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A B S T R A C T   

Cancer is a highly complex and heterogeneous disease. Traditional methods of cancer classification based on 
histopathology have limitations in guiding personalized prognosis and therapy. Gene expression profiling pro-
vides a powerful approach to unraveling molecular intricacies and better-stratifying cancer subtypes. In this 
study, we performed an integrative analysis of RNA sequencing data from five cancer types - BRCA, KIRC, COAD, 
LUAD, and PRAD. A machine learning workflow consisting of dataset identification, normalization, feature se-
lection, dimensionality reduction, clustering, and classification was implemented. The k-means algorithm was 
applied to categorize samples into distinct clusters based solely on gene expression patterns. Five unique clusters 
emerged from the unsupervised machine learning based analysis, significantly correlating with the known cancer 
types. BRCA aligned predominantly with one cluster, while COAD spanned three clusters. KIRC was represented 
within two main clusters. LUAD is associated strongly with a single cluster and PRAD with another cluster. This 
demonstrates the ability of machine learning approaches to unravel complex signatures within transcriptomic 
profiles that can delineate cancer subtypes. The proposed study highlights the potential of integrative analytics to 
derive meaningful biological insights from high-dimensional omics datasets. Molecular subtyping through ma-
chine learning clustering enhances our understanding of the intrinsic heterogeneities and pathways dysregulated 
in different cancers. Overall, this study exemplifies a powerful computational framework to classify gene ex-
pressions of patients having different types of cancers and guide personalized therapeutic decisions. Finally, 
Wide Neural Network demonstrates a significantly higher accuracy, achieving 99.834% on the validation set and 
an even more impressive 99.995% on the test set.   

1. Introduction 

Cancer is a highly prevalent and profoundly impactful global disease 
that affects people across the world. According to the World Health 
Organization Global Cancer Report, it is projected that the global inci-
dence of cancer will increase by a significant 57 % over the next two 
decades. This disease, characterized by pathological disruptions in the 
natural process of cellular division, is responsible for a substantial global 
mortality rate. In 2020 alone, there were more than 19.3 million newly 
diagnosed cancer cases, resulting in an estimated 10 million fatalities, as 

reported by the Global Cancer Report (Arslan et al., 2022). Cancer im-
poses a significant healthcare burden, affecting not only individuals 
diagnosed with the disease but also their families and the healthcare 
systems that serve them (Malebari et al., 2020). 

According to (Sung et al., 2021), breast, lung, colorectal, prostate, 
stomach, and liver cancers are among the most frequently diagnosed 
kinds of cancer worldwide. Breast cancer is widely recognized as the 
predominant form of cancer affecting women, ahead of lung cancer on a 
global level (Mei and Wu, 2022). On the other hand, prostate cancer 
ranks highest among cancer types in men, closely followed by colorectal 
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and lung cancer (Sanko and Kuralay, 2023). Moreover, thyroid, colo-
rectal, and cervical cancers are among the other malignancies that are 
commonly identified in females. 

The effects of cancer on general health are profound and diverse. 
Each year, cancer takes the lives of millions of people and puts a huge 
strain on individuals, families, and healthcare systems. This burden 
consists of financial pressure brought on by the high expense of cancer 
treatment and care, in addition to physical and emotional difficulties 
(Alsayari et al., 2021). In addition, the growing prevalence of cancer 
worldwide emphasizes the critical need for enhanced preventative 
measures, early detection techniques, and efficient therapeutic alter-
natives to lessen the impact of cancer (Rigel and Carucci, 2000). 

The molecular basis of cancer is a complex and multifaceted topic 
that involves various genetic, molecular, and cellular alterations that 
drive the development and progression of cancer (Gil-Hernández et al., 
2021). Hanahan and Weinberg’s key article highlighted fundamental 
characteristics of cancers that have been widely acknowledged (Gyamfi 
et al., 2022). The model they presented provided robust evidence in 
favour of the genetic basis of cancer, which suggests that the disease 
arises from the accumulation of mutations, epigenetic modifications, 
and genetic alterations in critical genes responsible for governing cell 
growth, cell division, cell metabolism, and cell replication. Based on 
their effect after mutation, these genes are classed as oncogenes or tumor 
suppressors (Martínez-Jiménez et al., 2020). Although incomplete, the 
genomic model for cancer formation has provided important insights 
into the genetic events driving cancer origin, progression, metastasis, 
response to therapy, and drug resistance development (Hanahan and 
Weinberg, 2000, Dancey et al., 2012, Hawkes, 2019). The theory is 
broadly supported by the identification of mutations in specific genes 
across a diverse array of tumor types. An extensive catalogue of the 
numerous genes mutated in malignancies has been generated since the 
advent of sequencing. Over 1000 genes have been linked to cancer and 
are classed as cancer-associated genes (250 oncogenes, 700 tumor sup-
pressors) (Wishart, 2015). 

Additionally, the variation in treatment response, disease progres-
sion, and prognosis among cancer patients is influenced by the hetero-
geneity of cancer, which is the manifestation of unique genetic, 
molecular, and cellular attributes in various types and subtypes of 
cancer. To deal with this issue over the last two decades, scientists have 
profiled the gene expression of human malignancies in detail, with data 
from thousands of studies released into the public domain. Many 
different -omics levels can be used to study cancer, but the level of 
transcriptomics has the most data so far because most of the academic 
labs started using DNA microarrays in the late 1990s. Afterward, the 
next-generation sequencing has made RNA sequencing (RNA-seq) a 
mainstream transcriptomics platform. Gene expression encompasses 

both messenger RNA (mRNA) and protein, and the correlation between 
the two may not always be robust. RNA-Seq is a relatively new and 
widely used technology for detecting novel isoforms and transcripts by 
providing more normalized and less noisy data for prediction and clas-
sification (Mehmood et al., 2022; Munawar et al., 2022). The primary 
goal of transcriptome profiling is to identify differentially expressed 
genes in the body or to discover alterations in genes at different levels 
(Wang et al., 2023). RNA sequencing allows for both identification and 
quantification in a single step (Wesolowski et al., 2013). 

RNA-Seq data from various databases are widely available and are 
being used to classify many cancers (Urda et al., 2017). However, due to 
their high dimensions, complexity, and the presence of feature value 
duplications, assessments of RNA gene expression data are highly 
complex (Danaee et al., 2017). Hence, an algorithmic approach utilizing 
machine learning (ML) and deep learning (DL) may be employed to 
execute automatic feature extraction (Mehmood et al., 2022; Alharbi 
and Vakanski, 2023). 

When analyzing RNA expression data to differentiate between 
different forms of cancer, ML approaches are essential. These techniques 
use sophisticated algorithms to find intricate relationships and patterns 
in huge datasets that human analysis could overlook (Liu et al., 2023). 
This ability is especially important in oncology because various cancer 
types can have quite varied RNA expression profiles (Xiao et al., 2023). 
Personalized medicine and focused therapy development depend on 
ML’s capacity to process and interpret these changes. Moreover, it helps 
in the early identification and categorization of malignancies, which 
may result in better patient outcomes and more efficient interventions. 
As science progresses, ML remains a vital weapon in the battle against 
several intricate forms of cancer. 

Our understanding of genetic abnormalities and diseases is changing 
because of the application of ML in the study of RNA expression data. ML 
algorithms can detect minute patterns in RNA sequences, providing in-
sights into gene regulation and expression, by effectively analyzing large 
datasets (Li et al., 2022). This capacity is essential for comprehending 
intricate biological processes and the molecular causes of numerous 
disorders. Furthermore, through the analysis of RNA expression pat-
terns, ML helps to anticipate the course of a disease and its response to 
treatment, enabling more accurate and customized therapeutic ap-
proaches. Its application is having a substantial impact on the fields of 
genomics and personalized medicine by speeding up the identification of 
novel biomarkers and improving diagnostic accuracy (Steyaert et al., 
2023). 

