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Summary
Background Coccidioidomycosis, an emerging fungal disease in the western USA, exhibits seasonal patterns that are
poorly understood, including periods of strong cyclicity, aseasonal intervals, and variation in seasonal timing that
have been minimally characterized, and unexplained as to their causal factors. Coccidioidomycosis incidence has
increased markedly in recent years, and our limited understanding of intra- and inter-annual seasonality has hindered
the identification of important drivers of disease transmission, including climate conditions. In this study, we aim to
characterize coccidioidomycosis seasonality in endemic regions of California and to estimate the relationship
between drought conditions and coccidioidomycosis seasonal periodicity and timing.

Methods We analysed data on all reported incident cases of coccidioidomycosis in California from 2000 to 2021 to
characterize seasonal patterns in incidence, and conducted wavelet analyses to assess the dominant periodicity,
power, and timing of incidence for 17 counties with consistently high incidence rates. We assessed associations
between seasonality parameters and measures of drought in California using a distributed lag nonlinear modelling
framework.

Findings All counties exhibited annual cyclicity in incidence (i.e., a dominant wavelet periodicity of 12 months), but
there was considerable heterogeneity in seasonal strength and timing across regions and years. On average, 12-month
periodicity was most pronounced in the Southern San Joaquin Valley and Central Coast. Further, the annual seasonal
cycles in the Southern San Joaquin Valley and the Southern Inland regions occurred earlier than those in coastal and
northern counties, yet the timing of annual cycles became more aligned among counties by the end of the study
period. Drought conditions were associated with a strong attenuation of the annual seasonal cycle, and seasonal
peaks became more pronounced in the 1–2 years after a drought ended.

Interpretation We conclude that drought conditions do not increase the risk of coccidioidomycosis onset uniformly
across the year, but instead promote increased risk concentrated within a specific calendar period (September to
December). The findings have important implications for public health preparedness, and for how future shifts in
seasonal climate patterns and extreme events may impact spatial and temporal coccidioidomycosis risk.
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Research in context

Evidence before this study
Coccidioidomycosis, a fungal respiratory disease caused by the
soil-dwelling fungus Coccidioides spp., is emerging as a
significant concern in the southwestern US, with reported
cases doubling across the country and tripling in California
since 2014—where Coccidioides immitis is the dominant
species. We searched for studies published in English up to
September 14, 2023, with the terms “coccidioidomycosis
AND California AND season AND (climate OR drought OR
precipitation)” in PubMed and identified 18 results published
between 1964 and 2023. Although some previous studies
note an unimodal seasonal pattern with peaks during the fall
season in California, the seasonality of coccidioidomycosis in
California has not been fully characterized concerning
seasonal onset, periodicity, and regional and annual variation.
Several studies point to wet-dry climate cycles as key drivers
of transmission dynamics, with precipitation facilitating
pathogen growth and dry conditions supporting spore
formation and dispersal. Some work shows that
coccidioidomycosis incidence peaks at the end of dry seasons
in Arizona and California, especially following anomalously
wet winters and dry summers. One study published in 2022
indicates that drought conditions are associated with low
incidence in California in the short term but amplify incidence
in subsequent years. However, the impact of severe multi-year
droughts on the seasonal cycles of coccidioidomycosis has not
been assessed. Unravelling these complexities is essential for
effective public health planning and risk assessment,
particularly in the context of global climate change.

Added value of this study
In this study, we provide a comprehensive characterization of
coccidioidomycosis seasonal dynamics and their climate
determinants in California. From 2000 to 2021, we observed
that monthly coccidioidomycosis incidence across California
counties peaked between September and November, at the
end of the dry season, and was lowest from April to June, at
the end of the wet season. Yet, we found significant
heterogeneity in the strength and timing of seasonality across
counties and transmission years, including heterogeneity in
whether a seasonal amplification of incidence occurred. We
demonstrate that a significant amount of the variability in
seasonal patterns can be explained by cyclical climate
conditions. Seasonal fall peaks in incidence are more
pronounced following a wetter-than-average wet season and
a drier-than-average dry season. There is growing evidence
that wet conditions followed by dry conditions promote

coccidioidomycosis risk. However, rather than increasing risk
of coccidioidomycosis uniformly across the year, we show that
these conditions increase risk specifically during the fall
season. Our results also demonstrate that shifts in local
climate from drought conditions to wet conditions lead to
more pronounced seasonal peaks in coccidioidomycosis
incidence.

