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THE NATURAL HISTORY OF MODEL ORGANISMS

The secret lives of Drosophila
flies
Abstract Flies of the genus Drosophila, and particularly those of the species Drosophila

melanogaster, are best known as laboratory organisms. As with all model organisms, they were

domesticated for empirical studies, but they also continue to exist as wild populations. Decades of

research on these flies in the laboratory have produced astounding and important insights into basic

biological processes, but we have only scratched the surface of what they have to offer as research

organisms. An outstanding challenge now is to build on this knowledge and explore how natural

history has shaped D. melanogaster in order to advance our understanding of biology more

generally.
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Introduction
From its first use in the laboratory in the early

1900s until the present day, Drosophila mela-

nogaster has been central to major break-

throughs in genetics. The use of this fruit fly as

a model organism began with the pioneering

work of Thomas Hunt Morgan, who was awarded

the 1933 Nobel Prize in Physiology or Medicine

for ‘his discoveries concerning the role played by

the chromosome in hereditary’. Morgan’s former

student, Herman J Muller, subsequently received

the prize in 1946 ‘for the discovery of the pro-

duction of mutations by means of X-ray irradiation’.

In 1995, the Drosophila researchers, Edward B

Lewis, Christiane Nüsslein-Volhard and Eric F

Wieschaus shared the prize ‘for their discoveries

concerning the genetic control of early embryonic

development’. Most recently, Jules Hoffman shared

the 2011 prize for ‘discoveries concerning the

activation of innate immunity’ in Drosophila.

How did one species of Drosophila, D. mela-

nogaster, come to be a model system? Harvard

entomologist Charles Woodworth was the first to

rear D. melanogaster, just after the turn of the

20th century. It is not clear why or how he came

to breed them, but their short generation time

and ease of rearing were probably very appeal-

ing attributes. Woodworth then recommended

them to his colleague William Castle, who initially

worked on mammals but utilized the flies to study

inbreeding. During this same period, another

entomologist, Frank Lutz at the American

Museum of Natural History, also began studying

this fly’s basic biology, publishing more than

a dozen papers about them (Davenport, 1941;

Carlson, 2013). It was from Lutz that Thomas

Hunt Morgan introduced them into his laboratory

at Columbia University. At the time Morgan

began his work, the basic principles of heredity

were still under debate. Morgan’s discoveries and

the fact that he attracted a highly talented group

of graduate students no doubt fuelled the use of

D. melanogaster as a model system.

But what do we know about the biology of this

fly in nature? Here, I review what we know of its

origins, its biology in the wild and how this differs

from what we see in the laboratory, its natural

history, and why its natural history matters for

laboratory studies, as well as its advantages as

a model organism. I also discuss why, even

after so many years of intensive investigation,

D. melanogaster and its relatives are in an

important position to help us address central

questions about biology.

Where did D. melanogaster come
from and how do these flies live?
D. melanogaster, described by Meigen in 1830,

appears to have originated in sub-Saharan Africa

(Lachaise et al., 1988). The first out-of-Africa
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habitat expansion of D. melanogaster is thought

to have occurred between 10,000 and 15,000

years ago, when it moved to Europe and Asia

(David and Capy, 1988). North America and

Australia were colonized more recently (David

and Capy, 1988). Subsequent colonization

events, especially as human travel has acceler-

ated, have continued to move populations

around the globe. Its current distribution is

worldwide, being found on every continent and

most islands (Markow and O’Grady, 2005b).

A human commensal associated primarily with

rotting fruits, D. melanogaster is also associated

with a wide array of decaying vegetables and

other plant matter. The fact that this fly is an

ecological generalist no doubt contributed to the

facility with which it was initially propagated in the

laboratory, rapidly becoming a popular model

system. Drosophila are found worldwide, and

their extensive distribution has allowed studies of

adaptations to different latitudes.

