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Abstract: Drainage of interstitial fluid from the brain occurs via the intramural periarterial drainage
(IPAD) pathways along the basement membranes of cerebral capillaries and arteries against the
direction of blood flow into the brain. The cerebrovascular smooth muscle cells (SMCs) provide
the motive force for driving IPAD, and their decrease in function may explain the deposition
of amyloid-beta as cerebral amyloid angiopathy (CAA), a key feature of Alzheimer’s disease.
The α-adrenoceptor subtype α1A is abundant in the brain, but its distribution in the cerebral vessels
is unclear. We analysed cultured human cerebrovascular SMCs and young, old and CAA human
brains for (a) the presence of α1A receptor and (b) the distribution of the α1A receptor within the
cerebral vessels. The α1A receptor was present on the wall of cerebrovascular SMCs. No significant
changes were observed in the vascular expression of the α1A-adrenergic receptor in young, old and
CAA cases. The pattern of vascular staining appeared less punctate and more diffuse with ageing
and CAA. Our results show that the α1A-adrenergic receptor is preserved in cerebral vessels with
ageing and in CAA and is expressed on cerebrovascular smooth muscle cells, suggesting that vascular
adrenergic receptors may hold potential for therapeutic targeting of IPAD.
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1. Introduction

Alzheimer’s disease (AD) is the commonest form of dementia, and a key pathological feature
of AD is represented by the accumulation of amyloid-beta (Aβ) within the walls of cortical and
leptomeningeal arteries as cerebral amyloid angiopathy (CAA) [1]. The changes observed in early
CAA are astrogliosis, combined with a dysregulation in lipid metabolism, and Apolipoprotein E
and Triggering receptor expressed on myeloid cells 2 (TREM2) [2]. While in familial CAA there is
overproduction of normal or mutated proteins such as Aβ, cystatin C or ABri, in sporadic CAA it is
the failure of clearance rather than overproduction of Aβ that is responsible for its accumulation in
the ageing brain [3,4]. There are several ways in which Aβ can be cleared, such as transcytosis via
lipoprotein-related-protein-1 or phagocytosis by perivascular cells or microglia, but these mechanisms
fail with ageing [5]. The role of vascular factors such as small vessel disease has been recently
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recognized in the pathogenesis of CAA and AD [6]. Apart from the supply of blood, which decreases
in early AD through hypoperfusion, the cerebral arteries have another recently recognized function:
the drainage of waste and soluble interstitial fluid along their walls [5]. Lymphatic drainage of the
brain occurs along the basement membranes of capillaries and arteries, as intramural periarterial
drainage (IPAD) [7–9]. With increasing age and possession of ApoE ε4 genotype, vascular basement
membranes change their composition, thereby reducing the efficiency of IPAD [10–12].

Multi-scale modelling of cerebral arteries demonstrates that the motive force generated by
cerebrovascular smooth muscle cells (SMCs), termed vasomotion, is the motive force for IPAD, and this
has been supported by recent experimental work [13–15]. Increased levels of myocardin and serum
response factor in blood vessels in CAA may reflect a decrease in the function of SMCs and clearance
of Aβ [16,17]. Since the SMCs generate the vasomotion for IPAD, the innervation of cerebrovascular
SMCs is an attractive target for improving IPAD and subsequently preventing or ameliorating CAA.

Leptomeningeal vessels are innervated extrinsically by the peripheral nervous system, whereas
parenchymal vessels are innervated intrinsically from within the brain, receiving afferents from
subcortical neurons of the raphe nucleus, nucleus basalis and locus coeruleus (LC). Noradrenaline
mediates smooth muscle contraction within blood vessels via α-adrenergic receptors, otherwise known
as α-adrenoceptors (α-ARs) [18]. LC, the main noradrenergic nucleus in the brain, degenerates in early
stages of AD [19–21]. It is known that SMCs express α-Ars, but the expression of α-ARs specifically on
SMCs of the cerebral blood vessels is not well documented [22].