Implications of all the available evidence
Our findings indicate that peak incidence occurs between
September and November. Accounting for estimated
incubation periods and diagnosis delays, our results suggest
that the period of highest risk of C. immitis exposure in
California typically occurs between July and September and the
lowest risk of exposure occurs from February to April. However,
the timing and strength of seasons differed across regions of
the state. This information can guide region-specific timing of
public health messaging, advising individuals to avoid dusty
environments and dust-generating activities during these
months and encouraging the use of measures to mitigate dust
exposure, such as soil wetting, N95 masks, and air filtration
systems. Furthermore, communication regarding periods of
high risk can inform medical practitioners about when to be
particularly vigilant for new cases. This is especially useful
because prompt diagnosis and case management can improve
disease outcomes.
Our findings can aid the creation of accurate and timely early
warning systems and forecast models in a changing climate.
California’s drought risk is expected to rise due to global
climate change, leading to more frequent droughts and the
likelihood of prolonged megadroughts in the coming decades.
Our results and other existing work suggest that the increase
in drought conditions will impact both the incidence and
seasonal patterns of coccidioidomycosis. Specifically, future
droughts may suppress both annual incidence rates and
seasonal peaks during the drought period, leading to low
levels of cases sustained throughout the year. When the
drought ends, there will be elevated cases concentrated
during the fall season that follows. Moreover, the effects of
drought are amplified when followed by anomalously high
rainfall, and this extreme dry-wet cycling is expected to occur
more frequently under climate change. This, coupled with the
geographic expansion of coccidioidomycosis, will likely elevate
disease risk for California’s population. Further analyses
should consider how the associations revealed in this study
can be used to generate accurate disease forecasts and guide
mitigation activities.
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Introduction
Many infectious diseases display seasonality, commonly
observed as a periodic rise in incidence during specific
seasons or calendar periods. Examination of seasonal
disease trends can support the identification and
understanding of mechanisms underlying disease dy-
namics, including those related to climate and envi-
ronmental forcings of pathogen survival or infectivity
www.thelancet.com Vol 38 October, 2024
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and host ecology. For example, influenza generally dis-
plays peaks in incidence during cold winter months in
the Northern Hemisphere during non-pandemic pe-
riods, thought to be driven in part by increased virus
survival in colder and drier environmental matrices.1–3

Characterizing the timing and strength of seasonal in-
fectious disease surges also has clear public health
benefits. These include aiding disease prediction, pre-
vention, and mitigation, enabling the development of
more accurate surveillance systems, and anticipating
and planning for future disease risks in the context of
global climate change.4

Coccidioidomycosis is an emerging infectious dis-
ease in the southwestern U.S. caused by inhalation of
aerosolized spores of the Coccidioides genera, primarily
C. immitis and C. posadasii.5,6 Since 2014, annual re-
ported cases of coccidioidomycosis have nearly doubled
across the United States7 and more than tripled in Cal-
ifornia, where C. immitis is the dominant species.7

Furthermore, the geographic range of coccidioidomy-
cosis is expanding, with the largest incidence increases
in California reported outside of historically highly
endemic regions.8 Some limited prior research in Cali-
fornia suggests that coccidioidomycosis incidence has
an unimodal seasonal pattern with peaks most often
observed in October.9 However, variations in seasonal
dynamics across regions and the role of changing
climate and other factors in determining these patterns
remain unclear.

The importance of climate as a seasonal driver for
many infectious diseases is often explained by mecha-
nisms that relate to the environmental biology of path-
ogens and/or the ecology of hosts and vectors.4,10 For
coccidioidomycosis, epidemiological evidence suggests
that wet followed by dry climate conditions may
be important drivers of seasonal transmission
dynamics.6,11–16 Coccidioides spp. grow saprotrophically as
filamentous mycelia with alternating cells that differ-
entiate and autolyze to form heat-tolerant, infectious
spores termed ‘arthroconidia’.6 Prevailing mechanistic
hypotheses suggest that total seasonal precipitation and
resultant soil moisture facilitate the growth and sporu-
lation of Coccidioides spp.,11,17 while hot and dry condi-
tions support the formation of arthroconidia and enable
the dispersal of spores from soil during episodic wind
erosion or soil disturbance.9,14–16,18,19 Indeed, seasonal
coccidioidomycosis incidence peaks at the end of dry
seasons in Arizona and California,9,14 especially
following anomalously wet winters and dry summers.15