The continuous emerging incidences of cancer worldwide that causes 
millions of deaths annually have generated the need and demand for 
developing advanced and sophisticated tools for ML based classification 
tools that can take RNA-seq as input and identify different type of cancer 

Fig. 1. Process gene expression classification in various tumour types.  
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(Liñares Blanco et al., 2019). Although RNA-Seq data are useful for 
detecting alterations at the gene level, working with them is difficult due 
to their spatial characteristics. For classifying cancer based on gene 
expression data, thirty-four different ML techniques have been imple-
mented in this work. In addition, we analyzed RNA-Seq data from five 
distinct tumors. The process of classification is represented in Fig. 1. 

1.1. Problem statement 

In the recent research endeavor, we focused on distinguishing be-
tween various tumor types: BRCA, KIRC, COAD, LUAD, and PRAD. The 
crux of the challenge is to employ ML techniques to accurately catego-
rize these tumor types based on specific gene expressions. Thus, the 
problem at hand is to design and optimize an ML model that can pre-
cisely classify the tumor into one of the aforementioned categories, 
thereby aiding in more specific and targeted medical interventions. 

1.2. Aims and objectives 

The primary aim of this study is to enhance the precision and realism 
of cancer tumor classifications derived from RNA gene expression. 
Leveraging advanced ML techniques, we aim to surpass the efficacy of 
current classification systems. Our objective is not merely to refine the 
analytical approach, but also to provide medical practitioners with a 
more reliable tool, facilitating more informed decision-making in the 
treatment of various cancer tumors. 

The principal contribution of this study lies in its systematic evalu-
ation of various ML algorithms to determine their efficacy in classifying 
diverse cancer types. Not only does this research pinpoint the most 
optimal ML algorithm for general cancer classification, but it also pro-
vides a nuanced understanding, highlighting which specific algorithms 
excel in identifying cancer types. This granularity in algorithmic per-
formance for individual cancer categories sets our study apart and offers 
valuable insights for targeted oncological research. 

The structure of this paper is delineated as follows: Section 1 pro-
vides a comprehensive introduction to the topic. Section 2 outlines the 
methodologies employed in the research. Section 3 delves into the ex-
periments conducted and their respective results. A detailed discussion 
of these findings is presented in Section 4. The paper concludes in Sec-
tion 5, summarizing the experimental procedures, outcomes, and di-
rections for future research. 

2. Materials and methods 

2.1. System specifications 

On the RNA-seq dataset, the anticipated ML based classification al-
gorithms were evaluated for gene expression classification in various 
tumor types, including BRCA, KIRC, COAD, LUAD, and PRAD. Experi-
ments were carried out on a Lenovo Mobile Workstation equipped with a 
Processor: 12th Generation Intel Core i9, Operating System: Windows 11 
Pro 64, Memory: 128 GB DDR4, Hard Drive: 4 TB SSD, Graphics: NVIDIA 
RTX A4000. We have used MATLAB R2023a and Orange-v3.36 tools for 
the explanation and results. 

2.2. Dataset collection and preprocessing 

The RNA-seq data in question has been sourced from the UCI ML 
Repository, specifically the gene expression cancer RNA-Seq dataset. 
This dataset is a component of the RNA-Seq (HiSeq) PANCAN collection. 
It presents a random extraction of gene expressions from patients 
diagnosed with various tumor types, including - BReast CAncer (BRCA), 
KIdney Renal cell Carcinoma (KIRC), COlon ADenocarcinoma (COAD), 
LUng ADenocarcinoma (LUAD), and PRostate ADenocarcinoma (PRAD). 
Organized row-wise, each sample or instance holds RNA-Seq gene 
expression levels, as captured by the Illumina HiSeq platform. Each 

attribute within the dataset is given a placeholder name in the format 
“gene_XX”. Accompanying the dataset is a CSV manifest which offers file 
annotations and supplementary details for every file. With 801 instances 
and 16,383 features, the dataset encompasses a total of 801 samples. 

2.3. Comparison between machine learning models 

In our study, we sourced gene expression cancer RNA-Seq data from 
the UCI ML Repository, specifically a subset of the RNA-Seq (HiSeq) 
PANCAN dataset. This subset contained random extractions of gene 
expressions from patients presenting various tumor types: BRCA, KIRC, 
COAD, LUAD, and PRAD. Utilizing this dataset with 801 instances and 
16,383 features, we embarked on a comparative analysis of 34 ML 
models. Our goal was to assess their classification accuracy in dis-
tinguishing these tumor types. Ensuring rigor, we adopted a cross- 
validation scheme with five folds to mitigate the risk of overfitting. 
The dataset, represented row-wise, exhibited RNA-Seq gene expression 
levels gauged by the illumina HiSeq platform, with each attribute 
labelled with a placeholder name, such as “gene_XX”. Thirty-four models 
were tested, and the dataset’s primary characteristic was its multivariate 
nature in the realm of life sciences, suitable for classification tasks. 

2.4. Train test split 

The data was divided into two main subsets, with 75 % allocated for 
training and the remaining 25 % reserved for testing. This division was 
done randomly to eliminate any potential biases. Within the training 
data, further subdivisions were made into training and validation sets 
using the K-Fold cross-validation method, specifically with a K value of 
5. The rationale behind using K-Fold cross-validation was to optimize 
hyperparameters effectively. This method, along with others such as 
leave-one-out, leave-p-out, and Monte-Carlo sampling, facilitates the 
division of data for training the model and validating its performance. 
The core objective of such a process is to gauge the ML model’s capacity 
to generalize its learning to fresh, unseen data and to pinpoint the best 
hyperparameters. 

2.5. Hyperparameter optimization 

Hyperparameter optimization plays a pivotal role in determining the 
performance of an ML model. The choice of hyperparameters can pro-
foundly impact how efficiently an algorithm learns from the data and, 
ultimately, its predictive power. Various optimization strategies exist 
that aim to refine these parameters to enhance the performance of ML 
models. This importance is underscored when looking at different ML 
models and their respective hyperparameters. 

A diverse range of ML models, from decision trees and support vector 
machines to neural networks and ensemble methods have been adopted. 
For instance, decision trees have parameters such as the maximum 
number of splits and split criterion, while support vector machines have 
kernel functions, kernel scales, and box constraint levels. Neural net-
works introduce another layer of complexity with parameters indicating 
the number of layers, sizes of each layer, and activation functions. 
Across all these models, specific hyperparameters were chosen and fine- 
tuned to optimize their performance. 

Additionally, the study provides insights into other crucial metrics, 
like prediction speed, training time, and model size. A consistent trend 
in feature selection, based on the Analysis of Variance (ANOVA) feature 
ranking algorithm, can also be seen, with models utilizing nearly the full 
feature set available (16,345 out of 16,383 features). The choice of 
hyperparameters and their optimization, combined with the right 
feature selection, ensures that these models capture the underlying 
patterns in the data efficiently while minimizing overfitting. The 
emphasis on maintaining a high explained variance (95 % in this case) 
further solidifies the importance of selecting and tuning the correct 
hyperparameters. 
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2.6. Performance metrics 

In the training of ML models, various performance metrics were 
employed to evaluate the efficacy of the models. These metrics included 
Sensitivity (True Positive Rate), False Negative Rate, Precision (Positive 
Predictive Value), False Discovery Rate, and the Area Under the Curve 
(AUC). Each of these metrics offers a different perspective on the 
model’s ability to correctly predict and classify data points. For instance, 
while Sensitivity gauges the proportion of positives that are correctly 

identified, Precision provides insight into the ratio of correctly predicted 
positive observations to the total predicted positives. Moreover, AUC 
provides a comprehensive overview of the model’s classification ability 
across all possible thresholds. 

During the optimization of hyperparameters, performance metrics 
represented by Eq. (1), Eq. (2), Eq. (3), and Eq. (4) served as vital 
benchmarks. The exact formulas to compute them were provided. It’s 
essential to note that selecting the right metric depends on the specific 
problem and the costs associated with different types of errors. For 
instance, in scenarios where false negatives could have grave conse-
quences, one might prioritize Sensitivity over other metrics. On the 
other hand, in situations where false positives are more detrimental, 
Precision might be given more importance. 

