probabilistic schemes in the empirical 

esults. 

Recent works of Bayesian deep learning attempted to estimate 

egmentation uncertainty in medical imaging. One approach is 

o generate multiple segmentation variants to compare variabil- 

ty using probabilistic neural networks ( Kohl et al., 2018; Baum- 

artner et al., 2019 ) or random dropout ( Roy et al., 2018 ). An-

ther approach is to perform calibration when training a Bayesian 

eural network, such that the output probability of the voxel- 

ise label matches the expected accuracy ( Jena and Awate, 2019 ). 

mong these studies, only ( Roy et al., 2018 ) attempted to predict 

ommonly-used segmentation evaluation metrics such as Dice sim- 

larity coefficient (DSC), albeit with high discrepancy. Recent re- 

earch has found that the current state-of-the-art Bayesian neural 

etworks are prone to making very similar predictions, whereas 

nsemble deep neural networks tend to be more diverse in mak- 

ng predictions ( Fort et al., 2020 ). In other words, it is more likely

or Bayesian neural networks to make similarly bad segmentation 

amples than for the ensemble approach. These similarly bad sam- 

les can lead to undesired overestimation of segmentation qual- 

ty. In contrast, ensemble deep learning can benefit from higher 

rediction diversity, to achieve more robust segmentation quality 

ontrol. Furthermore, the randomness inherent in the Bayesian ap- 

roach with Monte Carlo sampling comes with a tradeoff on re- 

eatability, which is an important feature for troubleshooting. 

More recent work addressed segmentation quality control by 

redicting DSC in the absence of manual segmentation as a refer- 

nce standard. As DSC is widely adopted in the image analysis re- 

earch community to evaluate segmentation, it can serve as a con- 

istent and familiar indicator of segmentation quality. For example, 

 Kohlberger et al., 2012 ) proposed to predict DSC using machine 

earning with handcrafted feature engineering. One limitation of 

his approach is the scalability of handcrafting a wider spectrum 

f descriptive features. 

A framework based on Reverse Classification Accuracy (RCA) 

 Valindria et al., 2017 ) was introduced to predict multi-organ seg- 

entation quality, by comparing with a database of multiple atlas- 

ased reference segmentations. Subsequently, the RCA framework 

as validated using random forest-based segmentation on CMR 

ine images ( Robinson et al., 2017; 2019 ). Although the RCA frame- 

ork was also validated on CNN-based segmentation, the quality 

rediction for CNN-based segmentation had a higher mean abso- 

ute error (MAE), compared with those for random forest-based 

nd multi-atlas segmentations ( Valindria et al., 2017 ). Furthermore, 

he RCA framework was computationally intensive, requiring 11 

inutes of processing to assess the quality of a single segmen- 

ation ( Robinson et al., 2019 ), which is not suitable for real-time 

linical applications. 

To support real-time clinical applications, ( Robinson et al., 2018 ) 

roposed a CNN-based regression to directly map random forest- 

ased segmentation outputs to quality control in the form of pre- 

icted DSC. However, this method was validated for random forest- 

ased segmentation but not the popular deep learning-based seg- 

entation. 

In summary, the majority of the current automated segmen- 

ation algorithms in CMR ( Bernard et al., 2018; Bai et al., 2018; 

etitjean and Dacher, 2011; Peng et al., 2016; Irving et al., 2017; 

heng et al., 2019; Kang and Gwak, 2019; Winzeck et al., 2019; 

uang et al., 2018; Fahmy et al., 2018 ) do not come with seg- 

entation quality control mechanisms suitable for automatic pro- 

essing pipelines in real-life clinical applications. Moreover, quality 

rediction algorithms have not progressed to utilize the predicted 

cores to further improve segmentation accuracy. 
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In a proof-of-principle study, we recently proposed the qual- 

ty control-driven (QCD) framework ( Hann et al., 2019 ) to segment 

MR cine images of the aorta in cross-section to estimate aortic 

istensibility. The QCD framework exploits the differences among 

ultiple candidate segmentations of aortic sections, not only al- 

owing prediction of segmentation accuracy in real-time, but also 

ltilizing this accuracy prediction to further improve segmentation 

n a per-case basis. The framework has only been validated on seg- 

entation of simple circular aortic sections in ( Hann et al., 2019 ) 

s a proof of concept. In this work, we demonstrate that the QCD 

ramework is generalizable by applying it to left ventricular seg- 

entation of T1-mapping images. 

.2. Contribution 

In this work, we substantially advanced the QCD framework for 

utomatic segmentation of CMR T1-mapping for real-time clini- 

al applications with quality control. CMR T1-mapping is an ad- 

anced imaging technique for pixel-wise quantitative myocardial 

issue characterization, and is deemed one of the 6 most inno- 

ative imaging methods for assessing patients with heart failure 

y the European Society of Cardiology in 2018 ( ̌Celutkiene et al., 

018 ). The novel contributions of this work include the adaptabil- 

ty of the QCD framework to: 

1. Segment a substantially different and more complex anatomi- 

cal structure (the doughnut-shaped left ventricular myocardium 

in short-axis), compared to simple circular cross-sections of the 

aorta in ( Hann et al., 2019 ). This is then generalizable to other

common forms of cardiovascular imaging, such as echocardio- 

graphy and cardiac computed tomography, where segmenta- 

tion of the left ventricular myocardium is also commonly per- 

formed. 

2. Tailor to a completely different CMR imaging protocol (quanti- 

tative mapping) from traditional cine imaging in ( Hann et al., 

2019 ), in terms of MR methodology, imaging parameters, types 

of artefacts, and clinical purposes. 

3. Further validate improvement of segmentation accuracy on-the- 

fly, by selecting the most optimal LV segmentation from mul- 

tiple candidates based on predicted accuracy. This concept is 

novel to automatic segmentation and quality control in diag- 

nostic imaging, requiring deeper validation for various applica- 

tions. 

4. Include a visualization tool for segmentation agreement (novel 

in this work), to provide visual insights into the traditional 

“black-box” nature of deep-learning-based image processing, 

with traceability into the segmentation quality control process. 

5. Additionally, we highlight a potential flaw of the Pearson cor- 

relation, commonly used as a metric for segmentation accu- 

racy prediction. The Pearson correlation between predicted and 

actual observed DSCs is dependent on the performance of 

the segmentation method. It can be paradoxically worse for a 

better-performing method, and thus is not always suitable for 

evaluating quality prediction. 

