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Abstract

The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA
recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary
mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ,35 residue peptide motifs that
interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose
sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the
different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the
structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural
information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC
repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues,
we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied
computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of
BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link
sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on
classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum
mechanical first principles calculations with the linear-scaling density functional code ONETEP. Our findings not only reveal
how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the
control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of
protein-protein interactions for chemical biology and molecular therapeutics.
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Introduction

The human breast cancer suppressor protein BRCA2 controls

the functions of the RAD51 recombinase, an enzyme conserved in

all kingdoms of life, which carries out the strand exchange reaction

central to homologous DNA recombination (HDR) [1]. This

essential cellular pathway is responsible for the error-free repair of

DNA double strand breaks and is central to the maintenance of

genome integrity and the prevention of diseases such as cancer [2].

Attempts to understand the role of BRCA2 in the regulation of

HDR have been primarily driven by biochemical and cellular

biological studies using regions of the full-length protein, amenable

to cellular, biochemical and structural analyses. Two regions in the

BRCA2 protein have been shown to interact directly with RAD51.

The ‘‘BRC repeat’’ is a conserved motif of BRCA2 of approxi-

mately 35 amino acids that is thought to be the primary mode of

interaction with RAD51. All known BRCA2 orthologues have been

shown to contain at least one BRC repeat motif, but curiously the

number of BRC repeats present varies between orthologues ranging

from one (e.g. Caernorhabditis elegans Brc-2 and Ustilago maydis Brh2) to

fifteen (e.g. Trypanosoma brucei) [3]. All vertebrate Brca2 proteins

contain eight BRC repeats, clustered into a single large exon located

in the central portion of the protein and show significant

conservation of sequence and inter-repeat spacing [4]. The

interaction between the BRC repeats of human BRCA2 and

RAD51 has been characterised predominantly through structural

and biochemical approaches and regulates many of RAD51’s

activities including RAD51 oligomerisation, and its ordered

assembly on single-stranded or double-stranded DNA substrates

to control the stepwise events of the strand exchange reaction [5,6].
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A second motif, unrelated in sequence to the BRC repeats, is

found at the C-terminus of BRCA2 and, uniquely, is capable of

interacting only with oligomerised RAD51 species in the presence

or absence of DNA [7,8]. A further major distinction is that this

motif has no significant impact on the execution of HDR by

RAD51, but rather links the disassembly of RAD51 complexes

that form during HDR to the timing of entry into mitosis [9].

Three pieces of evidence suggest that the BRC repeats of

human BRCA2 regulate RAD51-mediated strand exchange.

Firstly, BRCA2-deficient cells are defective in HDR [10,11].

Secondly, it has been shown that a region of BRCA2 comprising

all eight human BRC repeats, or a subset of repeats fused to a

DNA-binding domain, are capable of stimulating RAD51-

mediated HDR and additionally, in the latter case, partially

rescuing the HDR defect in BRCA2-deficient cells [5,6,12–14].

Thirdly, recent biochemical characterisation of the BRC repeats in

isolation, as well as the intact human Brca2 protein, shows that

they can stimulate RAD51 assembly on single-stranded DNA and

inhibit its assembly on double-stranded DNA, hence promoting

the stepwise DNA transactions required for strand exchange

[5,6,15–17].

The crystal structure of the complex between the fourth human

BRC repeat, BRC4, and the catalytic core domain of RAD51,

conserved between all RAD51 orthologues (RecA in eubacteria

and RadA in the archaea), has provided mechanistic insights into

how BRC peptides can interact with RAD51 [18]. Interestingly,

the BRC4 repeat binding to RAD51 was shown to antagonise

RAD51 oligomerisation by directly binding to the oligomerisation

surface of RAD51 found at the protomer:protomer interface in

oligomerised RAD51 assemblies. Intriguingly, this interaction uses

precise molecular mimicry, rather than steric obstruction, to bind

to RAD51 using an evolutionarily convergent amino acid

sequence. BRC4 binds RAD51 using the motif 1524-FHTA-

1527 ( Homo sapiens BRCA2 numbering) to establish contacts with

RAD51 otherwise utilised by the sequence 86-FTTA-89 in the

linker region of an adjacent RAD51 protomer.

A binding mode of BRC repeats antagonistic to RAD51

oligomerisation is not inconsistent with its stimulatory role in

controlling RAD51. It has recently been reported that all BRC

repeats may harbour a specific motif architecture that allows

binding modes with RAD51 that may be permissive for RAD51

oligomerisation [19]. The identification and characterisation of

two modules in the BRC repeats highlights an ‘‘FxxA’’ module

that antagonises oligomerisation and an ‘‘LFDE’’ module (by

BRC4 sequence nomenclature) that does not affect oligomerisa-

tion (and is likely to be permissive for oligomerisation), and

complementary binding pockets in RAD51. These findings also

suggest that binding modes at the BRC repeat-RAD51 interface

are conserved across all known BRC repeats, permit differential

regulation of RAD51 and are in essence a new example of hotspot-

mediated protein-protein interaction. These tetrameric modules,

and the corresponding pockets in RAD51, have been demonstrat-

ed to harbour the majority of binding capacity of an entire BRC

repeat and their integrity is required for cellular viability through a

critical mechanistic role in HDR.

Although these experimental studies focused upon BRC4, a

known ‘‘strong binder’’ of RAD51, it was also shown that this

conserved motif architecture was predicted to be partially intact

even in the fifth BRC repeat, BRC5, a ‘‘weak binder’’ of RAD51,

as an ‘‘LFDE’’-like module was present. Indeed, this module was

able to reconstitute RAD51 binding and regulation of RAD51

assembly of DNA when fused to a functional ‘‘FxxA’’ module,

derived from BRC4.

Despite significant sequence similarity between the BRC

repeats of BRCA2, several studies have reported that these

motifs display varying affinities for RAD51 [20–22]. The

functional relevance of having multiple repeats of varying

affinities for RAD51 remains unclear, but may engender tighter

regulation of RAD51 behaviour in the more complex genomic

environment of higher organisms. Indeed, the finding that BRC

repeats use two modules to mediate structural and functional

associations with RAD51 and the observation that some repeats,

such as BRC5, may contain just one of the modules, albeit of

high affinity, speak to this idea.

In this study, we have combined experimental determination

of the relative affinities of human BRC peptides for RAD51 with

an array of computational simulations that address the atomistic

determinants of the behaviour of BRC repeat binding to

RAD51. We have used classical molecular dynamics (MD)

simulations to explore the interface between RAD51 and the

different BRC repeats and also their cancer-associated muta-

tions at a critical interaction hotspot. From these simulation

trajectories we have obtained the binding free energies of

different BRC-RAD51 complexes using not only classical force

fields, but also our newly developed QM-PBSA technique [23],

which includes in the calculations the first principles quantum

mechanical energies of the entire complexes. Furthermore, we

have performed computational alanine scanning mutagenesis

studies [24] on the repeats in order to pinpoint the energetic

hotspots and quantify their strength in terms of the energetic

contribution of each residue and used the more rigorous

thermodynamic integration approach to verify critical findings.

Our calculations confirm previously reported experimental

binding behaviour and provide a rationale for observed

differential affinities of BRC repeats for RAD51. Encompassing

a range of accuracy and computational expense, these

approaches to studying this promiscuous interface between

RAD51 and, potentially, multiple peptides, provide fresh

mechanistic insights into the regulation of RAD51 by multiple

BRC repeats and serve as a template for the interrogation of

protein-protein interactions of significant biological interest,

often not amenable to direct experimental assessment.

Author Summary

The atomic scale interactions that occur at the interfaces
between proteins are fundamental to all biological
processes. One such critical interface is formed between
the proteins, human BRCA2 and RAD51. BRCA2 binds to
and delivers RAD51 to sites of DNA damage, where RAD51
mediates the error-free repair of double-stranded DNA
breaks. Mutations in BRCA2 have been linked to breast
cancer predisposition. Therefore, an accurate picture of the
interactions between these two proteins is of great
importance. BRCA2 interacts with RAD51 via eight ‘‘BRC
repeats’’ that are similar, but not identical, in sequence.
Due to lack of experimental structural information
regarding the binding of seven of the eight BRC repeats
to RAD51, it is unknown how subtle sequence variations in
the repeats translate to measurable variations in their
binding affinity. We have used a range of computational
methods, firstly based on classical force fields, and
secondly based on first principles quantum mechanical
techniques whose computational cost scales linearly with
the number of atoms, allowing us to perform calculations
on the entire protein complex. This is the first study
comparing all eight BRC repeats at the atomic scale and
our results provide critical insights into the control of
RAD51 by human BRCA2.