Sensitivity : True Positive Rate = TP / (TP + FN) (1)  

Miss Rate : False Negative Rate : FNR = FN / (FN + TP) (2)  

Precision : Positive Predictive Value = TP / (TP + FP) (3)  

False Discovery Rate : FDR = FP / (FP + TP) (4) 

Here, 

TP = True Positives 
TN = True Negatives 
FP = False Positives 
FN = False Negatives 

Area Under the Curve (AUC): The AUC refers to the area under the 
Receiver Operating Characteristic (ROC) curve. It is a measure of a 
model’s ability to distinguish between the positive and negative classes 
across all possible thresholds. AUC is usually computed using numerical 
methods to assess the integral of the ROC curve. 

The comprehensive procedure, spanning from the collection of RNA 
gene expression datasets to the classification of various cancer types, is 
detailed in Algorithm 1 provided below.  

3. Experimental results 

3.1. Clustering of datasets 

In our study, we employed a clustering method to categorize datasets 
based on shared characteristics. The aim was to elucidate significant 
groupings and gain a deeper understanding of the data’s intrinsic 
structure. This approach revealed discerning RNA-seq patterns and 
classifications pertaining to various cancers. The outcomes for the RNA- 
seq clustering are depicted in Fig. 2, showcasing five distinct clusters. 
The Silhouette plot provides a visual representation of the cohesion 
within each data cluster, allowing for an intuitive evaluation of cluster 
integrity. The Silhouette score quantifies the similarity of an object to its 
respective cluster relative to others. A score nearing 1 suggests that the 
data point is proximate to the cluster’s center, while scores approaching 
0 indicate a position near the boundary of two adjacent clusters. 

The relationship between cancer types and clusters is illustrated in 
Fig. 3. The BRCA category is primarily represented by C3. COAD consists 
of three clusters: C4, C5, and C2, with C2 being the most dominant. KIRC 
predominantly has C2 and a smaller portion of cluster 4. LUAD is rep-
resented by C4, while PRAD is mainly represented by C1. Statistical 
analysis indicates a significant association between the type of cancer 
and clustering. 

Results of mean distribution of dataset among each cancer type are 
represented in Fig. 4. In a comparative analysis of various datasets 
relating to different cancer types, significant variations were observed as 
indicated by a p-value of 0.001. COAD presented the highest mean value 
of (0.57414 ± 0.0273) followed by KIRC (0.567084 ± 0.0203), PRAD 

Algorithm 1: Gene Expression-based Tumor Type Classification 
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(0.568109 ± 0.019), BRAC (0.528186 ± 0.0193), and LUAD (0.508626 
± 0.0098). Below the graphical representation, there’s a reference to an 
ANOVA statistical test, indicating a value of 325.269 and an associated 
p-value of 0.000. The sample size for the test, as denoted by “N” is 801. 
The very low p-value suggests that the differences between the cate-
gories are statistically significant. The x-axis of the graph ranges from 
0.5 to 0.65, which defines the scale for the represented data points. 

3.2. Classification accuracy during training and testing 

The experimental setup for a classification task involved pre-
processing 600 samples for training, and validation and 201 samples for 
testing. After feature selection, 38 zero-score features were removed. 
Principal Component Analysis (PCA) was then applied, resulting in 
16,340 numeric components that explained 95 % of the data variance. 
Hyperparameters for the ML models were optimized using Bayesian 
Optimization, with a limit of 500 s and 10 grid divisions. This process 

aimed to enhance data preparation and model accuracy. 
Table 1 presents classification accuracy and total cost results for 

various ML models during both the training (Validation) and testing 
(Test) phases. The models include Decision Trees, Discriminant Anal-
ysis, Efficient Logistic Regression, Naive Bayes, Support Vector Ma-
chines (SVM), Efficient Linear SVM, k-Nearest Neighbours (KNN), 
Kernel-based models, Ensembles, and Neural Networks. 

Decision Trees have repeatedly exhibited excellent levels of accuracy 
in both training and testing phases, with accuracy percentages ranging 
from 86.31 % to 99.01 %. Discriminant Analysis demonstrates impec-
cable accuracy in both training and testing phases, whereas Efficient 
Logistic Regression exhibits commendable performance with accuracy 
ratings beyond 99 %. The Naive Bayes classifier demonstrates fluctu-
ating levels of accuracy, with training accuracy reaching a maximum of 
95.83 % and testing accuracy reaching a maximum of 91.58 %. Support 
Vector Machines (SVM) often exhibit favourable performance; none-
theless, there exists variability in accuracy across different instances, 

Fig. 2. This visualization showcases five violin plots representing data distributions for five different clusters labelled C4, C3, C1, C2, and C5. Each plot is colour- 
coded for differentiation: C4 is in brown, C3 is in green, C1 is in blue, C2 is in red, and C5 is in yellow. The y-axis labelled “Silhouette” has values ranging 
approximately from 0.46 to 0.62. The width of each violin plot at various y-values indicates the density of data points, with wider sections symbolizing higher data 
density and vice versa. 

Fig. 3. The provided visualization represents a horizontal bar chart that depicts the distributions of various categories, possibly referring to medical or research 
datasets. The chart consists of seven primary labels on the left: BRCA, COAD, KIRC, LUAD, and PRAD. Next to each primary label, there are coloured horizontal bars 
with labels such as C1, C2, C3, C4, and C5, each corresponding to different lengths on the x-axis. The x-axis is numerical, starting from 0 and extending up to 100, 
marked at intervals of 10. 
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with training accuracy ranging from 80.97 % to 99.83 % and testing 
accuracy ranging from 74.26 % to 99.50 %. The accuracy of k-Nearest 
Neighbours (KNN) and Kernel-based models is found to be moderate. 
During the training phase, KNN achieves accuracy ranging from 16.86 % 
to 99.67 %, while during the testing phase, the accuracy ranges from 
17.33 % to 99.50 %. Ensembles consistently demonstrate high perfor-
mance, achieving accuracy rates that surpass 97 %. Finally, it is seen that 
Neural Networks exhibit a range of accuracy levels, ranging from 88.48 
% to 99.99 % during the training phase and from 83.66 % to 99.50 % 

during the testing phase. 
Table 2 provides a detailed summary of various classification models 

applied to a dataset, focusing on several key aspects of each model’s 
performance and characteristics. These models aim to classify cancer 
types based on gene expression cancer RNA-Seq data. 

3.3. Model performance and characteristics 

Diverse sets of classification models were employed, each described 

Fig 4. The visualization presents a graphical representation of data related to various categories, possibly referring to specific types of conditions or samples. These 
categories are labelled as “LUAD”, “BRCA”, “KIRC”, “PRAD”, and “COAD”. Each category has a central data point, denoted by a vertical line, with accompanying 
horizontal error bars that likely represent variability or uncertainty in the data (standard deviation or confidence intervals). 

Table 1 
Classification accuracy during training and testing.  