In this human neuropathological study, we characterised the expression of α1A-AR within the
human cerebral vasculature of the occipital lobe, a region preferentially affected by CAA and on
cultured human brain vascular SMCs. We hypothesised that α1A-AR is preserved in the ageing arteries
and in CAA, providing a look to the future for targeting α1A-AR for the prevention and treatment
of CAA.

2. Results

2.1. Post-Mortem Delay Does Not Adversely Affect AR Staining

The association between AR expression and post-mortem delay was investigated in grey and
white matter. The Pearson’s correlation coefficient showed a positive correlation in the grey matter
(n = 15, r = 0.51, p = 0.05) and the white matter (n = 15, r = 0.15, p = 0.6); however, a sensitivity
analysis revealed two outliers, and following removal of these outliers, there was only a weak positive
correlation observed in the grey and white matter (0.16 and 0.12, respectively), which was not considered
statistically significant (p = 0.609 and 0.707 respectively). We concluded that post-mortem delay was
therefore unlikely to have a significant impact on the findings reported. As our numbers of cases were
low, we included the two outliers in the analysis of the α1A-AR.

2.2. The Overall Pattern of Immunocytochemistry for α1A-AR on the Cerebral Vessels Is Not Affected by Age

We used immunohistochemistry to assess overall α1A-AR expression in grey and white matter in
young, old and CAA cases. In all 15 cases, α1A-AR expression was observed within neurons of the
parenchyma and the vascular wall in both grey and white matter (Figures 1 and 2).

In both grey and white matter, neuronal staining appeared most intense in young cases and
decreased in both old and CAA cases. The CAA cases were all diagnosed with Vonsattel scores 2
(moderate, the tunica media is replaced by amyloid and is thicker than normal) or 3 (severe, extensive
amyloid deposition with focal wall fragmentation). Due to the low number of cases, it is not possible
to perform correlation with the Vonsattel scores, but all CAA cases were moderate/severe.

In grey matter, analysis of overall percentage area staining revealed a trend towards a decrease
in α1A-AR with age and CAA. Overall percentage area stained in young cases was higher than in
old cases (3.56% vs. 2.48% p = 0.305) and significantly higher than in CAA cases (3.56% vs. 1.68%
p = 0.029). Overall percentage area stained in old cases was higher but not significantly different from
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CAA cases (2.48% vs. 1.68% p = 0.658) (Figure 1 and Table 1). In white matter, analysis of overall
percentage area staining was highest in young cases but not considered statistically significant when
compared to old (1.47% vs. 0.79% p = 0.113) or CAA cases (1.47% vs. 0.91% p = 0.223). There was
no significant difference between old and CAA cases (0.79% vs. 0.91%) and no difference between
leptomeningeal arteries from young, old and CAA (Figure 2 and Figure 3 and Table 1).
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Figure 1. The pattern of distribution of the α-adrenoceptors alpha1a adrenergic receptor (α1A-AR) in 
the grey matter of the occipital lobe. Neuronal staining appeared most intense in young cases (A) and 
decreased in both old (B) and cerebral amyloid angiopathy (CAA) cases (C). In all cases, α1A-AR 
immunoreactivity was observed in vessel walls (enlarged boxes 1, 2 and 3). There was a significant 
decrease in α1A-AR in CAA cases compared to young groups (D) and no differences observed in the 
vessel wall (E). Graphs depict the mean ±95% confidence intervals; n = 5. Scale bar 50 µm. * p < 0.05. 

