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Abstract

Head and neck squamous cell carcinoma (HNSCC) is largely divided into two groups based on their etiology, human
papillomavirus (HPV)-positive and –negative. Global DNA methylation changes are known to drive oncogene and tumor
suppressor expression in primary HNSCC of both types. However, significant heterogeneity in DNA methylation within the
groups results in different transcriptional profiles and clinical outcomes. We applied a meta-pathway analysis to link gene
expression changes to DNA methylation in distinguishing HNSCC subtypes. This approach isolated specific epigenetic
changes controlling expression in HPV2 HNSCC that distinguish it from HPV+ HNSCC. Analysis of genes identified
Hedgehog pathway activation specific to HPV2 HNSCC. We confirmed that GLI1, the primary Hedgehog target, showed
higher expression in tumors compared to normal samples with HPV2 tumors having the highest GLI1 expression,
suggesting that increased expression of GLI1 is a potential driver in HPV2 HNSCC. Our algorithm for integration of DNA
methylation and gene expression can infer biologically significant molecular pathways that may be exploited as
therapeutics targets. Our results suggest that therapeutics targeting the Hedgehog pathway may be of benefit in HPV2
HNSCC. Similar integrative analysis of high-throughput coupled DNA methylation and expression datasets may yield novel
insights into deregulated pathways in other cancers.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is

heterogeneous, arising in multiple sites within the head and neck

region with diverse risk factors, including tobacco and alcohol use,

and human papillomavirus (HPV) infection [1]. Nonsmoking

patients with advanced stage HPV-related (HPV-positive) tumors

have a significantly better outcome compared to HPV-negative

patients [2]. Recent clinical trials have focused on exploiting the

favorable prognosis for HPV-positive tumors by de-intensification

of therapy in order to decrease unnecessary treatment-related

toxicities, such as the use of cetuximab, a monoclonal antibody

against the epidermal growth factor receptor (EGFR) in place of

cytotoxic systemic agents for locally advanced disease. However,

advanced stage HPV-negative HNSCC continues to have a dismal

prognosis, and development of novel targeted therapies through

molecular characterization and specific targeting of deregulated

pathways would greatly benefit this group of patients.

While the concept of biologically driven therapy targeting

deregulated pathways is promising, the biologic complexities of

cancer [3] render any single data modality insufficient to identify

oncogenic drivers. Such oncogenic driver identification has often

been limited to inferring unambiguous genetic alterations with

analysis of DNA copy number variation or exon mutation.

Nonetheless, epigenetic re-activation of oncogenes through global

DNA hypomethylation and inactivation of tumor suppressor gene

pathways have been observed in HNSCC [4]. Such changes in

DNA methylation have also been found to distinguish HPV-

positive from HPV-negative HNSCC [5]. Although such global

changes have been inferred in HNSCC, their link to expression

and functional changes are currently limited. Notably, the

identification of epigenetic drivers and integration of epigenetic

data with expression data are hindered by the large volume and

heterogeneous nature of epigenetic alteration in HNSCC, and

more generally in primary solid tumors.
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To define collections of genes active in subtypes in HNSCC

(meta-pathways), we applied a cross-platform analysis to integrate

DNA methylation and expression arrays of 44 HNSCC and 25

normal samples, exploiting epigenetic re-activation of oncogenes

through global DNA hypomethylation in HNSCC [4]. The

resulting analysis identified global patterns in gene expression

driven by methylation changes in specific samples from the high-

throughput data, without encoding information about the clinical

phenotypes of samples. Nonetheless, these patterns were associated

with changes linked to tumor samples, HPV status, gender, and

tumor subsite. The group of genes associated with inferred

differences between sample groups together define ‘‘meta-

pathways’’ associated with these phenotypes, which were linked

to canonical pathways associated with human cancers. As a result,

the algorithm inferred pathways that reflect the biology of

HNSCC [1] and also identified novel coordinated DNA methyl-

ation and expression changes in GLI1 expression in a subset of

HPV-negative HNSCC tumors.