Model Type Accuracy % (Validation) Total Cost (Validation) Accuracy % (Test) Total Cost (Test) 

Fine Tree 97.496 15 99.009 2 
Medium Tree 97.496 15 99.009 2 
Course Tree 86.311 82 88.119 24 
Linear Discriminant 99.967 0 99.978 0 
Quadratic Discriminant NaN NaN NaN NaN 
Efficient Logistic Regression 99.833 1 99.505 1 
Gaussian Naïve Bayes 89.6493 62 79.208 42 
Kernel Naïve Bayes 95.8263 25 91.585 17 
Linear SVM 99.6663 2 99.505 1 
Quadratic SVM 99.8333 1 99.505 1 
Cubic SVM 99.499 3 99.505 1 
Fine Gaussian SVM 80.968 114 74.257 52 
Medium Gaussian SVM 36.394 381 40.594 120 
Coarse SVM 36.394 381 40.594 120 
Efficient Logistic Regression 99.666 2 99.505 1 
Efficient Logistic SVM 99.833 1 99.856 0 
Fine KNN 41.235 352 38.119 125 
Medium KNN 26.711 439 25.743 150 
Coarse KNN 16.861 498 17.327 167 
Cosine KNN 99.666 2 99.505 1 
Cubic KNN 27.713 433 26.238 149 
Weighted KNN 26.210 442 25.248 151 
SVM Kernel 99.833 1 99.009 2 
Logistic Regression Kernel 98.998 6 98.515 3 
Boosted Tree 36.394 381 40.595 120 
Bagged Trees 98.165 11 98.515 3 
Subspace Discriminant 99.891 0 99.900 0 
Subspace KNN 99.834 1 99.163 0 
RUSBoosted Tree 97.997 12 97.525 5 
Narrow Neural Network 97.829 13 99.836 0 
Medium Neural Network 99.812 0 99.505 1 
Wide Neural Network 99.834 1 99.995 0 
Bilayered Neural Network 93.489 39 95.049 10 
Trilayered Neural Network 88.481 69 83.664 33  
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Table 2 
Characteristics of deployed classification techniques.  

Model Type Preset Prediction 
Speed (obs/sec) 

Training 
Time (sec) 

Model Size 
(bytes) 

Hyperparameters 

Tree Fine Tree 33.27  95.05 60812.00 Max Splits Allowed: 100; Criterion for Splitting: Gini Diversity Index; Use of 
Surrogate Splits: Disabled 

Tree Medium Tree 32.14  97.43 60812.00 Max Splits Allowed: 20; Criterion for Splitting: Gini Diversity Index; Use of 
Surrogate Splits: Disabled 

Tree Coarse Tree 31.25  99.26 58556.00 Max Splits Allowed: 4; Criterion for Splitting: Gini Diversity Index; Use of 
Surrogate Splits: Disabled 

Discriminant Linear Discriminant 30.60  101.72 2267717.00 Covariance Structure: Full 
Discriminant Quadratic 

Discriminant 
NaN  11.10 NaN Covariance Structure: Full 

Efficient Logistic 
Regression 

Efficient Logistic 
Regression 

30.17  103.79 761299.00 Model: Logistic Regression; Solver Selection: Automatic; Regularization 
Parameter (Lambda): Automatic; Coefficient Convergence Threshold (Beta 
Tolerance): 0.000 

Naive Bayes Gaussian Naive Bayes 8.54  316.34 322549.00 Numeric Predictor Distribution Type: Gaussian; Categorical Predictor 
Distribution: Not Applicable 

Naive Bayes Kernel Naive Bayes 26.67  124.57 11161160.00 Numeric Predictor Distribution: Kernel; Categorical Predictor Distribution: 
Not Applicable; Selected Kernel: Gaussian; Range of Kernel: Unbounded 

Support vector 
Machine 

Linear Support Vector 
Machine 

30.50  102.55 712505.00 Kernel Choice: Linear; Kernel Scaling: Set Automatically; Box Constraint 
Level: 1; Multiclass Strategy: One-vs-One; Data Normalization: Enabled 

Support vector 
Machine 

Quadratic Support 
Vector Machine 

26.76  214.46 7664705.00 Kernel Type: Quadratic; Kernel Scaling: Auto-Determined; Box Constraint 
Setting: 1; Multiclass Classification Technique: One-vs-One; Data 
Standardization: Enabled 

Support vector 
Machine 

Cubic Support Vector 
Machine 

30.44  102.19 7738505.00 Kernel Selection: Cubic; Kernel Scaling: Set Automatically; Box Constraint 
Intensity: 1; Approach for Multiclass Classification: One-vs-One; Normalize 
Input Data: True 

Support vector 
Machine 

Fine Gaussian Support 
Vector Machine 

20.47  121.27 7354705.00 Kernel Type: Gaussian; Kernel Scaling Value: 32; Box Constraint Setting: 1; 
Multiclass Classification Technique: One-vs-One; Data Standardization: 
Enabled 

Support vector 
Machine 

Medium Gaussian 
Support Vector 
Machine 

30.96  112.14 7579057.00 Kernel Choice: Gaussian; Kernel Scale Parameter: 130; Box Constraint 
Intensity: 1; Approach for Multiclass Classification: One-vs-One; Normalize 
Input Data: True 

Support vector 
Machine 

Coarse Gaussian 
Support Vector 
Machine 

30.62  101.38 7053601.00 Kernel Type: Gaussian; Kernel Scaling Factor: 510; Box Constraint Value: 1; 
Multiclass Strategy: One-vs-One; Data Normalization: Enabled 

Efficient Logistic 
Regression 

Efficient Logistic 
Regression 

30.99  100.63 761299.00 Model: Logistic Regression; Solver Method: Automatic; Regularization 
Level (Lambda): Automatic; Coefficient Convergence Threshold (Beta 
Tolerance): 0.0001 

Efficient Linear 
SVM 

Efficient Linear 
Support Vector 
Machine 

18.99  138.38 778313.00 Model: Support Vector Machine (SVM); Solver Selection: Automatic; 
Regularization Parameter (Lambda): Automatic; Coefficient Convergence 
Tolerance (Beta Tolerance): 0.0001 

K Nearest 
Neighbour 

Fine K Nearest 
Neighbour 

31.05  100.09 1832266.00 Neighbour Count: 1; Distance Measurement: Euclidean; Distance Weighting 
Method: Uniform; Data Normalization: Enabled 

K Nearest 
Neighbour 

Medium K Nearest 
Neighbour 

30.96  100.04 1832266.00 Neighbours Quantity: 10; Distance Formula: Euclidean; Weight Assignment 
for Distance: Uniform; Data Standardization: Active 

K Nearest 
Neighbour 

Coarse K Nearest 
Neighbour 

21.66  148.39 1832266.00 Neighbour Count: 100; Distance Calculation Method: Euclidean; Distance 
Weighting: Uniform; Data Normalization: Enabled 

K Nearest 
Neighbour 

Cosine K Nearest 
Neighbour 

30.82  101.17 1832254.00 Total Neighbours: 10; Distance Measure: Cosine; Weighting Method: 
Uniform; Data Standardization: Enabled 

K Nearest 
Neighbour 

Cubic K Nearest 
Neighbour 

29.20  105.21 1832282.00 K-Neighbours: 10; Distance Measurement: Minkowski (Power: 3); 
Weighting Scheme: Uniform; Normalize Input Data: True 

K Nearest 
Neighbour 

Weighted K Nearest 
Neighbour 

25.48  120.95 1832284.00 Neighbour Count: 10; Distance Calculation: Euclidean; Weighting by 
Distance: Inverse Square; Data Normalization: Enabled 

Kernel Support Vector 
Machine Kernel 

30.62  120.72 1978295.00 Model: Support Vector Machine (SVM); Dimension Expansion: Automatic; 
Regularization Level (Lambda): Automatic; Kernel Scaling: Automatic; 
Multiclass Approach: One-vs-One; Iteration Cap: 1000 

Kernel Logistic Regression 
Kernel 

31.20  105.60 1978707.00 Classifier: Logistic Regression; Expansion Dimension Count: Automatic; 
Regularization Parameter (Lambda): Automatic; Kernel Scale: Automatic; 
Multiclass Strategy: One-vs-One; Maximum Iterations: 1000 

Ensemble Boosted Trees 31.60  99.01 56833.00 Ensemble Technique: AdaBoost; Base Classifier: Decision Tree; Maximum 
Splits per Tree: 20; Total Number of Classifiers: 30; AdaBoost Learning Rate: 
0.1; Predictor Sampling Strategy: Use All Predictors 

Ensemble Bagged Trees 11.64  277.23 1850887.00 Ensemble Strategy: Bagging; Base Estimator: Decision Tree; Max Splits 
Allowed per Tree: 598; Total Base Estimators: 30; Predictor Sampling 
Method: Use All Predictors 