. Material and methods 

In this section, we first describe the origin of the data used in 

he development and testing of the novel quality control-driven 

QCD) framework. Then, we introduce the methodology of the seg- 

entation component of the framework, and the methodology of 

he automatic quality control of segmentation, with segmentation 

uality visualization. We also present the detailed implementation 

nd evaluation of the QCD framework. 
3 
.1. Material 

The development and testing data comprised of 2383 CMR 

ative (pre-contrast) T1 maps using the ShMOLLI T1-mapping 

ethod ( Piechnik et al., 2010 ), zero-padded to 384 × 384 pixels. 

ll T1 maps were short-axis views of the left ventricular (LV) my- 

cardium, varying from basal to very apical slices. Endo-and epi- 

ardial contours were manually segmented as part of our prior 

esearch studies ( Dall’Armellina et al., 2012; Ferreira et al., 2012; 

ass et al., 2012; Piechnik et al., 2013; Bull et al., 2013; Karamitsos 

t al., 2013; Ferreira et al., 2013; 2014b; Ntusi et al., 2014; Ferreira 

t al., 2014a; Mahmod et al., 2014; Ntusi et al., 2015; Levelt et al., 

016; Ferreira et al., 2015; Ntusi et al., 2016; Ferreira et al., 2016 ).

he manual contours served as the ground truth (GT) segmenta- 

ions for evaluating automatic segmentations and for deriving the 

eference DSCs to train and test the automatic segmentation qual- 

ty predictors. The data were randomly split into 80% training data, 

% validation data, and 11% testing data. 

.2. Multiple segmentation models 

The QCD framework uses multiple segmentation models, where 

ach model m ∈ M generates a segmentation S m of an input T1 

ap ( Fig. 1 A). S m is a binary pixel-classification mask where the 

V myocardium is labeled as 1, and other pixels as 0. 

There are two types of segmentation models in the framework: 

ingle models ( Fig. 1 C) and combined models ( Fig. 1 D). For an in-

ut T1 map, each single model, such as a single convolutional neu- 

al network, can independently generate a segmentation ( Fig. 1 B). 

n this work, a range of fully convolutional neural networks of dif- 

erent depths, such as U-net 7, U-net 11, and so on, are used to 

ake a diverse set of candidate segmentations. This is analogous 

o the spread of expertise in a multidisciplinary clinical team. Fur- 

hermore, these single model segmentations can also be combined 

ia a label voting scheme ( Li et al., 2011 ) to generate additional

egmentation candidates, which we term combined segmentations. 

ll available single model segmentations, denoted as J , of an input 

1 map are summed up in a pixel-wise fashion, then thresholded 

y t ∈ { 1 , 2 , . . . , | J |} such that 

 

t (u, v ) = 

{
1 if 

∑ 

J∈ J J(u, v ) ≥ t 

0 otherwise, 
(1) 

here (u, v ) is a pixel coordinate in the T1 map, and K 

t denotes

 combined segmentation generated with a threshold parameter 

. This generates | J | (the number of neural networks used) addi- 

ional segmentation variants for each input image. 

.3. Visualization of segmentation agreement 

The agreement of the single neural network model segmen- 

ations is visualized by color-coding the pixel-wise summation 

ap 

∑ 

J∈ J J(u, v ) in Eq. (1) . It highlights the degree and location 

f segmentation differences among single neural network models 

 Fig. 1 E), and unmasks the “black-box” nature of the deep learning- 

ased segmentation, facilitating transparency of the quality control 

rocess in the framework. In addition, as combined segmentations 

re generated similarly by overlaying the single model segmenta- 

ions pixel-by-pixel, the visualization also shows the agreement of 

he combined segmentations. 

.4. Automatic quality control of segmentation 

In addition to fully-automatic segmentation, the framework is 

apable of generating an inherent quality score of any segmen- 

ation S m produced by a model m ∈ M, in the absence of the 

anual ground truth ( GT ) segmentation S GT . M denotes all the 
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Fig. 1. Overview of the multiple neural network framework for integrated segmentation and quality control. For simplicity, this illustration shows an example of 3 single 

independent neural networks. (A) A T1 map is analyzed by (B) independent segmentation models to output (C) single-model segmentations. Then, the single-model seg- 

mentations are passed to a label voting scheme to generate (D) combined-model segmentations. (E) In addition, the agreement of the segmentation can be visualized. (F) A 

DSC matrix is generated from both single model and combined-model segmentations for (G) DSC predictions with regression models. (H) The final segmentation is chosen 

based on the DSC prediction, and the corresponding predicted DSC is output as (I) the final quality control score. 
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vailable single and combined models in the framework. For any 

egmentation S m , the framework predicts Dice similarity coeffi- 

ient DSC(S m , S GT ) as the segmentation quality score ( Fig. 1 G). 

The quality scoring exploits the differences in segmentation 

mong all available candidate segmentation outputs to generate 

he quality score. The quality scoring relies on a negative relation- 

hip between the segmentation differences and the segmentation 

uality. 

In order to establish this relationship, we quantify and compare 

he differences in segmentation among the multiple segmentation 

odels implemented in M. DSC(S m , S n ) is computed for every pair 

f distinct models (m, n ) ∈ M × M and m � = n . Hence, we obtain an

ssociation matrix of inter-segmentation Dice coefficients DSC(S) 

 Fig. 1 E), where S = (S m , S n , . . . ) represents all the available seg-

entations in the framework for an input T1 map. 

Subsequently, for each segmentation model m ∈ M, a quality 

coring model is needed to predict DSC(S m , S GT ) of any image. The

ice coefficient prediction 

̂ DSC m 

( S ) is based on multiple linear re- 

ression, such that 

̂ SC m 

( S ) = αm 

+ 

∑ 

x ∈ DSC(S) 

βx 
m 

· x, (2) 

here αm 

and βm 

are the linear regression parameters, trained in- 

ividually for each segmentation model m ∈ M using the training 

ata, where the ground truth manual segmentation S GT is available 

o compute DSC(S m , S GT ) . 

.5. Quality control-driven segmentation 

The availability of quality prediction for each candidate seg- 

entation in the framework enables on-the-fly selection of the fi- 

al segmentation from all the available segmentations. For a T1 

ap, the segmentation S m generated by a model m ∈ M is au- 

omatically assigned a quality score, in the form of a predicted 

ice similarity coefficient ̂ DSC m 

( S ) . Assuming that the predicted 

ice coefficient ( Fig. 1 G) is accurate, the segmentation S m with 

 higher ̂ DSC m 

( S ) is expected to achieve a higher DSC(S m , S GT ) .

ence, we select the segmentation with the highest quality score 

ax m ∈ M 

( ̂  DSC m 

( S ) ) to be the final, most optimal segmentation S ∗, 
or each T1 map ( Fig. 1 H). We expect that this novel quality

ontrol-driven (QCD) approach can improve the overall segmenta- 

ion accuracy. 