Methods

Sample Preparation and Generation of Array Data
76 surgical tumor samples from HNSCC and 40 normal

samples from uvulopalatopharyngoplasty (UPPP) were obtained

from the Head and Neck tissue bank at Johns Hopkins, acquired

under Hopkins Internal Review Board approved research

protocols. Samples were treated using standard protocols for

recovery of DNA and RNA. 44 HNSCC and 25 UPPP samples

were run on Affymetrix HuEx1.0 GeneChips and Illumina

Infinium HumanMethylation27 BeadChips. All arrays were run

according to manufacturer protocols. The other 32 surgical

tumors from HNSCC and 15 normal UPPP samples were

reserved for independent validation of findings from the discovery

cohort. Table 1 describes the clinical attributes of the samples from

both the discovery and the validation cohort.

Affymetrix HuEx1.0 GeneChips gene expression data was

normalized with RMA with the Bioconductor oligo package [6].

Gene level summaries were obtained by averaging normalized,

transcript-level expression estimates for core probes annotated to

that gene. For DNA methylation, bisulfite treated samples were

hybridized to the arrays, where a pair of probes correspond to

each CpG loci. One of these probes (the M probe) corresponds

to the reference genome sequence, and targets methylated

DNA, while the other (denoted U for unmethylated) reflects the

C-to-T conversion that bisulfite treatment induces in DNA not

protected by methylation. We converted these values to locus-

specific methylation according to b~ M
UzM

, with custom R

scripts that filtered probes with less than three CpGs. Gene level

summaries for DNA methylation represented the maximum b
value in all probes annotated to a gene. Gene annotations for

the methylation array were obtained from the Bioconductor

IlluminaHumanMethylation27 k.db package and for the expres-

sion array from ASAP [7].

All high throughput data sets are available in GEO. The data is

in superSeries GSE33232, with individual data sets available:

Affymetrix Expression Data, GEO33205 and Illumina Methyla-

tion Data, GEO33202. All R code used to generate the results is

included in the zip archive in Methods S1.

Meta-pathway Analysis of Integrated Gene Expression
and DNA Methylation Data

Meta-pathway analyses were performed using a Bayesian

Markov chain Monte Carlo (MCMC) non-negative matrix

factorization algorithm described in [8] and implemented in the

Bioconductor package CoGAPS (Coordinated Gene Activity in

Pattern Sets; [9]). This algorithm decomposes a data matrix

containing n rows (typically genes) and m columns (typically tumor

samples) into p patterns across samples related to meta-pathways

(gene-level amplitude estimates of activity). Meta-pathway activity

associated with these patterns is defined as the Z-score of the

pattern, estimated as the ratio of the mean pattern to the standard

deviation of the pattern estimated with CoGAPS (Methods S2).

These meta-pathway activity estimates are then rescaled to have a

maximum value of 1 to facilitate visualization of sample

associations across the inferred meta-pathways.

We applied the CoGAPS matrix factorization algorithm to

simultaneously infer patterns associated with meta-pathway

activity from a combined data matrix D containing gene

expression data for nE genes and log transformed b values for

DNA methylation of nM genes for the same set of m samples,

analogous to [10,11]. Uncertainties of the gene expression data

were assumed to be 10% of the signal, and for DNA methylation

derived from a normal approximation to the beta distribution

[12]. This error model enables CoGAPS to find patterns that

decay to zero for those samples, which reflects epigenetic silencing

of gene expression.

As in [13], we limited the matrix factorization to genes

annotated as transcription factor targets in TRANSFAC [14]

identified from ASAP [7]. We also included DNA methylation

values for transcription factors because of their expected modifi-

cation of TF target expression, leaving nE = 972 and nM = 892

genes. CoGAPS was run for a burn-in period of 108 iterations

(required for all MCMC algorithms) and then statistics were

computed over 5|107 iterations. Results are reported for total

number of patterns p ranging from two to five based upon inferred

pattern robustness and persistence [15,16] (Methods S2).

Associating CoGAPS Patterns with Clinical Subtypes
Because CoGAPS does not encode clinical information in the

factorization, meta-pathway activity was associated with clinical

phenotypes using linear models. P-values associating meta-

pathway activity with each phenotype, correcting for multiple-

testing, were computed using the R package multcomp [17].

