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The gating of movement depends on activity within the cortico-striato-thalamic loops. Within these loops, emerg-
ing from the cells of the striatum, run two opponent pathways—the direct and indirect basal ganglia pathways.
Both are complex and polysynaptic, but the overall effect of activity within these pathways is thought to encour-
age and inhibit movement, respectively. In Huntington’s disease, the preferential early loss of striatal neurons
forming the indirect pathway is thought to lead to disinhibition, giving rise to the characteristic motor features of
the condition. But early Huntington’s disease is also associated with apathy, a loss of motivation and failure to en-
gage in goal-directed movement. We hypothesized that in Huntington’s disease, motor signs and apathy may be
selectively correlated with indirect and direct pathway dysfunction, respectively.
We used spectral dynamic casual modelling of resting-state functional MRI data to model effective connectivity in
a model of these cortico-striatal pathways. We tested both of these hypotheses in vivo for the first time in a large
cohort of patients with prodromal Huntington’s disease. Using an advanced approach at the group level we com-
bined parametric empirical Bayes and Bayesian model reduction procedures to generate a large number of compet-
ing models and compare them using Bayesian model comparison. With this automated Bayesian approach, associ-
ations between clinical measures and connectivity parameters emerge de novo from the data.
We found very strong evidence (posterior probability 4 0.99) to support both of our hypotheses. First, more severe
motor signs in Huntington’s disease were associated with altered connectivity in the indirect pathway compo-
nents of our model and, by comparison, loss of goal-direct behaviour or apathy, was associated with changes in
the direct pathway component.
The empirical evidence we provide here demonstrates that imbalanced basal ganglia connectivity may play an im-
portant role in the pathogenesis of some of commonest and disabling features of Huntington’s disease and may
have important implications for therapeutics.
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Introduction
Huntington’s disease is an autosomal-dominant neurodegenera-
tive condition caused by a triplet repeat expansion in the hunting-
tin (HTT) gene on chromosome 4.1,2 While the aetiology of
Huntington’s disease is clear, the pathogenesis of many of the core
clinical motor, cognitive and behavioural features of Huntington’s
disease remain to be established. Although Huntington’s disease
ultimately affects almost the entire brain, early degeneration of
the striatum is canonical of this disorder both pathologically and
on structural imaging.3,4 The striatum, however, is not a homoge-
neous structure. As the input node to the basal ganglia it has a
complex anatomy. The medium spiny neurons (MSNs) of the stri-
atum form a wide range of compartments and pathways.5–7 For
Huntington’s disease, this anatomical complexity is of relevance
because the disorder does not affect all striatal MSN populations
equally.8,9 Cortico-striatal connections, which are topographically
arranged, form the input to the striatum.10,11 These cortical projec-
tions synapse with MSN populations that fall broadly into two key
groups—those forming the direct and the indirect pathways.12,13

They form unique and complex polysynaptic connections with
other basal ganglia structures, such as the globus pallidus, subtha-
lamic nucleus (STN) and substantia nigra.7 Overall, these two path-
ways form opponent channels that regulate thalamic control over
cortical activation.10 In the motor system the activity of the direct
pathway encourages movement, whereas the indirect pathway ac-
tivity inhibits or reduces movement.14–16 Although all MSNs are
susceptible to degeneration in Huntington’s disease, those of the
indirect pathway appear more susceptible earlier in the dis-
ease.9,17,18 Based on these observations it has been hypothesized
that changes in connectivity within the indirect pathway would be
associated with the emergence of motor signs in Huntington’s dis-
ease, which are characterized by erratic, noisy and disinhibited
movements such as chorea, dystonia, incoordination and jerky
eye movements.19 Despite the widespread reference to this
hypothesis, we know of no direct neuroimaging evidence
supporting it.

Establishing the role of altered basal ganglia connectivity in the
pathogenesis of Huntington’s disease may also have a wider clinic-
al relevance beyond simply understanding motor signs. Alongside
the motor features of the condition, Huntington’s disease is associ-
ated with a marked psychiatric phenotype. Although associated
with a range of psychiatric disturbances, there appears to be a
unique relationship between Huntington’s disease and the
development of apathy. Apathy, the loss of motivation and goal-
directed behaviour, is a complex construct with a range of anatom-
ical regions and neurochemical pathways hypothesised to play a
role. Apathy is, however, highly prevalent in Huntington’s
disease.20 Apathy in Huntington’s disease also tracks closely with
disease progression even in premanifest and prodromal cohorts.21