Interactions between Human BRCA2 and RAD51
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Results

Human BRC repeats display varying capacities to disrupt
the BRC4-RAD51 interaction

Several studies have previously reported the variation in binding

affinities of human BRC repeats to RAD51 [20–22]. However, a

quantitative comparison of these repeats has not been provided

and indeed the majority of experimental insights are based upon

BRC4, a stronger binder of RAD51 for which a high-resolution

crystal structure exists of the complex. Attempts to purify a

homogeneous preparation of RAD51 in a monomeric state

amenable to biophysical studies of interaction with BRC peptides

with a view to providing thermodynamic parameters have not

been successful. In order to circumvent this technical challenge, we

have developed a fluorescence polarisation (FP) assay that

indirectly measures binding by determining the ability of BRC

peptides to act as soluble inhibitors of the BRC4-RAD51

interaction in order to gauge the relative binding affinities of

each of the repeats.

This assumes that all BRC peptides can bind to the same

surface of RAD51 and are, in essence, competing for the interface

on RAD51 pre-bound by BRC4. As all known BRC repeats share

common sequence fingerprints that are matched by complemen-

tary sequence fingerprints in eukaryotic RAD51 orthologues in

species with a BRCA2 orthologue [3], and this binding specificity

has been confirmed experimentally, this assumption is likely to

extend across all known BRC-RAD51 interactions.

RAD51 used for experimental determination of relative binding

affinity was the full-length protein that maintains the capacity to

oligomerise. However it should be noted that the structure of the

BRC4-RAD51 complex is monomeric and comprises only the

core catalytic domain, lacking the first 97 residues of RAD51

comprising the N-terminus and linker region [18]. The interac-

tions of the BRC4 peptide with RAD51 extend along the length of

the peptide, including the ‘‘LFDE’’-module at its C-terminus in

the partial context of an a{helix. BRC binding to this region is

likely to alter the N-terminal domain of RAD51 that is located in a

conformation likely to sterically clash with the BRC peptide. The

N-terminal domain is connected to the core catalytic domain

through a flexible linker region and it is thought that this region of

RAD51 engenders conformational flexibility in the N-terminus of

RAD51 that is stimulated to accommodate, or be displaced by,

BRC peptide binding. Indeed this conformational flexibility has

been noted in several high resolution crystal structures of RAD51

orthologues and electron microscopic reconstructions of human

RAD51 oligomeric assemblies on DNA in the presence of BRC

peptides. The absence of the linker region in the construct used for

crystallisation also renders the RAD51 species monomeric.

The outline of the FP assay for detection of disruption of the

BRC4-RAD51 interaction is shown in Figure 1(a). Briefly, wild-

type full length RAD51 was complexed with Alexa488-conjugated

BRC4 and incubated with varying concentrations of each of the

eight BRC repeats (unconjugated), present as unlabelled soluble

competitive peptides.

In accord with the findings of several qualitative analyses

[21,22], the BRC repeats showed a well-defined relative order

of competitive inhibition of the BRC4-RAD51 interaction

(Figure 1(b)). BRC4 was the most potent competitive inhibitor,

followed by BRC2 and BRC1. BRC8 showed a markedly weaker

competitive inhibition. BRC7 and BRC3 showed mild competitive

behaviour but failed to achieve 50% inhibition even at the highest

concentrations of peptide (3mM) and BRC5 and BRC6, in accord

with previous reports, showed no significant competition of the

BRC4-RAD51 interaction. The BRC4 T1526A mutant (a

previously reported non-binding mutant identified by sequential

mutagenesis) [25] showed weak competitive inhibition relative to

wildtype BRC4.

Computational alanine scanning identifies two binding
hotspots in BRC4

Understanding protein-protein interactions using computational

methods is a major goal at the nexus between structural biology,

biophysics and computational chemistry, but is often compromised

by limitations of accuracy, high computational cost and the

inability to simulate large systems. In this study, we combine a

variety of computational methods, with a range of accuracy and

computational expense, that are able to measure and rationalise

protein behaviour in the context of existing macromolecular

complexes. Such methods can help us achieve an understanding of

a wide variety of problems relevant to the basic biology of all

cellular processes reliant on protein-protein interactions to allow,

for example, small molecule chemical intervention with therapeu-

tic or chemical biological rationale.

We begin our analysis with a computational alanine-scanning

mutagenesis study [24,26] of BRC4 using the MM-PBSA method

[27,28]. This approach estimates the contribution of each residue

to the free energy of binding at a protein-protein interface by

mutating each residue in turn to alanine and measuring the effect

of the mutation on the overall free energy of binding. This is done

while accounting for the dynamical nature of the interactions and

the effects of solvation. Such simulations are directly analogous to

the experimental technique of alanine scanning mutagenesis

[29,30], which is used to identify ‘‘energetic hotspots’’ on

protein-protein interfaces [31,32].

Figure 2(a) summarises the MD procedure and Figure 2(b, black

line) reports the change in binding free energy (DDG) resulting

from the mutation of the side chain of each residue of BRC4. As

previously reported by Rajendra and Venkitaraman [19], this

computational mutagenesis approach highlighted both F1524 and

L1545/F1546/E1548 via alanine scanning and A1527 via glycine

scanning as residues contributing significantly to the binding of

BRC4 to RAD51. Thus, these results are both predictive and fully

supportive of a model whereby two modules in the BRC repeats

are involved in hotspot-mediated interaction with RAD51.

MM-PBSA simulations are able to rank the affinity of the
BRC peptides for RAD51 relative to RAD51-RAD51 self-
oligomerisation

Having established that computational alanine scanning

mutagenesis confirms the presence of two modules within BRC4

previously identified experimentally [19] that contribute to its

interaction with RAD51, we sought to understand if further

analysis could provide insights into the behaviour of the larger

regions of the BRC peptides to establish why they displayed

different experimental affinities for RAD51. As no high resolution

structural information is available for human BRC repeats 1–3

and 5–8, and accurate biophysical interrogation is hindered by

technical challenges in the purification of a suitable N-terminally-

truncated monomeric RAD51 species, we turned to computational

simulations to analyse the interactions of each of the BRC peptides

with RAD51.

In order to approach this problem, we used classical MD

simulations of the N-terminal 15 residues of the BRC peptides,

denoted ‘‘BRCnA’’ with residue sequences shown in Figure 3. We

chose this region for two key reasons. Firstly, given that the full

length RAD51 is used for FP assays and only the core catalytic

domain is used in simulations, a simulation including the C-

Interactions between Human BRCA2 and RAD51
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terminal 18 residues of BRC peptides (‘‘BRCnB’’) would be

questionable as this region may be sterically interdependent with

the N-terminal domain of RAD51, which is missing in the

simulated complex. Attempts to simulate the BRC5B peptide

region suggested much weaker binding than observed experimen-

tally and binding modes that did not conform to the crystallised

RAD51-BRC4 complex (Figure S1). Secondly, the BRCnA region

contains the FxxA module that has a defined functional effect

Figure 1. Relative binding affinities of BRC peptides for RAD51 via fluorescence polarisation assays. a) Principle behind the
fluorescence polarisation assay. Alexa-labelled BRC4 peptide rotates slowly when in complex with RAD51 causing polarised light to remain polarised
(top panel). Disruption of the BRC4-RAD51 complex by an unlabelled soluble competitor releases the Alexa-labelled BRC4 peptide, which now rotates
rapidly causing depolarisation of incoming polarised light (bottom panel). b) Inhibition curves for all eight BRC repeats, as well as the BRC4 T1526A
mutant. Full length wild type RAD51 protein was used at a concentration of 135 nM and Alexa488-BRC4 peptide at 10 nM. Peptides able to inhibit
the BRC4-RAD51 interaction are detected by a reduction in fluorescence polarisation.
doi:10.1371/journal.pcbi.1002096.g001