Ensemble Subspace Discriminant 5.16  623.94 67742447.00 Ensemble Technique: Subspace; Base Model: Discriminant Analysis; Total 
Classifiers in Ensemble: 30; Dimensionality of Each Subspace: 8173 

Ensemble Subspace K Nearest 
Neighbour 

29.26  104.56 54715033.00 Ensemble Technique: Subspace Method; Base Classifier: K-Nearest 
Neighbours; Total Number of Base Classifiers: 30; Dimension of Each 
Subspace: 8173 

Ensemble RUSBoosted Trees 32.13  97.53 1856503.00 Ensemble Technique: RUSBoost; Base Estimator: Decision Tree; Max Splits 
per Tree: 20; Total Estimators in Ensemble: 30; Learning Rate: 0.1; Predictor 
Sampling Strategy: Sample All Features 

(continued on next page) 
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with its preset configuration, prediction speed in observations per sec-
ond, training time in seconds, and model size in bytes. Notably, Decision 
Trees of varying complexity (Fine, Medium, Coarse) exhibit differences 
in prediction speed and training time, despite having the same model 
size. Discriminant Analysis models, Linear and Quadratic, present 
varying training times, while Efficient Logistic Regression emphasizes 
its efficiency in terms of both prediction speed and model size. Naive 
Bayes models showcase the trade-off between prediction speed and 
training time, with Gaussian Naive Bayes being notably faster than 
Kernel Naive Bayes. Support Vector Machines exhibit differences in 
prediction speed, training time, and model size, with various kernel 
functions and scale settings. K Nearest Neighbours models show varying 
prediction speeds based on the number of Neighbours and distance 
metrics, and Ensemble methods demonstrate their capabilities with 
different learning techniques and model sizes. Finally, Neural Networks 
with different architectures offer insights into the impact of layer sizes 
on prediction speed and training time. 

3.4. Hyperparameters and feature selection 

Each model is characterized by a set of hyperparameters that govern 
its behavior. For example, Decision Trees specify the maximum number 
of splits and the split criterion (Gini’s diversity index) among others. 
Naive Bayes models define distribution names and kernel types, while 
SVMs allow users to specify the kernel function and box constraint level. 
Ensemble methods detail the number of learners, learning rates, and 
other ensemble-specific parameters. The optimization of model perfor-
mance heavily relies on the manipulation of hyperparameters, which are 
essential in achieving optimal outcomes. Furthermore, Table 2 demon-
strates that all models employ feature selection techniques, resulting in 
the retention of 16,345 out of a total of 16,383 characteristics. This 
observation underscores the significance of reducing features and 
managing dimensionality when dealing with gene expression data of 
high dimensionality. The feature ranking algorithm utilized in this study 
is ANOVA, and PCA is employed to get a 95 % explained variance, hence 
facilitating dimensionality reduction. 

3.5. Comparison and implications 

The influence of trade-offs between prediction speed, training time, 
and model size is apparent in the process of model selection, as certain 
models demonstrate greater accuracy in specific domains. The models 
under consideration cover a diverse array of methods, with each tech-
nique being assessed based on several factors such as prediction speed, 
training time, model size, hyperparameters, selected features, feature 
ranking algorithm, and the use of PCA. 

The models exhibit varying levels of prediction speed, as indicated 

by the metric “Prediction Speed (obs/sec)”. The range of values spans 
from a minimum of 5.16 observations per second for the “Subspace 
Discriminant” model to a maximum of 33.27 observations per second for 
the “Fine Tree” model. 

The duration of the training, expressed in seconds, is recorded in the 
column labelled “Training Time (sec)”. There is considerable variation 
in training times among different models, with the fastest model, namely 
“Quadratic Discriminant”, requiring 11.10 s for training, while the 
slowest model, “Subspace Discriminant”, takes 623.94 s to complete the 
training process. 

The size of a model, measured in bytes, indicates the amount of 
memory required to store the model. The sizes exhibited variation, 
ranging from 56,833 bytes for the “Boosted Trees” model to 67,742,447 
bytes for the “Subspace Discriminant” model. 

The column labelled “Hyperparameters” presents details regarding 
the hyperparameters employed in each model. The behavior of the al-
gorithms is governed by these hyperparameters, which can be adjusted 
to achieve optimal performance. 

The column labelled “Selected Features” denotes the quantity of 
features that have been chosen from a pool of 16,383 in total. This 
emphasizes the significance of feature selection and dimensionality 
reduction in the management of gene expression data with a high 
number of dimensions. 

The column titled “Feature Ranking Algorithm1” denotes the algo-
rithm utilized to rank features. In this scenario, the statistical technique 
known as “ANOVA” is employed to assess the variability observed across 
different groups as well as within each group, to identify significant 
factors that exert an influencing effect. 

The application of PCA is described in the “Principal Component 
Analysis” section, highlighting its usage in achieving a 95 % explained 
variance. PCA is employed to minimize dimensionality and improve 
model performance. 

In brief, the table offers significant insights into the effectiveness and 
attributes of diverse classification models when employed in the analysis 
of gene expression cancer RNA-Seq data. This information can assist 
individuals in identifying the most appropriate classification algorithm 
for their specific requirements in the field of cancer research and 
diagnosis. 

3.6. Performance metrics of machine learning models across different 
cancer types 

Results of various ML models across different cancer types, with 
performance metrics such as True Positive Rates (TPR), False Negative 
Rates (FNR), Positive Predictive Values (PPV), False Discovery Rate 
(FDR), and Area Under the Curve (AUC) for both training and testing 
datasets are presented in Table 3. 

Table 2 (continued ) 

Model Type Preset Prediction 
Speed (obs/sec) 

Training 
Time (sec) 

Model Size 
(bytes) 

Hyperparameters 

Neural Network Narrow Neural 
Network 

24.07  114.57 94544.00 Number of Dense Layers: 1; Size of Initial Dense Layer: 10; Activation 
Function: ReLU; Maximum Iterations: 1000; Regularization Parameter 
(Lambda): 0; Normalize Input Data: True 

Neural Network Medium Neural 
Network 

12.63  239.94 139304.00 Number of Dense Layers: 1; Size of Initial Dense Layer: 25; Activation 
Function: ReLU; Maximum Iterations: 1000; Regularization Parameter 
(Lambda): 0; Normalize Input Data: True 

Neural Network Wide Neural Network 23.80  150.88 363104.00 Number of Dense Layers: 1; Size of Initial Dense Layer: 100; Activation 
Function: ReLU; Maximum Iterations: 1000; Regularization Parameter 
(Lambda): 0; Normalize Input Data: True 

Neural Network Bilayered Neural 
Network 

30.48  102.71 96344.00 Number of Dense Layers: 2; Size of Initial Dense Layer: 10; Second Dense 
Layer: 10; Activation Function: ReLU; Maximum Iterations: 1000; 
Regularization Parameter (Lambda): 0; Normalize Input Data: True 

Neural Network Trilayered Neural 
Network 

24.91  117.65 98144.00 Number of Dense Layers: 3; Size of Initial Dense Layer: 10; Second Dense 
Layer: 10; Third Dense Layer: 10; Activation Function: ReLU; Maximum 
Iterations: 1000; Regularization Parameter (Lambda): 0; Normalize Input 
Data: True  
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Table 3 
Classification accuracy during training and testing.  