Two additional variants of the QCD segmentation are consid- 

red in this work for comparison. The default QCD framework in- 

ludes both single models and combined models as candidates. 
4 
he final segmentation is selected based on the highest pre- 

icted DSC. The first variant (QCD-Lite) is similar to the default 

CD framework. The only difference is that the combined mod- 

ls are excluded from the candidates for the QCD-Lite. This cre- 

tes a “lighter” version of the default QCD framework. The same 

ndependently-trained single models from the default QCD are 

sed as candidates in the QCD-Lite. The DSC predictors are re- 

rained to accommodate fewer candidate models. This is a prelim- 

nary attempt to assess how the choice of candidate models im- 

acts on the segmentation performance. Extending upon the de- 

ault QCD framework, the second variant (weighted average QCD) 

ssigns the corresponding predicted DSC as a weight to each candi- 

ate segmentation. It then outputs a weighted average segmenta- 

ion as the final output, instead of selecting only one optimal seg- 

entation. The DSC prediction for the final segmentation is also a 

eighted average. This is to explore the possibility of further im- 

roving the QCD framework. 

.6. Implementation 

For the specific implementation of the QCD framework, 6 inde- 

endent U-nets ( Ronneberger et al., 2015 ) were included into Nets 

o perform automated LV myocardium segmentation. Each of them 

aried in hyper-parameters, such as the number of convolutional 

ayers, pooling layers, and the number of skip connections. The 

mallest neural network implemented had only 7 convolutional 

nd transposed convolutional layers, and 1 skip connection, while 

he deepest neural network had 27 layers and 6 skip connections. 

e refer to each of the neural networks by the number of con- 

olutional and transposed convolutional layers as follows: U-net 7, 

-net 11, and so forth, up to U-net 27. The wide range in capacity 

f the networks is intentional to introduce more diverse variation 

n segmentation. The neural networks were independently trained, 

sing the Adam optimizer ( Kingma and Ba, 2014 ) to minimize the 

ross-entropy loss in the training data of CMR T1 maps. The frame- 

ork was trained and validated on a single desktop computer us- 

ng a single NVIDIA Titan X GPU, with 12GB onboard memory and 

072 cores. Each convolutional neural network of the ensemble 

as independently trained for 60 epochs. 

.7. Evaluation methods 

For each model m ∈ M, the segmentation performance was 

valuated by averaging DSC(S m , S GT ) between the automated 
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Table 1 

Image quality categories for T1 maps described by expert human operators. 

Category Description Proportion 

Excellent Well-defined borders of the myocardium with good contrast. Typically, mid-ventricular slice. Easy to 

contour with high consistency. 

5.2% 

Good Overall well-defined borders of the myocardium with reasonably good contrast. Requires some caution 

when contouring. Moderately easy to contour, but prone to higher variability than easy cases. 

23.5% 

Acceptable Ambiguous borders of the myocardium with poor contrast. Requires caution when contouring. Prone to 

high variability. 

65.3% 

Poor Ambiguous borders of the myocardium with poor contrast. Observable pathologies or artefacts. 6.0% 

s

t

t

r

t

fi

<

(

c  

p  

T  

t  

f  

t  

a

<

t

T

t

e

t

s

m

o

c

e

w

(

s

3

1

o

t

t

t

t

3

t

o

M

n

m  

e

t

Fig. 2. Examples of T1 maps, agreement visualizations, and segmentations. (A-D) 

The top row is an example in which there was high agreement among segmentation 

models, as shown in (B) the agreement visualization. Hence, the predicted DSC of 

the QCD output (C) was high (0.8933), which was consistent with the DSC (0.8996). 

(E-H) The second row is an example in which there was some disagreement among 

the segmentation models, as shown in (F) the agreement visualization. Hence, the 

predicted DSC of the QCD output (G) was low (0.6550), which was consistent with 

the DSC (0.6425). (I-L) The third row is an example in which the agreement visu- 

alization (J) showed high disagreement among the segmentation models, possibly 

due to the heavy wraparound artefact. The predicted DSC was low (0.5404) due to 

the disagreement despite that the DSC was much higher (0.7912). In clinical prac- 

tice, this T1 map (I) should be treated with caution. Thus, a lower predicted DSC 

can serve as a useful alert. (M-P) The last row shows an example in which (P) the 

deepest single neural network (U-net 27) falsely classified the breast implant (red 

arrow in M) as part of the myocardium. On the other hand, (O) Combined Model 3 

produced more robust segmentation. (Q) is a color bar which indicates the degree 

of agreement in the visualizations, with 1 being the lowest agreement to 6 being 

the highest agreement. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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egmentation S m and the manual segmentation S GT of T1 maps in 

he validation data. 

The accuracy of the DSC prediction was also evaluated using 

he validation data by mean absolute error (MAE) and Pearson cor- 

elation coefficient (r) of the prediction 

̂ DSC m 

S and the prediction 

arget DSC(S m , S GT ) for each model m ∈ M. 

The DSC prediction was further evaluated for binary classi- 

cation of good (observed DSC ≥ 0 . 7 ) and poor (observed DSC 

 0 . 7 ) segmentation. The threshold of 0.7 was chosen based on 

 Robinson et al., 2019 ). The binary classification was evaluated ac- 

ording to the accuracy (T P + T N) / (T P + F P + T N + F N) , the true

ositive rate T P/ (T P + F N) , and the false positive rate F P/ (F P +
 N) , where T P, F P, T N, and F N respectively denote the number of

rue positive cases (observed DSC ≥ 0 . 7 and predicted DSC ≥ 0 . 7 ),

alse positive cases (observed DSC < 0 . 7 and predicted DSC ≥ 0 . 7 ),

rue negative cases (observed DSC < 0 . 7 and predicted DSC < 0 . 7 ),

nd false negative cases (observed DSC ≥ 0 . 7 and predicted DSC 

 0 . 7 ). The binary classification can further demonstrate the prac- 

ical usage of the DSC prediction in the QCD framework. 

The estimated myocardial T1 value, calculated by averaging the 

1 values of all pixels in the myocardium, was identified by the au- 

omated method, for each T1 map in the testing data. Similarly, we 

stablished the ground truth T1 value using the manual segmenta- 

ion. The T1 estimation was evaluated using mean error, mean ab- 

olute error (MAE), and Pearson correlation ( r) between the esti- 

ated values and the ground truth. In addition, the relative errors 

f T1 were categorized by manual image quality assessments by a 

onsultant cardiologist (AB), who classified the T1 maps into 4 lev- 

ls of quality: ‘excellent’, ‘good’, ‘acceptable’, and ‘poor’ ( Table 1 ). 

To demonstrate generalizability, the QCD segmentation frame- 

ork was trained and tested on the Sunnybrook cardiac dataset 

 Radau et al., 2009 ), for a seperate application. The evaluation re- 

ults are presented in Appendix D. 