Figure 2. Computational alanine scanning mutagenesis identifies two binding hotspots in BRC4. a) Procedure for the MD simulations
starting from the RAD51-BRC4 X-ray crystal structure. b) Computational alanine mutagenesis scan of the RAD51-BRC4 complex. Dashed lines indicate
an alanine to glycine mutation. The two interaction hotspots (‘‘FHTA’’ and ‘‘LFDE’’) are denoted by vertical dashed lines and contribute significantly to
the total free energy of binding. Alanine scans from separate RAD51-BRC4A and RAD51-BRC4B complexes are also shown and reproduce the
behaviour of the full-length peptide (see next section). c) Simulation outline describing the generation of the eight RAD51-BRCnA structures from a
snapshot of the RAD51-BRC4 MD simulation (Structure A).
doi:10.1371/journal.pcbi.1002096.g002

Interactions between Human BRCA2 and RAD51
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(antagonism of RAD51 oligomerisation) that could be later

benchmarked against the binding energy between RAD51

protomers in an oligomeric assembly. Care should be taken when

comparing the results of MM-PBSA simulations and our FP

assays, as any contribution to binding affinity caused by sequence

variation outside the truncated BRCnA peptides is neglected in

our computational model. However, Figure 2(b) confirms that use

of separate RAD51-BRC4A and RAD51-BRC4B trajectories

gives very similar binding behaviour to the full RAD51-BRC4

complex around the significant hotspot regions, indicating that our

conclusions concerning the effects of sequence variation in the

BRCnA half-peptides are unaffected by our choice of truncation of

the experimental peptide. The tail regions of the BRC4A peptide

show more variation in the alanine scan of Figure 2(b) since they

are more mobile than the residues located in the hotspot. As such,

they may become trapped in local minima of the free energy

landscape for the duration of the simulation, artificially affecting

the free energy of binding calculated by MM-PBSA. With this in

mind, throughout this study, we used a combination of MM-PBSA

to obtain the total free energy of binding and computational

alanine scanning to quantify the contribution of each of the

BRCnA peptides in the significant hotspot region, and thus discern

the effects of sequence variation.

We used the MD protocol outlined in Figure 2(c) to generate

structures of the RAD51-BRCnA interfaces starting from the

RAD51-BRC4 crystal structure. BRCnA peptides derived from

BRC repeats 1–3 and 5–8 were generated by mutating selected side

chains of the BRC4A structure as described in the methods. Here, we

assume that each BRC repeat folds in the same manner as BRC4A

since no changes in secondary structure are expected to occur on the

time scales of these simulations, although significant, localised

variations in binding behaviour were observed for some BRC repeats.

Given the importance of the BRCnA repeats in antagonism of

RAD51-RAD51 oligomerisation, the relative binding free energies

at this protein-protein interface is of significant mechanistic

interest. Despite sequence similarity in the hotspot region itself

(FHTA in BRC4A mimics FTTA in RAD51), the protein

sequence used by RAD51 to self oligomerise is known to partially

comprise a helical region [33], which is unlikely to form

spontaneously from the b{hairpin structure of BRC4 over the

time scale of these simulations. Figure 4 summarises the alternative

method used here to generate the RAD51-RAD51 interface

starting from a dimeric unit from the crystal structure of the

Saccharomyces cerevisiae Rad51 (see methods) and retaining 15

residues of the Rad51 ligand, to match the sequence register of

the 15 residues of the BRCnA repeats.

We have used the single trajectory classical MM-PBSA

technique, with the gas phase binding entropy of the molecules

calculated using a normal modes analysis, to compute the relative

free energies of binding of each of the eight BRCnA repeats to

RAD51, and compared them to the binding free energy of the

RAD51-RAD51 interface. With the exception of BRC5A, Figure 5

shows that the relative free energies of binding of the BRC repeats

to RAD51 are very similar, which reaffirms the requirement for

very precise measurements of their affinities. Interestingly, MM-

PBSA predicts the truncated RAD51 ligand to be the strongest

binder to the RAD51 oligomerisation interface, although the

difference is mostly entropic and this term is usually assumed to

carry the greater uncertainty. Three of the BRC repeats (BRC1A,

BRC2A and BRC4A, in that order) bind with affinity comparable

to RAD51. Our combination of FP assays and MM-PBSA

indicates that BRCA2 also contains five more weakly-bound BRC

repeats and the sequence differences that give rise to this variation

in affinity will be investigated in the following sections.

QM-PBSA analysis confirms the relative binding free
energies of BRC repeats

The relative binding free energies of the BRCnA repeats to

RAD51 as determined by MM-PBSA (1Aw2Aw4Aw6Aw

7Aw8Aw3Aw5A) are in reasonable qualitative agreement with

the inhibition order of the BRC repeats derived from FP assays

(4w2w1w8w7w3w5~6). Notable discrepancies are the over-

estimation of the binding affinity of both BRC1A and BRC6A in the

MM-PBSA approach. One reason for this may be limitations of the

computational system, such as the neglect of the 18 BRCnB C-

terminal residues and the N-terminal domain of RAD51. Another

reason may be limitations of the force field used to describe the

interactions between receptor and ligand, which on this length scale

are inherently quantum mechanical in nature.

Figure 3. Sequence alignment of the b{hairpin loop regions. Shown are the eight human BRC repeats used in the computational simulations,
as well as the 15 residues of the ligand at the RAD51-RAD51 self-oligomerisation interface. BRCA2 residue numbering is shown in column two, but for
simplicity, residues will be labelled 01-15 throughout this paper. The FxxA hotspot is underlined, net charges of each ligand are shown in column
three as multiples of the electronic charge and sites of mutations studied here are highlighted in red.
doi:10.1371/journal.pcbi.1002096.g003

Interactions between Human BRCA2 and RAD51
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To address the limitations in accuracy of classical force fields,

caused by their dependence on a large number of parameters and

their inherent inability to describe charge transfer and polarisation

we have recently developed a new computational approach that

allows us to calculate, from first principles quantum mechanics

(QM), the binding free energy of biomolecular complexes

consisting of thousands of atoms [23]. In this QM-PBSA approach

binding energies are obtained with Density Functional Theory

(DFT) calculations which do include charge transfer and

polarisation effects. Here, we use QM-PBSA calculations to re-

assess the free energy of binding of four of the studied complexes,

RAD51-BRC4A (reported in a previous work [23]), RAD51-

RAD51, and the two discrepancies between experiment and MM-

PBSA, RAD51-BRC1A and RAD51-BRC6A.

Figure 6(a) reveals that there is very good correlation between

the gas phase binding energies calculated within MM-PBSA and

QM-PBSA. The classical force field is very accurate for the

RAD51-BRC1A interaction but under-estimates both the

RAD51-BRC6A and RAD51-RAD51 gas phase binding energies.

The relative free energies of binding are calculated within QM-

PBSA by combining these gas phase binding energies with the

scaled solvation free energy and the classical relative entropy

change of the solutes upon binding. Figure 6(b) reveals that the

binding order of the investigated complexes is the same as

predicted by MM-PBSA (RAD51w1Aw4Aw6A), although the

relative binding free energy of RAD51-BRC1A and RAD51-

RAD51 are under-estimated by 2–5 kcal/mol in MM-PBSA.

Despite significantly improving the calculation of the gas phase

quantity in the MM-PBSA scheme, the QM-PBSA method is still

potentially subject to inaccuracies. Firstly, the error in the entropy

contribution, calculated by classical normal modes analysis, may

be large and future improvements in this area should concentrate

on increasing the precision of this term. Secondly, the binding

energy is calculated by sampling snapshots taken from the classical

MD trajectory, which assumes adequate sampling of the ligand’s

conformational space by the classical force field. To demonstrate

this latter limitation, in Figure 6(c), the magnitude of the vector

difference between the QM and MM forces averaged over the

snapshots is plotted for each ligand atom in the hotspot region of

the RAD51-BRC4A and RAD51-BRC1A complexes. The

differences are generally small indicating that the QM configura-

tional space is well sampled by the classical force field. However

some discrepancies exist in polar groups, especially the R07 side

chain in BRC1A, and methods to force-match the force field to the

QM forces based on the local environment of the proteins [34,35]

are the subject of ongoing work.

Atomistic determinants of BRC repeat affinity are
revealed by computational simulations of RAD51-BRCnA
complexes

Having established, via three complementary methods, that the

BRC repeats show a defined relative order of affinity for RAD51,

and in concert with the identification of a sequence motif

architecture comprising two specific interaction modules across

all BRC repeats with complementary binding energy hotspots in

RAD51, we sought to understand why each of the different BRC

repeats varied in their affinity to RAD51.