D. melanogaster do not live alone. Their

decaying host resources are also home to many

microbes, as well as to other arthropods, including

other Drosophila species, all of which they interact

with (see Video 1, 2). Some microbes in the

decaying material themselves provide food for

D. melanogaster, being selectively consumed by

larvae or adults. Other microbes are essential for

decomposing fruit and other plant matter into

substances, such as volatiles, that attract other

adult flies to the food source, or for decomposing

organic matter into new material, which in turn is

consumed by the flies. Along with Drosophila

simulans, Drosophila hydei, Drosophila immigrans,

and Drosophila busckii, D. melanogaster forms

part of what is known as the ‘cosmopolitan guild’

of Drosophila (Atkinson and Shorrocks, 1977).

While found in association with these other

species, D. melanogaster colonizes the rotting

fruits at a particular time during the decay

trajectory. First to arrive is D. simulans, followed

by D. melanogaster, and then the other species

(Nunney, 1990, 1996): this is consistent with

D. melanogaster having a higher ethanol tolerance

than its relative D. simulans (McKenzie and

Parsons 1972, 1974), which arrives earlier, when

fewer volatiles have been produced by fermenta-

tion. Other arthropods, especially beetles, are also

common in the substrate and are predators of the

developing flies.

D. melanogaster is holometabolous, meaning

it undergoes a metamorphosis from its larval to

adult form (Figure 1). Females lay their eggs in

necrotic material, and the larvae develop and

pupate there. Two life stages are completely

immobile: the egg and the pupa. Larvae can

move within the resource patch, while adults can

fly between patches. Given the sessile status of

eggs and larvae, we expect these stages to

exhibit adaptations against predation, parasitism

and environmental stressors, such as tempera-

ture extremes, ultraviolet light and desiccation.

Natural selection on behaviors such as oviposi-

tion and pupation site selection is therefore

expected to be strong.

What is different in the lab and
field?
In the laboratory, life is simple. Much is constant.

Flies are grown in one or more standardized

culture media, usually treated with mould inhib-

itors, such as propionic acid or methylparaben,

and antibiotics. While these culture conditions

keep flies ‘healthy’ by laboratory standards, they

do not represent the conditions that D. mela-

nogaster experience in nature. The fungal, bac-

terial and viral pathogens (Magwire et al., 2012;

Keebaugh and Schlenke, 2014) flies encounter in

nature are absent in the laboratory. In the wild,

larvae and flies are also exposed to predators,

such as ants, beetles, pseudoscorpions and

lizards, as well as to parasites, such as wasps

and phoretic mites. Encountering food of dif-

ferent types and ages in nature also differs

from the benign consistency of the laboratory

environment. In the laboratory, flies tend to be

reared at a constant temperature and humidity

level, while these abiotic variables fluctuate in

Video 1. Three members of the cosmopolitan guild of

Drosophila feeding. D. hydei (the larger, dark flies) and

D. melanogaster and D. simulans (the smaller, lighter flies)

quietly feeding on the juice of a rotting tomato and on the

microbes present on it. D. melanogaster and D. simulans

are sibling species and are morphologically indistin-

guishable in the video. Video credit: Therese AnnMarkow.

DOI: 10.7554/eLife.06793.002
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nature. Laboratory adults also don’t need to

disperse to find a resource for the next

generation.

What is different then, about the flies them-

selves, when found in nature? Few studies of

D. melanogaster have been done in the wild, but

those that have reveal a different picture of wild

flies. For one thing, they tend to be larger than

laboratory reared flies, possibly owing to some,

as yet unknown, micronutrients and/or to the fact

that in nature, temperatures fluctuate and growth

is slower than in culture (Chown and Gaston,

2010). The microbes that associate with

D. melanogaster in the laboratory are also far

less diverse than those that associate with these

flies in the wild (Chandler et al., 2011).

Reproductive behavior and biology, while ex-

tensively studied in the laboratory, is less well-

understood in the wild. From the few studies

conducted in nature, a different picture emerges.