These were compared to hierarchical clustering computed from

sample-by-sample Pearson correlation matrices. We cut the

resulting tree into k clusters, where k ranges from two to six. A

Fisher exact test was applied to quantify the association of each

cluster with the clinical variables (Table S1).

Gene Set Analyses
We applied gene set analyses to link the inferred metapathways

to curated pathways, established as pertinent to human cancers.

Epigenetic modulation of gene expression in the meta-pathways

was quantified by inverse variance weighting the CoGAPS

amplitudes of corresponding genes in the DNA methylation and

gene expression amplitude matrices. Enrichment of canonical

pathways from MSigDB (C2:CP; i.e., KEGG, Biocarta, and

Reactome) [18] in the epigenetically modulated meta-pathways

was computed using permutation tests [9,19].

Validation Cohort and RT-PCR Assays
RNA from the independent cohort of 32 HNSCC and 15 UPPP

was transcribed to cDNA with the High Capacity cDNA Reverse

Transcription Kit from Applied Biosystems (Carlsbad, CA),

according to manufacturer’s instructions. Subsequently, 15 ng of

template was used and quantitative RT-PCR was performed to

confirm GLI1 expression in these samples. Samples were run in

Modulation of Hedgehog in HNSCC Meta-Pathways
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triplicate in 96-well plates using the Step-One real-time PCR

machine from Applied Biosystems. Taqman assays were used for

both GLI1 and b-Actin (Hs01110773 and Hs01060665_g1,

respectively), as per manufacturers instructions (Applied Biosys-

tems, CA). Two ml of the cDNA was used per replicate. Relative

change in expression between normal and tumor were computed

with one-sided t-statistics on DCt values.

We compared GLI1 and b-catenin (CTNNB1) expression from

level 3 RNA-seq v2 data in the Cancer Genome Atlas (TCGA) for

the 28 normal, 29 HPV-positive, and 179 HPV-negative HNSCC

samples available as of August, 2012. We applied univariate t-tests

on read counts from Illumina HiSeq 2000 RNA Sequencing that

were RSEM normalized [20] and log transformed.

Table 1. Clinical attributes of samples Summary of clinical features of samples in discovery, validation, and TCGA sample cohorts.

Discovery Test TCGA

Normal HPV+ HPV2 Normal HPV+ HPV2 Normal HPV+ HPV2

(n = 25) (n = 13) (n = 31) (n = 15) (n = 11) (n = 21) (n = 50) (n = 35) (n = 244)

Gender

Female 16 2 10 10 1 7 12 4 72

Male 9 11 21 5 10 14 38 31 172

Race

Caucasian 14 12 28 9 9 18 42 33 209

African American 11 0 3 6 1 3 6 2 24

Other 0 1 0 0 1 1 2 0 11

Smoking

Yes 3 8 19 7 8 14 41 25 195

No 22 4 8 8 2 6 9 10 41

Unknown 0 1 4 0 1 1 0 0 8

Alcohol

Yes 9 9 16 0 5 12 36 29 159

No 16 2 10 15 5 8 13 5 80

Unknown 0 2 5 0 1 1 1 1 5

Tumor Site

Oral Cavity 0 10 1 10 12 160

Oropharynx 11 6 10 4 21 12

Larynx 2 11 0 6 1 71

Hypopharynx 0 4 0 1 1 1

T stage

1 4 9 1 2 3 17

2 7 5 4 4 10 63

3 1 6 1 2 2 54

4 1 10 0 0 0 0

4A 0 1 2 3 9 86

4B 0 0 0 0 0 1

X 0 0 0 0 7 20

Unknown 0 0 3 10 4 3

N stage

0 1 13 3 4 11 80

1 1 4 1 3 3 29

2 0 1 0 0 1 5

2A 4 2 0 0 1 1

2B 5 9 3 1 5 48

2C 2 2 1 3 0 29

3 0 0 0 0 0 4

X 0 0 0 0 10 44

Unknown 0 0 3 10 4 4

doi:10.1371/journal.pone.0078127.t001
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Results

Inferred Meta-pathways Distinguished HNSCC Clinical
Phenotypes

We applied CoGAPS to infer combinations of genes (meta-

pathways) with coordinated DNA methylation and gene expres-

sion changes across subsets of 44 HNSCC samples and 25 normal

samples from uvulopalatopharyngoplasty (UPPP) (clinical attri-

butes in Table 1). CoGAPS assigns each sample a magnitude for

‘‘meta-pathway activity’’ that indicates the similarity of that

sample’s DNA methylation and gene expression changes other

subsets of samples with similar genomic signatures (Methods S2).