Model Type Cancer Type Training Results Testing Results   

TRP FNR PPV FDR AUC TRP FNR PPV FDR AUC 

Fine Tree BRCA 98.2 1.8 98.2 1.8 0.986 99.2 0.8 98.8 1.2 0.996  
COAD 95 5 98.3 1.7 0.974 94.4 5.6 100 0 0.972  
KIRC 99.1 0.9 99.1 0.9 0.995 99.3 0 100 0 0.997  
LUAD 96.3 3.7 92.9 7.1 0.974 96.9 3.1 96.9 3.1 0.981  
PRAD 97 3 99 1 0.984 100 0 100 0 1  

Medium Tree BRCA 98.2 1.8 98.2 1.8 0.986 100 0 98.8 1.2 0.996  
COAD 95 5 98.3 1.7 0.974 94.4 5.6 100 0 0.9722  
KIRC 99.1 0.9 99.1 0.9 0.995 100 0 100 0 1  
LUAD 96.3 3.7 92.9 7.1 0.974 96.9 3.1 96.9 3.1 0.981  
PRAD 97 3 99 1 0.984 100 0 100 0 1  

Course Tree BRCA 91.7 8.3 99.5 0.5 0.976 92.7 7.3 100 0 0.976  
COAD 0 100 0 0 0.888 0 100 0 0 0.902  
KIRC 99.1 0.9 99.1 0.9 0.997 100 0 100 0 1  
LUAD 98.2 1.8 57.8 42.2 0.912 100 0 59.3 40.7 0.935  
PRAD 99 1 98 2 0.996 100 0 94.6 5.4 0.994  

Linear Discriminant BRCA 100 0 100 0 1 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 100 0 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Quadratic Discriminant BRCA Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan  
COAD Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan  
KIRC Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan  
LUAD Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan  
PRAD Nan Nan Nan Nan Nan Nan Nan Nan Nan Nan  

Efficient Logistic Regression BRCA 100 0 99.5 0.5 1 100 0 98.8 1.2 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 100 0 1 96.9 3.1 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Gaussian Naïve Bayes BRCA 79.4 20.6 99.4 0.6 0.98 70.7 29.3 98.3 1.7 0.935  
COAD 96.7 3.3 100 0 0.995 88.9 11.1 100 0 0.984  
KIRC 100 0 90.2 9.8 1 97.1 2.9 87.2 12.8 0.991  
LUAD 86.2 13.8 100 0 0.988 53.1 46.9 89.5 10.5 0.956  
PRAD 100 0 67.3 32.7 0.99 100 0 50.7 49.3 1  

Kernel Naïve Bayes BRCA 95 5 97.6 2.4 0.996 93.9 6.1 95.1 4.9 0.989  
COAD 98.3 1.7 100 0 0.998 88.9 11.1 100 0 0.986  
KIRC 100 0 94.9 5.1 1 97.1 2.9 94.4 5.6 0.999  
LUAD 88.1 11.9 100 0 0.996 71.9 28.1 95.8 4.2 0.992  
PRAD 100 0 87.8 12.2 1 100 0 77.8 22.2 1  

Linear SVM BRCA 100 0 99.5 0.5 1 100 0 98.8 1.2 1  
COAD 98.3 1.7 100 0 1 94.4 5.6 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 99.1 0.9 0.999 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Quadratic SVM BRCA 100 0 99.5 0.5 1 100 0 100 0 1  
COAD 100 0 100 0 1 94.4 5.6 100 0 1  
KIRC 100 0 100 0 1 100 0 97.2 2.8 1  
LUAD 99.1 0.9 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Cubic SVM BRCA 100 0 99.1 0.9 1 100 0 100 0 1  
COAD 100 0 100 0 1 94.4 5.6 100 0 1  
KIRC 100 0 99.1 0.9 1 100 0 97.2 2.8 1  
LUAD 98.2 1.8 100 0 1 100 0 100 0 1  
PRAD 99 1 100 0 1 100 0 100 0 1  

(continued on next page) 
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Table 3 (continued ) 

Model Type Cancer Type Training Results Testing Results   

TRP FNR PPV FDR AUC TRP FNR PPV FDR AUC 

Fine Gaussian SVM BRCA 98.2 1.8 97.7 2.3 0.999 89 11 98.6 1.4 0.999  
COAD 1.7 98.3 100 0 1 0 100 0 0 1  
KIRC 100 0 50.5 49.5 0.996 97.1 2.9 40.5 59.5 0.988  
LUAD 53.2 46.8 100 0 0.999 25 75 88.9 11.1 0.995  
PRAD 100 0 100 0 1 100 0 100 0 1  

Medium Gaussian SVM BRCA 100 0 36.4 63.6 0.838 100 0 40.6 59.4 1  
COAD 0 100 0 0 0.996 0 100 0 0 0.988  
KIRC 0 100 0 0 0.834 0 100 0 0 1  
LUAD 0 100 0 0 0.71 0 100 0 0 0.844  
PRAD 0 100 0 0 1 0 100 0 0 1  

Coarse SVM BRCA 100 0 36.4 63.6 0.837 100 0 40.6 59.4 1  
COAD 0 100 0 0 0.996 0 100 0 0 0.986  
KIRC 0 100 0 0 0.834 0 100 0 0 1  
LUAD 0 100 0 0 0.713 0 100 0 0 0.845  
PRAD 0 100 0 0 1 0 100 0 0 1 

Efficient Logistic Regression BRCA 99.5 0.5 100 0 1 100 0 98.8 1.2 1  
COAD 100 0 98.4 1.6 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 99.1 0.9 0.997 96.9 3.1 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Efficient Logistic SVM BRCA 100 0 99.5 0.5 1 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Fine KNN BRCA 17 83 100 0 0.585 13.4 86.6 100 0 1  
COAD 18.3 81.7 100 0 0.592 33.3 66.7 100 0 1  
KIRC 78.4 21.6 79.8 20.2 0.869 68.6 31.4 85.7 14.3 1  
LUAD 10.1 89.9 100 0 0.551 3.1 96.9 100 0 1  
PRAD 100 0 23.4 76.6 0.669 100 0 22.4 77.6 1  

Medium KNN BRCA 0 100 0 0 0.63 1.2 98.8 100 0 0.725  
COAD 0 100 0 0 0.589 0 100 0 0 0.555  
KIRC 53.2 46.8 98.3 1.7 0.924 45.7 54.3 100 0 0.905  
LUAD 0 100 0 0 0.491 0 100 0 0 0.443  
PRAD 100 0 18.7 81.3 0.901 100 0 18.9 81.1 0.939  

Coarse KNN BRCA 0 100 0 0 0.724 0 100 0 0 0.848  
COAD 0 100 0 0 0.868 0 100 0 0 0.886  
KIRC 0 100 0 0 0.914 0 100 0 0 0.975  
LUAD 0 100 0 0 0.7538 0 100 0 0 0.833  
PRAD 100 0 16.9 83.1 0.7728 100 0 17.3 82.7 0.785 

Cosine KNN BRCA 99.5 0.5 99.5 0.5 1 98.8 1.2 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 99.1 0.9 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 97.2 2.8 1  

Cubic KNN BRCA 0.5 99.5 100 0 0.613 1.2 98.8 100 0 0.729  
COAD 0 100 0 0 0.763 0 100 0 0 0.674  
KIRC 57.7 42.3 86.5 13.5 0.897 48.6 51.4 100 0 0.864  
LUAD 0 100 0 0 0.491 100 0 0 0 0.439  
PRAD 100 0 19.3 80.7 0.918 100 0 19 81 0.945  

Weighted KNN BRCA 0 100 0 0 0.642 1.2 98.8 100 0 0.735  
COAD 0 100 0 0 0.605 0 100 0 0 0.597  
KIRC 50.5 49.5 98.2 1.8 0.935 42.9 57.1 100 0 0.919  
LUAD 0 100 0 0 0.494 0 100 0 0 0.444  
PRAD 100 0 18.6 81.4 0.924 100 0 18.8 81.2 0.962  

SVM Kernel BRCA 100 0 99.5 0.5 1 100 0 98.8 1.2 1  
COAD 100 0 100 0 1 94.4 5.6 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 0.999  
LUAD 99.1 0.9 100 0 1 96.9 3.1 96.9 3.1 1  
PRAD 100 0 100 0 1 100 0 100 0 1 

(continued on next page) 
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Table 3 (continued ) 

Model Type Cancer Type Training Results Testing Results   

TRP FNR PPV FDR AUC TRP FNR PPV FDR AUC  

Logistic Regression Kernel BRCA 100 0 97.3 2.7 1 100 0 97.6 2.4 1  
COAD 98.3 1.7 100 0 1 88.9 11.1 100 0 1  
KIRC 99.1 0.9 100 0 1 100 0 100 0 1  
LUAD 98.2 1.8 100 0 0.999 96.9 3.1 96.9 3.1 0.999  
PRAD 98 2 100 0 1 100 0 100 0 1  

