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Abstract: Melanins are a group of dark insoluble pigments found widespread in nature. In mammals,
the brown-black eumelanins and the reddish-yellow pheomelanins are the main determinants of
skin, hair, and eye pigmentation and play a significant role in photoprotection as well as in many
biological functions ensuring homeostasis. Due to their broad-spectrum light absorption, radical
scavenging, electric conductivity, and paramagnetic behavior, eumelanins are widely studied in the
biomedical field. The continuing advancements in the development of biomimetic design strategies
offer novel opportunities toward specifically engineered multifunctional biomaterials for regenerative
medicine. Melanin and melanin-like coatings have been shown to increase cell attachment and
proliferation on different substrates and to promote and ameliorate skin, bone, and nerve defect
healing in several in vivo models. Herein, the state of the art and future perspectives of melanins as
promising bioinspired platforms for natural regeneration processes are highlighted and discussed.

Keywords: melanin; polydopamine; eumelanin; melanin-like materials; melanin hybrids;
regenerative medicine; wound healing; bone tissue engineering; neural tissue engineering

1. Introduction

The term melanin identifies a heterogeneous group of phenolic polymers found at all levels of
the evolutionary scale from fungi and bacteria to plants, mollusks, fish, birds, and mammals, up to
man [1]. In mammals, melanin pigments are produced by specialized cells termed melanocytes in
the form of granules within cellular organelles known as melanosomes and are responsible for skin,
hair, and eye pigmentation, playing a central role in the protective mechanisms against stress-related
DNA damage [2,3]. The dark eumelanins originate from the oxidation of the amino acid L-tyrosine
to dopaquinone followed by cyclization to 5,6-dihydroxyindole intermediates 5,6-dihydroxyindole
(DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), which eventually polymerize to give
the final insoluble pigment [1,4]. Loss of function mutations at the mc1r gene correlates with
the red hair phenotype, with a high ultraviolet (UV)-sensitivity and susceptibility to melanoma
due to defective epidermal melanization and suboptimal DNA repair [5]. Under these conditions,
the eumelanin pathway is impaired; thus, skin pigmentation is dominated by the reddish pheomelanins.
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These pigments are composed of benzothiazine and benzothiazole units via coupling of dopaquinone
with L-cysteine or glutathione [4,6]. Other melanins include neuromelanins, produced in the substantia
nigra pars compacta (SNpc) and locus coeruleus, which derive from the oxidation of catecholamines [7,8],
allomelanins, and pyomelanins, typical of plants, fungi, and bacteria [9,10]. A schematic representation
of melanins’ biosynthetic pathways is reported in Figure 1.
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Over the past two decades, melanin pigments, especially eumelanin, have raised a growing
interest in the materials science community because of their unique physical and chemical properties,
including a broadband absorption spectrum spanning the UV and visible regions [11,12] with a shallow
radiative conversion of absorbed photon energy [11,13]. Moreover, eumelanin is characterized by the
presence of free phenolic groups that confer to the polymer scavenging ability toward multiple reactive
oxygen and nitrogen species (RONS) [14,15]. Together, these properties make eumelanin a good
photoprotectant [16]. Depending on its hydration state, eumelanin also displays pronounced electrical
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conductivity [17] and paramagnetic behavior [9,18]. These electronic properties may explain the
presence of eumelanin in electrically active tissues such as SNpc. Furthermore, due to the abundance
of binding groups (amine and catechol among others), eumelanins display a chelating capacity [19],
which has been suggested to prevent dopaminergic neurons from accumulating toxic ions, such as iron
which are involved in degeneration and death [20,21]. The aforementioned properties make eumelanin
a promising platform for several biomedical applications, including tissue regeneration, bioelectronics,
drug-delivery systems, antioxidant therapy, and multimodal imaging.

This review highlights recent advances as well as challenges in the design of melanin-based
materials as bioinspired platforms to support and promote natural regenerative processes. First,
synthesis approaches of melanin-like materials will be outlined with a particular focus on hybrid systems
obtained by melanin combination with inorganic and/or organic components. Furthermore, the most
challenging issues of biomimetic processes to melanin formation will be outlined and discussed. Then,
the most intriguing physical–chemical properties of melanin-like materials for biomedical applications
will be highlighted. Finally, the most promising applications and perspectives of melanin-like materials
in regenerative medicine will be analyzed. This study is expected to provide strategic guidelines for
the development of cutting-edge melanin-based materials for regenerative medicine.

2. Synthetic Melanin-Like Materials: Opportunities and Issues of Biomimetic Approaches

Natural melanins are usually available as solid granules deeply embedded in their biological
matrix that are difficult to isolate without significant alteration during extraction and purification
treatments [22]. These issues limit the practical utility of natural melanins [23] and urge the quest for
valuable and more accessible alternatives.

Synthetic analogs of natural melanins can be produced through in vitro routes based on
the oxidation of melanogenic precursors and constitute reliable models to unveil functions and
structure–properties relationship of these pigments [23–25]. The oxidation methods which can
be applied include self-oxidation in alkaline environment, oxidation by ferrocyanide compounds,
or biomimetic enzymatic oxidation [26]. Stronger oxidation agents, including ammonium persulfate,
sodium periodate, copper sulfate [27,28], and light irradiation [29], have also been explored, improving
overall polymerization efficiency. However, harsh synthesis conditions cannot be applied to systems
containing cell cultures.

Practically, any moieties in the melanogenic pathway and even natural phenolic amines [30]
can be employed as starting precursors, most frequently tyrosine, l-3,4-dihydroxyphenylalanine
(L-DOPA), DHI, and DHICA. Dopamine (DA) has been the focus of considerable interest, too. DA has
been exploited as a precursor for a biocompatible melanin-type polymer termed polydopamine
(PDA) widely used for surface functionalization. Inspired by the adhesive properties of mussels,
in 2007, the Messersmith group described the efficient adhesion properties of the species produced by
autoxidation of DA at pH 8.5 [31] on a wide variety of materials, including organic and inorganic surfaces,
providing a smart platform for secondary functionalization technologies [32]. Notably, PDA structural
properties can be tailored on specific application requirements by varying the synthetic conditions (i.e.,
DA concentration or buffer composition) [33]. Recently, norepinephrine (also known as noradrenaline),
a neurotransmitter and vasopressor moiety, widely employed in medicine, has been proposed as a novel
melanogenic precursor [34,35]. It undergoes oxidative polymerization forming both monodisperse
nanoparticles [34] and thin coatings, with tough adhesive properties on different substrates.

Highly promising strategies toward the development of effective strategies to increase the chemical
stability and to fine-tune the physicochemical properties of melanin biopolymers by rational control
of π-electron conjugation have recently been inspired by the superior paramagnetic properties of
synthetic fungal melanin (mycomelanin) mimics. Poly-1,8-dihydroxynaphthalene (pDHN) displays a
higher degree of structural integrity compared to typical synthetic eumelanins and a strong radical
scavenging capacity associated with an intense electron paramagnetic resonance signal (g = 2.0030).
Morphological data indicated amorphous aggregates of small globular structures with an estimated
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stacking distance of 3.9 Å and broadband absorption in the visible range [36]. Thin films from pDHN
were found to display high structural regularity, an ultrasmooth morphology, with excellent robustness
against peroxidative bleaching and good adhesion under watery conditions, good biocompatibility,
and remarkable effects in promoting differentiation of embryonic stem cells prevalently towards the
endodermal lineages without additives [37].

Both the structural and physicochemical properties and the supramolecular features of synthetic
melanins are susceptible to the synthetic protocols and the conditions used for polymerization [23,26].
As an alternative to the conventional solution oxidation methods, electropolymerization has also
been employed as a simple and efficient route for PDA synthesis; however, it only allows to surface
deposition on conductive materials, this restricts its application [38]. In any case, providing stable
nanoparticles in aqueous or biological media is a challenging task due to the many concurrent factors
controlling polymerization and self-assembly. The use of suitable additives capable of modulating
the manifold competing factors during the polymerization/self-assembly process can address this
issue. Employed species include surfactants, polyelectrolytes, ionic liquids proteins, and other organic
compounds. [39,40].