These subsets will be analyzed as disease subtypes. Even though

CoGAPS does not encode clinical information about the samples,

the analysis isolated meta-pathway activity that significantly

distinguished normal (Figure 1(a); p = 4|10{12) and tumor

samples (Figure 1(b); p,10216). The samples from smokers tend

to have similar DNA methylation and gene expression changes to

those in the meta-pathway associated with tumor samples

(p = 0.001; Figures S1).

The meta-pathway analysis further distinguished meta-path-

ways associated with HPV status, clearly distinguishing HPV-

positive (Figure 1(c); p = 1026) and HPV-negative samples

(Figure 1(d); p = 4|10{9). Activity in the HPV-positive meta-

pathway is significantly higher than those for female samples

(p = 2|10{11) (Figure S1). We attribute this trend to similarities

arising from the predominance of male samples (11 male versus 2

female) in the HPV-positive training cohort. Moreover, the

association with HPV status remains statistically significant in a

multivariate model accounting for both HPV status and gender

(p = 9|10{6), resulting from a larger pattern value for HPV-

positive male samples than male samples that are either HPV-

negative or normal. Each of these meta-pathways was identified

from similar analyses on DNA methylation data alone, but only

the HPV-negative meta-pathway was identified in gene expression

data alone (Figure S2).

Meta-pathway Analysis More Strongly Distinguishes
Clinical Phenotypes than Hierarchical Clustering

For comparison, we clustered the samples using the gene

expression and DNA methylation data sets (Figure 2; Table S1),

each of which has been subset to the same genes that were used for

the meta-pathway analysis (Methods Section). Hierarchical

clustering on the combined gene expression and DNA methylation

dataset also significantly separated tumor and normal samples (p-

value of 0.02). Unlike the meta-pathway analysis, the clustering did

not significantly distinguish HPV status or tumor site from the

combined DNA methylation and gene expression dataset, nor was

the split observed in the dendrogram significantly related to

gender differences (Figure 2; Table S1). However, clustering

performed on expression data alone (Figure S3) did significantly

separate HPV-positive and HPV-negative samples (p-value of

0.05) suggesting the phenotypic differences between HPV+ and

HPV2 may be predominantly driven by the transcriptional

Figure 1. Meta-pathway activity identified in 44 HNSCC and 25 UPPP samples. Relative activity of meta-pathways associated with (a) UPPP,
(b) HNSCC, (c) HPV-positive, and (d) HPV-negative samples.
doi:10.1371/journal.pone.0078127.g001
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deregulation rather than epigenetic changes. On the other hand,

clustering of the DNA methylation data alone associated with

differences in smoking status (p-value of 8|10{5), race (p-value of

0.01), gender (p-value of 0.02), and tumor site (p-value of 0.02), but

not HPV-status.

Enriched Pathways Reflect Known HNSCC Biology and
Identify Novel Activity of the Hedgehog and Wnt
Pathways Specific to HPV-negative HNSCC

Enrichment analysis was applied to identify epigenetically

driven pathway modulations in each of the meta-pathways

identified in the HNSCC tumors (Table 2). This analysis identified

enrichment of gene sets generally attributed to cancers in patterns

associated with HNSCC, including KEGG cancer pathways,

ERBB, and MAPK/EGFR signaling pathway activity. The

analysis also implicated Hedgehog signaling in HNSCC.

Similar pathway enrichment was inferred for HPV-negative

tumors. Notably the Hedgehog enrichment was unique to this

class of tumors. Moreover, Wnt pathway enrichment was also

uniquely identified in HPV-negative tumors, which overlaps

considerably with the Hedgehog pathway but had not previously

been associated with HNSCC.