Despite the high prevalence of apathy in Huntington’s disease, its

pathogenesis is poorly understood and treatments are sorely
lacking.22,23

Based on these epidemiological observations closely tying ap-
athy to disease progression in Huntington’s disease, we hypothe-
sized that motor signs and apathy in early Huntington’s disease
may also be a feature of basal ganglia pathway dysregulation.
However, unlike motor signs, we hypothesized that apathy may

We base this hypothesis on two strands of evidence. First, as
alluded to above, activation of the direct pathway MSNs is thought
to encourage free operant movement.14–16 The lack of free-operant
action initiation is a characteristic feature of behavioural apathy
and disruption to the direct pathway may hamper this final stage
of goal-directed behaviour—the expression of action.24–26 Second,
computational models of basal ganglia function propose that as a
result of the physiological asymmetry in dopamine receptor ex-
pression, these pathways not only play opponent roles in motor
expression but also in goal-directed behaviour.27–30 Dysfunction in
this pathway may therefore disrupt both the neural circuits neces-
sary to take goal-direct action and impair the computational value
associated with taking an action.

In summary, we sought to test two hypotheses—first, that
motor signs in Huntington’s disease would be associated with
altered indirect pathway connectivity and second, that apathy in
early Huntington’s disease may be associated with change in dir-
ect pathway connectivity.

To test these hypotheses, we used a neuroimaging technique
to model direct and indirect pathway dysfunction. Canonically,
these pathways are distinguished by change in activity that they
cause within the thalamic nuclei. Within a neuroimaging frame-
work, this causal connectivity is described as effective connectiv-
ity.31 Here we leverage the difference in both anatomical and
effective connectivity to test our key hypotheses. To study effect-
ive connectivity, we use a Bayesian framework known as dynamic
causal modelling (DCM) to build a simplified model of our path-
ways of interest.32–35 We based the model of these pathways on
previous work in Parkinson’s disease but using several techno-
logical advances to test our hypotheses.36 First, we used spectral
DCM, a technique shown to outperform stochastic DCM for rest-
ing-state functional MRI data analysis.37,38 Second, at a group level,
we used parametric empirical Bayes (PEB) to model how individual
(within-subject) connections relate to between-subject factors
such as motor scores.39 In this manner, our approach accounts for
both expected values and model uncertainty throughout our ana-
lysis. Finally, we did not specifically test our hypotheses, but ra-
ther allowed an automated Bayesian procedure, called Bayesian
model reduction (BMR). This approach allowed us to determine
whether our hypothesized correlations between clinical scores
and connectivity parameters emerged from the data de novo.39–41

Here we demonstrate, in a large cohort of patients with pro-
dromal Huntington’s disease from the TRACK-ON HD study, that
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motor signs and apathy in Huntington’s disease are associated
with unique basal ganglia connectivity profiles.42 Furthermore, we
found that as hypothesized, higher motor scores were associated
with connectivity changes in the indirect pathway components of
our model. By comparison, higher apathy scores were associated
with altered direct pathway connectivity changes.

Material and methods
Sample

Data collected as part of the TRACK-ON HD were used in this ana-
lysis as previously described.42 For this analysis, data from the
third (and last) TRACK-ON visit were used. Participants aged below
18 or over 65 were not recruited and participants with major psy-
chiatric, neurological, medical disorder or history of head injury
were excluded. Participants with the Huntington’s disease muta-
tion all had 540 CAG repeats and a disease burden score of 4250
at baseline. The study was approved by the local ethics commit-
tees and all participants gave written informed consent according
to the Declaration of Helsinki. Sample characteristics are described
in Table 1. Of 102 scans that passed quality control, two partici-
pants were excluded for antipsychotic use. A further six partici-
pants who were left-handed were excluded, leaving data from 94
Huntington’s disease gene carriers in the peri-manifest phase of
the disease in this study. Although group differences were not the
focus of this study, data from 85 right-handed control participants
were also used to replicate baseline network connectivity as
described below.