Polymers, such as polyvinyl alcohol (PVA), can control DA polymerization leading to stable
PDA sols [15]. Recent studies also proved the efficacy of several proteins in controlling the size,
morphology, and optical properties of synthetic melanin nanoparticles [41,42]. Alternatively, tris buffer
solutions [43], as well as UV-irradiation under acidic or neutral conditions, proved able to limit particle
growth [44].

Recently, following a bioinspired approach, biocompatible-nanostructured ceramic phases were
exploited as catalysts and structure-directing agents during melanin formation, thus mimicking
melanosomes [22,45,46]. The ceramic-templated approach appears as a promising eco-friendly strategy
in the field of melanin-like materials, leading to monodisperse and biocompatible melanin-based hybrid
nanoparticles and able to boost melanin’s intrinsic properties, such as antimicrobial and antioxidant
action (Figure 2) [22,45,46].
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2.1. From Physicochemical to Biomedical Properties of Melanins and Melanin-Like Hybrid Materials

2.1.1. Versatile Chemistry and Easy Chemical Coupling

Natural and synthetic melanins share the abundance of functional groups in their molecular
backbone [42]. Carboxyl (−COOH), aromatic amine (−NH), hydroxyl (−OH), as well as catechol groups,
can act as binding sites to allow easy functionalization with a considerable range of biologically active
moieties. Moreover, carboxyl and amino groups can be involved in amidic bond formation through
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chemistry [42,48]. Furthermore, nucleophilic
thiol- and amino-containing moieties can be easily grafted by several coupling reactions [49]. Moreover,
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the presence of a vast set of surface functional groups makes melanin easily combinable with different
surfaces such as metal oxides and ceramics.

Recently, melanin-based hybrid systems have been improved with inorganic silica coatings to
enhance biocompatibility, surface functionality, and aqueous dispersity for biomedical applications.
For example, Gadolinium-chelated melanin nanoparticles were successfully synthesized and covered
with a silica shell [50]. The silica nanocoating significantly improved the magnetic resonance r1
relaxivity of the systems. In addition, they demonstrated high heat transduction efficiency coupled
with sufficient tumoricidal heating, allowing their use as in vivo dual-modal magnetic resonance
imaging (MRI)/fluorescent imaging nanoplatforms. Furthermore, nanostructured silica was also
employed as a templating agent for the eumelanin phase, tuning its supramolecular structure [51].
One-pot in situ synthesis strategy was carried out, using silica, DHICA, and Ag as starting precursors.
This strategy allowed self-structuring of the system into a core–shell architecture, where the Ag core was
found to show stable photoacoustic properties even under prolonged irradiation. Hybrid functional
nanoarchitectures were fabricated, through a hydrothermal synthesis, integrating a eumelanin-like
polymer with TiO2 via LMCT (ligand to metal charge transfer)-based photooxidative process [22,45,46].

2.1.2. Metal Ions Chelating Action

The abundance of metal ions coordination sites in melanins’ structure results in a high affinity for
metal cations. This attitude has been extensively exploited to bind different metal ions to improve
melanin’s intrinsic features, such as antioxidant and light absorption performance [52,53], but also
to confer further non-native contrast properties [48,49,52]. Loading strategies include postdoping,
predoping, and metal ion-exchange approaches (Figure 3). Postdoping can be applied even to natural
melanins and allows to control properties of melanin nanoparticles, yet only low payloads can be
achieved. The predoping approach addresses this limitation and enables tunable metal ions amounts
within nanoparticles [54]. The ion-exchange strategy is usually exploited when direct doping cannot
be achieved due to aggregates formation [52].
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Recently, hair-extracted melanin nanoparticles doped with metal ions demonstrated the ability
to mimic natural enzyme activities, revealing potent anti-inflammatory and antibacterial activity,
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thus opening new scenarios in the design of biomedical materials (Figure 4) [53]. Metal ions doping
enhances significantly light absorption, as well as the photothermal conversion of melanins [52].
Furthermore, melanin complexation with different metal ions makes them a versatile probe for
multimodal imaging, combining different imaging methods with peculiar resolution and penetration
depth [55–57]. Moreover, metal complexes of melanogenic precursors play a crucial role in driving the
steps of the melanogenic pathway, ultimately controlling melanin’s biological functions. As a proof of
concept, Ti(IV) complexes with different melanogenic precursors determine the fate of obtained hybrid
nanostructures as either antimicrobial or good antioxidant agents [22].
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2.1.3. Broad Light Absorption

One primary biological function of melanins is photoprotection and screening against U.V. harmful
light [58]. The brown-black color of eumelanins is direct evidence of their efficient light absorbance
behavior, covering a wide range of UV–Visible spectrum as a consequence of contribution from both
intrinsic and extrinsic chromophores (Figure 5) [59].
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Melanin-like materials keep these optical features; additionally, close control of particle size
allows color tailoring and skin-matching of produced nanoparticles, which are easily internalized into
keratinocytes, protecting the cells from UV damage [42,60]. Furthermore, these pigments are extremely
efficient in converting light energy into heat [49,61], holding huge potential as active components in
photothermal therapy (PTT) against cancer [62,63] but also against drug-resistant pathogens [64].

The photoactivity of melanins has been exploited to realize a large variety of hybrid materials
for biomedical applications. Recently, the huge potential of eumelanins as photoacoustic probes was
realized using a multicomponent system where a ceramic phase (SiO2) acted as a templating agent for
eumelanin, which, in turn, produced Ag nanoclusters formation, through its chelating and reducing
properties (Figure 6) [51].
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Ag-melanin-silica hybrid (MelaSil_Ag) photoacoustic nanoprobes (a) Comparison of normalized
mean photoacoustic signal (b) and 3D photoacoustic-ultrasound render (c) produced by nanoparticles
with and without Ag components; in grayscale, the intensity of the ultrasound signal, whereas in
colored scale, intensity of photoacoustic signal. Reproduced with permission from [51] Copyright
Elsevier, 2019.

Furthermore, melanins have been used as doping agents to increase the UV response of PVA,
one of the most common biopolymers used in medical applications [65], obtaining a new hybrid
biomaterial with unique properties for optical applications. Similarly, networks that are composed of
well-characterized synthetic polymers and natural melanin pigments found within the human body
have been recently proposed. Melanin nanoparticles have been chosen for doping of photodegradable
self-assembled hydrogel networks of poly(L-lactide-co-glycolide)–poly(ethylene glycol) (PLG–PEG)
ABA triblock copolymers to produce reconfigurable networks based on photothermal phase transitions,
representing a potential strategy for photodegradable polymers with increased likelihood for clinical
translation [66]. On the other hand, melanins can absorb near-infrared (NIR) light with a high
photothermal conversion efficiency. This photothermal effect has been used for the development of new
drug release systems to control drug delivery in a specific region. Recently, hybrid melanin-alginate
microparticles have been produced, showing int+eresting properties to locally irradiate target
region, guaranteeing high biocompatibility and low toxicity [67]. Similarly, nanovesicles composed
of phospholipids incorporating melanin, poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM),
and 5-fluorouracil (5-FU) has been proposed for thermoresponsive drug release by NIR laser irradiation,
minimizing side effects and facilitating a rapid drug release at the lesion site [68].
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Today, a considerable variety of melanin-like hybrid nanostructures were proposed by either
covalent cross-linking or physically entrapping, during synthesis step, inorganic components or
metals. Among them, considerable efforts have been spent on the development of nanoparticles-based
systems to integrate, into one entity, multiple functional components. The intrinsic chelating properties
of melanin and melanin-like materials were exploited to design novel theranostic agents [56,69,70].
For example, PDA has been exploited to chelate Mn2+ ions. The resulting hybrid nanoparticles showed
a significant MRI signal enhancement, low toxicity, and good photothermal activity (Figure 7) [69].
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An alternative bioinspired strategy was applied to chelate Fe3+ ions [70]. The synthesized
nanoparticles showed extended adsorption in the NIR region and significant enhancement in MRI
signal, resulting in an excellent biocompatible smart theranostic nanostructure. Following similar
“chelator free” strategy, PEGylated melanin nanoparticles were also functionalized with Gd3+ and
64Cu2+ ions [56], to exploit the potentiality of the system for multimodality imaging, including positron
emission tomography (PET), MRI, and photoacoustic imaging (PAI).