Recent research using highly spatiotemporally resolved
incidence data in California found that drought condi-
tions are associated with low coccidioidomycosis inci-
dence in the short term, but amplify incidence in
subsequent years.15 However, it remains unclear how
disruptions to seasonal wet-dry climate cycles—such as
those caused by severe multi-year droughts—affect
seasonal cycles of coccidioidomycosis.
www.thelancet.com Vol 38 October, 2024
Here, we characterize coccidioidomycosis seasonality
across endemic counties in California and estimate the
relationship between climatic conditions, drought, and
coccidioidomycosis seasonal periodicity and timing. We
analyze surveillance data in California from 2000 to
2021 to characterize the periodicity and timing of
coccidioidomycosis seasonality across California
counties and use high-resolution temperature and pre-
cipitation anomaly data to investigate the impact of
drought conditions on county-level seasonality across
the study period. We discuss the implications of our
findings for the prediction of case surges, and promo-
tion of individual- and community-level protective
measures. A better understanding of seasonal trends
can elucidate relationships between inter- and intra-
annual climate variability (i.e., temperature and precip-
itation anomalies) and disease dynamics, and the results
are discussed as to their implications for how future
shifts in seasonal climate patterns and extreme events
may impact spatial and temporal coccidioidomycosis
risk.
Methods
Epidemiological data
We conducted a longitudinal surveillance study
leveraging information on all confirmed coccidioido-
mycosis cases that occurred among California resi-
dents between April 1, 2000, and April 1, 2021, which
we obtained from the California Department of Public
Health (CDPH) coccidioidomycosis surveillance sys-
tem. All healthcare providers and laboratories in Cali-
fornia are required to report diagnosed cases of
coccidioidomycosis to local health departments and
CDPH.20 Detailed descriptions of case data processing
can be found in the Supplementary Material. Briefly,
we computed monthly case totals per county from
georeferenced incident cases. We geocoded patient
addresses (available for 95% of cases) using ArcGIS to
determine their county of residence. Case onset dates
were available for 24% of cases; otherwise, we used the
earliest clinical or laboratory date as an estimated onset
date to account for reporting delays. The study region
encompassed 17 counties that had an annual mean
incidence rate exceeding 10 cases per 100,000 popula-
tion, a threshold used to ensure that each spatial unit
had sufficient data to support wavelet transform ana-
lyses. Counties were grouped into five CDPH-defined
regions8: Northern San Joaquin Valley, Southern San
Joaquin Valley, Central Coast, Southern Inland,
Southern Coast. County-level population estimates
were obtained from the California Department of
Finance.21,22 All data were de-identified prior to anal-
ysis. While enhanced surveillance studies have identi-
fied significant delays between symptom onset and
diagnosis with coccidioidomycosis (on average, about
2–5 weeks),23,24 we did not explicitly correct for
3
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reporting delays in our data due to the large variability
and uncertainty of reporting delays among patients and
the lack of specific data on reporting delays in Cali-
fornia. The study received approval from the Com-
mittee for Protection of Human Subjects of the
California Health and Human Services Agency (pro-
tocol no. 17-05-2993). Approval by the University of
California, Berkeley, was provided by reliance on the
California State approval. Upon human subjects’ re-
view, the study was granted a waiver of informed
consent consistent with 45 CFR 46.116(f).

Meteorological data and standardized
precipitation-evapotranspiration index (SPEI)
We obtained daily gridded total precipitation and
maximum and minimum temperature from the Daily
Observational Hydrometeorological data set produced
by the Cooperative Institute for Research in Envi-
ronmental Sciences (CIRES) (6-km resolution;
1950–1980)25 and from the Parameter-elevation
Regression on Independent Slopes Model (PRISM)
Climate Group (4-km resolution, 1981–2021).26 We
used these data to compute total monthly rainfall and
average monthly maximum and minimum tempera-
ture for each county. To quantify drought severity, we
calculated a county-level standardized precipitation-
evapotranspiration index (SPEI) using total monthly
precipitation and maximum and minimum monthly
temperature measurements from 1950 to 2021. SPEI
is a multi-scalar index of climatic water balance,
incorporating both water input via precipitation as
well as evaporative demand, measured by potential
evapotranspiration (PET). SPEI values represent the
number of standard deviations by which the climatic
water balance deviates either below (drier) or above
(wetter) the long-term average. For each county, we
calculated monthly PET values27 and monthly SPEI
following the Vicente Serrano et al. methodology.28

SPEI can be calculated on a range of time scales,
and we specifically calculated 3-month (shorter time-
scale) and 12-month (longer timescale) SPEI. We
defined periods of drought using SPEI cutoffs based
on the US Drought Monitor (USDM); SPEI < −0.5
were classified as drought conditions and lower SPEI
values indicated more severe drought (e.g.,
SPEI ≤ −2 = exceptional drought [USDM D4]).29

Characterizing coccidioidomycosis seasonality
using wavelet transformation
We conducted a wavelet analysis with the Morlet func-
tion as the wavelet base using the WaveletComp (ver.
1.1) package in R (ver. 4.2.1).30 Broadly, wavelet analysis
is a mathematical technique used to decompose a signal
into components that vary over different scales or fre-
quencies. Wavelet analysis applied to infectious disease
time series data decomposes the incidence time series
into components that represent the data’s behaviour at
different time scales. This method is particularly suited
to analyzing disease cyclicity (i.e., seasonality) because it
can identify the relative strength and timing of domi-
nant cycles in incidence.

Monthly county-level coccidioidomycosis incidence
rates were normalized to have a mean of zero and a unit
variance (Supplementary Figures S1–S3) within each
county year and then detrended using a loess
smoothing function. This procedure removes annual,
interannual, and spatial heterogeneity in incidence
from the time series, i.e., it generates a time series with
comparable amplitudes across all transmission years
(defined as March–February) and counties. Doing so
ensures that wavelet transformation reflects the peri-
odicity of the time series and not the variability in
incidence across counties or years. Detrending and
normalizing the incidence data allows isolation and
comparison of seasonal signals between counties and
years. As such, the results are solely related to the
relative strength of seasonal signals and do not address
any multiyear trends in incidence.