Boosted Tree BRCA 100 0 36.4 63.6 0 100 0 40.6 59.4 0  
COAD 0 100 0 0 0 0 100 0 0 0  
KIRC 0 100 0 0 0 0 100 0 0 0  
LUAD 0 100 0 0 0 0 100 0 0 0  
PRAD 0 100 0 0 0 0 100 0 0 0  

Bagged Trees BRCA 99.5 0.5 97.3 2.7 0.999 100 0 98.8 1.2 0.999  
COAD 95 5 98.3 1.7 0.999 88.9 11.1 100 0 0.999  
KIRC 99.1 0.9 99.1 0.9 0.999 100 0 100 0 1  
LUAD 95.4 4.6 97.2 2.8 0.998 96.9 3.1 93.9 6.1 0.998  
PRAD 99 1 100 0 1 100 0 100 0 1  

Subspace Discriminant BRCA 100 0 100 0 1 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 100 0 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Subspace KNN BRCA 100 0 99.5 0.5 0.999 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 99.1 0.9 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

RUSBoosted Tree BRCA 98.6 1.4 98.6 1.4 0.998 98.8 1.2 98.8 1.2 0.998  
COAD 98.3 1.7 95.2 4.8 0.998 94.4 5.6 100 0 1  
KIRC 99.1 0.9 99.1 0.9 0.994 100 0 100 0 1  
LUAD 94.5 5.5 95.4 4.6 0.998 96.9 3.1 91.2 8.8 0.998  
PRAD 99 1 100 0 1 94.3 5.7 97.1 2.9 0.999  

Narrow Neural Network BRCA 98.2 1.8 96.8 3.2 0.93 100 0 100 0 1  
COAD 100 0 98.4 1.6 1 100 0 100 0 1  
KIRC 97.3 2.7 99.1 0.9 0.995 100 0 100 0 1  
LUAD 94.5 5.5 100 0 0.999 100 0 100 0 1  
PRAD 100 0 96.2 3.8 0.999 100 0 100 0 1  

Medium Neural Network BRCA 100 0 100 0 1 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 100 0 100 0 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Wide Neural Network BRCA 99.5 0.5 100 0 1 100 0 100 0 1  
COAD 100 0 100 0 1 100 0 100 0 1  
KIRC 100 0 100 0 1 100 0 100 0 1  
LUAD 100 0 99.1 0.9 1 100 0 100 0 1  
PRAD 100 0 100 0 1 100 0 100 0 1  

Bilayered Neural Network BRCA 96.3 3.7 96.8 3.2 0.989 91.5 8.5 98.7 1.3 0.985  
COAD 85 5 87.9 12.1 0.992 94.4 5.6 100 0 0.998  
KIRC 94.6 5.4 95.5 4.5 0.997 100 0 85.4 14.6 0.994  
LUAD 91.7 8.3 92.6 7.4 0.979 96.9 3.1 91.2 8.8 0.999  
PRAD 93.1 6.9 88.7 11.3 0.977 97.1 2.9 100 0 0.999  

Trilayered Neural Network BRCA 89 11 94.6 5.4 0.961 91.5 8.5 87.2 12.8 0.95  
COAD 91.7 8.3 88.7 11.3 0.987 94.4 5.6 100 0 0.998  
KIRC 88.3 11.7 83.8 16.2 0.978 94.3 5.7 80.5 19.5 0.984  
LUAD 84.4 15.6 78.6 21.4 0.948 40.6 59.4 81.2 18.8 0.778  
PRAD 90.1 9.9 92.9 7.1 0.972 88.6 11.4 73.8 26.2 0.953  
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Fig. 5a. Scatter plot.  

Fig. 5b. Scatter plot.  
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3.6.1. True positive rates (TPR) 
Results of the TRP analysis indicate that the Fine KNN model 

consistently underperforms with the lowest rates for BRCA at 17 %, 
LUAD at 10.1 %, and PRAD at 0 %. In contrast, the Linear Discriminant, 
Efficient Logistic Regression, and Efficient Logistic SVM models 
consistently achieved 100 % TPR for these cancers. Both the Fine and 
Medium Gaussian SVM models have a 0 % TPR for COAD, failing to 
identify any true positives. However, many models report a 100 % TPR 
for COAD. For KIRC, every model except the Medium KNN reaches a 
100 % TPR. 

3.6.2. False negative rates (FNR) 
For BRCA, the Fine KNN model revealed the highest FNR at 83 %. 

Conversely, the Linear Discriminant, Efficient Logistic Regression, and 
Efficient Logistic SVM models featured 0 % FNR. In the case of COAD, 
both the Fine and Medium Gaussian SVM models misclassify every true 
positive, resulting in a 100 % FNR, while the rest attain 0 % FNR. For 
KIRC, the Medium KNN model has a notable FNR of 46.8 %, with others 
at 0 %. The Fine KNN model again underperforms with LUAD and PRAD, 
having FNRs of 89.9 % and 76.6 % respectively. Other models for these 
cancers record near or exactly 0 % FNRs. 

Fig. 5c. Validation confusion matrix.  

Fig. 5d. Validation confusion matrix.  
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Fig. 5e. Validation receiver operating characteristic curve.  

Fig. 5f. Validation receiver operating characteristic curve.  
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Fig. 5g. Parallel coordinates plot.  

Fig. 5h. Parallel coordinates plot.  
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3.6.3. Positive predictive values (PPV) 
For BRCA, PPVs across all models are commendably high, ranging 

from 96.8 % to 100 %. In the COAD category, the Fine Gaussian SVM 
model is the outlier with a 0 % PPV, whereas most models indicate 100 
% PPV. In the case of KIRC, all models showcase a 0 % FDR, translating 
to impeccable PPVs. Regarding LUAD, the Fine KNN model lags with a 0 
% PPV, but other models score between 88.9 % and 100 %. Finally, for 
PRAD, the Fine KNN model reports the lowest PPV at 50.7 %, with most 
other models clinching a 100 % PPV. 

3.6.4. False discovery rate (FDR) 
In the evaluation of several models across different cancer types, the 

Fine KNN model consistently underperformed in terms of FDR. For 
BRCA, FDR was 100 %, meaning all its positive predictions were inac-
curate. Other models, however, performed better with FDRs between 0 
% and 3.2 %. Similarly, for COAD and KIRC, the Fine Gaussian SVM and 
Medium KNN models, respectively, also showed a 100 % FDR. For 
PRAD, the Fine KNN model trailed with a 77.6 % FDR, while most other 
models flawlessly stood at 0 %. 

3.6.5. Area under the curve (AUC) 
Across different cancer types, the AUC values provide insights into 

model performances. For BRCA, while most models display commend-
able results, the Fine KNN model underperforms with an AUC of 0.585. 

Fig. 5i. Test Confusion Matrix.  

Fig. 5j. Test Confusion Matrix.  
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Fig. 5k. Test rreceiver operating characteristic curve.  

Fig. 5l. Test receiver operating characteristic curve.  
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Similarly, in the COAD category, while most models displayed AUCs 
from 0.972 to 0.999, the Medium KNN model only manages an AUC of 
0.555. The KIRC evaluations show near-perfect results for all but the 
Medium KNN model, which scores an AUC of 0.905, with the rest 
achieving an AUC of 1. In LUAD, the Fine KNN model once again falls 
behind with an AUC of 0.571, yet other models score between 0.973 and 
1. Lastly, for PRAD, despite most models hovering between AUCs of 
0.964 and 1, the Fine KNN model stands out with a lower AUC of 0.546. 