Several of the pathways inferred in HNSCC tumors are

significantly enriched in HPV-positive tumors, including ERBB

and MAPK/ERK signaling. Unique to HPV-positive tumors are

pathways related to immune response (Prion diseases and

Leishmania infection) and pathways related to metabolic process-

es. Moreover, further pathway analyses of gene expression data in

the HPV-positive meta-pathway identified enriched cell cycle

activity in HPV-positive tumors (Table S2).

GLI1 Overexpression Confirms Hedgehog Pathway
Activity in HNSCC Tumors

Although the analysis implicated statistically significant epige-

netic modulation of the Wnt and Hedgehog pathways in HPV-

negative HNSCC, discerning specific pathway activity in these

Figure 2. Clustering combined DNA methylation and gene expression data from 44 HNSCC samples and 25 UPPP samples. Patterns
identified with hierarchical clustering for sample-by-sample Pearson correlations for combined gene expression and log transformed DNA
methylation data, colored by whether samples are normal (black, labeled ‘‘N’’), HPV-positive (blue, labeled ‘‘+’’) and HPV-negative (red, labeled ‘‘2’’)
samples.
doi:10.1371/journal.pone.0078127.g002

Table 2. Pathway enrichment Summary of the pathways that were significantly enriched (p,0.05) in each meta-pathway
associated with HNSCC.

Pathway
Database Tumor Meta-pathway HPV-Positive Meta-pathway HPV-Negative Meta-pathway

KEGG ERBB signaling pathway, Hedgehog signaling
pathway, Adherens junction, Epithelial cell
signaling in H. pylori infection, Pathogenic
E. coli infection, Endometrial cancer,
Basal cell carcinoma

Glycolysis and gluconeogensis, Arginine and
proline metabolism, Glutathione metabolism,
ERBB signaling pathway, GNRH signaling
pathway, Focal adhesion, Adherens junction,
Prion diseases, Leishmania infection,
Endometrial cancer

ERBB signaling pathway, WNT signaling
pathway, Hedgehog signaling pathway,
Axon guidance, Adherens junction,
Pathogenic E. coli infection, Pathways in
cancer, Endometrial cancer, Prostate
cancer, Thyroid cancer, Basal cell
carcinoma

Biocarta
Pathways

P35 Alzheimers, Gleevec, Keratinocyte, PYK2,
MAPK, NGF, Cardiac EGF

Biopeptides, EGF, EPO, ERK, P53 Hypoxia,
IGF1, GSK3, Insulin, NGF, GPCR, Toll

AT1R, CDMAC, P35 Alzheimers, RACCYCD,
Gleevec, Integrin, Keratinocyte, PYK2,
MAPK, ETS, Cardiac EGF, WNT

Reactome NCAM signaling for neurite out growth, SLC
mediated transmembrane transport,
transmembrane transport of small molecules

Basigin interactions, Diabetes pathways,
Gluconeogenesis, Glucose metabolism,
Metabolism of carbohydrates, NF KB is
activated and signals survival, P75 NTR
receptor mediated signaling, P75NTR signals
via NFKB, Regulation of Insulin like growth
factor activity by insulin like growth factor
binding proteins, Toll receptor cascades

Axon guidance, Clathrin derived vesicle
budding, Membrane trafficking, Amino
acids, Toll like receptor 3 cascade

doi:10.1371/journal.pone.0078127.t002
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samples was complicated by the significant overlap in the gene sets

annotated to these pathways. Therefore, we further analyzed gene

expression of b-catenin (CTNNB1) as a standard marker of Wnt

activity [21] and GLI1 as a standard marker of Hedgehog activity

[22]. We analyzed probe-level expression values to account for

alternative transcription of GLI1, previously reported for Hedge-

hog pathway activity in basal cell carcinoma [23]. Whereas b-

catenin was significantly overexpressed in both HPV-positive

samples and HPV-negative samples relative to normal (minimum

one-sided p-values of 0.009 and 0.01, respectively), fold changes

were modest (maximum of 0.7 over normal samples). On the other

hand, GLI1 was only significantly overexpressed in HPV-negative

samples (minimum one-sided p-values of 0.04 in HPV-negative

samples and of 0.07 in HPV-positive samples) compared to the

normal tissue. Moreover, several samples had GLI1 expression

significantly above the maximum expression in normal samples

(Figure S4; maximum fold change above normal range of 2 in

HNSCC tumors). The GLI1 overexpression of at least 0.5 log fold

change above the normal occurred in six of the HPV-negative

tumors, but only one of the HPV-positive tumors. The difference

in GLI1 expression between HPV-positive and -negative failed to

reach the statistical significance. Nonetheless, it is notable that the

only HPV-positive sample with GLI1 overexpressed above levels

observed for normal samples was from a smoker with cancer in the

larynx, not typical of the clinical characteristics of HPV-positive

HNSCC (Table 1).

