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Abstract
Background: Retinal imaging employs various modalities, each providing distinct perspectives 
on ocular structures. However, the integration of information from these modalities, which often 
have differing resolutions, requires effective image registration techniques. Existing retinal image 
registration methods typically rely on rigid or affine transformations, which may not adequately 
address the complexities of multimodal retinal images. Method: This study introduces a nonrigid 
fuzzy image registration approach designed to align optical coherence tomography (OCT) images 
with fundus images. The method employs a fuzzy inference system (FIS) that uses vessel locations 
as key features for registration. The FIS applies specific rules to map points from the source image 
to the reference image, facilitating accurate alignment. Results: The proposed method achieved a 
mean absolute registration error of 44.57 ± 39.38 µm in the superior–inferior orientation and 11.46 
± 10.06 µm in the nasal-temporal orientation. These results underscore the method's precision in 
aligning multimodal retinal images. Conclusion: The nonrigid fuzzy image registration approach 
demonstrates robust and versatile performance in integrating multimodal retinal imaging data. 
Despite its straightforward implementation, the method effectively addresses the challenges of 
multimodal retinal image registration, providing a reliable tool for advanced ocular imaging analysis.
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Introduction
Fundus imaging and optical coherence 
tomography  (OCT) are ubiquitous 
modalities in retinal imaging, frequently 
employed in clinical practice for their 
ability to capture detailed images of the 
retina.[1,2] Often, these two modalities are 
utilized simultaneously during retinal 
examinations, providing complementary 
information about retinal structures and 
pathology.[3,4] The integration of data from 
both fundus images and OCT scans holds 
immense potential for advancing diagnostic 
capabilities and guiding treatment decisions 
in ophthalmology.[4] By leveraging the rich 
information conveyed by these modalities, 
clinicians can conduct more comprehensive 
analyses and gain deeper insights into 
retinal health and disease progression. 
Recently, the application of en face 
image registration for identifying ocular 
imaging biomarkers has been reported.[5] 

Furthermore, en face/fundus alignment is 
often a critical preliminary step in various 
OCT processing methods. For example, 
in[6,7] aligning OCT B‑scans of the left and 
right eyes is necessary. However, direct 
alignment of OCT B‑scans is challenging 
because the fovea and optic disc positions 
cannot always be reliably detected from 
the B‑scans alone. This requires the use 
of fundus images to identify the fovea 
and optic disc locations. Once the left 
and right fundus images are aligned, the 
corresponding en face images can be 
registered, ensuring that the left and right en 
face images are correctly aligned. Finally, 
the geometric transformation obtained 
between the en face and fundus images 
should be applied to the OCT B‑scans. 
However, multimodal image registration 
including en face/fundus registration poses 
several challenges stemming from inherent 
differences in image characteristics, 
including resolution, contrast, and geometric 
distortions. Moreover, variations in imaging 
conditions and technical artifacts further 
complicate the registration process.
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To register en face and fundus images, proper features 
should be extracted from both modalities. In many reported 
works, vessel features[8,9] or features extracted from vessels, 
such as vessel ridges[10] are utilized for registration, as 
vessels are the most common information shared between 
the two modalities. Furthermore, given that, the OCT 
B‑scans are obtained from the macula; the estimated macula 
position in the fundus image is used to determine the 
corresponding OCT scanning area. It means that the OCT 
scanning area may be unknown and should be determined 
through the registration process. For instance, in[8] a square 
with 25 different central points of the fundus image is 
explored around the approximate point corresponding to 
the center of the OCT image. In,[7] a method is used where 
the correlation between vessels in two image modalities is 
computed by rotating the en face image at different angles 
and selecting the angle with the highest correlation to align 
the fundus and en face images. In[6] and[11] a similarity 
function is utilized to determine the optimal shift, rotation, 
and scaling between the fundus and en face images.

It is worthnoting that, in most retinal image registration 
algorithms, whether monomodal or multimodal, the 
registration step typically employs classical methods. 
Even, recent approaches that incorporate deep learning 
still rely on techniques such as rigid,[5] affine,[9] random 
sample consensus  (RANSAC),[12] weighted direct linear 
transforms,[13] or other classic methods. Therefore, classic 
successful algorithms are chosen for comparison. The 
assumption of rigid transformation between the fundus 
and OCT modalities may not hold true due to the differing 
methods of image acquisition. Therefore, we believe that 
nonrigid registration may be a more reasonable choice. In 
this context, nonrigid image registration techniques prove 
valuable for aligning images exhibiting varying geometric 
transformations.

