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Abstract

Background: CD274 (programmed death ligand 1, also known as B7H1) is expressed in both solid tumors and
hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by
inhibiting T cell function via its receptor, programmed death 1 (PD-1). Increasing evidence indicates that functional
monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of
CD274 in leukemia-initiating cells (LICs) remains largely unknown.

Methods: We established an MLL-AF9-induced acute myeloid leukemia (AML) model with wild-type (WT) and
CD274-null mice to elucidate the role of CD274 in the cell fates of LICs, including self-renewal, differentiation, cell
cycle, and apoptosis. RNA sequencing was performed to reveal the potential downstream targets, the results of
which were further validated both in vitro and in vivo.

Results: In silico analysis indicated that CD274 level was inversely correlated with the overall survival of AML
patients. In Mac-1*/c-Kit* mouse LICs, CD274 was expressed at a much higher level than in the normal
hematopoietic stem cells (HSCs). The survival of the mice with CD274-null leukemia cells was dramatically extended
during the serial transplantation compared with that of their WT counterparts. CD274 deletion led to a significant
decrease in LIC frequency and arrest in the G1 phase of the cell cycle. Interestingly, CD274 is not required for the
maintenance of HSC pool as shown in our previous study. Mechanistically, we demonstrated that the levels of both
phospho-JNK and Cyclin D2 were strikingly downregulated in CD274-null LICs. The overexpression of Cyclin D2 fully
rescued the loss of function of CD274. Moreover, CD274 was directly associated with JNK and enhanced the
downstream signaling to increase the Cyclin D2 level, promoting leukemia development.

Conclusions: The surface immune molecule CD274 plays a critical role in the proliferation of LICs. The CD274/JNK/
Cyclin D2 pathway promotes the cell cycle entry of LICs, which may serve as a novel therapeutic target for the
treatment of leukemia.
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Background

Acute myeloid leukemia (AML) is the most common
type of leukemia in adults, which is considered a clonal
disease with diverse biologic and cytogenetic features
[1]. In the past decades, the overall survival of AML
patients has been improved due to the emergence of
many newly developed regimens, including chemother-
apy, radiotherapy, immune therapy, and allogeneic
hematopoietic stem-cell transplantation (allo-HSCT) [2].
However, a large number of AML patients still suffer
from the relapse of these disorders even after receiving
the combination of all different treatments [3-5]. Cur-
rently, leukemia-initiating cells (LICs) are considered to
be responsible for the initiation, development, and re-
lapse of all types of leukemia. Therefore, identification of
ideal molecules to target LICs may be an efficient way
for the eradication of leukemia. Our previous study indi-
cated that an inhibitory immune receptor, leukocyte
immunoglobulin-like receptor subfamily B member 2
(LILRB2), is critical for LIC maintenance and leukemia
development [6, 7]. Interestingly, similar surface immune
ligands and receptors, such as CD47, interleukin-3 re-
ceptor, and CD97, have also been revealed to play critical
roles in the stemness maintenance or immune escape in
both solid caners and malignant hematopoietic diseases
[8-11]. Targeting such surface immune molecules with
either monoclonal antibodies or engineered chimeric
antigen receptor T cells (CAR T) may be the most
promising and powerful strategy to eliminate LICs and
other types of cancer stem cells [12—14].

CD274, one of the most important members of B7/
CD28 family, is expressed on activated T cells, B cells,
and NKT cells [15, 16]. CD274 binds PD-1 to deliver the
potent inhibitory signaling that inactivates T cells or
other immune cells, which is essential to the mainten-
ance of homeostasis of the immune systems. Recently,
innate and adaptive immune resistance induced by
CD274 has been reported in many types of cancers. For
instance, the loss of function of PTEN or activation of
PI3K/AKT/mTOR signaling can enhance the expression
of CD274 in tumor cells, which further leads to the escape
from the surveillance by the immune system [17, 18].