RT-PCR Validation of Hedgehog Pathway Activation in
HNSCC

We used QRT-PCR to measure GLI1 expression in a small,

independent cohort of 32 HNSCC (11 HPV-positive and 21 HPV-

negative) and 15 UPPP samples as a readout to validate Hedgehog

pathway activation in these samples [22]. This analysis confirmed

that GLI1 was significantly overexpressed in all HNSCC samples

compared to normal mucosa from non-cancer affected individuals,

with a mean fold changes of 3.1 above normals (one-sided p-value

of 0.001 from a t-test; Figure 3). We noted a trend for a

subpopulation of GLI1 overexpression in HNSCC that did not

reach statistical significance.

TCGA Data Confirms Specificity of GLI1 Overexpression in
HPV-negative HNSCC

To further explore the relationship of HPV status to Hedgehog

activation, we employed RNA-seq data on a larger cohort from

TCGA (The Cancer Genome Atlas; multi-institutional, curated

samples with HPV status confirmed with next generation

sequencing). TCGA data confirmed that GLI1 was significantly

overexpressed in the 244 HPV-negative samples relative to the 35

HPV-positive (p-value of 9|10{10, Figure 4(a)), suggesting our

32-sample cohort may have been too small to detect the difference

between HPV-positive and -negative samples using only one gene.

Moreover, 18% of genes in the KEGG Hedgehog pathway are

significantly overexpressed and 11% significantly hypomethylated,

including GLI1, in TCGA (Table S3). Consistent with [24], the

Wnt pathway marker CTNNB1 is significantly underexpressed in

the 279 HNSCC as compared to the 37 matched normal samples

(p-value of 10{4) in TCGA. Differences between HPV-positive

and HPV-negative samples do not reach statistical significance (p-

value of 0.4) (Figure 4(b)). We note the lack of differential

expression of CTNNB1 in TCGA is in contrast to findings in our

discovery cohort. Such differences may arise from technological

differences in gene expression measurements between RNA-seq

and arrays or site-specific expression changes, arising from

comparison to matched normal samples in TCGA and to

unmatched UPPP samples in the discovery cohort. Expression of

GLI1 and CTNNB1 do not associate with gender, in spite of the

substantial gender imbalance in HPV-positive HNSCC samples

from TCGA (Figure S5).

Discussion

Although not encoded in the analysis, meta-pathways identified

from integrated DNA methylation and gene expression distin-

guished normal samples, HNSCC tumor samples, gender, HPV

status, and tumor site, which were not distinguished robustly with

hierarchical clustering. This improvement is similar to that

observed with other non-negative matrix factorization (NMF)

algorithms over clustering for subtype identification [25]. We note

that this represents the first application of Bayesian non-negative

matrix factorization algorithms including Bayesian Decomposition

[26] or CoGAPS [9] to such subtype identification. We anticipate

that these Bayesian techniques yield similar improvements in the

biological relevance of meta-pathways associated with these

subtypes that we have previously documented in pattern

identification [27,28], consistent with the improvements over

hierarchical clustering observed in this study.

The subtypes identified on the integrated CoGAPS analysis

were not identified in similar analyses on gene expression data

alone. Moreover, this analysis enhanced the anti-correlation

between gene expression and DNA methylation. Therefore,

changes in DNA methylation drive the meta-pattern analysis

while inducing transcriptional changes that distinguish clinical

subtypes of HNSCC. We anticipate that these improvements arise

by explicitly encoding epigenetic silencing of gene expression by

use of the log transform. Nonetheless, future studies should

compare the effect of alternative mappings of DNA methylation

such as the logistic transform [12], on the inference of epigenetic

silencing and subtype identification.