For example, in nature, virgins are not separated

upon eclosion and stored until used in experimental

pairings. Instead, they tend to be mated early and

often (Markow et al., 2012). In fact, many

D. melanogaster females in the wild appear to

have been force-mated by males waiting for them

to emerge from their pupa cases (Markow, 2000;

Seeley and Dukas, 2011). In addition, while

laboratory mated females tend to die earlier than

do virgins, the well known ‘cost of mating’ (Fowler

and Partridge, 1989), in nature the opposite

seems to be true (Markow, 2011). Courtship itself

is also different in nature compared to that

observed in the laboratory. Laboratory experiments

almost universally reveal an advantage to large

males when placed with smaller males in ‘choice’

experiments (Alcock, 2013). In nature, however,

sexual interactions do not take place in small

chambers. Males appear to sort themselves out

by size at the mating site, with smaller males often

being found in parts of the fruit where there are

fewer females and thus fewer matings (Markow,

1988). The mating advantage to larger males is not

as apparent in wild populations (Partridge et al.,

1987;Markow, 1988). Furthermore, when courted

by an undesirable male in nature, where there is

ample space to escape, female D. melanogaster

rarely decamp, instead, extruding their ovipositor

to discourage the suitor (Gromko and Markow,

1993; Video 2).

Untapped potential of Drosophila
Our extensive foundational knowledge of the bi-

ology of D. melanogaster places these flies in a very

strong position to contribute to our understanding

of outstanding issues and questions in biology,

supported by the availability of a sequenced ge-

nome (Adams et al., 2000) and an array of genomic

resources. While a number of future discoveries will

concern basic processes in gene action and de-

velopment, the natural history of D. melanogaster

can also inform and guide discoveries relevant to

contemporary and pressing problems in human

health and environmental change.

Reproduction and biocontrol

The reproductive systems of Drosophila species

are among the most variable of any organism

(Markow, 1996, 2002; Markow and O’Grady,

2005a). Some of this variability is behavioural.

For example, in some species, such as D. hydei

and Drosophila nigrospiracula, females will mate

multiple times in a single morning, while in

others, such as Drosophila subobscura, females

will mate once in their lifetime. Some species,

such as Drosophila pachea, require weeks for

an adult fly to become sexually mature, while in

Video 2. Three members of the cosmopolitan guild of

Drosophila interacting at a food source. Drosophila:

D. hydei (the larger, dark flies) and D. melanogaster and

D. simulans (the smaller, lighter flies) interacting at

a food source. Although there is little sexual dimor-

phism between males and females of the D. hydei

species, males can be distinguished in the video

because they approach other flies to court. In the

D. melanogaster and D. simulans species, males are

smaller than the females and have darker abdomens.

These males can also be seen approaching other flies

and attempting to court. Attempted courtships are brief

and often end when females extrude their ovipositors.

Notice that males will approach flies of different sexes

and species, and that flies of D. hydei are much less

active than those of D. simulans and D. melanogaster.

D. melanogaster and D. simulans are sibling species and

are morphologically indistinguishable in this video.

Video credit: Therese Ann Markow.

DOI: 10.7554/eLife.06793.003
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others, such as Drosophila mettleri, either sex can

be ready to mate within hours of emerging from

the pupa case. The genes that control these

behavioural differences can hold clues to con-

trolling the reproduction of economically and

medically important insects, such as testse flies

and mosquitoes (see Box 1). Morphological

variation can also influence the reproductive

success of ‘problem’ species. Drosophila suzukii,

for example, is an exceptional species that has

recently invaded America and Europe from Asia

(Rota-Stabelli et al., 2013) and attacks agricul-

tural produce (in particular, by laying its eggs into

soft fruits). A sequenced genome (Chiu et al.,

2013) and comparative morphological studies of

its females’ sharp ovipositor (Atallah et al., 2014)

provide insights into the basis for its rapid

invasion.

An additional aspect of biocontrol is to

understand the neurobiological mechanisms by

which insects identify their hosts. Here again,

discoveries made in D. melanogaster can be

applied to economically important species. These

discoveries include the first functional mapping

of olfactory responses (Hallem and Carlson,

2004), and the use of multiple species’ genomes

to reveal the ecological and behavioural signifi-

cance of the evolution of various olfactory

receptors (McBride, 2007; Guo and Kim, 2007;

Goldman-Huertas et al., 2015). As such, the

D. melanogaster toolbox can now be used to

disrupt host-seeking behaviors in insects of

medical and economic importance (Carey and

Carlson, 2011).