Interestingly, several studies also indicated that CD274
may serve as a “receptor” to deliver “reverse” signaling
[19-21]. For example, Dong et al. discovered that total
PD-L1 and membrane PD-L1 protein were overex-
pressed in some DLBCL cells, and the AKT/mTOR
pathway was activated by PD-1/Fc stimulation, which in-
dicated that PD-1/PD-L1 directly activated the intracel-
lular oncogenic signaling pathway in tumor cells [21].
The intracellular domain of CD274 contains 30 amino
acids and may serve as a potential region to recruit other
co-factors to initiate downstream signaling [22]. On the
other hand, CD274 has been detected both in the
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cytoplasm and nucleus [23]. These results indicate
CD274 may have distinct functions in these tumors
other than serving as an inhibitor of immune cells.
Nevertheless, how CD274 exerts this effect on LICs re-
mains largely unknown.

Herein, we revealed that CD274 was highly expressed
in AML cells and inversely correlated with the overall
survival of AML patients. We further unraveled the
function of CD274 in the regulation of LIC proliferation
using a murine AML model. Intriguingly, CD274-null
LICs manifested a severe defect in proliferation, which
might have been caused by the cell cycle arrest in G1
phase both in vitro and in vivo. CD274 deletion almost
completely abrogated the leukemogenesis ability of LICs
and dramatically extended the survival of leukemic mice.
CD274 collaborates with JNK signaling in the upregula-
tion of Cyclin D2 to sustain the LIC pool and promote
AML development.

Methods

Mice

C57BL/6 mice were purchased from the Shanghai SLAC
Laboratory Animal Co. Ltd., China. The CD274 knock-
out mice with a C57BL/6 background were kindly pro-
vided by Dr. Lieping Chen from the Johns Hopkins
University School of Medicine (Baltimore, MA, USA).
All animals were housed under specific pathogen-free
conditions at the Laboratory Animal Care-approved facil-
ity of Shanghai Jiao Tong University School of Medicine,
China. All animal experimental procedures were approved
according to the Guide for Central Animal Care and Use
of the Committee of Shanghai Jiao Tong University
School of Medicine.

Retroviral infection and transplantation
MLL-AF9-expressing retroviruses were produced in
293T cells by co-transfection with the MSCV-MLL-AF9-
IRES-YFP encoding plasmid and the pCL-ECO pack-
aging plasmid. Then, Lin~ fetal liver cells were isolated
and infected with MLL-AF9 retroviruses with 4 pg/mL
polybrene and centrifuged at 1500 rpm for 2 h at 37 °C
as previously described [24]. Cells were cultured over-
night in StemSpan SFEM medium (StemSpan, USA)
with 20 ng/mL SCEF, 20 ng/mL IL-3, and 10 ng/mL IL-6,
followed by another round of spin infection. Next, in-
fected cells (2.5 x 10°) were transplanted into lethally irra-
diated (10 Gy) C57BL/6 mice by retro-orbital injection.
Further, indicated numbers (0.2-0.4 x 10%) of leukemia
cells from the primary leukemic mice were injected into
the recipient mice for secondary transplantation.

Flow cytometry analysis
Analyses of leukemic lineages and apoptosis were per-
formed as described earlier [6]. Briefly, for analysis of



Fang et al. Journal of Hematology & Oncology (2016) 9:124

lineages and LICs, bone marrow cells were stained with
anti-mouse Mac-1-PE, anti-mouse Gr-1-APC, anti-
mouse CD3e-PE, anti-mouse B220-PE, and anti-mouse
¢-Kit-APC monoclonal antibodies (eBioscience, USA).
For detection of CD274 expression in Mac-1"/c-Kit"
LICs of murine AML model, anti-mouse CD274-biotin
and streptavidin-PE (secondary antibody) were used
(eBioscience, USA). Cell cycle status was determined in
purified Mac-1"/c-Kit" LICs with Pyronin Y and
Hoeschst 33342 staining (Sigma, USA) as previously de-
scribed [25]. Apoptosis analysis was conducted in puri-
fied Mac-1"/c-Kit™ LICs with anti-Annexin V-PE and 7-
AAD staining (BD Pharmingen, USA) according to the
manufacturer’s instructions.