. Results 

The neural networks and the DSC predictors were trained on 

906 CMR T1 maps, and were subsequently evaluated on previ- 

usly unseen validation data of 220 T1 maps. With a single GPU, 

he framework took 15 minutes and 21 seconds (including data I/O 

ime) to segment the entire dataset of 2383 T1-maps and produce 

he quality control scores. On average, one image took 0.39 second 

o process. 

.1. Accuracy of segmentation 

Among the 12 individual segmentation models investigated for 

he QCD framework, Combined Model 3 had the highest mean 

bserved DSC of 0.8371 ( Table 2 ), followed closely by Combined 

odel 2 (DSC = 0.8368), both outperforming the deepest single 

eural network U-net 27 (DSC = 0.8313). 

Pictorial examples of the T1 maps and their corresponding seg- 

entations can be seen in Fig. 2 . Specifically, Fig. 2 M-P shows an

xample that Combined Model 3 generated more robust segmen- 

ation than U-net 27. In this case, U-net 27 misclassified the breast 
5 
mplant (indicated by a red arrow in Fig. 2 M) as the myocardium. 

his case demonstrated the advantage of the on-the-fly selection of 

he final segmentation combined with the label voting approach, 

nstead of using a fixed segmentation model or a fixed weighted- 

verage segmentation. 

The QCD framework and the QCD-Lite variant further outper- 

ormed any individual segmentation models and demonstrated the 

est performance in the LV myocardium segmentation on the val- 

dation data, with a DSC value of 0.8508 and 0.8503, respec- 

ively ( Table 2 ). The QCD framework and the QCD-Lite also out- 

erformed the weighted average QCD variant, which obtained a 

SC of 0.8225. This demonstrated the effectiveness of the optimal 
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Table 2 

Segmentation performance evaluated in mean Dice similarity coefficient (DSC) and standard devi- 

ation (SD) with manual segmentation as the ground truth, and DSC prediction performance evalu- 

ated in mean absolute error (MAE) and Pearson correlation ( r). All r had p < 0 . 0 0 05 . 

Segmentation Model Mean DSC (SD) MAE r 

U-net 7 0.6688 (0.1715) 0.0312 0.95 

U-net 11 0.8091 (0.0738) 0.0368 0.73 

U-net 15 0.8301 (0.0678) 0.0380 0.66 

U-net 19 0.8264 (0.0547) 0.0384 0.43 

U-net 23 0.8309 (0.0556) 0.0382 0.57 

U-net 27 0.8313 (0.0578) 0.0399 0.42 

Combined Model 1 0.7896 (0.0769) 0.0463 0.60 

Combined Model 2 0.8368 (0.0598) 0.0405 0.47 

Combined Model 3 0.8371 (0.0565) 0.0382 0.52 

Combined Model 4 0.8288 (0.0576) 0.0354 0.73 

Combined Model 5 0.8087 (0.0725) 0.0333 0.88 

Combined Model 6 0.6883 (0.1779) 0.0335 0.96 

QCD 0.8508 (0.0541) 0.0339 0.53 

QCD-Lite 0.8503 (0.0562) 0.0344 0.58 

Weighted Average QCD 0.8225 (0.0590) 0.0315 0.71 

Fig. 3. Pie chart of frequencies of the segmentation models selected for the final 

segmentation in the QCD framework. It shows that outputs generated by Combined 

Models 2, 3, 4 were most frequently selected as the optimal segmentations, ac- 

counting for more than half of the cases in the validation data. No segmentation 

generated by U-net 7 or Combined Model 6 was selected by the QCD framework. 
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Table 3 

Agreement of the estimated T1 values using the automated QCD seg- 

mentation compared with manual segmentation in the testing data. 

Pearson Correlation 0.987 ( p < . 0 0 05 ) 

Mean Error (SD) -4.6ms (16.7) 

Mean Absolute Error (SD) 11.3ms (13.0) 

p

h

s

3

f

d

s

i  

l

d

D

t

o  

D

t

t

c

(

i

a

t

t

Q

7  

o

0

t  

w  

D

0

e

i

m

egmentation model selection with the highest predicted quality 

btained on-the-fly. This is similar to our clinical experience that 

veraging may fall short when multiple human analysts have dif- 

erent training and experiences. The segmentations produced may 

ot form linear relationships. Combined Models 2, 3 and 4 con- 

ributed the most to the QCD segmentation, accounting for more 

han half of the final segmentation outputs ( Fig. 3 ). 

.2. Visualization of segmentation agreement 

The agreement visualization of segmentation shows a spatial 

ap of agreement among the multiple single neural networks. Ad- 

itional examples of the agreement visualization can be seen in 

ig. 2 . Fig. 2 Q is the color bar of scale from 1 to 6, indicating

he number of single neural networks which identify a particular 

ixel as the myocardium, hence showing the extent of agreement 

mong the neural networks. Fig. 2 B shows an agreement visualiza- 

ion with generally high degree of segmentation agreement across 

he myocardium segmentation. Thus, the automated segmentation 

 Fig. 2 C) was also expected to highly agree with the manual seg- 

entation ( Fig. 2 D). Fig. 2 F shows that the neural networks dis-

greed with each other mostly at the apical anterior wall. This is 

he same region where the automated segmentation ( Fig. 2 G) dif- 

ered from the manual segmentation ( Fig. 2 H). Fig. 2 J shows gener-

lly high disagreement among the neural networks across the my- 

cardium, possibly due to the heavy wraparound artefact in the 

1 map ( Fig. 2 I). Thus, a low predicted DSC was expected. Fig. 2 N

hows a high disagreement at the breast implant (purple-colored 
6 
ixels). These examples show that the agreement visualization can 

ighlight the regions where disagreements happen and provide in- 

ights into the quality control of the segmentation process. 

.3. Accuracy of segmentation quality control 

The MAEs for the DSC prediction ranged from 0.0312 to 0.0463, 

or all implemented models ( Table 2 ), indicating overall good pre- 

iction of quality control for all the candidate segmentations, sub- 

tantiating the validity of the QCD framework. The MAE in predict- 

ng the DSCs for the QCD framework was 0.0339 ( Table 2 ). Multiple

inear regression coefficients for the DSC prediction of each candi- 

ate segmentation model are provided in Table A.1 . 