Human health

D. melanogaster has played an increasingly

important role in the creation of animal models

of human disease. Approximately 65% of human

disease genes are estimated to have counter-

parts in D. melanogaster (Chien et al., 2002),

most of which are available in the Homophila

database (http://superfly.ucsd.edu/homophila/).

The number of investigators using D. melanogaster

as a model for studying human disease is steadily

rising (Pfleger and Reiter, 2008), especially for

more complex disorders, such as heart disease

(Piazza and Wessells, 2011), mental and neuro-

logical illness (Pandey and Nichols, 2011), and

obesity (Trinh and Boulianne, 2013).

Complex health problems tend to be rooted

in the interaction between multi-factorial geno-

types and the environment. What role can natural

history play in our ability to understand these

interactions with a view towards disease mitiga-

tion and treatment? In the past few decades, the

importance of the gut microbiome for models of

human health has grown. The D. melanogaster

microbiome, under laboratory conditions, turns

out to be quite simple, with an average of ten

Figure 1. The life cycle of Drosophila melanogaster. Egg and pupa stages are sessile, larvae move within the

substrate, and adults are highly vagile as their ability to fly enables their dispersal. Different species of Drosophila

vary in their larval development times, as well as in the ages at which females and males attain reproductive maturity.

Image credit: Therese Ann Markow.

DOI: 10.7554/eLife.06793.004
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culturable bacterial species (Lee and Hase,

2014), and has provided insights into the re-

lationship between gut microbiota and processes

such as intestinal function (Lee and Lee, 2014)

and insulin signaling (Shin et al. 2011). Of

considerable interest is that the microbiome of

wild D. melanogaster is much more complex

(Cox and Gilmore, 2007) than that found in

laboratory reared flies, comparable to the differ-

ences observed between non-westernized hu-

man populations and urban populations that

consume highly processed diets (De Filippo

et al., 2010) (see Box 1). This similarity between

flies and humans reveals the importance of host-

microbiota homeostasis for human health (David

et al., 2014; Kostic et al., 2013). For example,

Shin et al. (2011) demonstrated how the

Drosophila gut microbiome regulates the meta-

bolic homestasis of the fly.

Global environmental change:
detoxification and stress resistance

Environmental change is actually a complex of

changes, both abiotic and biotic. Abiotic chal-

lenges include changing temperature and humid-

ity, and biotic challenges, often fomented by

abiotic shifts, include changes in available habitat,

presence of pathogens, parasites, competitors

and invaders. Understanding adaptation to global

environmental change thus also is a complex

problem, and one that requires us to monitor

natural populations, as well as to conduct

laboratory studies to discover the bases of

adaptations or the lack thereof. Natural popula-

tions and laboratory strains of D. melanogaster

have been successfully exploited in examining

responses to changing environments (Rodrı́guez-

Trelles and Rodrı́guez, 2007; Hoffmann, 2010).

The susceptibility of D. melanogaster to global

environmental change is well documented in the

clinal or seasonal changes in the frequencies of

alleles at particular loci (Umina et al., 2005) and in

changes in chromosomal inversion frequencies

(Anderson et al., 2003). Several thousand Dro-

sophila species, some with highly specialized

ecologies, are limited in their distributions to very

cold or very hot climates. For example, D. pachea

is endemic to the Sonoran Desert of North

America, where it depends on the sterols in the

cactus Lophocereus schottii, which has alkaloids

that other Drosophila species cannot tolerate.

Because of its obligate association with its

cactus host, it is exposed to temperatures that

often approach 50˚C. Such species provide

unprecedented opportunities to understand

the genetic bases of adaptations to extreme

situations (see Box 1) and to recruit these

species to address problems of species loss

in the face of global warming and other

anthropogenic changes.