Quantitative RT-PCR

Mac-1"/c-Kit" LICs of the murine AML model were
sorted by flow cytometry for further RNA extraction.
First-strand cDNA was transcribed using Reverse
Transcriptase XL (AMV) (Takara, Japan) and allowed
to react with the following primers (10 pM/L) con-
taining 2 x ABI SYBR® Green PCR master mix to
measure the expression of the studied genes in AML
LICs. Details of the primer sequences used are shown
in Additional file 1: Table S1.

Western blotting and co-immunoprecipitation

A combination of plasmids of PLVX-mouse CD274-
Strep II, XZ201-mouse Cyclin D2-HA, and CMV5.1-
JNK-Fc were transfected into 293T cells followed by a
co-immunoprecipitation (co-IP) process to further analyze
their interaction. Alternatively, the CD274 or JNK overex-
pressed plasmids were transfected into 293T cells to ob-
serve the expression of Cyclin D2, p-JNK, and JNK.
Whole cell lysates and co-IP samples were electropho-
resed on 10% sodium dodecyl sulfate polyacrylamide gels
and transferred onto polyvinylidene difluoride membranes
(Millipore, USA). After electrophoresis and membrane
transfer, the immunoblots were probed with the following
primary antibodies: anti-mouse Strep II (Genescript,
USA), anti-mouse HA (CST, USA), anti-phospho JNK
(Abways, China), anti-]NK (Abways, China), anti-Cyclin
D2 (Boster, China), and anti-B-actin (Calbiochem, USA).

Library construction and RNA sequencing

Total RNA from 10 mg tissue was isolated with deplet-
ing genomic DNA for RNA-seq library construction fol-
lowing the standard TruSeq RNA sample preparation v2
protocol (Illumina). The sequencing libraries were then
sequenced using the Illumina HiSeq2500 platform. From
the reads averaging 50 bp in length, we generated
16.5+ 1.3 million reads per sample. Further, we aligned
the reads to the mouse reference genome (GRCm38,
Ensembl build) using Tophat (version 2.0.12), yielding an
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average mapping rate of 90.3 +£2.3%. Gene expression
levels, which were represented as fragments per kilobase
per million mapped reads (FPKM), were obtained for
27,180 genes/transcripts. The RNA-sequencing data were
deposited to the Gene Expression Omnibus (GEO) reposi-
tory under number GSE85193.

Function analysis

Gene ontology enrichment analysis was carried out by the
Bioconductor package “topGO,” and KEGG pathway en-
richment analysis was conducted by the Bioconductor
package “GSEABase” (http://www.r-project.org/; http://
www.bioconductor.org/packages/release/bioc/html/GSEA-
Base.html). Terms were accepted if they were hit more than
one gene, and Fisher’s exact test P value was <0.05.

Colony-forming unit and cell proliferation assays

The indicated number of wild-type (WT) and CD274-null
leukemia cells were sorted and plated in methylcellulose
(M3534, Stem Cell Technologies) according to the manu-
facturer’s protocols. The numbers of colonies were calcu-
lated after 7-10-day culture. In some cases, the lentiviral
vector pLKO.1-GFP was used to express shRNAs designed
to target CD274 (sequences listed in Additional file 1:
Table S1). WT and CD274-null Mac-1*/c-Kit"™ LICs were
infected with shRNA targeting JNK and sorted by flow cy-
tometry, then the cells were cultured both in solution or
methylcellulose medium. The cell and colony numbers
were calculated at indicated time points.

Statistical analysis

Statistical analysis was performed using GraphPad and
SPSS software program, version 19.0. Statistical differ-
ences between groups were determined by Student’s ¢
test. The Kaplan-Meier method with log-rank test was
utilized to compare survival data among groups. Results
were expressed as means + SEM. A probability level of
P <0.05 was regarded as statistically significant.