The coordinative binding capability of the catechol unit of melanin-like components was also
exploited to enable the formation of melanin shell around different types of metal nanoparticles.
Gold-core melanin shell nanoparticles with different geometries (from spheres to nanostars and
nanorods) were quickly produced through auto-oxidative polymerization of DA in the presence of
gold nanosystems (Figure 8) [71]. The absorption bands of nanoparticles could be tuned by varying
the dimensions and geometry of the particles, and at the same time, the surface functionalization of the
melanin coating increased biocompatibility of gold nanoparticles (GNPs).

Additionally, melanin could be coated on the surface of different types of template-core material.
For example, melanin-mediated biomineralization method was exploited to prepare different metal
carbonates nanoparticles. Following this synthetic way, calcium carbonate-PDA hollow nanoparticles
were simply synthesized [72]. The choice of endogenous components resulted in highly biocompatible
systems with no long-term side effects. These features make them ideal candidates as multimodal
imaging nanoplatforms. Following a similar methodology, manganese carbonate-PDA core–shell
nanocomposites were also produced as potential MRI/PTT theranostic agents (Figure 9) [73].
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Figure 8. Synthesis of melanin-coated gold particles. (a) Auto-oxidation of dopamine to melanin can
be conducted as a seeded dispersion polymerization to deliver gold-core melanin-shell particles.
(b–f) Scanning electron micrographs (SEM) of pristine and melanin-coated gold nanoparticles:
(b) spherical gold particles (Au), (c) spherical silica-core gold-shell particles (SiAu), (d) gold nanostars
(AuStars), and (e) gold nanorods (AuRods). In (b–e), the scale bars represent 500 nm. (f) SEM image
of melanin particles without a gold core. (g–j) TEM images of melanin-coated (g) spherical gold
nanoparticles (AuMel), (h) silica-core gold-shell particles (SiAuMel), (i) gold nanostars (AuStarsMel),
and (j) gold nanorods (AuRodsMel). In (f–j), the scale bars represent 100 nm. The insets display
an artistic rendering of the individual particle geometries. Reproduced with permission from [71].
Copyright John Wiley and Sons, 2018.
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2.1.4. Paramagnetic and Red-Ox Properties

Melanins possess intrinsic paramagnetic properties due to the complex interplay of interacting
catechol-quinone moieties favoring p-electron delocalization and transfer both intramolecularly and
intermolecularly. In addition, they show tunable redox behavior, which confers them the role of free
radical scavengers, being able to react with RONS, thus mitigating oxidative stress underlying many
chronic degenerative pathologies. Their antioxidant function is particularly relevant in biomedical
applications [32,48,49]. Melanin-like materials with improved antioxidant activity have been obtained
by conjugating natural or synthetic melanins with other organic components, such as polymers or
biopolymers. For example, melanin nanoparticles isolated from the Sepia ink have been used as
functional fillers for the preparation of agar-based functional films, which showed a high antioxidant
activity comparable to ascorbic acid [74]. Similarly, synthetic melanin-like nanoparticles, have been
conjugated with chitosan (CS), producing nanocomposite films with strong antioxidant activity [75].
Interestingly, a water-soluble humic acid and melanin-like polymer complex has been isolated from
olive mill wastewaters, showing a high scavenging activity [76].

In the green synthesis of organic/inorganic hybrid nanoparticles, eumelanins redox properties were
extensively investigated. The presence of catechol and N-H functional groups endowed eumelanins
with an active anchoring site, and neither surface modification nor additional reductants were needed
for absorbing and reducing metal ions [77,78]. Silver nanoparticles were also uniformly distributed on
the surface of PDA nanoparticles to produce hybrid materials. The eumelanin component effectively
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prevented silver nanoparticles aggregation during the synthesis, avoiding, at the same time, possible
release of the ions [78], leading to hybrid material with high antibacterial activity.

2.1.5. Adhesive Properties

Eumelanin adhesion on a great variety of surfaces, including organic as well as inorganic materials,
observed after the polymerization of suitable precursors, is carried out while interfacing at the
desired surfaces, namely, solid-phase DHI polymerization over glass or quartz substrates results in
the formation of adhesive thin films also capable of resisting immersion in cell culture media over
weeks [79].

Melanins’ adhesion can be obtained either by polymerization of suitable precursors like dopamine
or by the addition of long-chain diamines during the polymerization of catechol compounds [80,81].

The adhesion properties of DHI-based melanins also allowed a variety of surface functionalizations
aimed to fabricate bioactive substrate for stem cell culture and differentiation [82,83]. In particular,
eumelanin-coated poly(lactic acid) (PLA) microfibers proved to be capable of supporting survival,
adhesion, and differentiation toward a more mature neuronal phenotype of neuroblastoma cell type,
also opening to applications in bioelectronics [84]. These features have also been exploited to achieve
immobilization of biomolecules on different surfaces. To this purpose, both in situ and ex post strategies
can be carried out, i.e., in the former, biomolecules are dissolved with the melanogenic precursor
during its polymerization, whereas in the latter approach, immobilization is achieved through different
chemistry approaches after polymerization [85]. Melanin-like materials play a crucial role in instructing
cellular surface distribution [60]. Thus, controlling the spatial organization of surface coatings can
result in the patterning of cell differentiation, proliferation, and migration (Figure 10) [35].
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Figure 10. Surface modification through melanin-like coatings obtained by polymerization of
norepinephrine promotes adhesion of human stem cells on obtained biointerfaces. Reproduced
with permission from [35]. Copyright Hindawi Publishing Corporation, 2014.

Hybrid melanin-like materials with improved adhesive properties can be obtained by a
combination of melanins with synthetic polymers. For example, DA was used to modify polyaniline
(PANI) via a one-step chemical oxidization method. Compared to pure PANI, the modified
PANI exhibited greatly enhanced adhesion force to the substrate, improved biocompatibility, and
hydrophobicity, also maintaining good electrical conductivity [86]. These properties have proposed
them as a promising surface coating of implant materials or conductive platforms in tissue engineering.

Table 1 summarizes the main hybrid melanin-like materials and their properties exploited for the
application they are designed for.
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Table 1. Summary of melanins and melanin-like hybrid materials.

Materials Organic
Component Functionality Application Ref.

SiO2 shell
coated/gadolinium-chelated

melanin nanoparticles

Synthetic melanin
from DA

Heat transduction
efficiency

In vivo bimodal
MRI/fluorescent

imaging
[50]

Ag/melanin/SiO2 hybrid
nanostructures

Synthetic melanin
from DHICA

Photoacoustic properties
under long irradiation PAI [51]

Melanin/TiO2 hybrid
nanostructures

Synthetic melanin
from DHICA

Reactive oxygen species
(ROS) production and

bacteria killing
Antimicrobial agents [22,45,46]

Metal ion-loaded synthetic
melanin

Synthetic melanin
from DA NIR light absorption NIR imaging [52]

Metal-bound natural
melanin particles Natural melanin Enzyme mimicking

activity

ROS scavengers and
in anti-inflammatory

agents
[53]

PEGylated-ions doped
melanin nanoparticle

Synthetic melanin
from DA Theranostic properties

In vitro and in vivo
MRI/computed

tomography (CT)
imaging agents

[55]

Metal ion-synthetic melanin
nanoparticles

Synthetic melanin
from DA

Metal ion chelating/light
absorption ability and
photothermal effects

NIR imaging [52,54–56,69,70,87]

Gd3+-loading melanin dots
Commercial

melanin Higher T1 relaxivity PAI [44,56]

PDA gels/nanoparticles PDA Photoprotection Sunscreen [58,60]

Melanin-loaded
nanovesicles Natural melanin High photothermal

conversion NIR imaging/PTT [68]

Hydrogel scaffolds
Grape extracts

oligomeric
proanthocyanidins

Photothermal conversion Melanoma therapy
and wound healing [64]

Polymer based-melanin
hydrogels

Natural/synthetic
melanin Biocompatibility Biomedical

application [65–68]

Gold core-melanin shell
nanoparticles

Synthetic melanin
from DA

Enhanced photoacoustic
conversion PAI [71]

Metal carbonates-melanin
nanoparticles PDA

Metal ion chelating/light
absorption ability and
photothermal effects

MRI/PTT theranostic
agents [72,73]

Melanin-nanoparticles
incorporated agar-based

composites

Natural melanin
from Sepia ink ROS scavenging Films with

antioxidant activity [74]

CS/melanin-like
nanocomposites

Synthetic melanin
from DA

ROS scavenging
(antioxidants)

Films for food
packaging and

biomedical
packaging

[75]

Melanin-like polymer
complex

Natural melanins
from olive mill

wastewaters

High radical scavenging
activity Antioxidant agents [76]

Silk/melanin nanofibrous
scaffolds

Commercial
melanin

Antioxidant and radical
scavenging properties

Nerve tissue
engineering [88]

Hybrid
silver-loaded/melanin

spheres.