Figure 1. The pattern of distribution of the α-adrenoceptors alpha1a adrenergic receptor (α1A-AR)
in the grey matter of the occipital lobe. Neuronal staining appeared most intense in young cases (A)
and decreased in both old (B) and cerebral amyloid angiopathy (CAA) cases (C). In all cases, α1A-AR
immunoreactivity was observed in vessel walls (enlarged boxes 1, 2 and 3). There was a significant
decrease in α1A-AR in CAA cases compared to young groups (D) and no differences observed in the
vessel wall (E). Graphs depict the mean ±95% confidence intervals; n = 5. Scale bar 50 µm. * p < 0.05.
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Figure 2. The pattern of distribution of the α1A-AR in the white matter of the occipital lobe. Neuronal 
staining appeared most intense in young cases (A) and appeared to decrease in both old (B) and CAA 
cases (C). In all cases, α1A-AR immunoreactivity was observed in vessel walls (enlarged boxes 1, 2 and 
3). There were no significant differences observed in overall percentage area staining (D) or the 
percentage of the vessel wall positive for α1A-AR in white matter (E). Graphs depict the mean ±95% 
confidence intervals, n = 5. Scale bar 50 µm. 

In both grey and white matter, neuronal staining appeared most intense in young cases and 
decreased in both old and CAA cases. The CAA cases were all diagnosed with Vonsattel scores 2 
(moderate, the tunica media is replaced by amyloid and is thicker than normal) or 3 (severe, extensive 
amyloid deposition with focal wall fragmentation). Due to the low number of cases, it is not possible 
to perform correlation with the Vonsattel scores, but all CAA cases were moderate/severe. 

Figure 2. The pattern of distribution of the α1A-AR in the white matter of the occipital lobe. Neuronal
staining appeared most intense in young cases (A) and appeared to decrease in both old (B) and CAA
cases (C). In all cases, α1A-AR immunoreactivity was observed in vessel walls (enlarged boxes 1, 2
and 3). There were no significant differences observed in overall percentage area staining (D) or the
percentage of the vessel wall positive for α1A-AR in white matter (E). Graphs depict the mean ±95%
confidence intervals, n = 5. Scale bar 50 µm.
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Table 1. Percentage area stained for overall and vascular specific α1A adrenergic receptor in grey, white and leptomeninges per disease state and the comparisons
between disease states.

a Percentage Area Stained for Overall α1A Adrenergic Receptor in . . .

Grey Matter White Matter

Disease state N Mean (SD) (Min, Max) N Mean (SD) (Min, Max)

Young (Y) 5 3.56 (1.18) (2.68, 5.62) 5 1.47 (0.47) (1.11, 2.14)

Old Non-demented (O) 5 2.48 (0.97) (1.48, 3.97) 5 0.79 (0.49) (0.38, 1.48)

CAA (C) 5 1.68 (0.71) (0.59, 2.56) 5 0.91 (0.41) (0.39, 1.53)

b Grey Matter White Matter

Multiple Comparisons
between Disease States N Mean Difference (95% CI) p 1 N Mean Difference (95% CI) p 1

O–Y 10 −1.09 (−2.79, 0.62) 0.305 10 −0.68 (−1.49, 0.13) 0.113

C–Y 10 −1.88 (−3.59, −0.18) 0.029 10 −0.56 (−1.37, 0.25) 0.233

C–O 10 −0.79 (−2.50, 0.91) 0.658 10 0.12 (−0.69, 0.93) 1.000

c Percentage Area Stained for Vascular Specific α1A Adrenergic Receptor in . . .

Grey Matter White Matter Leptomeninges

Disease State N Mean (SD) (Min, Max) N Mean (SD) (Min, Max) N Mean (SD) (Min, Max)

Young (Y) 5 23.25 (3.33) (17.56, 25.78) 5 17.58 (9.84) (8.84, 34.09) 5 13.33 (4.21) (6.81, 17.99)

Old non-demented (O) 5 23.22 (5.42) (15.40, 29.40) 5 15.67 (6.81) (7.21, 21.89) 5 20.82 (10.03) (10.67, 34.60)

CAA (C) 5 18.81 (3.71) (15.54, 24.99) 5 15.72 (6.75) (7.02, 23.12) 5 13.93 (2.91) (10.71, 18.22)

d Grey Matter White Matter Leptomeninges

Multiple Comparisons
between Disease States N Mean Difference (95% CI) p 1 N Mean Difference (95% CI) p 1 N Mean Difference (95% CI) p 1