Figure 4. Outline of the simulation of the humanised RAD51-RAD51 oligomeric assembly. The starting structure is that of the
Saccharomyces cerevisiae dimer. The final complex consists of the core catalytic domain of human form RAD51 receptor (silver) and a 15 residue
RAD51 ‘‘ligand’’ (cyan).
doi:10.1371/journal.pcbi.1002096.g004

Figure 5. Binding free energy of each of the eight BRC repeats
and the RAD51-RAD51 complex. Binding free energies are relative
to RAD51-BRC4A and are broken down into enthalpic, which is a sum of
the gas phase binding energy and free energy of solvation, and
entropic, which is due to changes in solute degrees of freedom upon
binding and is calculated by normal modes analysis.
doi:10.1371/journal.pcbi.1002096.g005
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We first utilised computational alanine-scanning mutagenesis, which

we have already shown to be predictive of the hotspot-mediated

interaction of BRC4 with RAD51, to probe the RAD51-RAD51 and

RAD51-BRC4A interaction interfaces for differences in binding free

energy that could be associated with sequence variation. The RAD51-

RAD51 oligomeric interface differs from the RAD51-BRC4A

interface in both structure (the hairpin is replaced by a helical segment)

and interaction type (dispersion interactions account for approximately

40% of the QM gas phase binding energy, compared to just 10% in

BRC4A). Yet the binding free energies and even each residue’s

individual contribution to binding, revealed by the computational

alanine scan, are remarkably similar (Figure 7(a)).

A representative snapshot of the RAD51-RAD51 complex is

shown in Figure 7(b). The interactions of the FxxA hotspot motif,

namely F06 and A09 hydrophobic interactions and the backbone

inter-protein hydrogen bonds of residue T07 (which do not

contribute to the alanine scan), are present in RAD51 as well as

BRC4. In the RAD51-RAD51 complex, the alanine scan reveals

that residues T10 and F12 provide significant additional

contributions to binding. T10 forms an intermittent hydrogen

bond with RAD51 via D187 with an occupancy of 32%. F12

forms contacts with residues F166, P168 and Y191 of RAD51.

Hydrophobic contact is also formed to some extent between H13

and the RAD51 surface.

The major differences between the RAD51-RAD51 self-

oligomerisation interface and the RAD51-BRC4A complex are

the increased contribution to binding of residue T08 in the latter

and the removal of the hydrophobic F12, which is replaced by the

charged residue K12 with little change in binding affinity. In order

to bind to the RAD51 interface, K12 forms a salt bridge with

D187 of RAD51 (Figure 7(c)) and, to accommodate this change in

interaction, BRC4 adopts a b{hairpin structure, whose stability

was noted in a previous study [36]. In fact, the backbone

interactions between residue 08 and residues 11 and 12 that span

the hairpin are found here in all eight simulations. Residue T08

appears to contribute further to hairpin stability by forming side

chain hydrogen bonds with the side chain of S10 and the

backbone of K12 (Figure S2(a)) and hydrophobic contacts with the

methylenes of the K12 side chain and the D187 Ca atom (Figure

S2(b)). The latter interaction accounts for the higher contribution

to binding of T08 in RAD51-BRC4A relative to RAD51-RAD51

and by interacting simultaneously with residues S10, K12 and

Figure 6. Results of QM-PBSA analysis of the RAD51-BRCnA complexes. a) Correlation between the QM and MM total gas phase binding
energies for the complexes between RAD51 and BRC1A, BRC6A and RAD51. b) Contributions to the free energy of binding (relative to RAD51-BRC4A)
in MM-PBSA and QM-PBSA. Similar relative binding affinities are observed in MM-PBSA and QM-PBSA. c) Magnitude of the vector force errors on
atoms of the ligand in the ‘‘FxxA’’ hotspot region from simulations of the RAD51-BRC4A and RAD51-BRC1A complexes.
doi:10.1371/journal.pcbi.1002096.g006
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D187 (Figure 7(c)), we speculate that T08 stabilises the hairpin

interaction with RAD51. This hypothesis is supported by the close

homology between five of the eight repeats (BRC1A, BRC3A,

BRC4A, BRC7A and BRC8A) in the hotspot region, all of which

contain the sequence –FxTASxK– and have very similar alanine

mutagenesis scans to RAD51-BRC4A (Figure S3).

The information gained from alanine mutagenesis can be used

to resolve the discrepancy between MM-PBSA (or QM-PBSA) and

our FP assays. The relative free energies of binding of these five

BRC4A-like repeats, appear to be determined not by any

sequence variation in the hotspot region, but by the strength of

the electrostatic attraction between the ligands of varying net

positive charge (Figure 3) and the negatively charged receptor. If

we rank these repeats in order of increasing charge

(4Aw1Aw7A~8Aw3A), we observe very good agreement with

the relative abilities of these repeats to compete the RAD51-BRC4

interaction in FP assays (4w1w8w7w3). The unexpectedly

strong affinity of BRC1A for RAD51 in MM-PBSA appears to be

caused by its strongly bound C-terminus (Figure S3), which, as in

the 1N0W RAD51-BRC4 crystal structure, is expected to point

away from RAD51 in the context of the full BRC1 peptide, and is

therefore an artefact of our computational model.

Alanine to serine mutation in BRC5 reduces free energy
of binding to RAD51

As we have shown in the previous section, five of the eight BRC

repeats use very similar motifs to bind RAD51. BRC5, however,

replaces the sequence –FxTASxK– with –FxTSCxR–, the most

notable change in sequence being the replacement of A09 in a

hydrophobic pocket in RAD51 by the polar residue S09. Isothermal

titration calorimetry measurements have recently shown that a

single A09S mutation in BRC4 is sufficient to significantly reduce

the rate constant for the RAD51-BRC4 association reaction and, in

turn, reduce the capacity of BRC4 to dissociate the RAD51-DNA

complex [37]. In Figure 8(a), we compare a computational alanine

scan of the RAD51-BRC5A interface with that of the RAD51-

BRC4A interface. The most interesting difference between the two

curves is at position 09. Although S09 remains bound throughout

the MD simulation, its contribution to the binding free energy is

1.3 kcal/mol lower than the A09 contribution in RAD51-BRC4A.

This energy difference is sufficient to explain experimental

observations of loss of binding affinity upon A09S mutation in

BRC4 [37] and may be rationalised by considering the relative

solvation free energies of the two residues, which are accounted for

naturally in the MM-PBSA scheme.

Figure 7. MD simulations of the RAD51-RAD51 and RAD51-BRC4A complexes. a) Computational alanine scan, comparing contributions of
each residue to binding, reveals a similar interaction pattern in the RAD51-RAD51 dimer to that of its antagonist, BRC4A. Dashed lines indicate an
alanine to glycine mutation. b) Snapshot of the RAD51-RAD51 complex in the region of the interaction hotspot. The RAD51 receptor is shown in silver
and significant hydrogen bonds as dashed lines. c) Snapshot of the RAD51-BRC4A interaction from MD simulation and close up of the four-way
interaction between T08, S10, K12 of BRC4A and D187 of RAD51.
doi:10.1371/journal.pcbi.1002096.g007
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The binding mechanism of BRC5A to RAD51 is otherwise very

similar to the RAD51-BRC4A complex (Figure 8(a)). Cysteine is

less polar than serine, which it replaces as residue 10, and forms

neither intra-protein hydrogen bonds with T08 nor inter-protein

hydrogen bonds with D187. The R12-D187 interaction is present,

though is weaker than the K12-D187 interaction that it replaces in

the BRC4A-like repeats. Overall, both FP assays and MM-PBSA

predict a very weak interaction between RAD51 and BRC5.

MD simulations of RAD51-BRC2A reveal alternative
binding modes for BRC repeats containing significant
sequence differences

The use of computational simulation, in particular MD, allows

the investigation of dynamical motion and access to structures that

are not amenable to experimental structural determination. This is

particularly relevant for the BRC repeat, BRC2A, which differs

significantly in sequence from BRC4A in the hotspot region,

replacing the sequence –FxTASxK– with –FxSAHxT–. Analysis

of the RAD51-BRC2A MD trajectory reveals that H10 does not

form hydrogen bonds within the BRC2A hairpin or directly with

RAD51, which is the role of S10 in BRC4A. Yet BRC2A is among

the most strongly bound repeats according to both FP assays and

MM-PBSA.