From another point of view, the fuzzy concept demonstrates 
powerful performance in various image processing fields 
such as segmentation,[14] classification,[15] and registration.[16] 
Recently, fuzzy inference systems  (FISs) have emerged 
as powerful tools for capturing intricate relationships 
between input and output variables in monomodal image 
registration.[17] This article aims to demonstrate the 
effectiveness of FIS in the context of multimodal retinal 
image registration. Therefore, the proposed method is 
conceptually new because, to the best of our knowledge, 
retinal image registration based on fuzzy systems has 
not been introduced in the literature, particularly the 
multimodal retinal registration. Moreover, in applications 
where the ultimate goal of en face/fundus registration is 
the alignment of B‑scans from the left and right eyes, our 
approach offers a more precise solution. Specifically, rather 
than applying a uniform rigid transformation to all B‑scans, 
we propose using a nonrigid transformation tailored to each 
B‑scan. This approach allows for a unique transformation 
to be applied to each A‑scan within the B‑scans, which 

is more accurate and reasonable than applying the same 
transformation across all A‑scans or B‑scans. It is worth 
noting that the proposed method is not sensitive to image 
scales. In addition, any potential weaknesses in determining 
OCT scanning area can be compensated by the fuzzy rules. 
This is because the fuzzy theory is designed to model 
uncertainties, allowing the fuzziness of the OCT scanning 
window to be indirectly addressed through the fuzzy 
system.

The remainder of the article is organized as follows. Section 
2 provides a detailed description of the proposed algorithm 
for en face/fundus registration. Section 3 covers the data 
description and implementation details. Experimental 
results are presented in Section 4 and conclusions are 
drawn in Section 6.

Methods
The proposed method’s block diagram is depicted in 
Figure  1. Initially, the OCT B‑scans are projected to 
generate an en face image, which serves as the basis for 
registration with the fundus image. The registration process 
begins with the extraction of retinal vessels from both the 
fundus and en face images. Next, a window surrounding the 
approximate central point of the fundus image is selected, 
where the highest correlation with the en face vessel map 
is found. Corresponding points on the vessels in both 
images are then identified, forming input–output pairs for 
designing the FIS, and the mapped vessels are subsequently 
calculated. Each step is described in detail below. In the 
figure, the green and magenta points correspond to the 
fundus and en face images, respectively, while the yellow 
points represent the vessels from the en face image mapped 
onto the fundus image.

Projecting optical coherence tomography B‑scans

To construct a two‑dimensional  (2D) en face image, the 
3D OCT volumes can be projected along the depth axis. 
Various metrics, such as the mean, maximum, minimum, 
or standard deviation of pixel values along the depth axis, 
can be used for this projection.[7] In this study, the standard 
deviation of A‑scans from OCT slices is used to create the 
en face image, as illustrated in Figure 2.

Vessel extraction

The U‑Net architecture[18] has emerged as a widely adopted 
method in medical image segmentation, including retinal 
vessel segmentation.[19] Because of effectiveness even with 
limited training samples,[19] we employed the U‑Net method 
for vessel extraction for both the en face and the fundus 
images. The U‑Net model follows the conventional U‑Net 
architecture, as shown in Figure 3. The encoder part of the 
network consists of five contracting blocks, with each block 
doubling the number of feature maps. The feature map 
sizes are reduced by a factor of two after each max‑pooling 
operation. Starting with 64 feature maps of size 256 × 256 
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in the first block, the number of feature maps increases 
to 128  (128  ×  128), 256  (64  ×  64), 512  (32  ×  32), and 
finally 1024  (16  ×  16) in the deepest part of the network. 
The decoder mirrors this structure with upsampling, where 
feature map sizes increase back to 256  ×  256, and the 
number of channels decreases symmetrically to 512, 256, 
128, and 64. The training procedure utilizes rectified linear 
units  (ReLUs) and an Adam optimizer. Data augmentation 
techniques applied to the training data include rotation, 
flipping, scaling, and cropping.