Synthetic melanin
from DA ROS generation Antibacterial agents [78]

Bioinspired coatings Mussel melanin Adhesive properties Active biointerfaces [85]

Poly(norepinephrine)
coatings

Norepinephrine
polymerization

Biocompatibility and
adhesive properties

Human neural stem
cells adhesion [35]

DA modified PANI hybrids Synthetic melanin
from DA

Adhesion, dispersibility,
and biocompatibility

Conductive
platforms in tissue

engineering
[86]
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3. Melanins and Melanin-Like Materials in Tissue Engineering

3.1. Wound Healing

An ideal wound dressing should possess multiple properties. First, it should provide a moist
environment to prevent dehydration and favor angiogenesis and re-epithelialization [89]. In addition,
it should absorb exudates, allow gas permeation, and provide protection against bacteria and other
external factors [90]. Newer and improved dressings should show superior characteristics, including
controlled biomacromolecule (growth factors, cytokines, and proteins) or drug delivery, antioxidative
properties, self-healing ability, and conductivity [91]. Melanins meet many of such requirements.
Consequently, over the last few years, many melanin-doped dressings to address impaired wound
healing have been established. Melanin and melanin-like polymers have been incorporated into
hydrogels, fibrous membranes, films, and other matrixes in order to improve the physical, chemical,
and mechanical characteristics of the matrixes themselves, as well as to deliver therapeutic agents.
The following sections offer an overview of recent applications of melanin-modified materials in
wound healing.

3.1.1. Hydrogels

The potential of hydrogels for the treatment of skin wounds has been extensively explored in
the last few years [91]. Besides the ability to absorb exudates, isolate the wound, and mimic the
three-dimensional structure of tissues, their cross-linked structure enables the incorporation of different
bioactive agents [91,92]. In addition, hydrogels can be injected directly on the wound, matching
any shape of the defect site. Nonetheless, they often present poor adhesiveness and mechanical
properties, which can cause damages or ruptures, thus affecting the dressing performance [93]. Surface
modification of hydrogels with natural melanin or melanin-like polymers has been widely reported to
improve biocompatibility, mechanical properties, and adhesiveness to the wound. Han and colleagues
have proposed an epidermal growth factor (EGF)-doped polyacrylamide (PAM) hydrogel containing
PDA-intercalated clay nanosheets [94]. The resulting material demonstrated higher mechanical
properties due to the interaction between PDA and the clay-hydrogel network and excellent adhesive
strength to several materials, including human skin. Such adhesive properties were maintained over
time, allowing repeated use and prolonged storage of the material. In addition, in vitro and in vivo
experiments indicated that PDA promoted cell adhesion and proliferation and enhanced wound
healing in a rat skin defect model (Figure 11).

PDA has also allowed to overcome the poor hydrophilicity and bioavailability of potential
therapeutic agents and improve their release profile. For instance, PDA nanoparticles have been
used as a carrier for the antioxidant molecule puerarin (PUE) in a polyethylene glycol-diacrylate
(PEG-DAc) hydrogel [95]. Compared to the bare PUE formulation, PDA/PUE hydrogel showed a better
drug release profile, enabling the sustained delivery of the antioxidant drug. Moreover, the authors
described an excellent cytocompatibility, while in vivo results showed several positive effects, including
protection against infections, acceleration of healing, and amelioration of the aesthetical appearance of
the wound.

Due to its highly reactive feature, PDA has also been observed to endow different materials with
self-healing properties. To this end, several studies have recently reported PDA-modified materials as
self-healing wound dressings [93,96–98]. This ability allows the hydrogels to repair themselves in case
of damage, extending their durability and improving their capability to prevent infections.

Besides its successful application as a surface modification agent, melanin has been investigated as
a treatment itself to promote tissue regeneration. Da Silva et al. have explored the effect of eumelanin
nanoparticles extracted from Sepia officinalis on human keratinocytes (hKCs) [99]. In vitro results
demonstrated that hKCs internalized eumelanin nanoparticles without cytotoxic effects; moreover,
hKCs pretreated with eumelanin nanoparticles showed a marked decrease of RONS production
following UV-A/UV-B irradiation. The incorporation of eumelanin nanoparticles into a spongy-like
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hydrogel determined the modification of the physicochemical characteristics of the hydrogel itself,
thus permitting the sustained release of eumelanin. Further in vivo experiments proved that the
eumelanin hydrogel induced a physiological host response after implantation and that the amount of
released eumelanin was in the range of concentrations expected to exert beneficial effects on hKCs.
In addition, the authors hypothesized that the conductive and antioxidant properties of eumelanin
could sustain the propagation of electric signals and the recruitment of keratinocytes as well as to
contribute modulating the inflammatory response at the wound site [99].Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 34 
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Figure 11. Polydopamine (PDA)-clay-polyacrylamide (PAM) hydrogel as a wound dressing in a
full-thickness skin defect. (a) Cumulative EGF released from PDA-clay-PAM, PDA-PAM, and clay-PAM
hydrogels in PBS. (b) Wound closure of untreated defects and defects treated with EGF-loaded
PDA-clay-PAM, EGF-free PDA-clay-PAM, and PDA-PAM. (c) Digital photos of the wound after 0, 14,
and 21 days of healing. (d) Photomicrographs showing histological staining of wound sites on day
21. (1−3) Overview of the defects treated by epidermal growth factor (EGF)-loaded PDA-clay-PAM
hydrogel and PDA-clay-PAM hydrogel and untreated defect. (4−6) The interface between the newly
regenerated tissue (NT) and host skin tissue (HT). (7−9) Masson staining of the collagen deposited in
the defects. Reproduced with permission from [94]. Copyright American Chemical Society, 2017.

As discussed, melanin-modified materials show a prominent photothermal activity that can
be exploited for several purposes. NIR light treatment has a great potential to treat infections by
generating ROS, which are able to kill pathogenic microorganisms [100]. Based on this, Han et al.
have recently developed NIR-responsive chitosan/silk fibroin (CS/SF) cryogels incorporating PDA
nanoparticles [101]. By exploiting the PDA-mediated photothermal effect, the authors observed a
significant dose-dependent antibacterial activity of the hydrogels following NIR irradiation. Besides,
NIR irradiation did not show harmful effects on fibroblasts, while the presence of PDA positively
affected cell adhesion, proliferation, and morphology. Data obtained in full-thickness skin defect
experiments demonstrated that PDA-CS/SF cryogels significantly increased the wound healing rate
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compared to CS/SF alone; additionally, the exposure of the wounds to NIR light induced a faster
healing rate and better tissue regeneration.

The antibacterial activity of hydrogel dressings can be further enhanced, combining a
PDA-mediated photothermal treatment with antibiotic drugs. Liang et al. have developed some
polymeric composite hydrogels incorporating PDA and doxycycline [97,102]. The composite PDA
hydrogels demonstrated photothermal-mediated antimicrobial activity and sustained antibiotic release
capacity. Moreover, both the formulations demonstrated hemostatic, tissue-adhesive, antioxidant,
and conductive properties. Electric signals induce the expression of regenerative-related factors and
promote cell migration at the wound site [103]; thus, melanin-doped conductive wound dressings
could represent an innovative strategy to enhance the healing process.