Wavelet transformations were performed on each
normalized and detrended county time series. Each
wavelet transformation generated (1) local wavelet po-
wer spectrums, which indicate time-frequency distri-
bution and predominant signal components across the
study period and (2) corresponding phase angles,
which indicate the relative timing of different signal
components. The power associated with the wavelet
coefficients indicates the strength or intensity of the
signal at various scales and times. Here, we are most
interested in the 12-month scale, which represents a
cycle in which disease incidence peaks regularly once
per year. A higher power value at a 12-month scale
would suggest a stronger seasonal component in the
data, while a lower power value would indicate a
weaker seasonal component to the data. Periods of
statistically significant power (alpha defined as 0.05)
were determined using a bootstrapping method
whereby distributions of power spectra were produced
using 2000 different time series that represent
randomly shuffled versions of the original incidence
time series. Power spectra for each county are reported
in Supplementary Figures S5–S21.

Wavelet transforms for each county indicated that
the annual component was dominant (i.e., the highest
power estimates centered around signals with 12-
month periodicity) (Supplementary Figure S24). To
further explore the annual seasonality (i.e., 12-month
periodicity) of incidence between counties and time
periods, we extracted monthly power and phase angle
estimates for the annual signal component. We calcu-
lated average power across counties and transmission
years to determine how the annual signal strength
varied across space and time. We used the phase angles
to analyze the synchrony of annual signals across
counties and years. To determine the synchrony of
www.thelancet.com Vol 38 October, 2024
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more than 2 different time series, we calculated the
mean absolute phase difference, defined as the abso-
lute value of the mean of all combinatorial pairwise
phase differences between time series in each month.
See more details about power interpretation and phase
angle calculations in the Supplementary Methods.

Estimating the impact of drought on annual
wavelet power
We used distributed lag nonlinear regression models
(DLNMs) to flexibly estimate the association between
drought conditions (SPEI) and coccidioidomycosis sea-
sonality. For each county and transmission year (March–
February), we calculated 12-month (annual) SPEI as well
as 3-month (seasonal) SPEI for spring (March–May),
summer (June–August), fall (September–November), and
winter (December–February). We used DLNMs to esti-
mate the associations between 12-month (annual) SPEI
lagged 0–6 years and 3-month (seasonal) SPEI lagged 0–2
years and average wavelet power in a transmission year.
Average wavelet power was calculated as the mean
monthly power at a 12-month periodicity across each
transmission year and for each county. The magnitude of
average annual power here serves as an indicator of the
strength and consistency of 12-month seasonal signals in
disease incidence in each year. Both annual and seasonal
models took the following form:

Pi,t = β0 + f (SPEIt, l, θ) + βiCountyi + s(year) + εi,t

where Pi,t represents the average power in county i in
year t; β0 is the intercept term; f (SPEIt, l, θ) is a cross-
basis function ∫L

l=l0 SPEIt−l∗s(l, θ) in which SPEIt−l in-
dicates a linear exposure-response relationship be-
tween annual power and SPEI at each lag l; s(l, θ)
represents a natural cubic spline of the lag-response
relationship between SPEI and annual power; and θ
is a vector of coefficients for the spline s(l, θ).31 To
determine the knot locations for the natural cubic
spline, we systematically varied the number and loca-
tion of the knots placed along the lag dimension and
selected the model that produced the lowest Akaike
information criterion. We conducted sensitivity ana-
lyses with various knot specifications and found similar
results regardless of knot placement and spline speci-
fication (Supplementary Figures S22 and S23). Both
models included a fixed effect for county to adjust for
differential case reporting, spatial clustering, and other
spatial factors not explained by SPEI, and a natural
cubic spline on year to adjust for long-term temporal
trends across the study period.

We further examined how drought duration influenced
annual wavelet power after the drought using generalized
additive models. We assigned a month as a “drought
month” if the 12-month SPEI for that month was
below −0.5 (D0-D4), following the methods specified by
www.thelancet.com Vol 38 October, 2024
the US Drought Monitor.29 Drought duration was defined
as the number of consecutive months in which the 12-
month SPEI was below −0.5. This model took the form:

Pi,t+1 = β0 + s(durationi,t)+ βiCountyi + s(yeart+1) + εi,t

where s (durationi,t ) indicates a natural cubic spline on the
duration of drought that ends in year t in county i, and
Pi,t+1 indicates the annual average power in county i in the
year following the end of the drought (year t+1); β0 rep-
resents the intercept term. Models included a term for
county and a natural cubic spline on year to adjust for
unmeasured spatial and temporal confounders. To
examine the sensitivity of our findings to various drought
definitions, we conducted this analysis for a drought
definition of SPEI < −0.8 (D1-D4) and SPEI <0 (any
anomalously dry periods).29