O–Y 10 −0.03 (−7.51, 7.44) 1.000 10 −1.91 (−15.86, 12.05) 1.000 10 7.50 (−3.93, 18.93) 0.280

C–Y 10 −4.44 (−11.92, 3.03) 0.373 10 −1.86 (−15.81, 12.09) 1.000 10 0.61 (−10.82, 12.04) 1.000

C–O 10 −4.41 (−11.88, 3.06) 0.381 10 0.05 (−13.90, 14.00) 1.000 10 −6.89 (−18.32, 4.54) 0.359
1 p-values are adjusted for multiple comparisons using Bonferroni correction; significance level is set at p < 0.050.
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Figure 3. The pattern of distribution of the α1A-AR in leptomeningeal vessels of the occipital lobe. In all 
cases, α1A-AR immunoreactivity was observed in vessel walls (A, B and C and enlarged boxes 1, 2 and 
3). There were no significant differences in the percentage of the vessel wall positive for α1A-AR 
between cases (D). Graph depicts the mean ±95% confidence intervals, n = 5. Scale bar 50 µm. 

2.3. Vascular α1A-AR Expression is Unaltered with Age and Disease in the Occipital Lobe 

The immunocytochemical expression of α1A-AR was observed within the vascular wall in vessels 
of the grey matter, white matter and the leptomeninges. Vascular staining appeared punctate and 
dispersed neatly throughout the vessel wall in young cases. This pattern was not observed in the old 

Figure 3. The pattern of distribution of the α1A-AR in leptomeningeal vessels of the occipital lobe.
In all cases, α1A-AR immunoreactivity was observed in vessel walls (A, B and C and enlarged boxes 1,
2 and 3). There were no significant differences in the percentage of the vessel wall positive for α1A-AR
between cases (D). Graph depicts the mean ±95% confidence intervals, n = 5. Scale bar 50 µm.
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2.3. Vascular α1A-AR Expression Is Unaltered with Age and Disease in the Occipital Lobe

The immunocytochemical expression of α1A-AR was observed within the vascular wall in vessels
of the grey matter, white matter and the leptomeninges. Vascular staining appeared punctate and
dispersed neatly throughout the vessel wall in young cases. This pattern was not observed in the old
and CAA cases, where the staining appeared more diffuse (Figure 3). Despite the differences in the
appearance of staining, there were no significant differences observed in the percentage area of the
vessel wall stained for α1A-AR in any of the regions of interest (Table 1). Representative images of
α1A-AR and amyloid-beta double staining in CAA cases showed α1A-AR expression in vessels with a
high amyloid load (Figure 4).
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Capillaries, arteries and veins all showed expression of α1A-AR in the vascular wall in all regions 
analysed. In the arterial wall, double immunofluorescence revealed a strong co-localisation of α1A-
AR with smooth muscle actin and to a lesser degree with lectin (Figure 5). A similar co-localisation 
of α1A-AR with lectin was also observed in the vessel walls of capillaries and veins. In cultured human 
brain vascular smooth muscle cells (HBVSMC), staining for α1A-AR appeared to outline the smooth 
muscle cell body (Figure 5). 

Figure 4. Immunofluorescence for α1A-AR (green) and Aβ (red) on sections of human occipital cortex
of a case of CAA. The green immunofluorescence is present within the endothelium and in between the
amyloid deposits of the wall of the vessel. Based on the diameter of the vessel and the thickness of the
vessel wall, as well as the presence of CAA mainly in cortical arterioles, the vessels are arterioles of
10 µm diameter. Scale bar 25 µm. (A) immunostaining for Aβ occupying the whole of the vessel wall in
a circumferential manner (B) immunostaining for α1A-AR showing a focal distribution; (C) the overlay
image of both Aβ and α1A-AR immunofluorescence.