The photothermal properties of melanins can also be exploited to create on-demand drug release
devices. On this path, Liu et al. have proposed a multiresponsive composite hydrogel incorporating
PDA and tetracycline hydrochloride (TH) [104]. In vitro results evidenced that the presence of PDA
enabled the controlled release of TH under both NIR exposure or low pH conditions (Figure 12).
Indeed, on the one hand, the temperature rise induced by NIR irradiation allowed TH release in an
“on-off” fashion as a consequence of the swelling/deswelling process of the polymer network. On the
other hand, mild acidic conditions caused the progressive disruption of PDA/TH chemical interactions
inducing the sustained release of TH. A similar approach was reported by Gao et al., who have designed
a ciprofloxacin (Cyp)-loaded PDA NP glycol-chitosan (G-C) hydrogel [105]. Here, NIR irradiation
worked as a trigger for the on-demand release of Cyp allowing spatial and temporal control of the
antibiotic treatment; moreover, the synergistic effect of heat and Cyp led to an excellent antibacterial
efficacy. In addition, Han et al. have integrated PDA nanoparticles into a PNIPAM hydrogel to create a
triple-responsive device [96]. By exploiting NIR irradiation, the hydrogel allowed controlled activation,
drug release, and healing ability.

From a different perspective, melanin photothermal properties can be exploited to generate heat
and thus allow the photothermal treatment of the wounds. NIR light treatment has been proven
effective in accelerating wound closure by modulating the expression of soft tissue regeneration
and inflammation-related genes [106]. Moreover, it has been demonstrated that mild heating of the
wound site can promote recovery as a result of an increase in blood flow and cell proliferation [107].
With an original approach, Gao et al. have combined PDA and graphene oxide (GO) with PAM to
obtain a self-adhesive photothermal hydrogel able to convert solar light into heat efficiently [108].
In vivo experiments under simulated solar light conditions demonstrated that the hydrogel film could
effectively accelerate wound closure while providing antibacterial effect. Figure 13 summarizes the
application of photothermal-responsive melanin hydrogels.
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3.1.2. Films and Membranes

Fibrous membranes, compared to other dressings, presents several attractive structural features,
including an extracellular matrix (ECM)-mimicking architecture, high and modulable porosity, and a
large area to volume ratio. Moreover, as for the hydrogels, fibrous membranes can be functionalized
or loaded with bioactive molecules and drugs. Fibrous biomaterials are uncommon in nature,
but several organic polymers are suitable for the production of biodegradable fibrous dressings through
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different techniques, such as electrospinning, molecular self-assembly, or thermally induced phase
separation [109,110].

Silk fibroin (SF) dressings are gaining increasing attention due to their good biocompatibility,
processability, and mechanical properties; nonetheless, their wound healing ability needs further
implementation. PDA coating has been widely used to improve the healing properties of SF membranes.
PDA can be easily deposed on SF membranes by merely soaking the electrospun membranes in a
DA solution under specific conditions [111,112]. The coat did not critically affect the structure and
architecture of the fibers but increased the fibers’ hydrophilicity and adhesiveness [111], resulting in
a better attachment and spreading of cells together with an increase in proliferation rate. Moreover,
in vivo experiments on full-thickness wound models, demonstrated that the PDA coating accelerated
the healing process in comparison with uncoated membranes by providing a more adhesive surface
and moist environment.

In a different approach, PDA-reduced graphene oxide (pGO) was incorporated into a SF/CS
scaffold as a reinforcing and electroactive nanofiller [113]. Here, the pGO conferred to the dressing
superior mechanical strength and stability in an aqueous environment. In addition, the material was
provided with electroconductivity and antioxidant activity. The authors demonstrated that the electric
stimulation provided through the dressing could regulate cellular behavior by promoting cell growth.
In addition, the combined presence of pGO and PDA reduced the oxidative stress both in vitro and
in vivo and decreased the inflammatory responses during wound healing.

Chen et al. have used PDA to immobilize the pineapple extract bromelain in electrospun
poly(ε-caprolactone) (PCL) fibrous membrane [114]. Bromelain is a proteinase with a known therapeutic
effect on wounds [115]. Indeed, it is able to mediate anti-inflammatory and anti-edematous effects
and capable of hydrolyzing devitalized tissues, thus enhancing the wound healing process [116].
Electrospun fibers show a weak interaction with enzymes; in fact, bromelain-incorporated nanofibers
have demonstrated reduced enzymatic activity and stability. Chen has found that the immobilization
of bromelain via PDA onto PCL fibers markedly improved bromelain stability and supported cell
attachment and proliferation [114]. The combined effect of bromelain and PDA also lend to in vitro
antibacterial activity. Moreover, the obtained wound dressing accelerated the healing process while
decreasing pro-inflammatory markers in a full-thickness wound model in rats [114].

Zhan et al. have exploited the DOPA to functionalize poly(lactic-co-glycolic acid) (PLGA)
electrospun nanofibrous films with basic fibroblast growth factor (bFGF) and ponericin G1 (PonG1) [117].
To this aim, DOPA molecules were introduced to bFGF and PonG1 via recombinant DNA technology
and subsequently applied to the PLGA films. Due to the presence of cresol moieties, DOPA sharply
increased the binding affinity of recombinant bFGF and PonG1 for PLGA and allowed the sustained
release of both bioactive factors over time. In addition, DOPA dramatically improved the hydrophilicity
of PLGA membranes without affecting their mechanical properties. Moreover, the DOPA-PonG1@PLGA
nanofibrous film demonstrated long-term antibacterial activity compared to both bare PLGA and
PonG1@PLGA. In vitro experiments proved that DOPA-modified proteins increased cell growth and
proliferation and could promote collagen deposition and ECM formation (Figure 14). Finally, in vivo
wound healing evaluation revealed that DOPA-modified proteins, and, in particular, the combined
DOPA-bFGF/DOPA-PonG1@PLGA formulation, accelerated the wound closure. Table 2 summarizes
melanins and melanin-like materials for wound healing and the in vitro/in vivo models they have been
tested in.
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Table 2. Summary of melanins/melanin-like materials for wound healing.

Matrix
Melanin/

Melanin-Like
Material

Additives
Experimental Model(s)

Ref.
In Vitro In Vivo

PAM,
nanoclay PDA EGF NIH-3T3

fibroblasts (mouse)
Full-thickness skin

excision (rat) [94]

PEG PDA PUE
Dental pulp stem
cells, periodontal

ligament stem cells

Full-thickness skin
excision (rat) [95]

CS/SF PDA – NIH-3T3
fibroblasts (mouse)

Full-thickness skin
excision (rat) [101]

Gelatin, carbon
nanotubes PDA – L929 fibroblasts

(mouse)

Bleeding liver,
full-thickness skin
excision (mouse)

[102]

Hyaluronic
acid, GO PDA – L929 fibroblasts

(mouse)

Bleeding liver,
full-thickness skin
excision (mouse)

[97]

Nanocellulose PDA TH – Full-thickness skin
excision (rat) [104]

G-C PDA Cyp Normal lung cells
(AT-II) (human)

S. aureus-infection
model, full-thickness
skin excision (mouse)

[105]

PNIPAM PDA – NIH-3T3 fibroblasts
(mouse)

Full-thickness skin
excision (rat) [96]

PANI,
PVA PDA Silver –

S. aureus- and E.
coli-infected diabetic

wound (rat)
[98]

PAM, GO PDA – – Full-thickness skin
excision (mouse) [108]

Gellan gum
Eumelanin

nanoparticles
(Sepia officinalis)

–

Primary
keratinocytes

(human), C3H/a
fibroblast-like cells

(mouse)

Subcutaneous
implantation (mouse) [99]

SF PDA - L929 fibroblasts
(mouse)

Full-thickness skin
excision (mouse) [111]

SF PDA - Mesenchymal stem
cells (rat)

Full-thickness skin
excision (rat) [112]

SF, CS, GO PDA - C2C12 myoblasts
(mouse)

Full-thickness skin
excision (rat) [113]

PCL PDA Bromelain L929 fibroblasts
(mouse)

Full-thickness skin
excision (rat) [114]

PLGA DOPA bFGF
PonG1

BALB/c 3T3
fibroblasts (mouse

embryonic)

Full-thickness skin
excision (rat) [117]
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Figure 14. Quantitative polymerase chain reaction (qPCR) analysis of type 1 collagen
expression by mouse embryonic fibroblast cells cultured on (a) poly(lactic-co-glycolic acid)
(PLGA), (b) PonG1@PLGA, (c) DOPA-PonG1@PLGA, (d) bFGF@PLGA, (e) DOPA-bFGF@PLGA,
and (f) DOPA-bFGF/DOPA-PonG1@PLGA for 7 and 14 days. * p < 0.05. Reproduced with permission
from [117]. Copyright Elsevier, 2020.