The Pearson correlation of the predicted DSCs and the observed 

SCs was calculated for each model ( Table 2 ), and is often used 

o assess the performance of segmentation quality control meth- 

ds. Fig. 4 A shows high correlation ( r = 0 . 92 , p < . 0 0 05 ) for the

SC prediction of all the candidate segmentations. This indicates 

hat the DSC prediction can estimate a wide range of segmenta- 

ion quality for all the candidate segmentations. Interestingly, the 

orrelations measured individually for the segmentation models 

 Table 2 ) show that the Pearson correlation tended to be stronger 

f the segmentation model performed worse in terms of mean DSC, 

nd, conversely, weaker if the segmentation model performed bet- 

er. Fig. 4 B and C explain the relation using the scatter plots of 

he predicted DSCs and the observed DSCs for U-net 7 and the 

CD final segmentations, respectively. For the shallowest U-net 

, a strong linear correlation ( r = 0 . 95 , p < . 0 0 05 ) can be clearly

bserved as the data points spread along the identity line from 

.19 to 0.90 ( Fig. 4 B). However, for the QCD final segmentations, 

he Pearson correlation ( r = 0 . 53 , p < . 0 0 05 ) of quality control was

eak ( Table 2 ) despite the high mean DSC and the low MAE in the

SC prediction, as the data points in the scatter plot cluster around 

.59 to 0.95 ( Fig. 4 C). Therefore, the Pearson correlation is not nec- 

ssarily a good metric for evaluating the quality control component 

n this work, and may be misleading when the accuracy of the seg- 

entation models is very high. 
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Fig. 4. The Pearson correlation coefficient is not necessarily an accurate indicator of quality prediction performance. Scatter plots of the predicted vs the observed 

DSCs are shown for: (A) all the candidate segmentations in the QCD framework, (B) U-net 7, and (C) the final segmentations selected by the QCD framework. The highest 

classification accuracy (ACC) of good (observed DSC ≥ 0 . 7 ) and bad (observed DSC < 0 . 7 ) segmentations is seen in (C) the final segmentations selected by the QCD framework 

(ACC = 0.99), compared to (A) all the candidate segmentations (ACC = 0.96) and (B) U-net 7 (ACC = 0.94). Although high correlations were observed for (A) all the candidate 

segmentations ( r = 0 . 92 ) and (B) U-net 7 ( r = 0 . 94 ), a much weaker correlation was obtained for (C) the final QCD segmentations ( r = 0 . 53 ), which had a better segmentation 

performance (observed DSC between 0.59-0.95) and despite having the highest accuracy (ACC = 0.99). 
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The DSC prediction in the QCD framework was further eval- 

ated for binary classification of good (observed DSC ≥ 0 . 7 ) and 

ad (observed DSC < 0 . 7 ) segmentations. The evaluation showed 

igh classification accuracy (ACC) for all the candidate segmenta- 

ions (ACC = 0.96, Fig. 4 A), U-net 7 (ACC = 0.94, Fig. 4 B), and the final

egmentations selected by the QCD framework (ACC = 0.99, Fig. 4 C). 

igh true positive rates (TPR) were also achieved: 0.99 for all the 

andidate segmentations, 0.94 for U-net 7, and 1.00 for the QCD fi- 

al segmentations. In addition, the false positive rates (FPR) were 

eported: 0.25 for all the candidate segmentations, and 0.04 for U- 

et 7. Only 3 false positive cases, with high predicted DSCs ( ≥ 0 . 7 )

ut low observed DSCs ( < 0 . 7 ), were found for the 220 QCD final

egmentations. These results demonstrated that the DSC prediction 

an differentiate good and poor segmentations for quality control 

urpose. 

The 3 false positive cases for the QCD segmentations were 

dentified ( Fig. C.1 ). The automatic segmentations ( Fig. C.1 A-C) for 

hese cases appeared acceptable after review for practical use de- 

pite having low observed DSCs. The manual segmentation masks 

 Fig. C.1 D-F) were excessively thin, potentially due to attempts by 

he human operator to avoid partial volume when myocardial cov- 

rage was not considered critical ( Piechnik et al., 2013 ; ?). This 
7 
ontributed to the low observed DSCs due to little overlap be- 

ween the automatic segmentations and the thin manual masks. 

espite the low DSCs, the myocardial T1 values estimated by the 

CD agreed with the manual estimation to within ±6 . 5% . 

.4. T1 value estimation 

The QCD achieved the highest mean DSC ( Table 2 ), and thus 

as chosen for estimating the LV myocardium T1 values in the 

esting data. The result showed a high degree of agreement for 

he estimated T1 values between manual and automatic segmenta- 

ions, with a mean error of -4.6ms, a mean absolute error (MAE) of 

1.3ms, and a Pearson correlation r = 0 . 987 ( p < . 0 0 05 , Fig. 3 ). The

land-Altman plot ( Fig. 5 ) showed consistent estimation of the T1 

alues, with a 95% confidence interval (CI) from -3.58% to 2.72% for 

he differences between the automatic and the manual segmenta- 

ions. There was no apparent correlation between the T1 estima- 

ion error and the average T1, indicating that the error was not 

ependent on the T1 value. 

Further investigation found 11 outlier cases outside the 95% CI 

ange in the Bland-Altman plot ( Fig. 5 ), where 7 cases were classi-

ed as ‘poor’ image quality, and 4 were ‘acceptable’. 
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Fig. 5. Bland-Altman plot of agreement between T1 values estimated using auto- 

mated and manual segmentations. Different colors indicate the image quality as 

perceived by the expert human operator. Most of the points were in the range of 

-3.58% to 2.72% difference. Cases outside of this range were “poor-quality” (7 cases) 

and “acceptable” (4 cases). 
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. Discussion 

The novel real-time quality control-driven (QCD) approach was 

uccessfully applied to CMR T1 mapping automated image seg- 

entation, with speed, accuracy, reliability, and visualization for 

he purposes of real-world diagnostic medical imaging. This is 

emonstrated by the use of the per-case DSC prediction to select 

he most optimal segmentation on-the-fly from multiple interme- 

iate candidates. This QCD framework achieved high agreement in 

yocardial T1 values between the automated and the manual seg- 

entations. Furthermore, the fast processing speed of 0.39s/image 

nables real-time clinical applications. In addition, the analysis of 

he Pearson correlation and the segmentation performance ex- 

osed an undesirable dependence between the two, showing that 

he Pearson correlation may not always be a suitable evaluation 

etric for quality prediction. 

.1. Comparisons with related work 

The QCD framework demonstrated high accuracy in estimat- 

ng LV myocardial mean T1 value in CMR images. This framework 

howed high consistency with the manual estimation of the my- 

cardial T1 value, compared to the inter-observer variability be- 

ween two human operators using the same T1-mapping method 

n ( Dass et al., 2012 ), which reported a Pearson correlation of 

.92 with the 95% CI of relative errors ranging from -4.7% to 

.3%. The QCD framework also showed a higher Pearson correla- 

ion of T1 estimation than that reported by ( Fahmy et al., 2018 )

 r = 0 . 72 , p < . 0 0 01 ). ( Huang et al., 2018 ) reported a small error

n estimating T1 values, with the mean relative absolute error 

f 4.6%. However, only 10 healthy subjects were studied in their 

ork, which may not reflect the adaptability of their method to 

he real-world clinical setting where a wide range of pathologies 

xist. 