Clinical outcomes

Two primary outcomes were used in this study—Unified
Huntington’s Disease Rating Total Motor Score (TMS) and the self-
rated Baltimore apathy scale (BAS).43,44 The motor score assesses
the severity of 31 common neurological features such as chorea,
dystonia, bradykinesia and oculomotor signs. The maximum score
possible is 124. Due to the early stage of disease in these patients,
and the relatively mild motor signs in the cohort (mean score 10.5;
Table 1), the TMS was used as opposed to specific subscales which
would be underpowered. The BAS consists of 14 items with scores
ranging from 0 to 42, where a higher score represents a higher de-
gree of apathy. Self-rated apathy scores were used for this ana-
lysis. Self- and carer-rated apathy have good interrater reliability,
especially in the absence of significant cognitive impairment.44–46

To control for the effects of depression, Beck Depression Inventory
scores were used as a covariate in the apathy analysis.47

The BAS was developed based on expert opinion and comprises
14 items which Chatterjee et al.44 described as capturing different
dimensions of apathy. Unlike the other apathy scales, no clear
subtypes of apathy (behavioural, emotional, cognitive, etc.) are
identified within the scale; however, the scale is weighted towards
behavioural apathy. Each item is scored from 0 to 3 with scores
ranging from 0 to 42, with higher scores indicating higher apathy.
The interrater agreement between patient- and carer-rated apathy
were highest when cognitive impairment was minimal, as would
be the case in a study like TRACK-ON HD. Chaterjee et al.44

described using a median split to categorize patients as being
apathetic, which equated to a patient rated score of greater than
15. Based on Supplementary Fig. 2 and Table 1, our sample was
therefore not markedly apathetic, although we did see a range of
scores even at this early stage in the disease.

MRI data acquisition

3 T MRI data were acquired at four sites: London, Paris, Leiden and
Vancouver. T1-weighted image volumes were acquired using a 3D
MPRAGE (magnetization prepared rapid gradient echo) acquisition
sequence as described by Kloppel et al.42 For resting-state function-
al MRI, whole-brain volumes were acquired at a repetition time of
3 s using a T2*-weighted echo planar imaging (EPI) sequence with
the following parameters: echo time 30 ms, field of view 212 mm,
flip angle 80�, 48 slices in ascending order (slice thickness: 2.8 mm,
gap: 1.5 mm, in-plane resolution 3.3 � 3 mm) and bandwidth of
1906 Hz/Px. In total 165 volumes were acquired over 8:20 min fol-
lowed by field map acquisition.

MRI preprocessing

MRI image preprocessing and quality control were as described in
Kloppel et al.42 In brief, the first four EPI images were discarded to
allow for steady-state equilibrium. Images were realigned and
underwent inhomogeneity correction where field maps were avail-
able. EPI images were co-registered to anatomical images and nor-
malized to MNI (Montreal Neurological Institute) space. Data were
smoothed with a 6 mm full-width at half-maximum Gaussian ker-
nel. Data underwent significant quality control as described by
Kloppel et al.42 Manual quality control (QC) along with the use of
ArtRepair and tsdiffana were used to assess for significant move-
ment before preprocessing. More details from Kloppel et al.42

regarding the quality control procedures are described in the
Supplementary material.

Additionally, we computed the mean, and cumulative, framew-
ise displacement (FWD) as per Power et al.48 Although there is no
established cut-off, Power et al. suggest an FWD of 5 0.5 mm. In
this study, overall movement was very limited in both groups. In
the control group, mean FWD was 0.22 ± 0.15 mm (max in group =
0.88 mm). In the Huntington’s disease gene carrier group, mean
FWD was 0.23 ± 0.12 mm (max in group = 0.63 mm). Importantly,
there was no significant difference between groups [t(177) = 0.10,
P = 0.9], suggesting that additional movement in the Huntington’s
disease group was not excessive. Unsurprisingly, there was a weak
correlation between Huntington’s disease motor score and FWD
(r = 0.36, P5 0.01) and no correlation with apathy (r = 0.12, P = 0.23).
During preprocessing this movement is corrected for and as
described below the in-scanner movement is controlled for in both
the placement of regions of interest and during the extraction of
the eigenvariate. There is thus no clear reason to believe that
movement would affect one subset of connections above others.
Mean FWD and cumulative FWD plots by group and clinical vari-
able are shown in the Supplementary Figs 6 and 7.

Table 1 Sample demographics of 94 Huntington’s disease gene
carriers who underwent resting-state functional MRI as part of
the TRACK-ON study

Gene carriers
(n = 94)

Age, mean (±SD) 45.5 (±8.9)
% Female 50
Mean CAG repeat length 43.1 (±2.3)
TMS 10.5 (±8.5)
Apathy score 10.9 (±6.0)
Depressive scores 6.6 (±6.8)
Number by scanner type (Siemens/Philips) 52/42

Apathy measured using the Baltimore Apathy Scale. Depressive symptoms meas-

ured using the Beck Depression Inventory. Spread of Unified Huntington’s Disease

Rating Scale Total Motor Score and apathy scores in the Supplementary material.