3.2. Bone and Cartilage Tissue Engineering

Bone grafting is the second most frequent tissue transplantation worldwide, with over two million
procedures performed every year [118]. To date, autografts are the gold standard for bone healing and
remodeling, with both structural and immunological compatibility [119]. Allo- and xenografts are
also common in clinical; nonetheless, human/animal-derived tissue grafts present some significant
limitations, including limited supply and high financial costs. A variety of synthetic bone substitutes,
including metals, ceramics, and polymers, have been proposed to overcome the limits of natural
bone grafts. Critical requirements for these materials include osteoconductivity, osteoinductivity,
and osteointegration ability [120]. Natural bone is a complex system with a well-defined hierarchical
organization of apatite minerals and fibrillar proteins [121]; bone scaffolds should closely mimic
bone architecture and biomineralization to enhance cell recruitment, proliferation, and differentiation,
finally allowing bone morphogenesis. Similar considerations are valid for cartilage implants. In tissue
engineering, surface modifications are a common strategy to adjust the material’s interface and favor
cell–scaffold interactions. Synthetic bone scaffolds often have a hydrophobic and bioinert nature,
inadequate for cell activities. Melanin-like polymers are an easy and cheap way to improve the
physicochemical features of bone substitutes to stimulate stem cell and osteoblast functions [122,123].
In addition, such polymers have also been demonstrated to promote the biomineralization process.
Indeed, Ryu and collaborators have proposed a universal route to functionalize organic and inorganic
materials by using PDA [124]. Such a route allows integrating hydroxyapatite (HA) in several different
materials, including ceramics, metals, and polymers. Indeed, the free catechol and ammine moieties of
PDA offer a binding site for calcium ions, which serve themselves as an anchor point for phosphate
ions, leading to the formation of calcium phosphate layers in the physiological environment.

3.2.1. Fibrous Scaffolds

Fibrous scaffolds are gaining increasing attention in bone tissue engineering because of their
morphology, able to mimic the architecture of ECM and stem cell niche closely; additionally, the high
surface to volume ratio provides a wide area for stem cell attachment and differentiation. As discussed
above, despite their attractive morphological properties, these scaffolds lack biological recognition.
Several in vitro studies have demonstrated that PDA and DOPA coatings are effective in promoting stem
cells and osteoblasts adhesion and growth on different fibrous scaffolds [125–129]. For example, a recent
study has investigated the behavior of osteoblast-like cells exposed to a PDA-coated polyurethane
(PU)-GO electrospun scaffold [130]. PDA deposition did not affect the structure of the PU-GO scaffold
but significantly improved its hydrophilicity. In vitro studies regarding the scaffolds’ bioactivity
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revealed that the presence of PDA increased the deposition of HA in physiological conditions.
Moreover, when incubated with human osteoblast-like cells, PU-GO-PDA scaffolds were characterized
by higher density, spreading, and proliferation rate compared to bare PU-GO scaffolds. Finally, the
alkaline phosphatase (ALP) activity in PU-GO-PDA seeded cells was significantly higher than PU-GO
samples, indicating that PU-GO-DA scaffolds possess osteogenic ability (Figure 15).
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of MG-63 cells cultured in the presence and the absence of PDA, for 1, 3, and 7 days (* p < 0.05,
** p < 0.005, *** p < 0.0005, **** p < 0.00005). (d) alkaline phosphatase (ALP) activity of MG-63 cultured
in the presence or absence of PDA, for 1, 3, and 7 days (* p < 0.05, ** p < 0.005, *** p < 0.0005,
**** p < 0.00005). Reproduced with permission from [130]. Copyright John Wiley and Sons, 2019.

PDA was also found able to induce the osteogenic differentiation of dental derived stem cells [131].
Indeed, Hasani-Sadrabadi et al. have found that the presence of a PDA layer on PCL membranes
directed the fate of gingival, periodontal ligament, and bone marrow-derived stem cells toward an
osteogenic phenotype, as indicated by the expression of early osteogenic markers [131]. In vivo results
in a periodontal defect model demonstrated higher levels of bone gain on coated membranes compared
to bare PCL and sham groups. Notably, PDA nanoparticles have been proposed recently as an effective
local antioxidant treatment in periodontal disease [132]. Thus, such findings support the possible use
of PDA-coated membranes for guided periodontal tissue regeneration [131].

PDA degradation products have been found able to suppress inflammation in vitro [133]. Despite
this, some authors hypothesized possible adverse effects deriving from PDA debrides for long-term
implantations [134]. In view of this, Deng et al. have designed a PDA-incorporated PCL (PDA/PCL)
hybrid fibrous membrane [134]. The membrane was obtained by coelectrospinning PDA nanoparticles
and PCL, aiming to avoid the release of PDA debrides. Compared to the pristine membrane, the
presence of PDA nanoparticles in the PDA/PCL membrane dramatically increased, in a dose-dependent
manner, the in vitro deposition of HA. In addition, human mesenchymal stem cells demonstrated
better spreading and proliferation, as well as a higher osteogenic differentiation. In vivo data obtained
in a mouse skull defect model proved that the PDA/PCL membranes could accelerate bone remodeling
compared to the pure PCL scaffold.
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3.2.2. 3D Printed Scaffolds

Conventional scaffold processing, such as solvent casting, electrospinning, or phase separation,
have been proven effective to fabricate bone scaffolds. Nonetheless, such processes are not only complex
and require the use of toxic chemicals [135] but also allow for limited control of the scaffold geometry
at microscopic and macroscopic levels [136]. Moreover, because of their limited mechanical properties,
the application of such scaffolds is restrained to nonweight-bearing bone defects [136]. 3D printing has
great potential in bone tissue engineering. First, due to computer-aided design, the manufacturing
process is fast, simple, and does not need organic solvents. In addition, 3D printing enables to create
scaffolds with customized shapes and tailored macro/microarchitecture [137]. Typically, 3D-printed
(3DP) scaffolds are made of synthetic polymers or metals; thus, they present poor surface properties
typical of inert materials. The researchers have made several attempts to modify the surface chemistry
of 3DP scaffolds [138–141] and have found a convenient route in melanin-like polymers. Several in vitro
studies reported the successful use of DOPA and PDA to enhance the bioactivity of 3DP scaffolds and
to efficiently immobilize proteins, growth factors, or active molecules, such as type I collagen and
bone morphogenic protein, on the implant surface [135,142,143]. Several studies have investigated
the effect of modified 3DP scaffolds in preclinical animal models. For example, Xu et al. have
investigated the effects of PDA coating on the osteointegration of 3DP PLGA/β-tricalcium phosphate
(TCP) scaffolds [144]. The results indicated that the PDA coating significantly increased the attachment
and spreading of pre-osteogenic cells in vitro. Proliferation and expression of osteogenic markers
were significantly enhanced, too, with the better results obtained for the scaffold with higher PDA
concentration (2 mg/mL, PDA2). The evaluation of osteogenesis in vivo revealed that the PDA-coated
scaffold had a higher osteogenic potential; indeed, significant new bone formation was observed from
week 2 to week 6, with the highest density observed for PDA2 groups (Figure 16). Similar results in
terms of in vivo osteogenesis have been obtained employing PDA-coated titanium implants [145].

Nanomaterials 2019, 9, x FOR PEER REVIEW 20 of 34 

 

(PDA/PCL) hybrid fibrous membrane [134]. The membrane was obtained by coelectrospinning PDA 
nanoparticles and PCL, aiming to avoid the release of PDA debrides. Compared to the pristine 
membrane, the presence of PDA nanoparticles in the PDA/PCL membrane dramatically increased, in 
a dose-dependent manner, the in vitro deposition of HA. In addition, human mesenchymal stem cells 
demonstrated better spreading and proliferation, as well as a higher osteogenic differentiation. In 
vivo data obtained in a mouse skull defect model proved that the PDA/PCL membranes could 
accelerate bone remodeling compared to the pure PCL scaffold.  