By using MD simulations to explore the conformational space

of the receptor-bound ligand and alanine scans to probe the

contribution of each residue to the binding free energy, we are

able to rationalise the high affinity of BRC2A for the RAD51

interface. Figure 8(b) reveals a different binding mode to that

observed in the crystal structure of the RAD51-BRC4 complex.

Firstly, the computational alanine scan reveals contributions to

binding from residues F03, which forms a hydrophobic contact

with the RAD51 surface, and R04, which is due to longer-ranged

electrostatic effects. Secondly, the S10-D187 hydrogen bond is

replaced by S08-D187 and the T12-D187 bond is present for a

higher proportion of the simulation than the K12-D187

interaction in, for example, RAD51-BRC4A (79% vs. 44%). This

change in binding pattern appears to introduce strain into the

RAD51-BRC2A hotspot interface. The two hydrogen bonds

formed between the backbone of residue 07 and RAD51 are well

conserved in the other seven repeats, but here are 4% and 2%
longer than at the RAD51-BRC4A interface (Figure S4). Despite a

significant variation in residue sequence in the BRC2A hotspot

region compared to the other BRC repeats, the similarity of its

binding free energy and alanine scan with those of BRC4A is

striking.

Armed with this knowledge, we can propose mechanisms for

binding of the different BRC repeats to RAD51 with varying

affinity, with implications for the regulation of HDR. BRCA2 is

mutated in a significant proportion of individuals with familial

breast and ovarian cancer [38,39]. However, of the many

sequence alterations in BRCA2 that have been found in cancer

Figure 8. MD simulations of the RAD51-BRC5A and RAD51-BRC2A complexes. Snapshots of a) the RAD51-BRC5A and b) the RAD51-BRC2A
protein-protein interfaces from MD simulations and corresponding computational alanine mutagenesis scans. Dashed lines indicate an alanine to
glycine mutation. BRC5A is noticeably less strongly bound than BRC4A in the hotspot region, particularly at residue 09 where alanine is substituted
by serine. The BRC2A alanine scan is very similar to that of BRC4A despite the differences in adopted binding modes. The arrow indicates the position
of the S08P mutation in BRC2A, which reduces contributions to binding from residues 08 and 12 in the mutated complex.
doi:10.1371/journal.pcbi.1002096.g008
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samples (Breast Cancer Information Core, http://research.nhgri.

nih.gov/bic/) [18], it remains unclear which represent silent

genetic variations and which represent pathogenic mutations. This

remains a major problem in the field. We have therefore sought to

test whether our atomistic simulations of BRCnA-RAD51

complexes might reveal information concerning the ability of

cancer-associated BRCA2 alterations to affect the interaction

between BRCA2 and RAD51. With this in mind, we have

performed a series of additional simulations on carefully selected

single residue mutations, which are designed both to test our

predictions regarding the amino acid sequences that give rise to

differential binding affinities in the BRC repeats and to examine

the effects on binding of single residue mutations associated with

cancer development.

One such potentially pathogenic mutation is the S08P

substitution in BRC2A, at a site which we have predicted to bind

directly to RAD51 in the wildtype complex. We have performed

an additional MD simulation of the BRC2A S08P mutant in

complex with RAD51 and found that, as expected, the S08P

mutation significantly reduces the binding free energy of BRC2A

by over 10 kcal/mol (Figure S5). Hence, by using atomistic

simulations, we are able to directly link pathogenic mutations in

the BRC repeats with changes in binding affinity, which may in

turn affect the integrity of HDR. Interestingly, the alanine scan

(Figure 8(b)) reveals that the source of this reduction in binding

free energy is not only the loss of direct interactions between S08

and RAD51, but also the removal of the T12-D187 hydrogen

bond. The geometry of the proline mutation does not allow intra-

hairpin backbone hydrogen bonds and the idea that destabilisation

of the hairpin and loss of co-operativity between residues spanning

the hairpin may reduce binding affinity will be investigated further

in the next section.

Hairpin stability is vital in maintaining the interactions
between RAD51 and the BRC repeats

We have already proposed that T08 in the BRC4 repeat plays

an important role in stabilising the interactions between the

b{hairpin and RAD51, namely the S10-D187 and K12-D187

hydrogen bonds, by forming side chain hydrogen bonds with the

side chain of S10 and the backbone of K12 (Figure S2(a)) and

hydrophobic contacts with the methylenes of the K12 side chain

and the D187 Ca atom (Figure S2(b)). We now investigate this

stabilisation further by examining the binding behaviour of

BRC6A, which contains the strongly hydrophobic isoleucine

residue at position 08.

Figure 9 shows a snapshot of the RAD51-BRC6A interaction

and the results of the computational alanine scan. Firstly, the

direct hydrophobic interaction between I08 and D187 of

RAD51 is increased relative to T08. Interestingly, the T08I

substitution has the additional effect of increasing the occupancy

of the S10-D187 and K12-D187 hydrogen bonds (92% and 82%
in BRC6A vs. 33% and 44% in BRC4A), which can be

rationalised by the observation of strong hydrophobic contact

between D187, I08 and K12 (Figure S2(b)). Very similar

behaviour is observed in MD simulations of the cancer-

associated T08I mutation in RAD51-BRC7A (Figure S5).

Indeed, the overall binding free energy is actually increased

relative to wildtype BRC7A.

Although, intra-hairpin hydrogen bonding interactions (T08-

S10 and T08-K12) are lost upon T08I substitution, there is no

evidence of this causing a decrease in stabilisation in the RAD51-

BRC6A or mutant RAD51-BRC7A interactions. The unexpected

relative stability of RAD51-BRC6A in MM-PBSA compared with

our FP assays may be due to limitations of the computational

model, such as the neglect of the BRC6B C-terminus and the N-

terminal domains of RAD51. However, a more likely scenario is

that the BRC6A (and mutated BRC7A) hairpin will unfold on

time scales longer than we can access in our simulations. Indeed,

the intra-hairpin hydrogen bond formed between the backbones of

residues 08 and 12 undergoes larger fluctuations in simulations of

BRC repeats containing I08 than in any repeats containing the

highly-conserved residue T08 (Figure S6), which may result in a

shorter lifetime of the b{hairpin fold and loss of binding free

energy over longer time scales [40].

We have shown above that, on the time scale of these

simulations, the T08I substitution enhances the contributions of

the hairpin residues, S10 and K12, to binding. To investigate

whether this binding contribution may be reduced in some

circumstances, we have also investigated the T08A mutation in

RAD51-BRC4A (a previously identified structural mutation

derived from an equivalent cancer-associated mutation in

BRC1). In agreement with our speculation that T08 stabilises

the S10-D187 and K12-D187 interactions, the alanine scan

(Figure 9) reveals reduced contributions to binding from both S10

and K12 upon T08A mutation (Figure S2(b)), as well as loss of

direct interactions from residue T08. Despite this clear loss of

binding around the hotspot region, MM-PBSA actually predicts

the T08A mutant to have a more favourable binding free energy

than wildtype BRC4A (Figure S5).

In order to resolve this discrepancy between MM-PBSA and

our analysis of the BRC4A binding hotspot, we have sought to also

compute the free energy of the T08A mutation in BRC4A by

thermodynamic integration (TI) [41,42]. The TI technique is one

of the most rigorous approaches for calculating free energy

changes as it actually connects the start and end states of the

mutation along a non-physical but thermodynamically well-

defined path of intermediate species (l values) in order to calculate

the free energy change associated with the transformation.

Provided the sampling is converged with respect to the number

of l values, it naturally includes all of the entropic contributions

from the accessible conformational space, going beyond the

harmonic frequencies approximation of the MM-PBSA approach

and limited only by the quality of the force field. It is therefore a

more rigorous method than the single trajectory MM-PBSA

approach, but is also considerably more computationally expen-

sive as one TI calculation will typically need about 100 times more

computation than an MM-PBSA calculation. The change in free

energy obtained by TI for the T08A mutation in RAD51-BRC4A

is z1:4 kcal=mol. This change in binding free energy is sufficient

to explain the weak competitive inhibition of the BRC4 T08A

mutant relative to wildtype BRC4 in our FP assay (Figure 1(b)) and

confirms that T08 plays an important role in RAD51-BRC4A

binding, forming direct contact with RAD51 and maintaining

hairpin stability.