4. Discussion 

Understanding the subtype of cancer is essential for classifying the 
disease, determining prognosis, and devising treatment strategies. 
Breast carcinoma can be divided into five transcriptome-based subtypes, 
each of which results in a different therapeutic response and outcome 
(Dai et al., 2015). Conventional approaches to cancer classification rely 
on the visual examination of histological staining or immunohis-
tochemically stained cancer sections by trained pathologists. Bavafaye 
Haghighi et al. (2019) report that the integration of multi-omics data 
into ML tools has improved the accuracy of patient diagnoses. 

The gene expression cancer RNA-Seq dataset from the UCI ML Re-
pository is a subset of the larger RNA-Seq (HiSeq) PANCAN collection, 
encompassing gene expression profiles from patients diagnosed with 
tumor types including BRCA, KIRC, COAD, LUAD, and PRAD. Consisting 
of 801 instances, each record is represented by 16,383 real-valued fea-
tures, corresponding to a gene’s expression level. 

BRCA refers to breast invasive carcinoma. KIRC denotes kidney renal 
clear cell carcinoma. COAD stands for colon adenocarcinoma. LUAD is 
lung adenocarcinoma, and PRAD signifies prostate adenocarcinoma. 
Each of these cancer types possesses unique molecular and genetic 
profiles, offering opportunities for in-depth biological and computa-
tional analysis. 

The k-means clustering algorithm is designed to segregate datasets 
into distinct clusters based on feature similarities. Applied to the dataset, 
k-means sought to unravel hidden patterns within the gene expressions 
of diverse cancer types, potentially unveiling specific RNA signatures 
characteristic of each type. 

Upon analyzing the gene expression data, distinctive clustering 
patterns emerged. The BRCA tumor type was predominantly clustered 
within C3, COAD spanned across C4, C5, and C2, with C2 emerging as 

dominant. KIRC data mostly settled within C2, LUAD samples with C4, 
and PRAD samples with C1. These patterns underscore a significant 
statistical correlation between the specific cancer type and its respective 
clustering. 

In the analysis of gene expression data, clusters illuminated notable 
groupings based on inherent similarities. The significant differences 
observed across the datasets indicate distinct genetic signatures. COAD 
displayed the highest mean gene expression value, followed by KIRC and 
PRAD, while BRCA and LUAD had lower values. Understanding these 
clusters aids in deciphering the molecular intricacies of each tumor and 
highlights the importance of personalized treatment approaches in 
oncology. 

The results provide insight into the performance of different ML 
models on the classification task. A combination of data preprocessing, 
dimensionality reduction through PCA, and hyperparameter optimiza-
tion using Bayesian Optimization has allowed for an evaluation of 
multiple ML models. The performance metrics include TRP, FNR, PPV, 
FDR, and AUC. 

Linear Discriminant and Efficient Logistic Regression models 
consistently perform the best across all datasets. The Quadratic 
Discriminant model does not seem to be working as indicated by NaN 
values. KNN models have the most variability, with significant differ-
ences in performance. The Linear Discriminant or Efficient Logistic 
Regression would be recommended due to their consistently high 
performance. 

The importance of model selection in life science is crucial, especially 
when dealing with specific cancer datasets like BRCA, KIRC, COAD, 
LUAD, and PRAD. Such datasets consist of 16,383 features and 801 in-
stances, and the choice of ML model significantly impacts the results. 

The oncology and cancer research domains are transforming with the 
incorporation of ML, which holds the potential for enhanced patient 
outcomes, precision medicine, and early detection. ML can assist in the 
development of prediction models, predict tumor responses to treat-
ments, and more. Its implementation must be approached cautiously, 
with ethical concerns in mind. 

A comparison of accuracy percentages for distinct model types was 
performed during this study. The Coarse KNN model yields an accuracy 
of 16.861 % on the validation set and 17.327 % on the test set, while the 
Wide Neural Network achieves 99.834 % on the validation set and 
99.995 % on the test set. The performance of the Coarse KNN and Wide 

Table 4 
Performance comparison of the anticipated classification models with benchmark studies in the identified domain.  

Reference Dataset Algorithm Dataset Type Performance: 
Accuracy 

(Hijazi and Chan, 
2013) 

Mixed-Lineage Leukemia SVM Linear Gene Gene 
Expression 

99.89 % 

(Zhang et al., 2018) Breast Cancer SVM-RFE-PSO Gene 
Expression 

81.54 % 

(Alshamlan, 2018) Binary and Multi-Class Cancer Datasets DBQ Gene 
Expression 

close to 100 % 

(Yuan et al., 2020) Tumor-Educated Platelets Evolutionary Programming-trained 
SVM 

Gene 
Expression 

95.93 % 

(Alshareef et al., 2022) Medical Databases (PubMed, CENTRAL, EMBASE, OASIS, and 
CNKI) 

DNN Gene 
Expression 

96.21 % 

(Yuan et al., 2020 Lung Adenocarcinoma and Lung Squamous Cell Cancer RF Gene 
Expression 

94.9 % 

RF Gene 
Expression 

93.3 % 

SVM Gene 
Expression 

94.7 % 

(Gao et al., 2019) Breast Cancer DeepCC Gene 
Expression 

89 % 

(Saheed, 2023) Lymphoma LR Microarray 99 % 
Proposed Method Gene Expression Cancer RNA-Seq Coarse KNN (Lowest) Gene 

Expression 
16.861 % 

Wide Neural Network (Highest) Gene 
Expression 

99.995 %  
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Neural Network models is comprehensively illustrated through various 
graphical representations, including Scatter plots, Validation Confusion 
Matrices, Validation Receiver Operating Characteristic (ROC) curves, 
Parallel Coordinates Plots, Test Confusion Matrices, and Test ROC 
curves. These visual comparisons are depicted in Figs. 5a-5l. 

Table 4 shows the performance comparison of anticipated models 
Coarse KNN, and Wide Neural Network with the existing studies. The 
Wide Neural Network achieves much better performance in terms of 
quantitative measures than the existing studies. 

5. Conclusion 

In this research, we employed an RNA sequencing (RNA-seq) based 
dataset to categorize distinct cancer types, emphasizing the importance 
of classification accuracy during both training and testing phases. Our 
findings underscore the power of RNA-seq as a tool in precision 
oncology, enabling us to differentiate cancer subtypes with notable ac-
curacy. The RNA-Seq data used in this study is part of the RNA-Seq 
(HiSeq) PANCAN dataset, it is a random extraction of gene expres-
sions of patients having different types of tumors: BRCA, KIRC, COAD, 
LUAD, and PRAD. The clustering patterns observed provide invaluable 
insights into the molecular signatures and heterogeneities inherent to 
different cancer types. Such granularity not only enhances our under-
standing of cancer biology but also lays the groundwork for tailored 
therapeutic interventions. As we move towards an era of personalized 
medicine, the emphasis on tools like RNA-seq and rigorous validation 
methodologies, such as ensuring classification accuracy, become para-
mount. This study marks a significant step forward in leveraging high- 
throughput genomics for precision oncology, and we anticipate that 
further refinements in this approach will catalyze advancements in 
cancer diagnostics, prognostics, and therapeutics. 

The consistent classification performance observed during the 
training and testing phases attests to the robustness of our analytical 
approach. As the last step, a classification task is performed through ML 
based algorithms (Decision Trees, Discriminant Analysis, Efficient Lo-
gistic Regression, Naive Bayes, Support Vector Machines (SVM), Effi-
cient Linear SVM, k-Nearest Neighbours (KNN), Kernel-based models, 
Ensembles, and Neural Networks). Finally, Wide Neural Network dem-
onstrates a significantly higher accuracy, achieving 99.834 % on the 
validation set and an even more impressive 99.995 % on the test set. 

Although ML has several benefits when it comes to RNA expression 
data analysis, one of its drawbacks is that it needs huge, high-quality 
datasets to function at its best. These datasets may contain biases or 
inaccuracies that produce false findings and jeopardize the validity of 
the prognosis and diagnosis of diseases gathered from this analysis. 

The identification of gene expressions associated with cancer types is 
a significant area of future research, where scholars might explore 
various approaches for this purpose. 
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