3.2.2. 3D Printed Scaffolds 

Conventional scaffold processing, such as solvent casting, electrospinning, or phase separation, 
have been proven effective to fabricate bone scaffolds. Nonetheless, such processes are not only 
complex and require the use of toxic chemicals [135] but also allow for limited control of the scaffold 
geometry at microscopic and macroscopic levels [136]. Moreover, because of their limited mechanical 
properties, the application of such scaffolds is restrained to nonweight-bearing bone defects [136]. 3D 
printing has great potential in bone tissue engineering. First, due to computer-aided design, the 
manufacturing process is fast, simple, and does not need organic solvents. In addition, 3D printing 
enables to create scaffolds with customized shapes and tailored macro/microarchitecture [137]. 
Typically, 3D-printed (3DP) scaffolds are made of synthetic polymers or metals; thus, they present 
poor surface properties typical of inert materials. The researchers have made several attempts to 
modify the surface chemistry of 3DP scaffolds [138–141] and have found a convenient route in 
melanin-like polymers. Several in vitro studies reported the successful use of DOPA and PDA to 
enhance the bioactivity of 3DP scaffolds and to efficiently immobilize proteins, growth factors, or 
active molecules, such as type I collagen and bone morphogenic protein, on the implant surface 
[135,142,143]. Several studies have investigated the effect of modified 3DP scaffolds in preclinical 
animal models. For example, Xu et al. have investigated the effects of PDA coating on the 
osteointegration of 3DP PLGA/β-tricalcium phosphate (TCP) scaffolds [144]. The results indicated 
that the PDA coating significantly increased the attachment and spreading of pre-osteogenic cells in 
vitro. Proliferation and expression of osteogenic markers were significantly enhanced, too, with the 
better results obtained for the scaffold with higher PDA concentration (2 mg/mL, PDA2). The 
evaluation of osteogenesis in vivo revealed that the PDA-coated scaffold had a higher osteogenic 
potential; indeed, significant new bone formation was observed from week 2 to week 6, with the 
highest density observed for PDA2 groups (Figure 16). Similar results in terms of in vivo osteogenesis 
have been obtained employing PDA-coated titanium implants [145]. 

 

Figure 16. Gross specimens (a) and micro-CT-reconstructed images (b) of experimental animals at 2 
weeks and 6 weeks after bare or PDA-coated scaffold-implantation surgery. Reproduced with 
permission from [144]. Copyright Multidisciplinary Digital Publishing Institute (MDPI), 2019. 

PDA has also been exploited as a reducing platform to grow GNPs on a 3DP PCL scaffolds [146]. 
GNPs can promote osteogenic differentiation [147]; thus, the authors have attempted to create a 
GNPs-coated scaffold for bone remodeling without using any toxic agent. PDA effectively enhanced 
the formation of GNPs on the scaffold surface, compared to bare PCL scaffold, resulting in good 
osteogenic activity in human adipose stem cells. 

Figure 16. Gross specimens (a) and micro-CT-reconstructed images (b) of experimental animals at
2 weeks and 6 weeks after bare or PDA-coated scaffold-implantation surgery. Reproduced with
permission from [144]. Copyright Multidisciplinary Digital Publishing Institute (MDPI), 2019.

PDA has also been exploited as a reducing platform to grow GNPs on a 3DP PCL scaffolds [146].
GNPs can promote osteogenic differentiation [147]; thus, the authors have attempted to create a
GNPs-coated scaffold for bone remodeling without using any toxic agent. PDA effectively enhanced
the formation of GNPs on the scaffold surface, compared to bare PCL scaffold, resulting in good
osteogenic activity in human adipose stem cells.

Table 3 summarizes melanin-like materials for bone regeneration and the in vitro/in vivo models
they have been tested in.
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Table 3. Summary of melanin-like materials for bone tissue engineering.

Matrix
Melanin/

Melanin-Like
Material

Additives
Experimental Model(s) Ref.

In Vitro In Vivo

PCL, gelatin PDA – Adipose-derived stem
cells (mouse) – [125]

PLA PDA – Adipose-derived stem
cells (human) – [126]

PU cellulose
nanofibers PDA – MC3T3-E1 embryonic

osteoblasts (mouse) – [127]

PANI
poly(d,l-lactide) PDA – MC3T3-E1 embryonic

osteoblasts (mouse) – [128]

PCL PDA – Mesenchymal stem cells
(human) – [129]

PU, GO PDA MG-63 osteosarcoma
cells (human) – [130]

PCL PDA – Dental-derived stem
cells (human)

Periodontal defect
(rat) [131]

PCL PDA – Mesenchymal stem cells
(human)

Skull defect
(mouse) [134]

PCL PDA

recombinant
human
bone

morphogenetic
protein-2

MC3T3-E1 embryonic
osteoblasts (mouse) – [135]

PLA, type I
collagen PDA – Bone marrow stem cells

(pig) [142]

Poly(lactide) PDA quercetin MC3T3-E1 embryonic
osteoblasts (mouse) – [143]

PLGA/TCP PDA – MC3T3-E1 embryonic
osteoblasts (mouse)

Critical size skull
defect (mouse) [144]

porous
titanium PDA – Femoral condyle

defect (rabbit) [145]

PCL PDA GNPs Adipose-derived stem
cells (human) Skull defect (rabbit) [146]

3.3. Nerve and Muscular Tissue Engineering

The conductive properties of melanin, as well as its self-healing ability, have suggested the
potential application of melanin and melanin-like materials for neural tissue engineering. Following
severe nerve injury, the repair process is often incomplete, with low functional recovery [148]. Under
these circumstances, autologous transplantation represents the first-choice treatment. Nonetheless,
such a strategy presents numerous limitations, including lack of harvesting sites, rejections, and high
costs for multiple surgeries [148]. Polymeric biomaterials present several advantages over biological
grafts. First, polymers are usually economical, easy to be manufactured, and available in large amounts.
In addition, polymer structure can be adjusted on specific requirements, to control biodegradation,
favor cell attachment, and mimic the mechanical strength and architecture of the tissue that should be
replaced. Nonetheless, most of the available biomaterials do not meet the electrochemical properties of
neural tissues, thus impeding optimal biointegration. Melanins represent a convenient solution to
improve the interaction between neural cells and synthetic devices. In 2009, Bettinger and collaborators
characterized a film of pure synthetic melanin for neural tissue engineering applications [149].
The melanin film, produced via spin-coating, showed semiconductive properties in a fully hydrated
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state, as expected in physiological conditions. The authors have demonstrated that both rat Schwann
and PC12 (a pheochromocytoma cell line) cells showed a more activated phenotype when cultured
on melanin films compared to collagen-coated or uncoated supports. Moreover, in vivo experiments
demonstrated that the foreign response of sciatic nerve and surrounding tissues to synthetic melanin
was qualitatively similar to those induced by silicone, a material commonly used for peripheral nerve
reconstruction. Nonetheless, compared to silicon, melanin presented a faster degradation rate, being
almost wholly degraded 8 weeks after implantation.

More recently, on the path of melanin-modified materials, melanin has been employed to
endow different materials with cytoaffinity and conductivity, to make them suitable for neural tissue
engineering [150]. Several works report the successful use of PDA coating to enhance nerve cell
attachment and organization on nerve conduits [151–154]. Besides, melanins can be exploited to
immobilize neurotrophic factors on synthetic nerve grafts, generating physical and biochemical signals
able to modulate neural cell proliferation and differentiation. For example, Pan et al. have adsorbed
the nerve growth factor (NGF) onto a porous PLGA scaffold via PDA surface modification [155].
PDA-treated scaffolds sustained the proliferation and differentiation of neuronal stem cells to neurons.
Such effect was further improved by the presence of NGF, which also induced a pronounced elongation
of neuron axons. The proregenerative effects of the scaffold were then confirmed in a rat spinal cord
transection model. Here, for PDA-PLGA/NGF-treated animals, a restoration of motor functions and a
reduction of the spinal cord tissue defect were observed. Although NGF plays a critical role in the
regenerative effects, PDA appears to be essential to enhance the adsorption capacity of PLGA for NGF
and to allow its sustained release.