Results

CD274 is highly expressed on LICs and promotes AML
development

To explore the role of CD274 in leukemogenesis, we
first examined the expression of CD274 in phenotypic
Mac-1%/c-Kit" LICs and different cell population of
normal bone marrow hematopoietic cells by quantitative
RT-PCR. As illustrated in Fig. la, b, CD274 was
expressed on LICs at a level that was higher than that in
normal hematopoietic stem cells (HSCs), hematopoietic
progenitors (LK, Lin~ cells), and differentiated cells (Lin*
cells). The CD274 level on LICs was further confirmed
by flow cytometric analysis (Fig. 1c). Then, we investi-
gated the function of CD274 in the AML model in-
duced by the MLL-AF9 oncogene (tagged with yellow
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Fig. 1 CD274 is highly expressed in LICs and promotes AML development. a, b CD274 expression levels were determined in mouse LICs, HSCs,
and other hematopoietic cells (LK, Lin~, and Lin™ cells) by real-time RT-PCR or semi-quantitative PCR. ¢ The expression of CD274 in mouse LICs
was examined by flow cytometric analysis. d, e The frequencies of WT and CD274-null leukemia cells (YFP*) in the peripheral blood in primary
recipient mice 3 weeks post-transplantation were analyzed. Normal mouse bone marrow cells were used as background (bg) fluorescence control.
Representative flow cytometric plots (d) and quantitative results (e) are shown (n =4-5). f MLL-AF9-induced WT and CD274-null hematopoietic
stem/progenitors was transplanted into recipient mice, followed by the analysis of overall survival upon the primary transplantation (n=4-5). g, h
The frequencies of WT and CD274-null leukemia cells in the peripheral blood were determined three weeks after the secondary transplantation.
Normal mouse bone marrow cells were used as bg fluorescence control. Representative flow cytometric plots (g) and quantitative results (h) are
depicted (n=4-5). i, j Representative results of the overall survival of the recipient mice receiving 4000 (i) or 2000 (j) WT or CD274-null leukemia

cells upon the secondary transplantation (n =6 for i, and n =4-5 for j). (*p < 0.05)

fluorescent protein (YFP)) as previously described [6].
Although no significant difference was observed be-
tween the frequencies of YFP* leukemia cells from
WT and CD274-null leukemic mice (Fig. 1d, e), the
mice transplanted with MLL-AF9-induced CD274-null
hematopoietic stem/progenitor cells developed leukemia
somewhat more slowly than their WT counterparts (Fig. 1f,
p<0.05). We further performed a secondary transplant-
ation with 4000 WT and CD274-null AML cells from
primary recipients and found that the percentage of
CD274-null YFP* leukemia cells in the peripheral blood
was notably reduced compared to that in the WT ones
(42.03 £2.15 vs 16.02 + 1.79, Fig. 1g, h) three weeks after
transplantation. More importantly, the recipients trans-
planted with CD274-null AML cells had significantly ex-
tended survival (Fig. 1li, p <0.05). Besides, our previous
study showed that CD274 deletion had no effect on nor-
mal HSCs [26]. More strikingly, the recipients trans-
planted with 2000 CD274-null leukemia cells had
significantly prolonged survival compared to that of their
WT counterparts (Fig. 1j, p < 0.05).

Then, we further examined the lineages of CD274-null
leukemia cells and found that the differentiation status
was not altered according to the analysis with the sur-
face markers of Mac-1 and Gr-1 (Mac-1"/Gr-1" cells
representing a more mature leukemia cell population)
(Additional file 2: Figure S1A-B). This finding suggests
that the delayed AML development upon CD274 dele-
tion might not have resulted from the enhanced differ-
entiation. In addition, exceedingly few CD3" or B220"
(markers for lymphoid lineages) leukemia cells were ob-
served in the recipient mice, indicating the characteris-
tics of a myeloid leukemia model (Additional file 2:
Figure SI1C). Consistently, we also found that the
values of the size and weight of the spleen of the re-
cipients that received primary CD274-null leukemia cells
were lower than those of the WT controls (Additional
file 2: Figure S1D-F). The histological hematoxylin/
eosin staining also revealed that there were much less
infiltrated leukemia cells in the spleen of the mice
transplanted with CD274-null leukemia cells (Additional
file 2: Figure S1G).
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Interestingly, the in silico analysis of data extracted
from the curated databases (the HemaExplorer, http://
servers.binf.ku.dk/hemaexplorer/) or Leukemia Gene
Atlas (LGA) (http://www.leukemia-gene-atlas.org/LGAtlas/
) showed that the level of expression of CD274 in AML
cells was much higher than that in normal
hematopoietic stem cells, which was inversely corre-
lated to the overall survival of AML patients (Add-
itional file 3: Figure S2A-B) [27]. Taken together,
CD274 maintains the proliferation of LICs and may
serve as a potential biomarker for AML.