Role of the funding source
The funding source did not have any role in study
design, data collection, data analysis, interpretation, or
writing of the report.
Results
Seasonal patterns in coccidioidomycosis incidence
Over the study period from March 2000 to February
2021, there were 89,281 reported coccidioidomycosis
cases across 17 counties, of which 62.2% were male
and 37.8% were female. The annual incidence across
counties in 2018 (32.08 cases per 100,000 population)
was 12 times higher than in 2000 (2.58 cases per
100,000 population), with the largest proportional in-
creases in annual incidence observed in Monterey
(8248% increase), San Joaquin (4369% increase),
Fresno (4920% increase), San Luis Obispo (4222% in-
crease) and Ventura (2612% increase) counties. The
highest average annual incidence rates were observed
in Kern County (199.0 cases per 100,000 population)
followed by Kings (80.3 cases per 100,000 population),
San Luis Obispo (53.6 cases per 100,000 population),
and Tulare counties (50.3 cases per 100,000 popula-
tion) (Fig. 1a). Across all years and counties, the
months with the highest proportion of annual cases
were September, October, and November (Fig. 1c and
Supplementary Figure S4). However, the monthly
distribution of annual cases varied greatly between
counties and years (Fig. 1b and c). Some years, such as
2010 and 2016 (Fig. 1b), had stronger seasonal patterns
(i.e., cases were more concentrated during the fall
months) and some years, such as 2007 and 2014, did
not exhibit strong seasonal patterns (i.e., cases were
more evenly distributed across the year). Average sea-
sonal patterns of incidence, precipitation, and tempera-
ture across all included counties are shown in
Supplementary Figure S4.
5
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Fig. 1: (A) Mean annual incidence of coccidioidomycosis between the years 2000 and 2021. Counties included in the analyses are outlined and
labeled in black. Regions are outlined and labeled in red. (B) Heat map of the proportion of coccidioidomycosis incidence in each month across
all 17 included California counties from 2000 to 2021. Colors represent the proportion of annual cases—defined by transmission year (March–
February)—that occurred in each month. Counties are grouped by the five California Department of Public Health-defined regions with
consistently high incidence of Northern San Joaquin Valley, Central Coast, Southern San Joaquin Valley, Southern Coast, and Southern Inland,
and counties within groups are ordered by decreasing latitude of centroids. (C) Heat map of the proportion of coccidioidomycosis incidence in
each month across all included California counties from 2000 to 2021. Colors represent the monthly proportion of total incidence across all
years, and counties are grouped by region and county centroids as in (b).
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Annual periodicity characterized by wavelet
transforms
We observed significant 12-month periodicity across all
counties, indicating sharp seasonal increases in inci-
dence, on average, once every 12 months
(Supplementary Figure S24). Accordingly, from here
forward, we use “power” to indicate the power associ-
ated with the wavelet component with a 12-month
periodicity, which indicates the strength and consis-
tency of seasonal cycles in disease incidence. There was
considerable heterogeneity in the power spectra across
counties and years (Fig. 2a, Supplementary Figure S5-
S21, and S25). While all counties except Madera
demonstrated statistically significant annual seasonality
averaged across the study period (Supplementary
Figure S24), no county showed statistically significant
annual periodicity in every study year (Fig. 2b). Kern
County had the most consistent detection of annual
periodicity from 2000 to 2021, with statistically signifi-
cant power in 85% of the study period (Fig. 2b). In
contrast, San Bernardino and Madera Counties did not
exhibit statistically significant annual periodicity over
most of the study period (Fig. 2b).

Some periods displayed more significant annual
periodicity (i.e., statistically significant wavelet compo-
nents at 12-month periodicity) across counties than
others (Fig. 2a and b). From 2010–2012 and 2016–2018,
12 (71%) and 16 (94%) of the 17 counties, respectively,
displayed statistically significant annual periodicity. In
contrast, from 2012–2014 and 2019–2022, only 3 (18%)
and 2 (12%), respectively, of the 17 counties exhibited
significant annual periodicity (Fig. 2a and b). Temporal
trends in county-level average power across trans-
mission years also confirmed these patterns. The high-
est average power estimates across counties occurred in
the 2010, 2016–2018 transmission years and the lowest
average power estimates occurred in the transmission
years in the ranges 2012–2014 and 2019–2021 (Fig. 2c).

Geographically, the average power in counties in the
Southern San Joaquin Valley (0.38) and Central Coast
(0.35) was higher than in the Northern San Joaquin
Valley (0.19), Southern Coast (0.18), and Southern
Inland counties (0.24) (Fig. 3). Kern County had the
highest median power (0.66), while Stanislaus County
had the lowest median power (0.12) (Fig. 3a).