Discussion

We have carried out an investigation of the interactions that

determine the stability of a protein-protein system that is essential

for normal cellular function (DNA repair) and found to be mis-

regulated in cancer. Crucially, this biologically significant protein-

protein interaction occurs between a single protein (RAD51) and,

mutually exclusively, one of several protein motifs in another

(BRCA2) that have measurable variation in affinity despite only

subtle changes in sequence. Our approach is based on a

combination of computational and experimental techniques and

seeks to establish the relative binding affinity of each of the eight

human BRC repeats to RAD51.
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It has recently been proposed that the BRC repeats interact

with RAD51 through two energetic ‘‘hotspot’’ regions, which are

in distinct modules of the repeat (termed here, BRCnA and

BRCnB) [19]. The reported differences in affinity of a complete

BRC repeat for RAD51 are likely to be explained both by the total

contributions of both modules to interactions with RAD51, as well

as their site accessibility to RAD51 in different functional settings

(e.g. monomeric, oligomeric or filamentous forms on DNA).

Although each module comprises a discrete tetrameric binding

motif with potentially divergent functional effects on RAD51, in

this study, we have decided to focus our computational simulations

on BRCnA peptides as we have more structural and biochemical

insights into the conformations explored by both the BRC repeat

and RAD51 components within the confines of this region of the

protein-protein interface.

Due to the inherent experimental difficulties with these systems,

such as the spontaneous aggregation of purified RAD51 [43], it

has not been possible to measure, so far, free energies of binding

through approaches such as isothermal titration calorimetry for all

eight BRC repeats with a fully monomeric RAD51 core catalytic

domain (in accord with the crystallised BRC4-RAD51 complex).

We have been able to fill this knowledge gap by using a wide range

of computational techniques, not only to measure relative free

energies of binding of the different repeats, but also to link these

affinities with the variations in sequence observed across the BRC

repeats. For systems such as these, for which relatively little

experimental structural information is available, we emphasise the

need for multiple computational approaches, balancing accuracy

with computational expense. Studies employing homology mod-

elling and the computation of in silico interaction energies are able

to scan a large number of residues at the BRCn-RAD51 interface

with high efficiency and have successfully predicted a number of

mutations that enhance RAD51-BRC4 binding (e.g. the L1545F

mutation in the ‘‘LFDE’’ hotspot) [37]. However, this approach

assumes that each of the BRC repeats interacts in the same

manner as BRC4 with RAD51 and neglects both relative free

energies of solvation of the ligands and longer time scale dynamics

of their interaction with RAD51 (such as the S10-D187 hydrogen

bonds that fluctuate on nanosecond time scales).

In this paper, we have approached the system with a more

rigorous (and also more computationally expensive) set of methods

that are applicable across any protein-protein interaction. In using

classical MD to sample the conformational space of the complexes

derived from the RAD51-BRC4 crystal structure, we have

assumed that the BRC repeats interact with binding modes

broadly similar to those of BRC4, but also found small but

significant differences such as the model we have proposed for the

RAD51-BRC2A interface. By post-processing the resultant MD

trajectories using MM-PBSA analysis, we have obtained a relative

order of binding that is in reasonable qualitative agreement with

our FP assays. Furthermore, the QM-PBSA method we have

developed allows us to compute binding free energies from large-

scale quantum mechanical first principles calculations, which is an

important step towards resolving the affinities of similar repeats

which typically vary by a few kcal/mol. In order to link these free

energy calculations with variations in sequence, a useful tool is

alanine scanning mutagenesis, which estimates the contributions of

each residue of the BRC repeats to the total binding energy, can

be compared directly with experiment and can be used to reveal

binding hotspots and potential sites for small molecule targeting.

The alanine scanning derived contributions confirm the hotspot

model and show that the majority of the binding energy is

concentrated in the FxxA hotspot of BRC4A and its analogues for

the other repeats. Also, based on computational alanine scanning

and significant to the processes behind the regulation of RAD51

by BRCA2, we have rationalised experimental observations that

the A09S mutation in BRC4 reduces the free energy of binding to

RAD51 [37].

The sequence variation in the BRCnA region has a significant

effect on the stability of the structural environment in which the

FxxA hotspot is embedded. The hairpin domain of the BRCnA

repeats is critical for maintaining potent interaction with RAD51

and we have found that both T08 and I08 are capable of

stabilising this fold, on the time scale of these simulations, via intra-

hairpin interactions. Stability of the hairpin can be compromised

by mutations that are associated with cancer predisposition and

may hence compromise the integrity of HDR. The computational

tools we have employed allow us the ability to study the effect of

essentially any mutation to the repeats and we have hence used

them to interpret the mechanism of crucial cancer-associated

mutations. For example, alanine scanning mutagenesis reveals

reduced inter-protein interactions between RAD51 and the

Figure 9. Snapshot of the RAD51-BRC6A interaction and corresponding computational alanine scan. Dashed lines indicate an alanine to
glycine mutation. Also shown is the alanine scan of the T08A mutation in RAD51-BRC4A. A less bulky hydrophobic group at position 08 appears to
cause reduced contributions to binding at sites 10 and 12.
doi:10.1371/journal.pcbi.1002096.g009
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hairpin of the T08A mutant form of BRC4A. In this case, MM-

PBSA fails to recover the relative binding affinities of wildtype

BRC4 and its mutant form observed in our FP assays and so we

have turned to the more accurate and computationally expensive

TI technique to confirm our observations from experiment and

computational alanine scanning. Simulations such as these are

vital since mutations do not always fall in the BRC repeat for

which there is a high-resolution structure or in a region of obvious

functional relevance in the BRC repeat (we note that the known

cancer-associated mutations are not in the F/A residues of FxxA

but they do have an effect on it). This may be true of L/F/D/E as

well (no known mutations in hotspot residues but the structural

context may be affected).

There is significant therapeutic relevance associated with our

insights into the behaviour of the b{hairpin in the context of the

natural variation found in different repeats and our understanding

of how the interaction with RAD51 can be enhanced or reduced.

We envisage that our approach can be used for the rational

computer-aided design of peptidomimetic drugs that specifically

compete for, and block, the BRC-RAD51 interaction. This could

be achieved through mimicry of the BRC-RAD51 interface or

potentially through the use of ‘‘stabilised hairpins’’, in a manner

akin to recent developments in the stabilisation of a{helical
chemical scaffolds [44]. By defining how a promiscuous interface is

able to interact with different primary sequences with varying

binding capacities, we have the potential to understand the

dynamic nature of protein-protein interactions and identify the

determinants of molecular discrimination that could be studied

with regard to biological consequences of binding mode and

mechanism of protein-protein interactions and re-evaluating

peptidomimetic insights for the rational design of small molecule

targeting of protein-protein interactions.

Methods

Fluorescence polarisation assay
FP measurements were carried out in a 384-well, low-volume,

black, flat bottom polystyrene NBS microplate (Corning 3820)

using a PHERAstar Plus plate reader (BMGLabtech). The

polarisation values are reported in millipolarisation units (mP)

and were measured at an excitation wavelength of 485 nm and an

emission wavelength of 520 nm. Following assay optimisation, full

length wild type RAD51 protein was used at a final concentration

of 135 nM and Alexa488-BRC4 peptide at 10 nM. By varying the

concentration of Alexa488-BRC4 it was shown that FP was

independent of total fluorescence (data not shown). The Z9 factor

for the assay was calculated to be 0.771 (data not shown). To assess

the relative ability of the BRC repeats to displace the Alexa488-

BRC4 in this assay, unlabelled BRC repeat peptide was added to

each well at a final concentration of 0{3 mM (serial dilution) and

measurements made in quadruplicates. To validate the method,

the experiment was repeated for selected BRC repeats using an

ELISA assay (Figure S7), as described previously by Rajendra and

Venkitaraman [19].

Peptides
All peptides, listed in Figure 3 but with full sequences as

described in Figure S8, were synthesised by the Cancer Research

UK Peptide Synthesis Facility with a C-terminal amide except

Alexa488-BRC4, synthesised by Cambridge Research Biochem-

icals Ltd with an additional N-terminal Alexa488 moiety attached

by an aminohexanoic acid spacer. Peptides were purified to 95%
by HPLC, sequence-verified by time-of-flight mass spectrometry

and diluted in water.