Region of interest extraction

The vessel maps obtained from the previous step are 
256  ×  256 pixels. To select the region of interest in the 
fundus image, a 20  ×  20 pixel square around the center of 
the fundus vessel map is chosen as the search area for the 
window’s center. Windows with edge lengths ranging from 
90 to 140 pixels are examined for each possible center. 
These windows are then resized to 256  ×  256 pixels, and 
their correlation with the en face vessel map is computed. 
The best match is selected as the final OCT scanning 

area  [Figure  4]. It is important to note that the correlation 
between these two images may not be very high, as 
achieving a higher correlation would typically require at least 
a rotation. However, since the proposed registration method 
can effectively find the mapping with a limited number of 
corresponding points, this issue is not a major concern.

Registration method

The block diagram of the registration phase is illustrated 
in Figure  5. Points located on the en face image are first 
processed using the Density‑Based Spatial Clustering of 
Applications with Noise algorithm[20] to determine the 
optimal number of clusters for the fuzzy C‑Means  (FCM) 
clustering algorithm.[21] Subsequently, the points are 
clustered using FCM, and the membership degree of each 
point to each cluster is calculated. Finally, the clustered 
points and their corresponding points on the fundus image 
are used to train a Takagi‑Sugeno‑Kang  (TSK) model,[22,23] 
which is then employed to calculate the mapped points. 
The core of the proposed method is a FIS, which combines 
the FCM clustering algorithm with the TSK model, as 
described in detail below.

Fuzzy inference system

Consider that the proposed method incorporates R rules in 
the FIS part. Each rule can be represented as follows:
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where F1
r and F2

r are fuzzy sets of the rth rule. x1m and 
x2m are coordinates of the mth point located at the vessel 
of en face image, while ŷim

r is estimated coordinate of 
corresponding point located at the vessel of fundus image 
in ith dimension (i = 1, 2). To achieve an optimal structure 

Figure 1: Block diagram of the proposed method for en face/fundus registration. The vessels in fundus and en face images are illustrated in green and 
magenta, respectively. The registered vessels are shown in yellow. OCT: Optical coherence tomography, ROI: Region of interest, FIS: Fuzzy inference system

Figure 2: The color fundus image (right) and the corresponding en face 
image (grayscale, smaller image on the right). The en face image is created 
by projecting the B‑scans along the depth axis



Hosseini and Rabbani: Fuzzy inference system for non-rigid retinal image registration

4� Journal of Medical Signals & Sensors | Volume 15 | Issue 5 | May 2025

and identify parameters, both premise and consequent 
structures must be designed. Through this process, the 
position of each arbitrary point can be calculated using the 
designed rules.

Let  (xm, ym), m  =  1,…, M be input–output pairs of a FIS 
that we aim to find their mathematical relation. In our 
problem, xm =  (x1m, x2m) and ym =  (y1m, y2m) represent the 
coordinates of points located on the source image (en face) 
and the reference (fundus) image, respectively. The optimal 
parameters and structure of the aforementioned system are 
obtained through the design of antecedent and consequent 
structures.

Antecedent part of fuzzy rules

Various methods exist for configuring the premise part of 
the FIS. One commonly employed and well‑established 
approach is the FCM clustering algorithm.[21] The FCM 
algorithm calculates cluster centers, v, and membership 
degree of each sample to each cluster, u, by solving the 
optimization problem as depicted in equation (2).

2 2
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where 2= x ‑ vi k k id  is the distance of sample 2x Rk ∈  
from the cluster center vi. The algorithm initializes with a 
predefined cluster number, and initial guesses for cluster 
centers, V =  (v1,…, vc), and continues by updating cluster 
centers, V, and membership degree, u =  (u1m,…, ucm), 
through (3)–(4) until convergence.
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Consequent part of fuzzy rules

Assuming a t‑norm product, Larsen fuzzy inference (product), 
and weighted output, the TSK model’s overall output, based 
on the sample rule in (1), is calculated as follows:[24]
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where xm =  (x1m, x2m) is mth input vector resulted in 
1 2y = ( , )  m m my y . The consequent parameters are determined 

by solving optimization problem (8).
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In cases where the antecedent part is designed using the 
FCM clustering procedure, the number of rules equals 

Figure 3: Conventional U‑Net architecture[19]

Figure 4: Region of interest extraction procedure
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the number of clusters and 
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Solving least‑squares optimization  (8) with Tikhonov 
regularization yields to optimum consequent parameter 
vector (11).
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Experiment