Timing of annual seasonal patterns characterized
by wavelet transforms
By analyzing phase differences, we found that, on average,
the annual seasonal cycle in Southern San Joaquin Valley
and Southern Inland occurred earlier than that of those in
Northern San Joaquin Valley, Central Coast, and South-
ern Coast (Fig. 4). The season began earliest (i.e., highest
positive phase differences) in Kern, Fresno, and Tulare
www.thelancet.com Vol 38 October, 2024
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Fig. 2: (A) The power spectrum from wavelet analyses for each county and periodicities 11–13 months (y-axis) from 2000 to 2021 (x-axis). The
power color scale is a relative scale spanning the maximum and minimum power estimates for each county. Supplementary Figures S5–S21
show the numerical power estimates for each county. (B) Periods of statistically significant (p < 0.05) 12-month periodicity for each county
from 2000 to 2021 shown as black lines. (C) Boxplot of county-level average power across transmission years (defined as March–February). Light
grey shading shows periods of moderate to severe drought in California as defined by the U.S. Drought Monitor (2000–2002; 2007–2009;
2012–2015; 2020–2021).29
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Counties, and the latest (i.e., lowest negative phase dif-
ferences) in Merced, Monterey, and Santa Barbara
Counties (Fig. 4 and Supplementary Figure S26).

Absolute mean phase differences were between
0 and 3 months for all transmission years
(Supplementary Figure S27), indicating that seasonal
peaks were all within 3 months of each other. However,
there was heterogeneity in mean phase differences across
transmission years (Supplementary Figures S27 and
S28). County-level seasonal timings were most synchro-
nous (e.g., absolute mean phase differences were lowest)
during the 2016–2019 transmission years, while seasonal
timings were least synchronous (i.e., absolute mean
phase differences were highest) during the 2012 and
2013 transmission years (Supplementary Figures S27
and S28). A nonlinear GAM model revealed a negative
trend in mean absolute phase difference over the study
period, indicating that county-level annual seasonal
www.thelancet.com Vol 38 October, 2024
timing became increasingly aligned over the study period
(Supplementary Figure S29).

Association between SPEI and average annual
power at 12-month periodicity
Transmission years during periods of severe drought
conditions—as defined by the US Drought Monitor29—
appeared to have lower seasonal wavelet power than
transmission years without severe drought conditions
(Fig. 2c). Annual SPEI was negatively associated with
annual power in the 1–5 years prior to the transmission
year, meaning prolonged anomalously dry conditions in
the previous 1–5 years were associated with higher po-
wer during the transmission year (Fig. 5a and
Supplementary Figure S22). We found a significant
positive association between annual power and seasonal
SPEI in the preceding winter, concurrent spring, and
concurrent winter seasons (Fig. 5b and Supplementary
7

http://www.thelancet.com


Fig. 3: (A) Map of median power at 12-month periodicity for each county in the study region from 2000 to 2021. CDPH-defined endemic
regions are outlined with black lines. (B) Boxplot of monthly power at 12-month periodicity across all counties and years within each of the five
CDPH-defined8 endemic regions (x-axis). SJV = San Joaquin Valley.
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Figure S23). In other words, anomalously wet condi-
tions in the spring and winter seasons were associated
with higher annual power in the same year, as were
anomalously wet conditions during the prior winter.
However, SPEI in the concurrent fall and summer
Fig. 4: (A) Map of the median monthly phase difference of each county
earlier seasonal coccidioidomycosis cycles and blue represents later seasona
periodicity between each county and all other counties from 2000 to 20
seasons was negatively associated with annual power,
indicating that anomalously dry conditions in these
calendar periods were associated with more pronounced
seasonal peaks (Fig. 5b). San Bernardino and Madera
counties were excluded from these analyses because of
from all other counties from 2000 to 2021. Orange colors represent
l cycles. (B) Boxplots of the difference in monthly phase at 12-month
21. Regions are ordered by decreasing median phase difference.

www.thelancet.com Vol 38 October, 2024
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Fig. 5: Results of distributed lag nonlinear model estimating the association between annual wavelet power and (A) shorter-term seasonal
(3-month) SPEI and (B) longer-term annual (12-month) SPEI. Estimates at each lag represent the increase in annual wavelet power per 1
standard deviation (SD) increase in seasonal SPEI, with the 95% confidence interval represented by the grey shading. The dashed line indicates
the null hypothesis that there is no effect of SPEI on annual power. (C) Model predictions of annual wavelet power following droughts of
various lengths were obtained from a generalized additive model, with the density of observations for drought durations shown beneath. The
colored lines indicate different drought definitions (red = SPEI <0; green = SPEI < −0.5; blue = SPEI < −0.8).
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their highly inconsistent annual seasonality (i.e., power
at 12-month periodicity) across the study period.