CD274 promotes cell cycle entry of LICs

To identify the underlying mechanisms of CD274 func-
tions in the stemness regulation of LICs, we further ex-
amined the LIC frequency in the bone marrow of
primary and secondary recipients. Although no signifi-
cant difference in LIC (Mac-1"/c-Kit" cells) frequency
was found between the WT and CD274-null recipients
upon the primary transplantation (Fig. 2a, b), the LIC
frequency in the CD274-null recipients was considerably
lower than that in the WT ones after the secondary
transplantation (Fig. 2c, d). Consistently, the results of
the colony-forming unit assay showed that CD274-null
AML cells generated much lower colony numbers and
total cell numbers than WT controls (Fig. 2e—g), indicat-
ing that CD274 depletion led to a notable reduction in
the proliferation potential of LICs.

To understand how CD274 controls the growth of
LICs, we determined the cell cycle status of Mac-1*/c-
Kit" LICs by Hoechst 33342 and Pyronin Y staining. In-
triguingly, we found that most of the CD274-null LICs
were arrested in the G1 phase unlike their WT counter-
parts (Fig. 2h, i). In addition, there was no significant
difference between WT cells and CD274-null LICs in
LIC differentiation upon the secondary transplantation
(Additional file 4: Figure S3A-B). Furthermore, no dis-
tinct difference was found between the apoptosis in WT
and CD274-null AML cells from either primary or sec-
ondary transplantation (Additional file 4: Figure S3C-F).
These data indicate that CD274 controls the cell cycle
entry to maintain the pool of LICs in the bone marrow.

CD274 maintains the Cyclin D2 level to accelerate AML
development

To determine the potential targets of LICs controlled by
CD274, we performed RNA-sequencing with WT and
CD274-null LICs. After aligning the reads to the mouse
reference genome, we obtained an average mapping rate
of 90.3 £ 2.3%. Gene expression levels, which were repre-
sented as FPKM, were evaluated among 27,180 genes/
transcripts. Using a cutoff of P value <0.01 and a fold
change of >1.5, a total of 457 candidate genes were char-
acterized by comparing CD274-null with WT groups.
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Gene ontology analysis revealed that the differentially
expressed genes were mainly involved in the biological
process of many “immune-related activities” (Fig. 3a). In-
triguingly, GO analysis indicated CD274 might also play
a key role in the process of “protein kinase cascade” and
“intracellular signaling cascade” (Fig. 3a). The KEGG
analysis further revealed that these genes were enriched
in the “MAPK signaling pathway” or “Hematopoietic cell
lineage” (Fig. 3b). To investigate the reduced prolifera-
tion abilities and cell cycle arrest in the G1 phase in
CD274-null LICs, we further analyzed a number of can-
didate genes related to proliferation and cell cycle activa-
tors or inhibitors (Additional file 5: Figure S4). Although
the candidate genes related to proliferation were not sig-
nificantly changed, several cell cycle regulators, includ-
ing p16, p21, Cyclin D2, and CDK6, were markedly up-
or downregulated (Additional file 5: Figure S4). The
RNA-sequencing results indicated that CD274 might be
involved in the AML development through the cell cycle
regulation.

To confirm whether these cell cycle-related genes were
potential downstream targets of CD274, we examined
their expressions in WT and CD274-null LICs by quanti-
tative RT-PCR and revealed that the levels of both p21
and pl6 were increased, whereas those of Cyclin D2 and
CDK6 were decreased in CD274-null LICs compared to
WT ones (Fig. 3c). Since the expression of Cyclin D2,
which is a key regulator in promoting G1-S transition of
cell cycle [28], was most significantly downregulated
(reduced to 10% of that in WT LICs) among these can-
didate genes (Fig. 3c), we decided to determine whether
Cyclin D2 served as a downstream target for CD274 in
leukemogenesis. We further confirmed that Cyclin D2
level consistently decreased in CD274-null LICs by
Western blotting analysis (Fig. 3d). Cyclin D2 was then
ectopically expressed in the CD274-null AML cells,
followed by the transplantation into the recipient mice
to test whether it could rescue the loss of function of
CD274. Importantly, the recipient mice transplanted
with Cyclin D2-overexpressed CD274-null AML cells
developed AML much faster than the CD274-null AML
counterparts, which was comparable to the case in the
WT controls (Fig. 3e, f). Meanwhile, the blockage of G1
to S phase transition in CD274-null LICs was totally re-
versed upon Cyclin D2 overexpression (Fig. 3g).