We note that the inferred meta-pathways may be confounded

by differences in subsites of each of these HNSCC subtypes

because of the tissue-specific nature of DNA methylation [29]. The

imbalance in subtypes of HNSCC may further confound inferred

differences, including the notable overrepresentation of Caucasian

males in HPV-positive HNSCC reflected in our sample cohort

and in TCGA samples and also associated with the HPV-specific

meta-pathways. Both limitations would be best addressed by future

prospective studies that employ comprehensive genomic profiling

of balanced patient populations. These studies should also

incorporate normal tissues from diverse sites throughout the head

and neck region because the substantial field cancerization effect

in HNSCC [30] limits the utility of matched normal samples in

TCGA.

Figure 3. GLI1 expression in the validation cohort. (a) GLI1
expression in validation cohort measured with RT-PCR. DDCt values are
computed relative to the mean DCt count of for normal samples.
doi:10.1371/journal.pone.0078127.g003
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In spite of the limitations in study population, the association of

the meta-pathways with pathways that have established links to

HNSCC supported validity of the inferred meta-pathways. For

example, the algorithm identified enrichment signaling down-

stream of EGFR ubiquitously in HNSCC, consistent with

pervasive overexpression of EGFR previously documented in

HNSCC [31]. Moreover, EGFR overexperession has been

associated with poor prognosis in HNSCC [32] and is the target

of the antibody cetuximab, which has been FDA approved for the

management of HNSCC.

The meta-pathway for HPV-positive tumors is also associated

with immune responses to viral infection and upregulation of cell

cycle events, which has been observed along with p16 (CDKN2A)

upregulation in HPV-positive tumors due to Rb deregulation

caused by HPV E7 oncoprotein [33,34]. Moreover, the upregula-

tion of metabolic processes including notably pathways associated

with the arginine and proline metabolism is consistent with recent

findings that HPV-positive HNSCC has a high expression level of

argininosuccinate synthetase suggesting that arginine metabolism

is important in HPV+ tumors [34]. This analysis notably

associated Hedgehog activity specific to HPV-negative HNSCC,

confirmed as associated to HPV-status rather than gender in

independent samples from TCGA. Exon-specific differences

observed for GLI1 in the discovery cohort were consistent with

previously reported alternative transcription of this gene in basal

cell carcinoma [23] and the lack of detection in previous studies

performed on previous HNSCC array studies [35–39].

The meta-pathway CoGAPS analysis also inferred pathways in

subsets of patients previously not described in HNSCC, including

pathways associated with subsets of HPV-negative tumors. HPV-

negative tumors carry a significantly worse prognosis than HPV-

positive tumors [2], and therapy for advanced HNSCC is

currently at the limits of toxicity. Recent clinical trials have been

developed to provide means of de-escalation for HPV-positive

tumors. However, there have been a paucity of effective agents for

HPV negative tumors, and developing clinical trials have recently

focused on the addition of surgical intensification of therapy in

combination with cytotoxic chemotherapy and radiation. Notably,

the analysis identified coordinated methylation and expression

changes in the Hedgehog signaling pathway in HPV-negative

tumors, which we confirmed by differential expression of the

Hedgehog target GLI1 [22]. The nature of GLI1 overexpression

was consistent with patterns identified with outlier based statistics

previously used to identify sample-specific oncogenes in HNSCC

[40] and pathway level changes [41]. Promisingly, RT-PCR

confirmed the increase of GLI1 expression levels in HNSCC

tumors over normals and RNA-seq from TCGA confirmed higher

GLI1 expression in HPV-negative samples. The increased

expression of GLI1 in HNSCC tumors in this study is consistent

with observed GLI1 overexpression in HNSCC [24,42,43] and our

previously published data showing that high expression of nuclear

GLI1 is associated with poor survival and distant metastasis [24].

GLI1 is a transcription factor and a downstream target of the

canonical Hedgehog signaling pathway. After hedgehog ligand

binding, the transmembrane receptor Patched de-represses

Smoothened, which in turn activates transcription of target genes

such as GLI1. However, GLI1 can also be activated by

Smoothened-independent, non-canonical mechanisms [44,45].