The QCD framework demonstrated high accuracy in quality con- 

rol by predicting the DSC of the segmentation, regardless of the 

vailability of manual segmentation as the ground truth. We iden- 

ified existing CMR image segmentation quality control frame- 

orks for comparison, though it is important to note that the 

raining and testing data used were different. We achieved low 

AE (0.0339) compared with the RCA quality control frameworks 

 Valindria et al., 2017; Robinson et al., 2017; 2019 ), in which the

eported prediction MAE was at least 0.044. A CNN-regression ap- 

roach ( Robinson et al., 2018 ) also reported a higher MAE (0.055) 

n predicting the segmentation of the LV myocardium. The low 
8 
AE of the DSC prediction achieved by the QCD framework also 

ompares favorably with the dropout-based quality control method 

 Roy et al., 2018 ), which appeared to have a high discrepancy in

redicting DSC. Unlike the QCD framework, the dropout-based ap- 

roach does not have the advantage to utilize regression for more 

ccurate DSC prediction, due to the randomness inherent to this 

pproach. 

The binary classification of good (observed DSC ≥ 0 . 7 ) and poor 

observed DSC < 0 . 7 ) segmentations demonstrated high classifica- 

ion accuracy of 0.96 for all the candidate segmentations and 0.99 

or the final segmentations in the QCD framework. This is on par 

ith the results (classification accuracy of over 0.95) reported by 

 Robinson et al., 2019 ). 

The whole framework (both the segmentation and the quality 

ontrol) is faster (0.39 s/image) than the RCA framework, which 

equired 11 minutes to process a single image ( Robinson et al., 

019 ). Expectedly, the QCD framework, which utilized 6 fully con- 

olutional neural networks, was slower than the single CNN used 

n ( Robinson et al., 2018 ), but only by a small fraction of a sec-

nd. This demonstrates that the fast processing speed of the QCD 

ramework permits real-time clinical applications. 

.2. Limitations and future work 

The single final segmentation selection mechanism in the QCD 

ramework is flexible to include different segmentation methods, 

nd techniques to combine segmentations. Further research can be 

one to assess potential benefits of incorporating a more diverse 

ariety of segmentation methods such as active contour mod- 

ls ( Kass et al., 1988 ), or multi-atlas segmentation ( Iglesias and 

abuncu, 2015 ). The use of different segmentation algorithms can 

otentially further strengthen the reliability of the segmentation 

nd the quality control of the framework by imposing anatomical 

onstraints used in active contour models or multi-atlas segmenta- 

ion. Furthermore, future research can investigate the inclusion of 

ifferent techniques to combine single model segmentations, such 

s by weighted averaging, as candidates to be chosen as the fi- 

al output in the QCD framework. With ever-advancing research in 

edical image analysis, one of the strongest points of this frame- 

ork is that it can incorporate any prior and future classification 

odels as intermediate solutions, which may further improve both 

ccuracy and reliability of the overall classification process. In ad- 

ition, research on better selection and choice of candidate seg- 

entation algorithms can be beneficial in further optimization of 

he QCD framework. 

In this work, we focused on the quality control of automated 

egmentation, as a first step towards clinical translation of au- 

omated image post-processing. In the future, we aim to adapt 

he presented quality control-driven framework to ensure relia- 

ility of the extraction of clinical parameters from multimodal 

ata. 

The performance comparisons of the segmentation and the 

uality control methods between various publications need to 

e treated with care due to potentially significant differences of 

he datasets. The work presented is a proof-of-principle of the 

CD framework, derived using internal datasets; further training 

nd validation, including head-to-head comparisons of segmen- 

ation and quality control performance, using large-scale exter- 

al datasets, such as the UK Biobank ( Petersen et al., 2013 ), will

e beneficial for wider generalizability, and is future work in the 

ipeline. 

Further work is required to address in detail any potential chal- 

enges, i.e. data shift, or validating the QCD framework on a variety 

f imaging modalities using large-scale external datasets, such as 

he UK Biobank ( Petersen et al., 2013 ). This will confirm the wider
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pplicability of the QCD framework, to promote its utilization by 

thers in the medical imaging research community. 

.3. Clinical impact 

Assuming equal variation in the automatic and the human es- 

imates, the reported 95% CI range here in the Bland-Altman plot 

ranslates to a small standard deviation of 1.3% for the mean per- 

entage error, and 0.9% for the mean absolute percentage error. 

uch high agreement in estimated T1 values between the au- 

omated and the manual segmentations implies that the auto- 

ated segmentation can minimize the burden of manual process- 

ng and improve time efficiency in both real-time clinical practice 

nd large-scale research, to consistently extract T1-related clin- 

cal parameters at the level of human operators. For real-time 

linical application, the framework could be integrated into MRI 

canners to generate an immediate segmentation after an image 

s acquired for instant availability for interpretation. For large- 

cale clinical research and trials, the automation of segmentation 

an reliably process tens of thousands of datasets, saving labor- 

ntensive processing and costs for processing large-scale imaging 

atabases. 

Across all these applications, there is an added benefit from the 

ighly accurate quality prediction, which can reduce the effort to 

anually screen the data for any suboptimal results. Future work 

s pending to establish relevant quality thresholds, to further im- 

rove reliability of the automated segmentation to identify error- 

rone datasets in large-scale clinical data. This will help improve 

obustness to detect and interpret outlier data without excessive 

orkload on human observers to manually score data quality. With 

mproved quality of clinical parameters and reduction in errors, it 

ay reduce sample sizes required for expensive clinical studies or 

rials, saving resources. 

.4. Conclusion 

The QCD framework for automated quality prediction improves 

he accuracy and the robustness of the segmentation. The quality 

ontrol exploits differences among models to predict each segmen- 

ation quality, without the need for manual contour ground truth. 

he predicted quality score can also be used for binary classifi- 

ation of segmentation quality. The selection of the most optimal 

egmentation is performed on-the-fly using the quality prediction, 

nd significantly improves the accuracy above any individual net- 

ork or their combinations. The proposed segmentation agreement 

isualization provides a simple tool to monitor the quality control 

rocess. The validation on the cardiac magnetic resonance T1 map- 

ing data shows wider adaptability of the framework. The auto- 

ated estimates of T1 relaxation times showed near-perfect agree- 

ent ( r = 0 . 987 , p < . 0 0 05 ; mean absolute error (MAE) of 11.3ms)

ith the manual estimation used in clinical research, with a fast 
9 
rocessing speed of 0.39s/image. The use of the QCD framework 

ould lead to real-time parameter extraction in clinical practice 

nd automation of labor-intensive tasks in large-scale clinical re- 

earch and trials. This can enable clinicians and healthcare person- 

el to spend more time with patients rather than performing te- 

ious segmentation and quality control tasks. 
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Table A.1 

Multiple linear regression coefficients for the DSC predictors are shown. Each row represents a specific prediction target DSC (manual ground truth, target segmentation) with coefficients for the corresponding DSCs and an 

intercept. Comb. denotes ”Combined Model”. 