These results indicate that as a direct downstream tar-
get of CD274, Cyclin D2 is responsible for AML devel-
opment. In line with our findings, we also found that
Cyclin D2 was significantly upregulated when CD274
was overexpressed in 293T cells (Additional file 6: Figure
S5A). The in silico analysis of the curated database or
LGA data also showed that the level of expression of
Cyclin D2 was much higher in AML cells than in normal
hematopoietic stem cells and was inversely correlated with
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the overall survival of AML patients (Additional file 6:
Figure S5B-C) [27].

CD274 interacts with JNK to increase the Cyclin D2 level

Because the RNA-sequencing results implicated that
MAPK signaling pathway might be involved in the
CD274 function in leukemogenesis, and a previous study

also suggested that JNK signaling may manipulate the
activity of Cyclin D2 [29]. We examined the JNK signal-
ing in WT and CD274-null LICs by Western blotting
analysis. As shown in Fig. 4a, the phosphorylation level
of JNK was significantly decreased in CD274-null LICs.
Consistently, phospho-JNK expression was remarkably
elevated upon CD274 overexpression in 293T cells
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(Fig. 4b). Interestingly, the co-immunoprecipitation
experiment revealed that both JNK and phospho-]NK were
pulled down by CD274 (Fig. 4c). Meanwhile, CD274 was
also detected while JNK was immunoprecipitated (Fig. 4d).
Moreover, the expression of Cyclin D2 was significantly up-
regulated upon JNK overexpression in 293T cells (Fig. 4e).
We have further knocked down the expression of JNK in
both WT and CD274-null LICs with a shRNA, and the
knockdown efficiency was confirmed by Western blotting
(Fig. 4f). We demonstrated that the knockdown of JNK
caused a dramatic decrease in the proliferation of both WT
and CD274-null LICs by solution culture in vitro (Fig. 4g).
More importantly, the functional analysis of colony forma-
tion units also showed that both the colony and total cell
numbers from the JNK-knockdown WT LICs were much
fewer compared to the control (Fig. 4g—j). As expected, the
knockdown of JNK also led to a less reduction in both the
colony and total cell numbers from CD274-null LICs
(Fig. 4g—j). In summary, we demonstrate that CD274 dir-
ectly interacts with JNK to enhance its phosphorylation,
which further increases the Cyclin D2 levels to promote cell
cycle entry and proliferation (Fig. 41).

Discussion

In this study, we evidenced that CD274 plays a critical role
in the maintenance of LIC pool, which is independent of its
function in the immune checkpoint. We also provided intri-
guing evidence showing that CD274 directly interplays with
JNK and enhances its activities to upregulate Cyclin D2
level, leading to the acceleration of leukemia development.
These results consolidate our previous hypothesis that many
immune inhibitory molecules are required for the regulation
of proliferation of LICs and leukemogenesis apart from their
known functions in immune suppression [6].

Previous studies have shown that CD274, which is up-
regulated in many tumors, functions as a key immune
suppressor that hampers the antitumor effect exerted by
immune cells, such as the cytotoxic T cells. The treat-
ment with CD274-blocking antibodies was reported to
efficiently reduce the tumor burden and restore cytotox-
icity activities of CD8" T cells in a murine chronic
lymphoblastic leukemia model [30]. Similarly, the results
of other investigations also revealed that the overall
survival of acute myeloid leukemia mice was dramat-
ically extended upon the treatment with anti-CD274
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monoclonal antibodies [31, 32]. In the current study,
the expression of CD274 in leukemia cells might have
also suppressed the immune responses through bind-
ing to its receptor of PD-1 on T cells to enhance the
in vivo phenotype due to the use of immunocompe-
tent mice as a recipient to test the leukemogenesis of
WT and CD274-null leukemia cells. However, because
the recipient mice received lethal irradiation upon
transplantation which might have led to the loss of
function of immune cells, we believe that these existing
immune cells exert only a minor effect on the inhibition
of leukemia development, and CD274 has additional func-
tions in the regulation of leukemogenesis.