Recently, the first-in-class Smoothened antagonist, vismodagib

(GDC0449), gained FDA approval for the treatment of basal cell

carcinoma. Basal cell carcinomas are largely characterized by

mutations in the Hedgehog signaling axis that render the pathway

constitutively active, resulting in remarkable single-agent efficacy

demonstrated with vismodagib [46]. Robust single-agent efficacies

have also been seen in medulloblastomas, where nearly one-third

of cases are associated with constitutive activation of the Gli1

transcription factor through similar oncogenic mutations in the

Hedgehog pathway [47]. The mechanism and role of Gli1

activation in HNSCC is probably distinct from these two examples

because no such mutations have been identified [48,49]. Such

identification of pathway activation in specific subsets of HPV-

negative HNSCC patients may allow for selection of specific

targeted agents and aid in clinical trial design. However, further

mechanistic studies are required to delineate canonical and non-

canonical activation of Hedgehog reflected by GLI1 expression in

HPV-negative HNSCC prior to implementing such future clinical

trials.

Supporting Information

Figure S1 Meta-pathway activity identified in 44 HNSCC
and 25 UPPP samples. Relative activity of meta-pathways

associated with (a) UPPP, (b) HNSCC, (c) HPV-positive, and (d)

HPV-negative samples. Symbols represent subsite of each sample,

shading smoking status, and color gender according to the figure

legend. The p-values on each figure represent one-sided, multivar-

iate p-values comparing differences in the indicated groups.

(PDF)

Figure 4. GLI1 and CTNNB1 expression in TCGA. Boxplots of (a) GLI1 and (b) CTNNB1 expression in TCGA RNA-seq data.
doi:10.1371/journal.pone.0078127.g004
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Figure S2 Dependence of meta-pathways on DNA
methylation or gene expression. Correlation of the meta-

pathway activity for each of the patterns linked to UPPP

(Figure 1(a)), HNSCC (Figure 1(b)), HPV-positive (Figure 1(c)),

and HPV-negative (Figure 1(d)) samples to patterns found in DNA

methylation data alone (blue) or gene expression data alone

(yellow).

(PDF)

Figure S3 Clustering DNA methylation or gene expres-
sion data. Hierarchical clustering on sample-by-sample Pearson

correlations computed for (a) gene expression data and (b) log

transformed DNA methylation data. Samples are colored black if

normal, blue if HPV-positive, and red if HPV-negative.

(PDF)

Figure S4 GLI1 and CTNNB1 expression in discovery
cohort. GLI1 expression in (a) HPV-negative samples and (b)

HPV-positive samples across GLI1 probes relative to normals

(expression bounded by black lines) for each core probe measured

with the HuEx array. (c) Genomic location of GLI1 exons

measured and (d) waterfall plots of average GLI1 expression in

each exon relative to the mean expression values for normal

samples. (e)-(h) are as for (a)-(d) for CTNNB1.

(PDF)

Figure S5 GLI1 and CTNNB1 expression in TCGA by
gender. Scatter plot of expression values for (a) GLI1 and (b)

CTNNB1 from TCGA RNA-sequencing data, divided by gender,

tumor and HPV-status of samples.

(PDF)

Table S1 Clinical attributes of clusters. Table associating

clinical variables with clusters identified from DNA methylation

and/or gene expression data.

(XLSX)

Table S2 Meta-pathway set enrichment for gene ex-
pression data. Table containing gene set statistics computing

from the meta-pathway values for gene expression data.

(CSV)

Table S3 Differential expression and methylation of
KEGG Hedghog pathway members in TCGA.
(XLSX)

Methods S1 R code. ZIP archive containing R code used to for

the analysis in this manuscript. The README file in the archive

describes each of the files contained therein. To fully reproduce

the results, the scripts should be run in the following order (1)

Preprocessing.R, (2) RunMEGAPSReplicateThreshold.R, and (3)

Postprocessing.R. Note that the CoGAPS analysis and associated

gene set statistics are stochastic algorithms, so results may differ

slightly from values reported here though qualitative results will

remain unchanged.

(ZIP)

Methods S2 Supplemental Methods.
(PDF)
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