Preliminary studies have demonstrated that melanin composite SF scaffolds support the
differentiation and the organization of myoblast into myotubes, suggesting a possible application
of melanin composite materials in skeletal muscle regenerative approaches [88,156]. In addition,
the conductive properties of melanins can support the growth of cardiac tissue and assist in restoring
the conduction of electric signals [157]. On this path, eumelanin nanoparticles from Sepia ink have
been incorporated in a PVA nanofibrous membrane to obtain an electroconductive scaffold for skeletal
muscle tissue engineering [158]. Eumelanin nanoparticles positively influenced mouse myoblasts’
behavior, inducing both proliferation and differentiation, and the organization into myotube-like
structures (Figure 17).

In addition, Jing et al. have combined PDA and GO to produce a multifunctional CS hydrogel [159].
The hydrogel demonstrated the ability to enhance the viability and proliferation of human embryonic
stem cell-derived fibroblasts and cardiomyocytes. Interestingly, the cardiomyocytes showed a
spontaneous beating activity, which was two times higher for the samples seeded on the composite
hydrogel than on control tissue culture plates. Table 4 summarizes melanin and melanin-like materials
for neural tissue engineering and the in vitro/in vivo models they have been tested in.

Table 4. Summary of melanin-doped materials for neural tissue engineering.

Matrix
Melanin/

Melanin-Like
Material

Additives
Experimental Model(s)

Ref.
In Vitro In Vivo

– Synthetic melanin
film – Schwann cells (rat) Implantation on top of

the sciatic nerve (rat) [149]

Glass, platinum,
indium tin oxide PDA – Hippocampal neurons (rat) – [150]

PU, decellularized
ECM PDA – L929 fibroblasts (mouse),

Schwann cells (human) – [151]

Polystyrene PDA –
PC12 pheochromocytoma cells

(rat), adipose-derived stem
cells (human)

– [152]

PCL, gold PDA – Bone marrow stem cells,
Schwann cells (rat)

Sciatic nerve dissection
(rat) [153]
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Table 4. Cont.

Matrix
Melanin/

Melanin-Like
Material

Additives
Experimental Model(s)

Ref.
In Vitro In Vivo

PCL, graphene PDA – Schwann cells (rat) Sciatic nerve dissection
(rat) [154]

PLGA PDA NGF Neural stem cells (mouse) Spinal cord injury (rat) [155]

SF Synthetic melanin – SH-SY5Y neuroblastoma cells
(human) – [88]

SF Synthetic melanin – C2C12 myoblast cells (mouse) – [156]

poly(L-lactide-co-
ε-caprolactone),

gelatin
Synthetic melanin – Cardiac myocytes (human) – [157]

PVA
Eumelanin

nanoparticles from
Sepia ink

– C2C12 myoblast cells (mouse) – [158]

CS, GO PDA – HEF1 fibroblast cells,
cardiomyocytes (human) – [159]
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Figure 17. (a) Myogenic differentiation of C2C12 on nanofibrous scaffolds. SEM micrographs of 
myoblasts represent the control (i), polyvinyl alcohol (PVA) (v), and eumelanin nanoparticles-PVA 
(ix) at day 1; control (ii), PVA (vi), and eumelanin nanoparticles-PVA (x) at day 3; control (iii), PVA 
(vii), and eumelanin nanoparticles-PVA (xi) at day 7; and control (iv), PVA (viii), and eumelanin 
nanoparticles-PVA (xii) at day 14. (b) Quantification of myotube formation during differentiation of 
C2C12 on PVA, and eumelanin nanoparticles-PVA nanofibrous scaffolds and respective controls at 
day 3 and day 7. (* p < 0.05). Reproduced with permission from [158]. Copyright American Chemical 
Society, 2018. 
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Figure 17. (a) Myogenic differentiation of C2C12 on nanofibrous scaffolds. SEM micrographs of
myoblasts represent the control (i), polyvinyl alcohol (PVA) (v), and eumelanin nanoparticles-PVA
(ix) at day 1; control (ii), PVA (vi), and eumelanin nanoparticles-PVA (x) at day 3; control (iii),
PVA (vii), and eumelanin nanoparticles-PVA (xi) at day 7; and control (iv), PVA (viii), and eumelanin
nanoparticles-PVA (xii) at day 14. (b) Quantification of myotube formation during differentiation of
C2C12 on PVA, and eumelanin nanoparticles-PVA nanofibrous scaffolds and respective controls at
day 3 and day 7. (* p < 0.05). Reproduced with permission from [158]. Copyright American Chemical
Society, 2018.
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4. Conclusions

A growing body of literature reports the successful use of synthetic melanin-like materials and
their derivatives as doping/coating materials for several types of dressings and scaffolds for tissue
regeneration. These multifunctional polymers can improve the physical, chemical, and mechanical
characteristics of a wide variety of materials for skin, bone, and neural tissue repair. Moreover, they allow
for the immobilization and controlled release of therapeutic agents or biomolecules (growth factors,
protein, or cytokines) on materials’ surfaces. In addition, because of their prominent photothermal
properties, melanins could be exploited to obtain, through quite simple routes, smart dressings/scaffolds
suitable for PTT. Photothermal stimuli could also work as a trigger to spatially or temporally control
the release of immobilized molecules; thus, melanin-modified materials, in association with PTT, could
have a high potential as both medications and drug delivery vehicles in tissue regeneration. Finally,
the ionic/electronic conductivity suggests that melanin could be possibly used in electroactive tissue
engineering, despite, currently, the reports in this specific field are limited and mostly confined at an
in vitro level.

The use of melanins and their derivatives as coating materials has been extensively studied and,
by now, appears as a well-established procedure to produce multifunctional materials for regenerative
purposes. In contrast, nanostructured melanins, deeply investigated in other biomedical fields,
are mostly unexplored in tissue regeneration. As reported, nanostructured melanins have good
potential as theranostic agents. With proper designs, melanin nanoparticles could pave the way for
smart materials suitable for both tissue engineering and bioimaging applications. Such devices could
restore tissue structure and functions and allow for monitoring healing progression with noninvasive
techniques, such as PAI or MRI. Thus, focusing the research efforts on the development of nanostructured
systems could represent a step forward in the application of melanins in tissue engineering.
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Abbreviations

3DP 3D printed
ALP alkaline phosphatase
bFGF basic fibroblast growth factor
CS Chitosan
CT computed tomography
Cyp Ciprofloxacin
DA Dopamine
DHI 5,6-dihydroxyindole
DHICA 5,6-dihydroxyindole-2-carboxylic acid
EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EGF epidermal growth factor
G-C glycol-chitosan
GO graphene oxide
hKCs human keratinocytes
L-DOPA L-3,4-dihydroxyphenylalanine
LMCT ligand to metal charge transfer
MRI magnetic resonance imaging
NGF nerve growth factor
NIR near-infrared
PAI photoacoustic imaging
PAM Polyacrylamide
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PANI Polyaniline
PCL poly(e-caprolactone)
PDA Polydopamine
pDHN poly-1,8-dihydroxynaphthalene
PEG poly(ethylene glycol)
PET positron emission tomography
pGO polydopamine-reduced graphene oxide
PLA poly(lactic acid)
PLG poly(L-lactide-co-glycolide)
PLGA poly(lactic-co-glycolic acid)
PMPDA NPs PEGylated Mn2+−PDA nanoparticles
PNIPAM poly(N-isopropylacrylamide-co-acrylamide)
PonG1 ponericin G1
PTT photothermal therapy
PU Polyurethane
PUE Puerarin
PVA polyvinyl alcohol
qPCR quantitative polymerase chain reaction
RONS reactive oxygen and nitrogen species
ROS reactive oxygen species
SEM scanning electron micrographs
SF silk fibroin
SMNP synthetic melanin nanoparticles
SNpc substantia nigra pars compacta
TCP β-tricalcium phosphate
TEM transmission electron microscopy
TH tetracycline hydrochloride
UV Ultraviolet
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