So far, few studies have been focused on the unraveling
of the role of CD274 in the proliferation of LICs. Inter-
estingly, Dong et al. found that the AKT/mTOR pathway
was significantly activated in DLBCL cell lines upon a
treatment with human recombinant PD1/Fc for 24 h
and 48 h [21]. This finding indicates that the ligand en-
gagement may also deliver the reverse signaling to
tumor cells themselves apart from the forward signals to
suppress the immune response through PD-1, which is
consistent with the findings of our study. This is also
similar to the function of certain other molecules, such
as Ephrins (ligand)/Ephs (receptor). Ephs have the
unique capacity to initiate an intercellular signal in both

the receptor-bearing cell (“forward” signaling) and the
opposing ephrin-bearing cell (“reverse” signaling) follow-
ing cell-cell contact, which is known as bi-directional
signaling [33]. Therefore, we speculate that there also
exists a bi-directional signaling upon PD-1/PD-L1 inter-
action. Consistently, Ishibashi et al. also provide intri-
guing evidence that CD274 can function as an oncogene
to enhance the proliferation and inhibit the apoptosis of
myeloma cells [34].

In the current study, we found that CD274 sustains
the Cyclin D2 level to promote leukemogenesis. How-
ever, how CD274 regulates the expression of Cyclin D2
is yet to be further investigated. The findings of a previ-
ous study indicated that doxorubicin can downregulate
the expression of CD274 on the surface membrane and
promote its nucleus translocation in breast cancer cells
[23]. We also found that CD274 exists in both the cyto-
plasm and the nucleus (data not shown). Nevertheless,
CD274 is not associated with Cyclin D2 protein. Our
data indicate that JNK signaling may serve as a key me-
diator between CD274 and Cyclin D2. Interestingly,
Song et al. reported that CD274 overexpression pro-
motes cellular proliferation of pancreatic cancer via
regulating several cell cycle-related genes and the phos-
phorylation level of JNK [35]. Herein, we show that
CD274 is highly expressed on LICs, which also directly
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interplay with JNK to maintain its phosphorylation level.
We speculate that the intracellular domain of CD274
may be able to recruit certain kinases to further phos-
phorylate the substrate of JNK. More efforts are required
to identify the potential candidate kinase or other cofac-
tors involved in the CD274/JNK/Cyclin D2 signaling.

Moreover, considering that, as reported here, CD274 is
localized in the cytoplasm and the nucleus, we speculate
that both membranes bound, and the cytoplasmic
CD274 may interact with JNK, although this interaction
needs to be further clarified. JNK signaling has been
found to be involved in the leukemogenesis, and inhib-
ition of JNK pathway may lead to substantial apoptosis
in leukemia cells [36—38]. Therefore, understanding how
JNK is regulated is critical to develop a novel strategy to
target LICs. This study provides some intriguing infor-
mation for the connection between CD274 and JNK sig-
naling which eventually contributes to a significant
upregulation of Cyclin D2 and promotes leukemogenesis.
Our results highlight that CD274/JNK/Cyclin D2 signaling
controls the cell cycle entry of LICs and leukemia develop-
ment, which may be helpful for the further identification
and understanding of the role of other novel surface im-
mune molecules in the maintenance of LIC pool.

Conclusions

This study unravels an intriguing role of CD274 in sus-
taining the proliferation of LICs. CD274 depletion re-
sults in a decrease of the expansion ability of LICs.
Mechanistically, CD274/JNK/Cyclin D2 signaling en-
hances the transition from G1 to S phase in the cell
cycle of LICs and promotes AML development. Further-
more, CD274 expression level is inversely correlated
with the overall survival of AML patients. Our findings
shed new light on the treatment for leukemia by target-
ing certain surface immune molecules of LICs, such as
CD274.
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