Using GAMs, we found a positive association be-
tween drought duration and annual power in the
transmission year immediately after the drought, but
only when the drought (across all severities D0-D4)
lasted longer than 15 months (Fig. 5c). The shape of the
estimated exposure-response relationship differed
slightly based on the definition of drought use, with a
stronger positive association found when using more
extreme definitions of drought (Fig. 5c).
Discussion
In this study, we provide a comprehensive character-
ization of coccidioidomycosis seasonal dynamics and
their climate determinants in California. Over the study
period from 2000 to 2021, we observed that monthly
coccidioidomycosis incidence across California counties
peaked between September and November, at the end of
the dry season, and was lowest from April to June, at the
end of the wet season. An enhanced surveillance study
in Arizona found that the incubation period for
coccidioidomycosis is about 7–12 days and the time
from symptom onset to diagnosis is likely around 2–5
weeks.24 Together with these estimates, our results
www.thelancet.com Vol 38 October, 2024
suggest that peak exposures to C. immitis are likely
occurring on average between July and September and
lowest exposures are likely occurring between February
to April. Yet, we found significant heterogeneity in the
presence, strength, and timing of seasonality across
counties and transmission years. Notably, no county
demonstrated significant annual seasonality in every
year of the study period, but certain counties (e.g., Kern,
Tulare) showed more consistent annual seasonality than
others (e.g., San Bernardino, Madera). Annual season-
ality was strongest on average in the Southern San
Joaquin Valley and Central Coast regions. We found that
while the earliest seasons, on average, occurred in the
Southern San Joaquin Valley (generally hotter and drier
climate) and the latest occurred in the Central Coast
(generally cooler and wetter climate), the seasonal
timing becomes more synchronous among counties
over the course of the study period.

California has a distinct dry season (April–October)
and wet season (November–March) each year, and our
results show that coccidioidomycosis seasonal peaks
occur most often at the end of the dry season. Anoma-
lously wet conditions in the prior wet season as well as
anomalously dry conditions during the concurrent dry
season are associated with more pronounced seasonal
peaks in incidence (Fig. 5b). These results are in
9
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agreement with previous research findings that wet
conditions followed by dry conditions may promote
C. immitis growth and dispersion, resulting in increased
coccidioidomycosis risk.6,11–16 In the saprobic stage of
C. immitis life cycle, soil moisture is required to initiate
the germination of spores into mycelia, and mycelia
respond to prolonged dry periods by producing a resis-
tant form called arthroconidia, which are able to survive
in dry environments and light enough to disperse,
causing infection when inhaled.11–13 Epidemiological and
experimental work has shown that wet-dry cycles can
promote pathogen abundance in soils and the ability of
the pathogen to disperse concurrent with fugitive dust
emissions.9,14,16,18,32 Anomalously wet conditions at the
end of the transmission year are associated with more
pronounced seasonal peaks. This is likely because wet
conditions suppress dust emissions by promoting
vegetation growth and increase deposition of airborne
Coccidioides arthroconidia, thereby driving down
coccidioidomycosis incidence at the end of the season.

Regional heterogeneity in climate may contribute to
the spatial heterogeneity observed in coccidioidomycosis
seasonal strength and timing. The earliest seasons, on
average, occurred in the Southern San Joaquin Valley
and the latest seasons occurred in the Central Coast
region. These findings align with work showing that
coastal counties had a higher proportion of coccidioi-
domycosis cases in the winter, while the lower San
Joaquin Valley counties had a higher proportion of cases
in the fall.9 The Southern Inland region demonstrates
an earlier coccidioidomycosis season than the Central
Coast region, which may be due to warmer tempera-
tures earlier in the year in the Southern Inland
(Supplementary Figure S30), potentially enabling the
lysis of mycelia and dispersion of arthroconidia via dust
emissions earlier in the year. Regional variability in soil
composition may also play a role in the heterogeneity of
seasonal strength and timing between regions. Sandy,
alkaline and high salinity soils are thought to be most
favourable for C. immitis proliferation,11 yet soil
composition varies widely across endemic California
regions.33 Differences in soil texture, porosity, density,
and temperature may influence the life cycle of Cocci-
dioides, and alter the impacts of climate on fungal
growth and dispersion. Future research should examine
how changes in seasonal patterns of temperature and
precipitation (e.g., delayed and/or extreme wet season)
may manifest in spatiotemporal differences in coccidi-
oidomycosis seasonal dynamics. Despite these differ-
ences, we showed an increased synchrony of seasonal
timing among counties, which may be explained by
improved surveillance and reporting of cases over time,
particularly in regions with emerging diseases.

Our characterization of coccidioidomycosis season-
ality provides key insights into cyclical climate drivers of
disease transmission. Prior work found that winter
rainfall following anomalously dry conditions increased
coccidioidomycosis incidence in California, and esti-
mated that the 2007–2009 and 2012–2015 droughts
resulted in decreased cases during the droughts but
increased cases following the droughts.15 Our results
build upon these findings, demonstrating that drought
conditions suppress coccidioidomycosis seasonality, but
that transitions from drought to wet conditions lead to
more pronounced seasonal peaks in California. In other
words, drought followed by wet conditions does not
increase the risk of coccidioidomycosis onset uniformly
across the year but instead promotes risk concentrated
within a specific calendar period. We expand our un-
derstanding further by showing that longer droughts
have stronger impacts on coccidioidomycosis cyclicity.