Computational
MD simulations were performed with the AMBER10 package

[45], using the X-ray crystal structure of the RAD51-BRC4

complex [18] (PDB: 1N0W) as the starting structure. Water

molecules were treated using the TIP3P force field and all protein

interactions were described by the AMBER ff99SB biomolecular

force field [46]. Coulomb interactions were treated using the

Particle Mesh Ewald sum, with a real space cut-off of 10 Å. The

cut-off length for Lennard-Jones interactions was also set to 10 Å.

A short energy minimisation was performed in vacuum to remove

steric contacts, water and sodium counter-ions were added and the

system was heated to 300 K with weak harmonic restraints on the

complex at constant pressure (NPT ensemble). Finally, all

restraints were removed and the system was equilibrated for

2 ns at 300 K, at the end of which the root mean square deviation

of the protein backbone atoms was converged and was less than

2 Å relative to the original crystal structure. In addition, three

12 ns production runs (with different initial velocities) were

performed to provide structures for a computational alanine scan

of the full RAD51-BRC4 complex (Figure 2(b)).

In order to study the relative binding affinities of the eight BRC

repeats to RAD51, we have removed all water molecules from the

equilibrated structure of RAD51-BRC4 and truncated the BRC4

peptide to include only the N-terminal 15 residues (P1519-K1533)

that bind to the RAD51 oligomerisation interface (RAD51-

BRC4A). RAD51 was terminated by {NHz
3 and {COO{

groups, which are more than 25 Å from the hotspot region and are,

therefore, not expected to affect binding energetics. The BRC4 half

peptides were all terminated by {NHz
3 and {CONH2 in

accordance with our experimental procedures. The choice of

terminal groups for the BRC repeats may affect the strength of

binding determined by MM-PBSA, as discussed in the results

section, but does not affect the contribution of each residue in the

hotspot region to binding, on which our discussion concerning

sequence variation is based. Starting structures of the remaining

seven BRC repeats in complex with RAD51 were obtained by

truncating at the Ca atom only residues that differ between the two

structures and using the leap module of AMBER10 to rebuild the

mutated side chains. The resulting eight complexes (plus the five

mutated ligands detailed in Figure 3 and discussed in Supporting

Text S1) were re-solvated and, as above, were heated to 300 K and

simulations were performed for times ranging from 26 ns to 53 ns

(simulations were stopped when the running average of the MM-

PBSA binding free energy did not vary by more than 1 kcal/mol in

the final 12 ns). Snapshots were saved every 6 ps for MM-PBSA

single trajectory analysis over the final 24 ns. In order to test the

reproducibility of alanine scanning mutagenesis of the hotspot

regions, we have performed an additional 24 ns simulation of the

RAD51-BRC6A complex (Figure S9).

The above procedure predicted BRC2A to be a weak binder, in

contrast to our FP measurements. It may be expected that the

RAD51-BRC4A complex is a poor starting configuration since

homology with the RAD51-BRC2A complex is relatively low. To

further explore the configuration space of BRC2A, an additional

simulation was performed starting with the RAD51-BRC2

complex (entire BRC2) and following 2 ns of simulation, the final

structure was truncated and used as input for the RAD51-BRC2A

simulation, which led to the reported dynamics and a favourable

binding free energy. To confirm that this approach was not

artificially lowering the binding free energy, a similar procedure

was applied to the RAD51-BRC3A interaction. No gain in

binding free energy was observed.

Precluding computational analyses on the oligomerisation

interface between RAD51 monomers (competed by the BRCnA
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region of the BRC repeats), no high-resolution crystal structure

exists for a human RAD51 oligomeric species either in solution or

on DNA. In order to address this problem, we performed analyses

on a modelled structure based on the interface between Rad51

protomers from the budding yeast Saccharomyces cerevisiae Rad51

orthologue [33] (PDB: 1SZP). Both the ‘‘receptor’’ and ‘‘ligand’’

components of a dimeric unit of the ScRad51 dimer were

truncated to match as closely as possible the complexes between

the humanised RAD51 receptors and the BRC repeats described

above. Namely, the Rad51 receptor N-terminus was removed,

keeping only residues E156-P395. In order to compare directly

with the BRCnA peptides, a 15 amino acid peptide (L139-R153),

which is responsible for binding at the Rad51-Rad51 interface in

yeast and contains the FVTA motif (conforming with the FxxA

motif conserved across RAD51 orthologues), was retained as the

ligand. The truncated complex was minimised in vacuum and

equilibrated in water at 300 K, as in Figure 2(a). Finally, the

equilibrated complex was removed from water and all residues of

both the receptor and ligand were mutated to the human form,

leaving a 15 amino acid ligand containing the FTTA motif

interacting with the fully ‘‘humanised’’ RAD51 receptor. The root

mean square deviation of the backbone atoms of the resulting

complex remained below 2.5 Å relative to the equilibrated yeast

structure throughout the subsequent production run, indicating

that the yeast dimer is a reasonable input model for human

RAD51.

Although yeast have no identifiable BRCA2 orthologue and

yeast filament structures have been shown to differ slightly from

those of human RAD51 by low resolution electronic microscopic

reconstruction [47,48], our method of humanisation and energy

minimisation of the yeast structure make this model suitable for

our analyses. Furthermore, we have based our model on the

closest orthologue of human RAD51 that is currently available

with a high-resolution structure, and the I345T mutation used to

aid crystallisation of the yeast Rad51 on DNA [33] is not expected

to affect the oligomerisation interface studied here.

Free energy calculations of the resulting trajectories were

performed using both MM-PBSA [24] and QM-PBSA [23]

techniques, retaining 163 residues of the RAD51 receptor (a

*2800 atom complex). Classical free energy calculations were

carried out using the MM-PBSA post-processing module in

AMBER10. In the single trajectory MM-PBSA approach, the

relative free energy of binding between a receptor and its ligands

is given by:

DDGMM~DSDEELTzDSDEvdW TzDSDGPBTzDSDGSAT

{TDSDSMMT,
ð1Þ

where the gas phase binding energy is split into electrostatic (EL)

and van der Waals (vdW) terms, and averaged over the ensemble

of snapshots extracted from the MD simulation. Infinite non-

bonded cut-offs were used for these molecular mechanics

contributions. Similarly, the binding free energy of solvation

from the Poisson-Boltzmann continuum solvation model includes

electrostatic (PB) and non-polar surface area (SA) terms. For

calculating the free energy of solvation, dielectric constants of 1.0

and 80.0 were used for the solute and solvent respectively and the

Poisson-Boltzmann equation was solved on a grid of spacing

0.5 Å. A spherical solvent probe of radius 1.4 Å and atomic radii

provided by the AMBER force field were used for the implicit

solvent molecules and solute atoms, respectively. The non-polar

contribution to the free energy was calculated via DGSA~cSA,

where SA is the solvent-accessible surface area and c is

0:0072 kcal=mol=Å
2
. Finally, DSMM is the binding entropy of

the molecules, arising from changes in the translational,

rotational and vibrational degrees of freedom of the solute

species, and was estimated by normal mode analysis, using the

NAB module of AMBER10. The trajectory was sampled every

0.75 ns and each snapshot was minimised in the generalised Born

implicit solvent model, using initially conjugate gradients and

then Newton-Raphson minimisation, until the root mean square

of the elements of the gradient vector was less than

10{10 kcal=mol=Å. The harmonic frequencies of the vibrational

modes were then calculated at 300 K for these minimised

structures using normal mode analysis.

Trajectories were sampled every 120 ps for computational

alanine scanning using the MM-PBSA post-processing module in

AMBER10. Alanine mutant structures were generated by truncating

each residue of the ligand in turn at the Cc atom and by replacing

the Cc atom with a hydrogen atom at the correct distance along

the Cc{Cb bond. Glycine scans on alanine residues found in the

interaction hotspots were performed in the same way by

truncating at the Cb atom, as is standard in alanine scanning

experiments [49]. Although glycine scanning cannot be quantita-

tively compared to alanine scanning, it allows us to compare the

contribution to binding of alanine residues on different BRC

repeats and qualitatively identifies residues involved in hotspot

mediated interactions (Figure S10).

The T08A mutation in RAD51-BRC4A was investigated using

TI in AMBER10. Gaussian quadrature with nine nodes (l) and soft-

core potentials [50] were used to smoothly mutate all side chain

atoms from threonine to alanine in three stages. At each value of l,

the system was minimised for 1000 steps and heated to 300 K over

a period of 0.15 ns with restraints on the heavy atoms of the

proteins. To avoid large temperature fluctuations in the solute, a

Langevin thermostat with a collision frequency of 2 ps{1 was

employed with a time step of 1 fs. All restraints were removed and

the systems were equilibrated for periods ranging from 2 to 6 ns.