Table shows mean ± SD unless otherwise stated.
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Region of interest specification

A summary schematic of the pipeline used to analyse the resting-
state functional MRI data is shown in Fig. 1. For this analysis, time
series were extracted from four predefined regions of interest to
make up the motor basal ganglia loop—the motor cortex, motor
thalamus, motor putamen and the STN. With the exception of the
STN, time series were extracted from spheres seeded within ana-
tomical masks defined in a standard space. An anatomical mask
of Brodmann area 4 from Wake Forest University Atlas was used to
define the motor cortex.49 The motor putamen and motor thal-
amus masks were defined from probabilistic connectivity atlases
with a threshold of 50% probability.50,51 The STN was not manually
defined in this study. Instead, a mask made available by Keuken et
al.52 was used. This mask, defined in MNI space, was derived from
the accurate high-resolution delineation of STN using 7 T imaging,
also assessing the impact of age. Based on the sample characteris-
tics in this study (mean age 45.5 ± 8.9), the mask for middle-aged
individuals was used again with a conservative threshold of 450%
probability. Given the size of this structure and the spatial reso-
lution of functional imaging, the time series extracted may also
contain signals from adjacent structures.

Resting-state functional MRI modelling with GLM

Using the preprocessed scans, a dummy GLM (General Linear
Model) was created to extract nuisance time series from the pons
and ventricles. To better model resting state low frequency fluctu-
ations, we then used a discrete cosine transform (DCT). In sum-
mary, this approach consists of 189 cosine basis functions
modelling frequencies in the typical resting state range of 0.0078–
0.1 Hz.36,53–56 We created a GLM containing these DCT regressors as
well as the nuisance time series extracted as described above
alongside six movement regressors.

An F-contrast was used over the DCT frequencies to identify
regions that showed resting state activity within the motor cortex.
Based on this contrast, within the BA4 mask, a 6-mm sphere was
placed at the location which showed the highest activity in the fre-
quencies of interest. From this sphere the principal eigenvariate
(adjusting for head movements and nuisance time series) was
extracted. This procedure summarizes the time series from all of
the voxels in the sphere into one representative time series for the
region of interest. The variance explained by the eigenvariate in
the M1 region of interest had a mean of 67% with a variance of
±11.5%. The principal eigenvariate from the entire STN mask was

also extracted as above with variance explained mean of 87% with
a variance of ±4.3%. The time series extracted from the motor cor-
tex was then used to determine the location of a 4-mm sphere
placed within the motor putamen and motor thalamic masks. The
centre of these spheres was placed within each mask at the coordi-
nates that showed the strongest correlation with the M1 time ser-
ies regressor. The principal eigenvariate was extracted from these
spheres controlling for the same confounders showing variance
explained with a mean of 76% (variance: ±8.6) and 77.3% (variance:
±8.4) in the putamen and thalamus, respectively. Example time
series extracted from these regions of interest is shown in
Supplementary Fig. 1.

Dynamic casual modelling and specification of the
connectivity matrix

Based on previously published work, we used a simplified circuit
representing the direct, indirect and hyper-direct pathway as
shown in Fig. 2.36 Here we do not model connections involving the
globus pallidus; instead, we use a simplified circuit involving
motor cortex, putamen, thalamus and STN as described by Kahan
et al.36 A forward connection from M1 to motor putamen repre-
sents the input to the network from the motor cortex. The motor
putamen was modelled as having two forward connections—one
connecting it to the motor thalamus, forming the ‘direct pathway’
of our model, and a second connection linking it to the STN, the
first component of the ‘indirect pathway’ of our model. The STN
was modelled as having a further connection to the thalamus,
forming the second connection within the model’s indirect path-
way. A further direct connection between the cortex and the STN
was specified representing the hyper-direct pathway. These basal
ganglia pathways are shown as a schematic in Fig. 3A–C.