Several mechanisms may explain the observed as-
sociations between drought, coccidioidomycosis risk,
and seasonal dynamics. Firstly, prolonged drought
conditions may offer C. immitis a competitive advantage
by reducing microbial competitors, allowing C. immitis
to expand into new niches once favourable conditions
return.9,32,34 Drought conditions reduce microbial activity
in the soil.35 Indeed, drought has been shown to in-
crease the ratio of fungi to bacteria, attributable in part
to fungi being better able to transfer moisture from
water-filled micropores in the soil.35 Then when mois-
ture and nutrients return to the soil following a
drought,36 C. immitis can proliferate without competing
against other microbes. This would increase fungal
population abundance in the soil and, following spore
dispersal, possibly lead to higher coccidioidomycosis
incidence.

Alternatively, drought may impact C. immitis’
mammalian hosts. Rodents have been consistently
associated with C. immitis and C. posadasii, through
detection in rodent burrows,37–39 rodent lungs,40 and in
previously Coccidioides-negative soils following the
burial of experimentally infected mice.41 Droughts can
cause rodent population declines,42 and the resulting
decomposition may supply nutrients and moisture for
the C. immitis population to survive and expand. These
potential mechanistic effects would likely intensify due
to longer and more severe drought conditions. Lastly,
droughts can enhance dust emissions via decreases in
vegetation leading to increased wind erosion,43–45 which
may enhance exposure to airborne C. immitis.

With rising coccidioidomycosis incidence, under-
standing seasonal trends in incidence across endemic
counties can guide prevention and control efforts. Given
estimates of the incubation period and time from onset
to diagnosis,24 our findings suggest that peak C. immitis
exposures typically occur between July and September
but that timing is region and county-specific. This in-
formation can help tailor public health messaging, for
instance about when to avoid particularly dusty envi-
ronments and dust-generating activities and, when dust
exposure is not avoidable, when to use dust suppression
techniques, such as wetting soil before disturbing, or
www.thelancet.com Vol 38 October, 2024
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the use of N95 masks to prevent inhalation of C. immitis
spores.46–48 Healthcare professionals can also be better
prepared during these peak months. Travellers to high-
incidence areas, especially vulnerable individuals (e.g.,
immunocompromised, pregnant women), can benefit
from risk awareness. It is important to note, though,
that while disease risk is higher during the summer and
fall months in California, cases still occur year-round
and testing for coccidioidomycosis should therefore
not be season-dependent among patients presenting
with relevant symptoms. Furthermore, an improved
understanding of seasonal dynamics can enhance early
warning systems and forecasting models.4

Our work has several limitations that should be
considered when interpreting the results. We rely on
coccidioidomycosis case data representing human
infection rates in California based on residential ad-
dresses and estimated disease onset dates. However,
this data may not precisely reflect the environmental
presence, concentration, or distribution of C. immitis.
This limitation hinders our ability to elucidate the
mechanisms of spore aerosolization and transport.
Furthermore, assigning incident cases to months based
on the estimated disease onset date might not always
align with the true exposure or symptom onset dates
due to diagnosis delays, potentially introducing biases in
estimating seasonal timing. Aggregating cases at the
county level may obscure sub-county variations, even as
county-level information may indeed be most useful for
local public health decision-making. Patients may also
have been exposed outside their residence counties;
investigating whether weak seasonal trends in specific
counties are due to true local acquisition or travel-related
exposure requires further research. Additionally, while
this study focuses on drought-related cyclical patterns,
future work should also consider other seasonal factors
such as rodent abundance and human interactions with
soils (e.g., via crop cycles or construction activities).

Lastly, our results are specific to the transmission
dynamics of C. immitis in California and should not be
generalized to other endemic regions where C. posadasii
dominates. Phenotypical disparities between C. immitis
and C. posadasii, particularly in thermotolerance—
where C. immitis thrives at 28 ◦C compared to
C. posadasii at 37 ◦C49—may drive different seasonal
disease dynamics as well as divergent relationships be-
tween climate and coccidioidomycosis incidence. Future
work should investigate the seasonal patterns and
climate determinants of disease incidence in
C. posadasii-dominant regions such as Arizona.

Conclusions
California’s increasing drought risk, driven by global
climate change, is expected to worsen with more
frequent droughts and potential megadroughts.50,51 Our
findings, combined with recent research on drought’s
impact on coccidioidomycosis incidence, suggest that
www.thelancet.com Vol 38 October, 2024
these changing climate patterns will affect both disease
rates and seasonal patterns. Future droughts are likely to
decrease annual incidence rates and suppress seasonal
peaks during drought periods, resulting in lower but
sustained cases year-round. Conversely, incidence rates
and seasonality are expected to rise after droughts,
leading to concentrated cases during specific months.
The compounding effect of drought followed by heavy
rainfall, a pattern projected to increase,52 along with the
geographic expansion of coccidioidomycosis, will
continuously elevate disease risk for Californians.
Further research is essential to understand the mecha-
nistic connections between extreme climate events and
coccidioidomycosis transmission to inform accurate
disease prediction systems and mitigate future disease
burden.
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