Data

Training dataset

The proposed algorithm requires a training phase for vessel 
extraction. Fundus vessel segmentation remains an open 
challenge, with several benchmark datasets available for 
evaluation. In our study, we used the DRIVE and CHASE_
DB1 fundus vessel benchmark datasets to train and validate 
the U‑Net model. The total number of fundus images used 
was 68, which we split into 36 images for training and 32 
images for validation. Since there is no existing benchmark 
dataset for en face vessel segmentation, we manually 
segmented 94 en face vessel images to create a ground 
truth dataset. From these, 75 images were used for training, 
and 19 were used for validation. It is important to note that 
for both en face and vessel segmentation, the data used to 
train the U‑Net model are entirely different from the data 
used for the registration task; there is no overlap between 
the datasets.

Registration dataset

A dataset comprising retinal images from 44 normal 
cases and 29  cases with ocular abnormalities was used to 
evaluate the efficacy of the proposed algorithm. Each image 
pair includes a color fundus image and an OCT image 

obtained using the Topcon 3D OCT‑1000 instrument. The 
OCT images consist of varying numbers of slices, each 
with dimensions of 650  ×  512 pixels, while the fundus 
images have a resolution of 1536  ×  2048 pixels. The 
maximum number of slices is 128, although some subjects 
have missing slices. These data are publicly available at 
https://misp.mui.ac.ir/fa/Comprehensive Topcon 3D‑OCT 
Dataset: Inclusive of Normal and AbnormalOCT Volumes.

Implementation details

The U‑Net model for retinal vessel segmentation is 
configured with several important hyperparameters that 
influence its performance. The learning rate, which is 
randomly selected between 0.0000005 and 0.0005, controls 
the step size during gradient descent, impacting the speed 
and stability of convergence. The model uses a batch size 
of 1, which processes one training sample per iteration, 
allowing for more precise updates but potentially slower 
training. It is trained over 500 epochs (chosen through trial 
and error), meaning the entire dataset is passed through 
the network 500  times, which helps the model learn the 
intricate patterns of retinal vessels. The ReLU activation 
function is applied throughout the network, introducing 
nonlinearity that enables the model to capture complex 
features. The Adam optimizer with momentum terms set to 
0.5 and 0.999 is used, combining the benefits of adaptive 
learning rates and momentum to efficiently minimize the 
binary cross‑entropy loss function.

Results
Figure 6 illustrates the results of the proposed method for 
four sample cases. The extracted vessels from the fundus 
images are displayed in green, while the vessels from 
the en face images are shown in magenta. The yellow 
points represent the mapped points, which are the points 
on the en face vessels that have been registered onto the 
fundus vessels using fuzzy rules. It is important to note 
that not all en face vessel points are registered, as there 
may be no corresponding points on the fundus vessels. 
Corresponding points are determined based on their 
Euclidean distance.

To evaluate the effectiveness of the proposed method 
relative to alternative techniques, we implemented 
RANSAC with three commonly employed mathematical 

Figure 5: Block diagram of registration phase. FCM: Fuzzy C‑Means, TSK: Takagi‑Sugeno‑Kang
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models: rigid, affine, and transformations. In addition, 
we included the well‑established thin‑plate spline‑robust 
point matching algorithm,[26] which is renowned for its 
point matching capabilities, for comparison. A  quantitative 
evaluation, detailed in Table 1, highlights the superiority of 
the proposed method over the other algorithms.

The proposed algorithm takes approximately 0.2 s to 
execute, which is about 10 times slower than other methods. 
However, time efficiency is not a primary concern, as 
real‑time performance is not essential for this application. 
That said, a 0.2‑s processing time is still sufficient for 
real‑time use if needed.

Conclusion
This article introduces a nonrigid image registration method 
based on fuzzy theory for the registration of multimodal 
retinal images. Given the distinct properties of information 
in each modality, we focus on utilizing common features, 
specifically the positions of retinal vessels, across 
modalities. Our proposed algorithm effectively registers 
fundus images and en face images obtained from OCT 
B‑scans. Experimental results demonstrate that our method 
outperforms state‑of‑the‑art techniques, highlighting its 
potential to enhance the accuracy of multimodal retinal image 

alignment. This advancement holds promise for improving 
diagnostic accuracy and treatment planning in ophthalmology.
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