Having specified this network, or A-matrix, we used spectral
DCM packaged as part of SPM12 to infer effective connectivity
parameters. Unlike stochastic DCM, spectral DCM inversion does
not predict the time series extracted from each node, but rather
estimates their cross-spectral density.37 This approach is more ac-
curate at recovering parameters and estimated second-level
effects such as group differences.38 In DCM, we do not specify the
valence of the connections between nodes and allowed these to be
estimated from the data. The positive connectivity value refers to
an excitatory connection, whereas the negative connectivity value
refers to an inhibitory influence.
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Figure 1 Summary of the resting state functional MRI analysis pipeline used in this study. See text for more details.
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The true complexity of the basal ganglia circuitry is such that
simplification is necessary when using (3 T) functional imaging
data. Perhaps the most striking may be that in this work the globus
pallidus structures are not modelled, which was also an approach
adopted by Kahan et al.36 This decision was made with two com-
plementary points in mind: (i) to minimize risk of overlap between
nodes; and (ii) to limit model complexity while, we argue, retaining
the key features of the network.

First, the inclusion of the globus pallidus segments would have
necessitated the inclusion of multiple small adjacent nodes from
which to extract neural data. While possible, this would have
increased the risk of artificial dependencies arising within the data.
Second, although perhaps more anatomically accurate, we believe
that the inclusion of these nodes would not have added any more
clarity to the results. Additional nodes would have resulted in add-
itional components to each pathway. Also, both the direct and indir-
ect pathways drive activity in the globus pallidus; however, it is the
(positive) driving effective connectivity between the striatum and
thalamus which defines the function of the direct pathway and the
inhibition of the thalamus via the STN which defines the indirect
pathway. These aspects are modelled using our approach.

Hypothesis testing with PEB and BMR

The DCM specified above was estimated for each participant sep-
arately. The DCMs performed well with variance explained of
83.1% (variance: ±9.7%) in the patient cohort and 83.8% (variance:
±8.4%) in the control cohort. Inference on clinical scores was per-
formed using PEB.39 This is a between-participants hierarchical
Bayesian model that models how connections at the individual

level, such as connectivity parameters, relate to between subject
factors, such as motor score. At the first level, individual partici-
pant parameters were estimated using spectral DCM. The PEB ap-
proach then considered these parameters at the second level as
having group means and between-participant variability, which
could be explained by between participant factors.

In this procedure, first a parent model—which can be sparse (as
here) or fully connected—is estimated in which all regressors of inter-
est such as motor score and covariates are modelled as having an ef-
fect on any of the connections specified in the subject-level DCMs. In
order to test our hypotheses, we combined this approach with a BMR
procedure.40,41 BMR procedure scores all nested (reduced) models by
turning off parameters that do not contribute to the model evidence. In
brief, BMR enables the (greedy) search of very large model space by
scoring each (reduced) model based on model evidence or free en-
ergy. The parameters of the best 256 reduced models from this search
procedure are then averaged, weighted by their model evidence (i.e.
Bayesian Model Averaging). In essence this procedure first assumes
that all pathways may be associated with a clinical variable and then
proceeds to sequentially remove associations between variables and
pathways if they worsen model performance. For further details see
refs.40,41 This procedure derives the posterior densities of the param-
eters by marginalizing over the models accounting for model uncer-
tainty. In this manner, parameter estimates are not heavily
influenced by models with high levels of uncertainty.

Estimates of parameter strength are outputted along with the
posterior probability of the parameters being non-zero. These
parameters represent the rate of change in activity in the afferent
node, measured in Hz, caused by activity in the efferent node. As
described by Kahan et al.36 they can be thought of as the sensitivity
of the target node to the source. The PEB models we specified con-
trolled for age, gender and scanner type. The effect of motor score
and depressive scores were then additionally controlled for in
analyses of apathy in the Huntington’s disease sample. Group
comparison was not the focus of this study; however, data from
control participants were used to replicate the baseline connectiv-
ity profile (as shown in Supplementary material). Regressors were
mean-centred, allowing the interpretation of the first covariate of
the model to be the average connectivity weights in the network.
We only report connections that have a posterior probability of
40.99 (which refers to very strong statistical evidence). Scanner
type was modelled as a dummy variable and included as a covari-
ate in every model. There was an effect of scanner on putamen to
thalamus connection [–0.4, posterior probability (pp) 4 0.99]; how-
ever, this was controlled for in the results presented.

Having estimated the effect of clinical covariates on connection
strengths at a group level, we completed a Bayesian leave-one-out
cross-validation procedure, as implemented in SPM, to determine
whether these weights could themselves be predictive of an indi-
vidual participant’s symptom scores. Cross-validation of this sort
provides out of sample estimates of predictability (i.e. the predict-
ive validity of the connectivity strength from a new participant).41

There is no leakage between the parameters in this analysis as the
model is re-estimated with the exclusion of the test case.

Data availability

Data will be shared on reasonable request post publication.