Another product of anthropogenic change is

the evolution of pesticide resistance in a wide

range of insects of economic and medical

importance. Natural and laboratory populations

of D. melanogaster have played key roles in our

understanding of the roles of the cytochrome

P450-encoding genes and the glutathione

S-transferases in resistance to the insecticide,

dichlorodiphenyltrichloroethane (better known

as DDT) (Ffrench-Constant, 2013). Various

other Drosophila species have specialized on

resources (such as cacti or Morinda fruit)

that contain a range of allelochemicals, or

secondary metabolites, many of which are

toxic to other organisms and thus serve as

defense against herbivory. The genetic bases

of these specializations, as they relate to

phenomena such as the evolution of pesticide

resistance (McDonnell et al., 2012;

Box 1. Outstanding questions about the natural history of
Drosophila

c Why can some Drosophila species feed
and breed in certain resources while
other species cannot?

c Why can some Drosophila species
tolerate extreme environmental
conditions while others cannot?

c What accounts for the particular
microbial communities found inside

the guts of D. melanogaster and of
other species?

c What accounts for the astounding
variability in the reproductive biology
of Drosophila species?

DOI: 10.7554/eLife.06793.005
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Miyo, 2012) and detoxification (Gloss et al.,

2014; Mitchell et al., 2014), are already being

investigated through comparative genomics.

Combining genomics and natural
history
In 2003, the fly community submitted a white

paper for the whole-genome sequencing of

additional Drosophila species. The resultant

2007 publication by the Drosophila 12

Genomes Consortium et al., 2007, of 12

genomes and their analysis, has rapidly revo-

lutionized and expanded the utility of the

Drosophila system for studies ranging from

computational biology and embryology, to

evolution and human disease. In the short

time since these genomes were made avail-

able, insights have been gained into the

emergence and loss of new pathways, the gain

and loss of pathway complexity (Salazar-Jaramillo

et al., 2014), and the changes in the regulatory

network of complex genomes (Coolon et al.,

2014; McManus et al., 2014). At this point in

time, over 30 Drosophila genomes have been

sequenced, further expanding the importance

of and opportunities provided by these flies.

These species, their evolutionary relationships

and ecological features, are presented in

Figure 2.

The natural histories of these species

are diverse. Some are highly specialized and

live under extreme climatic conditions. Others

are adapted to diets high or low in protein

or carbohydrates. Their microbiomes differ

(Chandler et al., 2011) as does their genomic

machinery for dealing with various environ-

mental challenges (Low et al., 2007; McDonnell

et al., 2012).

Figure 2. Evolutionary and ecological relationships of Drosophila species. Phylogenetic relationships (based on

Markow and O’Grady, 2005b) are shown for species with available assembled whole-genome sequences. Within

the subgenus Sophophora, D. sechellia has specialized to consume and breed on Morinda fruit and D. erecta has

similarly specialized on fruits of various Panandus species, as has D. yakuba although to a lesser degree. Within the

subgenus Drosophila, D. buzzatii and D. mojavensis breed in cacti, while D. virilis and D. americana breed in the

slime fluxes of deciduous trees. Even among specialists, adult flies may feed more broadly while larvae are more

specialized. Arrows indicate substrate specialization by these species. Image credit: Therese Ann Markow.

DOI: 10.7554/eLife.06793.006
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Conclusions
The expanding number of sequenced Drosophila

species’ genomes offers a tremendous opportu-

nity to learn from the ways in which different

species have solved the challenges of living in

different niches. But laboratory studies alone, in

the absence of an understanding of the natural

history, the challenges and lifestyles of these flies,

will never allow us to fully exploit what they have

to offer. By characterizing the natural history of

not just D. melanogaster but also of those other

Drosophilids with contrasting ecologies, we will

be able to detect and exploit such phenomena as

novel resistance mechanisms and novel dietary

adaptations and reproductive strategies.

This knowledge can then be employed to

advance our understanding of basic biological

principles, thus building a more robust toolbox

to apply to human problems. For example, the

efficacy of anticancer therapeutic agents

depends not only on their effects on the tumor

but also on the ability of the host to tolerate the

toxic effects of the drug. The many ways in

which fly species have dealt with detoxification

and tolerance could inform and refine drug

discovery. It’s not difficult, as one might imag-

ine, to study a large number of different

Drosophila species in the wild. But it’s time to

do more of it.
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