Prediction Target 

DSC(target, 

U-net 7) 

DSC(target, 

U-net 11) 

DSC(target, 

U-net 15) 

DSC(target, 

U-net 19) 

DSC(target, 

U-net 23) 

DSC(target, 

U-net 27) 

DSC(target, 

Comb. 1) 

DSC(target, 

Comb. 2) 

DSC(target, 

Comb. 3) 

DSC(target, 

Comb. 4) 

DSC(target, 

Comb. 5) 

DSC(target, 

Comb. 6) Intercept 

DSC(Manual, 

U-net 7) 

0.00 0.04 0.11 0.00 0.26 0.06 0.00 0.00 0.25 0.20 0.00 0.01 0.00 

DSC(Manual, 

U-net 11) 

0.00 0.00 0.26 0.00 0.19 0.07 0.00 0.00 0.29 0.10 0.00 0.01 0.00 

DSC(Manual, 

U-net 15) 

0.00 0.18 0.00 0.00 0.04 0.03 0.06 0.02 0.28 0.30 0.01 0.00 0.00 

DSC(Manual, 

U-net 19) 

0.01 0.10 0.12 0.00 0.21 0.06 0.05 0.00 0.26 0.10 0.00 0.01 0.00 

DSC(Manual, 

U-net 23) 

0.01 0.12 0.00 0.34 0.00 0.00 0.07 0.00 0.14 0.20 0.03 0.01 0.00 

DSC(Manual, 

U-net 27) 

0.00 0.12 0.01 0.28 0.01 0.00 0.11 0.00 0.10 0.00 0.25 0.01 0.04 

DSC(Manual, 

Comb. 1) 

0.00 0.00 0.06 0.31 0.02 0.00 0.00 0.00 0.33 0.06 0.13 0.01 0.00 

DSC(Manual, 

Comb. 2) 

0.01 0.00 0.00 0.53 0.07 0.01 0.11 0.00 0.00 0.01 0.17 0.01 0.00 

DSC(Manual, 

Comb. 3) 

0.01 0.02 0.00 0.56 0.05 0.00 0.11 0.00 0.00 0.00 0.16 0.02 0.00 

DSC(Manual, 

Comb. 4) 

0.00 0.06 0.01 0.29 0.01 0.00 0.11 0.31 0.00 0.00 0.14 0.00 0.00 

DSC(Manual, 

Comb. 5) 

0.01 0.00 0.01 0.00 0.17 0.00 0.02 0.36 0.36 0.00 0.00 0.00 0.00 

DSC(Manual, 

Comb. 6) 

0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.27 0.32 0.20 0.03 0.00 0.00 

1
0
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A lity and bad quality T1 maps 

 easy, good-quality T1 map ( Fig. B.1 ) and a difficult T1 map affected by 

a es illustrate the agreement among the candidate segmentations under 

2  high agreement among the candidates with high DSCs of ≥ 0 . 83 . In 

c date segmentations failed differently, including falsely identifying the 

b le myocardium. These demonstrate that segmentation differences from 

a ion quality. 

F e segmentations for a good quality T1 map. The top left image shows the manual seg- 

m entations. The rest shows the candidate segmentations from U-net 7 to U-net 27, and 

t s consistently obtained high DSCs of ≥ 0 . 83 , as the good quality T1 map was easy to 

s .89), thus its segmentation was selected as the final output by the QCD framework. (For 

i  to the web version of this article.) 
ppendix B. Examples of candidate segmentations for good qua

Two sets of example candidate segmentations are shown for an

n extracardiac structure (breast implant) ( Fig. B.2 ). These exampl

 different scenarios. With a good quality T1 map, Fig. B.1 shows

ontrast, Fig. B.2 shows high disagreement, as some of the candi

reast implant as the myocardium, and failures to segment the who

 diverse set of candidates can be exploited to estimate segmentat

ig. B.1. Extended example of Fig. 2 A-D showing high agreement among candidat

entation and the top right image shows the visualization of the candidate segm

he combined segmentations (Model 1 - Model 6). All the candidate segmentation

egment. Combined Model 3 (in the red box) achieved the highest predicted DSC (0

nterpretation of the references to colour in this figure legend, the reader is referred
11 
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F segmentation failures of a T1-map affected by an extracardiac structure (breast implant). 

T he visualization of the candidate segmentations. The rest shows the candidate segmenta- 

t  6). When the candidate U-nets failed, they appeared to fail differently, as demonstrated 

b ly. U-nets 7 and 11 failed to form an annulus-like myocardial mask, whereas U-nets 23 

a  difficulty, U-nets 15 and 19, and Combined Models 3 and 4 successfully segmented the 

m rse set of candidate models. Combined Model 3 (in the red box) achieved the highest 

p  QCD framework. (For interpretation of the references to colour in this figure legend, the 

r

A tion of the QCD final segmentation quality 

F  classification of the QCD final segmentation quality. The segmentations in the top row 

( and had high predicted DSCs ( ≥ 0 . 7 ). The bottom row (D, E, F) shows the corresponding 

m lid approach in some studies aiming to limit partial volume effects. In these cases, the 

o  manual myocardial segmentations and the corresponding QCD outputs. Despite the low 

D e manual estimations to within ±6 . 5% . 
ig. B.2. Extended example of Fig. 2 M-P showing poor agreement in the candidate 

he top left image shows the manual segmentation and the top right image shows t

ions from U-net 7 to U-net 27, and the combined segmentations (Model 1 - Model

y U-net 7, 11, 23, and 27, obtaining a DSC of 0.59, 0.68, 0.54, and 0.49, respective

nd 27 falsely identified the breast implant as part of the myocardium. Despite the

yocardium, with DSCs ≥ 0 . 77 . This illustrates the importance of including a dive

redicted DSC (0.80), thus its segmentation was selected as the final output by the

eader is referred to the web version of this article.) 

ppendix C. Examples of false positive cases for binary classifica

ig. C.1. False positive cases (high predicted DSC but low observed DSC) for binary

A, B, C) were output by the QCD framework. These contours appeared acceptable 

anual contours, which appeared excessively eroded by the human operator, a va

bserved DSC values were “unfairly” low due to the low overlap between the narrow

SCs, the myocardial T1 values estimated by the QCD segmentations agreed with th
12 
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A

subjects was split into 38 training subjects and 7 testing subjects, with 

o to be the testing data ( Radau et al., 2009 ). Since both the endocardium 

a rdial contours at the end-systole), only the end-diastolic images were 

u n, the ground truth myocardial segmentation masks were derived by 

s

f deep learning applications, data augmentation was performed for the 

t 0 degrees. 6 U-nets were independently trained on the augmented data 

f entation. The epicardial masks were calculated post-hoc by adding the 

e ations were generated in addition to 6 candidate segmentations gener- 

a it segmentation agreement among candidates to predict segmentation 

q dicted myocardial segmentation DSC. 

 the QCD in mean Dice similarity coefficient (DSC). Comb. 