Results
Sample demographics

Our sample consisted of Huntington’s disease gene carriers and
controls recruited into the TRACK-ON study who had both clinical

Figure 2 Schematic of the basal ganglia network modelled in this study
(the DCM ‘A-matrix’). The direction of the arrows indicates that direc-
tion of effective connectivity entered into the model. Arrows looping
back to the same node represent inhibitory self-connections specified
in the DCM.
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and neuroimaging data available. This cohort is peri-manifest
with 34 of 94 patients having been diagnosed with early
Huntington’s disease. In the early-stage Huntington’s disease co-
hort, the mean TMS was 17.9 (±9.2). See Table 1 for details of the
sample.

Average connectivity parameters show a network-
supressing motor cortex activity

During data collection for resting state analysis, participants were
explicitly asked to stay still across the scanning session. In keeping
with this, average connectivity parameters showed active suppres-
sion of the driving input from the motor cortex. The net output
from this system via the thalamocortical connection was to
supress motor cortical activity (–0.39 Hz, 95% CI: –0.47 to –0.31 Hz,
pp 4 0.99). The ‘direct pathway’ component of our model, the
striato-thalamic connection, was found to be excitatory (0.43 Hz,
95% CI 0.37 to 0.50 Hz, pp 4 0.99). By comparison, the two compo-
nents of the ‘indirect pathway’ were found to be inhibitory: sub-
thalamic–thalamic (–0.1 Hz, 95% CI: –0.15 to –0.04 Hz, pp 4 0.99)
and striato-subthalamic (–0.17 Hz, 95% CI: –0.24 to –0.11 Hz, pp 4

0.99). These data are shown in a schematic in Fig. 4 with green
arrows representing excitation, red arrows representing inhibition
and grey arrows representing non-significant effective connectiv-
ity. This connectivity profile was replicated in a cohort of control
participants (n = 85) from the same study as shown in
Supplementary Fig. 3 and Supplementary Table 1. No significant
differences between parameter connectivity were found between
groups in the between-node connectivity parameters, suggesting
that the profile of connectivity replicated in two independent
samples.

Altered connectivity basal ganglia connectivity
associated with TMS and apathy scores

Using the PEB and BMR procedure (see ‘Materials and methods’
section), we tested the hypothesis that changes in connectivity

Figure 4 Schematic showing the average parameter values in the mod-
elled network, across all 94 Huntington’s disease subjects, for between-
node connections. Red arrows indicate suppression of activity, green
arrows indicate excitation and grey arrows indicate non-significant
connections. Coloured arrows represent connections with a posterior
probability of 40.99 for being greater than 0. Overall, the network activity
shows a suppression of M1 activity, which may be expected given that
subjects are explicitly trying to remain still. Negative self-connections are
shown as curved arrows looping back to the node—their values are
described in Supplementary Table 1. Model adapted from Kahan et al.36

Figure 3 This model generates simplified representations of three pathways of interest. (A) The direct pathway is composed of the connection be-
tween putamen and thalamus. (B) The indirect pathway components are the putamen–STN connection and the STN–thalamic connection. (C) The
hyperdirect pathway comprises a connection from the motor cortex to the STN.
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strength within our basal ganglia network would be associated
with in TMS and apathy scores. We report only connections found
to have very strong evidence (pp 4 0.99) of being associated with
clinical scores. We went on to test whether the strength of these
identified connections could predict clinical scores using a leave-
one-out cross-validation analysis. The results for motor and ap-
athy analyses are shown graphically in Fig. 5A and B, respectively.
Both analyses control for age, sex and scanner type, while apathy
analysis also controls for depression and motor score. Results are
given as normalized beta values with no units.

Motor score associated with changes in indirect pathway
connectivity parameters

As shown in Fig. 5A, we found that TMS was positively associated
change in both indirect pathway components of our model:
striato-STN (0.013, 95% CI: 0.005 to 0.021, pp 4 0.99) and STN–thal-
amic (0.011, 95% CI: 0.005 to 0.018, pp 4 0.99). With reference to
Fig. 4, this means that as motor score increased, these connections
became less inhibitory.

The weights from the two components of the indirect pathway
of our model significantly predicted TMS (r = 0.17, P = 0.047) in a
leave-one-out cross-validation analysis.

TMS was also negatively associated with cortico-striatal con-
nectivity (–0.009, 95% CI: –0.014 to –0.004, pp 4 0.99) and thalamo-
cortical connectivity (–0.019, 95% CI: –0.030 to –0.009, pp 4 0.99).
TMS was positively associated with STN self-connection (0.01, 95%
CI: 0.006 to 0.016, pp 4 0.99).