Productions runs lasted from 2.5 to 8 ns, with the vdW

transformations requiring longer simulations to reach convergence

(Figure S11).

In the QM-PBSA approach [23], the relative free energies of

binding are replaced by:

DDGQM~DSDEDFTTzDSDEdispTzDSDG
QM
PB T

zDSDGSAT{TDSDSMMT,
ð2Þ

where instead of using a classical force field to obtain the gas phase

binding energy of each snapshot, we use a full DFT quantum

mechanical calculation. Quantum mechanical calculations of total

energies were performed with the ONETEP program [51], using the

PBE gradient corrected exchange-correlation functional [52].

Interactions between electrons and nuclei were described by

norm-conserving pseudopotentials. The ONETEP program achieves

computational cost that scales linearly with the number of atoms

by exploiting the ‘‘near-sightedness’’ of the single-particle density

matrix in non-metallic systems [53]. The density matrix is

expressed in terms of a set of non-orthogonal generalised Wannier

functions (NGWFs) [54] that are localised in real space with radii

of 4.0 Å. The NGWFs were expanded in a basis of periodic

cardinal sine (psinc) functions [55] with a kinetic energy cut-off of

830 eV. The spherical cut-off approach for Coulomb potentials

[56] was used to eliminate all interactions of the molecules with

their periodic images. Van der Waals interactions were included

by augmenting the DFT energy expression by damped London

potentials with parameters optimised specifically for the PBE
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functional [57] (DEdisp). The root mean square error in gas phase

binding energies of a benchmark set of complexes calculated using

the DFT methodology described above has been shown to be

approximately 1 kcal/mol when compared to MP2 and CCSD(T)

methods extrapolated to the complete basis set limit [57]. DG
QM
PB is

the weighted polar part of the solvation free energy from the MM

calculation:

DG
QM
PB ~DGPB|

DEDFT

DEEL

� �nPB

, ð3Þ

where nPB is determined for each complex studied by a best fit

power law curve to a plot of DGPB against DEEL [23]. QM-PBSA

is more computationally demanding than MM-PBSA and so the

trajectory was sampled every 1.5 ns. Following previous work [23],

in order to improve convergence with the number of snapshots

sampled, four additional snapshots were chosen so as to minimise

the difference between the properties of the sampled set (as

calculated by MM) and the high sample limit of the MM

distribution. The chosen properties were the mean and standard

deviation of the binding free energy and the fractional occupancies

of intermittent hydrogen bonds (D187-S10 and D187-K12 for the

repeats BRC1A, BRC4A and BRC6A and D187-T10 for RAD51-

RAD51). Using this method, total binding free energies were

converged to within 0.5 kcal/mol with respect to the number of

snapshots sampled.

MM force errors were evaluated as the magnitude of the vector

joining the MM and QM forces for each atom, jFQM{FMM j,
averaged over snapshots sampled every 1.5 ns.

Supporting Information

Figure S1 Binding modes of the LFDE and WLRE
hotspots in BRC4B and BRC5B. (top) The LFDE binding

hotspot in the geometry of the 1N0W crystal structure. The

backbone of F1546 forms a hydrogen bond with R250. (bottom) In

simulations of the RAD51-BRC5B complex lacking the RAD51

N-terminus, the BRC5B C-terminus interferes with binding and

R250 moves away from the hotspot leading to a low binding free

energy.

(PDF)

Figure S2 Non-bonded contacts between selected resi-
dues in the BRC hairpin. Block averages of non-bonded

interactions involving residue 08. a) Residue T08 in BRC4A forms

intra-hairpin hydrogen bonds with residues S10 and K12, which

are important in maintaining hairpin stability. The corresponding

interaction in RAD51 (T08–T10) is less important and fluctuates

throughout the simulation. b) T08 also forms hydrophobic

contacts with D187 of RAD51 and K12, which may help to

stabilise the D187-K12 hydrogen bond. This effect is enhanced

following the T08I substitution and reduced in T08A. Dashed

lines indicate the corresponding distances in 1N0W.

(PDF)

Figure S3 Computational alanine scans of BRC1A,
BRC3A, BRC7A and BRC8A. Computational alanine scans

of the BRC4A-like repeats. All show very similar profiles close to

the FxTA binding hotspot (residues 06–09) and binding affinity is

instead determined by the overall charge of each repeat.

(PDF)

Figure S4 Selected hydrogen bond lengths in BRCnA-
RAD51 complexes. Block averages of two backbone inter-

protein hydrogen bonds (solid and dashed lines) in simulations of

the interaction between RAD51 and the BRC repeats, compared

to the 1N0W crystal structure. The backbone hydrogen bonds are

longer in the BRC2A interaction than in the BRC4A interaction,

which may be a result of the different binding modes observed.

(PDF)

Figure S5 Relative binding free energies of five mutated
BRC repeats. a) Binding free energy of each of the single residue

cancer-associated mutations studied, relative to the corresponding

wildtype BRC repeat. As discussed in the main text, mutation in the

hotspot region of BRC2A causes a decrease in binding free energy.

The T08A mutation in BRC4A causes a net gain in binding free

energy despite the loss of binding observed in an alanine scan of the

hotspot region. b) The alanine scan of the BRC7A T08I mutation is

similar to that of the RAD51-BRC6A interaction. Alanine scans of

c) the BRC4A G11R and d) the BRC1A T08R mutations, which

are discussed in Supplementary Text S1.

(PDF)

Figure S6 Distribution of a backbone hydrogen bond in
residues containing the T08I mutation. Logarithmic

distribution of the backbone hydrogen bond formed between

residues 08 and 12, across the hairpin, in four different BRC

repeats. All BRC repeats containing T08 (e.g. BRC4A and BRC7A)

have very similar distributions, and do not fluctuate beyond 3.5 Å.

In BRC6A and mutated BRC7A, both of which contain the T08I

substitution, fluctuations are more pronounced, which may lead to

unfolding of the hairpin on very long time scales.

(PDF)

Figure S7 ELISA assay. An ELISA assay demonstrates

inhibition of the BRC4-RAD51 interaction by the T1526A

peptide. RAD51, bound to a BRC4 peptide in the solid phase,

was detected using a rabbit polyclonal antibody against RAD51.

Disruption of this interaction, using soluble BRC peptides

(BRC4, BRC4-T1526A and BRC5), caused a reduction in the

colorimetric change induced by the action of an HRP-conjugated

anti-rabbit secondary antibody on the substrate 3, 39, 5, 59-

tetramethylbenzidine.

(PDF)

Figure S8 Sequence alignment of the BRC repeats used
in FP assays. Sequence alignment of the eight human BRC

repeats and a BRC4T08A mutation used in our FP assays,

generated with ClustalW. The symbols on the bottom row denote

the degree of conservation observed in each column: ‘*’ denotes

that the residues in that column are identical in all sequences in the

alignment, ‘:’ denotes that conserved substitutions have been

observed and ‘.’ denotes that semi-conserved substitutions are

observed.

(PDF)

Figure S9 Reproducibility of alanine scanning for the
RAD51-BRC6A interaction. Two computational alanine scans

of the RAD51-BRC6A interface (grey), showing the reproducibil-

ity of the residues that contribute most to binding in long

simulations.

(PDF)

Figure S10 Glycine scan of the RAD51-BRC4A interface.
Comparison between computational glycine scan and computa-

tional alanine scan of the RAD51-BRC4A interface. The

differences between the two methods are small but may be

significant around the hotspot region.

(PDF)

Figure S11 Convergence of thermodynamic integration
results. Convergence of the free energy of the T08A mutation in
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the RAD51-BRC4A complex using thermodynamic integration in

three stages. Stage 1: Removal of partial charges from T08, stage

2: transformation of vdW parameters of T08 to A08 using soft-

core potentials, stage 3: introduction of partial charges to A08.

DDG~DG(protein){DG(water). T08 does not form any direct

hydrogen bonds with RAD51, yet the majority of the free energy

change is due to the removal of charge in stage 1.

(PDF)

Text S1 Additional MM-PBSA simulations of cancer-
associated BRC mutants.
(PDF)
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