Endocardium Epicardium 

0.5028 (0.2406) 0.5908 (0.2420) 

0.8731 (0.1582) 0.8914 (0.1579) 

0.9165 (0.1267) 0.9389 (0.1215) 

0.8895 (0.1695) 0.9291 (0.1408) 

0.9122 (0.1337) 0.9371 (0.1233) 

0.9051 (0.1357) 0.9254 (0.1300) 

0.8495 (0.1464) 0.8732 (0.1273) 

0.9137 (0.1293) 0.9362 (0.1223) 

0.9126 (0.1380) 0.9377 (0.1278) 

0.9029 (0.1583) 0.9323 (0.1372) 

0.8804 (0.1743) 0.9023 (0.1672) 

0.5131 (0.2566) 0.6116 (0.2616) 

0.9162 (0.1303) 0.9403 (0.1194) 

ated for the segmentation performance. Table D.1 shows the mean Dice 

s  the endocardium, and the epicardium. The QCD framework obtained 

t  epicardium at 0.9403, outperforming all the candidate segmentation 

m ium at 0.9165, closely followed by the QCD at 0.9162. Although similar 

s ng et al., 2009; Wijnhout et al., 20 09; Jolly, 20 09; Lu et al., 20 09 ), the 

Q  an added layer of the automated quality assurance. 

te errors (MAE) and Pearson correlation coefficients ( r) between the 

p ll of the DSC predictions achieved low MAEs within 0.0620, and high 

P for the DSC prediction. 

 (MAE) and Pearson correlation coefficient ( r). All r had 

Endocardium Epicardium 

MAE r MAE r 

0.0175 0.99 0.0119 0.99 

0.0252 0.98 0.0181 0.99 

0.0323 0.81 0.0249 0.92 

0.0296 0.97 0.0215 0.95 

0.0289 0.94 0.0158 0.98 

0.0273 0.94 0.0211 0.97 

0.0365 0.92 0.0197 0.98 

0.0286 0.92 0.0218 0.98 

0.0247 0.96 0.0187 0.97 

0.0280 0.97 0.0189 0.96 

0.0277 0.98 0.0184 0.99 

0.0231 0.99 0.0146 0.99 

0.0298 0.92 0.0191 0.98 
ppendix D. Additional results: sunnybrook cardiac dataset 

The Sunnybrook cardiac MRI short-axis SSPF cine dataset of 45 

ne to two subjects chosen from each pathology or healthy group 

nd the epicardium were contoured only at end-diastole (no epica

sed for training (355 images) and testing (65 images). In additio

ubtracting the endocardial masks from the epicardial masks. 

As the Sunnybrook dataset was relatively small in the context o

raining data by randomly rotating the images and masks within ±1

or up to 240 epochs to perform endocardial and myocardial segm

ndocardial masks and the myocardial masks. 6 combined segment

ted by the U-nets. Linear regression models were trained to explo

uality. The final segmentation was selected based on the best pre

Table D.1 

Segmentation performance for candidate models and

denotes ”Combined Model”. 

Mean DSC (SD) 

Model Myocardium 

U-net 7 0.5900 (0.2302) 

U-net 11 0.7533 (0.1697) 

U-net 15 0.7952 (0.1341) 

U-net 19 0.7795 (0.1578) 

U-net 23 0.7943 (0.1370) 

U-net 27 0.7838 (0.1375) 

Comb. 1 0.7510 (0.1264) 

Comb. 2 0.8033 (0.1333) 

Comb. 3 0.8026 (0.1362) 

Comb. 4 0.7899 (0.1439) 

Comb. 5 0.7364 (0.1883) 

Comb. 6 0.5888 (0.2544) 

QCD 0.8039 (0.1355) 

All the candidate segmentation models and the QCD were evalu

imilarity coefficients (DSC) for segmentation of the myocardium,

he highest mean DSC for the myocardium at 0.8039 and for the

odels. U-net 15 obtained the highest mean DSC for the endocard

egmentation performance has been reported by the prior art ( Hua

CD framework achieved the best segmentation performance with

For evaluation of the quality control component, mean absolu

redicted DSCs and the observed DSCs are reported in Table D.2 . A

earson r above 0.80. These results demonstrate the high accuracy 

Table D.2 

DSC prediction performance in mean absolute error

p < . 0 0 05 . 

Myocardium 

Model MAE r 

U-net 7 0.0354 0.98 

U-net 11 0.0469 0.93 

U-net 15 0.0538 0.86 

U-net 19 0.0601 0.88 

U-net 23 0.0539 0.86 

U-net 27 0.0563 0.87 

Comb. 1 0.0547 0.81 

Comb. 2 0.0579 0.86 

Comb. 3 0.0534 0.85 

Comb. 4 0.0519 0.87 

Comb. 5 0.0478 0.95 

Comb. 6 0.0375 0.98 

QCD 0.0620 0.87 
13 
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Fig. D.1. Scatter plots for predicted DSC (x-axis) versus observed DSC (y-axis) for the myocardium (A), the endocardium (B), and the epicardium (C). 

o

(  

p

b

D

t

a

m

F

t

(

t

a

R

B  

B

B

 

B
B

C

C

D

D

F

F

F

Fig. D.1 shows 3 scatter plots of the predicted DSC versus the 

bserved DSC for the myocardium ( Fig. D.1 A), the endocardium 

 Fig. D.1 B), and the epicardium ( Fig. D.1 C), where most of the data

oints cluster along the identity line, indicating high agreement 

etween the ground truth and the prediction. Furthermore, the 

SC prediction was extended to classify ‘good’ and ‘bad’ segmen- 

ation with a threshold of 0.7. All the candidate models together 

chieved a classification accuracy of 89%, 99%, and 99% for the 

yocardium, the endocardium, and the epicardium, respectively. 

or the QCD framework, high accuracies were also achieved for 

he myocardium (92%), the endocardium (98%), and the epicardium 

100%). These results show that the quality prediction can be ex- 

ended to achieve accurate classification of segmentation quality 

lso in cardiac cine applications. 
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