Apathy scores associated change in direct pathway
connectivity scores

By comparison, total apathy score was positively associated with
strength of the direct pathway component of our model, the
striato-thalamic connection (0.022, 95% CI 0.014 to 0.03, pp 4 0.99).
With reference to Fig. 4, this means that as the striato-thalamic
connection becomes more excitatory, apathy scores were found to
be higher.

Although strong evidence for this effect exists at a group level,
weights of the striato-thalamic connection were not strong
enough to predict individual apathy scores in a leave-one-out
cross-validation analysis (P = 0.30)/

Apathy was also negatively associated with STN self-inhibition
(–0.013, 95% CI: –0.018 to –0.007, pp 4 0.99).

The individual parameter estimates by clinical score for both
motor and apathy signs are shown in Supplementary Figs 4 and 5,
respectively.

Discussion
We show using functional neuroimaging that motor signs and ap-
athy in Huntington’s disease are associated with unique profiles of
altered effective connectivity within basal ganglia pathways. We
found strong evidence at a group level that higher motor scores in
a large cohort of peri-manifest Huntington’s disease patients were
associated with altered coupling in the indirect pathway of our
model. By comparison, we identified that apathy scores in
prodromal Huntington’s disease may be associated with changes
only in striato-thalamic or direct pathway connectivity within
our model.

We found that motor signs were associated with less inhibition
in the striato-STN and STN–thalamic components of our model,
whereas apathy was associated with increased coupling between
putamen and thalamus. Given our hypotheses, the motor results
are perhaps more intuitive than the apathy results; however, both
should be interpreted with caution. Although our hypotheses are
based on rate-coding models of striatal function, given the limita-
tion of interpreting blood oxygenation level-dependent signals we
do not interpret our results as demonstrating more or less activity
in the cell populations we hypothesized. Instead, we simply report
evidence that motor signs and apathy were associated with unique
basal ganglia connectivity profiles with changes in connectivity
associated with each clinical feature mapping onto the connec-
tions we hypothesized, within the confines of our model. Our find-
ings may represent a range of pathological processes such as

Figure 5 Association between inter-node connectivity parameters and (A) TMS and (B) Baltimore apathy score. Green and red arrows indicate which
connections were found to be associated with clinical variable with 499% posterior probability using PEB. Grey arrows show connections from the
connectivity matrix not found to be associated with clinical scores. Green arrows represent evidence of a positive relationship between connection
strength and clinical scores, whereas are arrows represent a negative relationship between clinical score and connection strength.

997|BRAIN 2022: 145; 991–1000Huntington’s disease motor and apathy scores associated with BG connectivity

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab367#supplementary-data


altered rating coding, synaptic dysfunction or altered basal ganglia
synchrony.

Although the hypothesis that indirect pathway dysfunction
drives the development of motor features of Huntington’s disease
is well established, we know of no previous neuroimaging research
demonstrating a link between motor score and basal ganglia con-
nectivity in Huntington’s disease research. Furthermore, in this
paper we find evidence for novel hypothesis: that apathy in
Huntington’s disease may also in part be driven by impaired basal
ganglia connectivity, perhaps in the direct pathway. Activity in
this pathway drives free-operant movement, a feature commonly
lacking in apathy.14–16 Computational models of basal ganglia
function argue that, via dopaminergic learning signals, the direct
pathway cells effectively accrue the value of taking an action.28–30

Impaired coupling within this pathway may therefore disrupt both
the striatal machinery necessary to take goal-directed actions and
the neural representations of the value of those actions. Here we
present evidence to support this novel hypothesis.

We believe this study has a number of design strengths. To test
our hypotheses, we used data from a large cohort of Huntington’s
disease gene carriers who were expressly recruited around the
time of motor onset. Many motor signs in Huntington’s disease are
not actively elicited and occur at rest—as such, resting state data
have considerable ecological validity in trying to understand these
features of the disease. The same may be said of apathy. In order
to analyse these data, we used spectral DCM, which has been
shown to have several benefits when analysing resting state
data.37,38 Using this technique, we found a network whose net out-
put was to reduce activity in the motor cortex. There are few exist-
ing data with which to compare these results, but this profile was
also replicated in a supplementary control cohort in a separate
analysis. We tested the relationship between clinical variables and
connections within the network using an advanced Bayesian ap-
proach.39–41 This procedure compares many competing hypothe-
ses and only those with the strongest evidence survive. As such,
our a priori predictions were not directly tested but were confirmed
de novo from the data themselves. In both analyses, we found very
strong evidence to support our main hypotheses at a group level.
In subsequent analyses to assess translatability to an individual
case, we asked whether individual clinical scores could be pre-
dicted by the weights of the connections we identified at the group
level. Using a leave-one-out cross-validation procedure we found
that only motor scores could be predicted from the connections
strengths, not apathy scores.

We would also like to draw attention to a few limitations of this
study. First, in both analyses we found modest effect sizes. This is
perhaps unsurprising. First, in both cases we are sampling from a
small region of each structure, and it is unlikely that all clinical
change can be attributed to such a restricted region of interest.
Second, many neural changes are associated with Huntington’s
disease and the pathogenesis of both motor signs and apathy are
likely to be biologically heterogeneous. In the case of apathy in
particular the literature refers to a range of subtypes—for example,
emotional, cognitive, social and behavioural. These subtypes of
apathy are believed to have different neurological correlates. Due
to the nature of the scale used in this study, we are not able to dis-
tinguish these subtypes; however, the scale used weighted it to-
wards behavioural apathy. Furthermore, multiple neurological
mechanisms likely contributed to the development of apathy in
Huntington’s disease such as white matter changes, involvement
of cortical structures or indeed the involvement of other striatal
compartments, such as striasomes, which we are unable to cur-
rently resolve with in vivo imaging.8,57–60 We therefore do not
claim, based on the data presented here, that the changes in con-
nectivity that we present are sufficient to generate clinical

features. Rather, we argue that changes in basal ganglia connectiv-
ity may contribute to their development in patients.

We should also highlight that we adopted a cross-sectional de-
sign. A longitudinal study would give a clearer understanding of
the changes that drive the emergence of these features; however,
this approach has a number of challenges. Given the slow rate at
which clinical features evolve in Huntington’s disease, it is unlike-
ly that longitudinal analysis over a few years would have sufficient
power to detect changes in our areas of interest. Instead, we com-
pared across participants with variance in relevant clinical fea-
tures. We would hypothesize that similar results would be
obtained longitudinally if sampled over a longer time period. Our
cohort was also in the very earliest stages of manifest disease with
low symptom scores. Although this limited the variability in clinic-
al scores, this cohort offered two key advantages. First, very few
participants needed to be excluded due to antidopaminergic medi-
cation use and second, participants at this stage of disease were
able to tolerate functional MRI.

It is also clear that the model used this this study is a simplified
model of the relevant basal ganglia circuits. Modelling the true ex-
tent of the anatomical complexity within basal ganglia circuits is
currently intractable with functional MRI and therefore any at-
tempt to do so requires simplification.61 At the core of our model,
also used by Kahan et al.,36 is a connection through which striatal
activity can drive thalamic activity directly or via a secondary, in-
direct route which necessitates striato-diencephalic connectivity
in order to change thalamic connectivity.36 We found that these
pathways excited and inhibited thalamic activity, respectively. On
this basis we described them as the direct and indirect pathways
in our model; however, we cannot confirm they represent activity
in the MSNs as we hypothesize. Although a simplification, we be-
lieve this model sufficiently captures the principal dynamics of the
network as relevant to the hypotheses we are testing, while also
limiting model complexity. Finally, due to the size of the regions
we were interested in, especially the STN, partial volume effects
are impossible to avoid. However, data extracted from these
regions largely conformed to the pattern of activity expected for
this system at rest, namely, reduction of motor cortical activity,
striato-thalamic excitation via the direct pathway and thalamic in-
hibition via the indirect pathway. In comparison, previous work
treated the STN as a hidden node, meaning that activity from the
region is simulated by the model based on a priori expected con-
nectivity.36,62 While avoiding partial volume effects, this approach
has the limitation that the model itself must infer the time series
from a key node in the network as opposed to modelling data
taken from the region itself, the approach taken in this study.

In summary, we demonstrate, using neuroimaging, that
changes in connectivity in the basal ganglia motor loop are associ-
ated with motor sign severity and apathy in Huntington’s disease.
In part, the motivation for this study was to better inform the
pathogenesis of these clinical features to advance therapeutics.
For apathy in particular, our findings may suggest that medica-
tions which manipulate the relative activity of basal ganglia path-
ways, in particular those that modulate direct pathway activity,
may be a fruitful way forward.
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