2.4. α1A-AR Co-Localises with Endothelial and Smooth Muscle Cell Markers in Capillaries, Arteries and Veins
and with Cultured Vascular Smooth Muscle Cells

Capillaries, arteries and veins all showed expression of α1A-AR in the vascular wall in all regions
analysed. In the arterial wall, double immunofluorescence revealed a strong co-localisation of α1A-AR
with smooth muscle actin and to a lesser degree with lectin (Figure 5). A similar co-localisation of
α1A-AR with lectin was also observed in the vessel walls of capillaries and veins. In cultured human
brain vascular smooth muscle cells (HBVSMC), staining for α1A-AR appeared to outline the smooth
muscle cell body (Figure 5).
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AR in the grey and white matter of the occipital lobe from young, old and CAA brains. It has also 
demonstrated that while there is a decrease in overall α1A-AR expression in the grey matter of CAA 
cases, the vascular expression remains relatively unchanged and the α1A-AR was still detected in the 
walls of vessels laden with Aβ. 

Changes in AR expression have been previously reported in brain regions affected by AD 
pathology such as increases in the prefrontal cortex, hippocampus and amygdala. This suggests a 
compensatory mechanism to overcome a decrease in noradrenergic input due to the degeneration of 
the locus coeruleus seen in early stages of AD [19,23]. We did not observe any significant quantitative 

Figure 5. α1A-AR immunoreactivity in the vessel walls of capillaries, arteries and veins and within
cultured human brain vascular smooth muscle cells. α1A-AR immunoreactivity (green) was observed
colocalised (white arrows) to lectin (blue) in the vessel walls of capillaries (A–D), arteries (E–H) and
veins (I–L) in all cases. α1A-AR immunoreactivity was also colocalised with smooth muscle actin (red)
in arterial walls (H) and observed to outline smooth muscle cell bodies in culture (M–O). Scale bar
50 µm.

3. Discussion

This study has shown the qualitative and quantitative differences in the expression of the α1A-AR
in the grey and white matter of the occipital lobe from young, old and CAA brains. It has also
demonstrated that while there is a decrease in overall α1A-AR expression in the grey matter of CAA
cases, the vascular expression remains relatively unchanged and the α1A-AR was still detected in the
walls of vessels laden with Aβ.

Changes in AR expression have been previously reported in brain regions affected by AD pathology
such as increases in the prefrontal cortex, hippocampus and amygdala. This suggests a compensatory
mechanism to overcome a decrease in noradrenergic input due to the degeneration of the locus
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coeruleus seen in early stages of AD [19,23]. We did not observe any significant quantitative changes to
α1A-AR expression within the vessels. However, the change in appearance of expression from punctate
in young brains to diffuse in old and CAA brains may suggest a redistribution of the α1A-AR on the
blood vessels, likely resulting in functional vasomotor deficit. This would be particularly relevant to
the accumulation of protein deposits in the vessel wall as CAA caused by a reduced efficiency of IPAD,
a process that most likely relies upon adrenergic innervation [13].

Preservation of vascular α1A-ARs shown in this study highlights their potential as possible
therapeutic targets for IPAD in AD, and this requires experimental in vivo testing. Prazosin, the only
clinically available α1-AR antagonist that can cross the blood–brain barrier has been shown to induce
an anti-inflammatory response in the brain, preventing memory deficits over time in mutant transgenic
APP23 mice [24]. Furthermore, administration of Prazosin improved behavioural symptoms in patients
with agitation/aggression in AD [25]. It remains to be seen whether the effects of Prazosin are mediated
by vascular α1A-ARs. The morphological relationship between α1A-AR immunostaining and Aβ
would be a useful exercise in a future in vivo experimental study where we would administer α1A-AR
antagonist such as Prazosin to test whether it alleviates the pathological features of CAA. Prazosin
for Disruptive Agitation in Alzheimer’s Disease (PEACE-AD) is a Phase IIb multicenter, randomized,
double-blind, placebo-controlled trial of 12-weeks treatment with Prazosin in Alzheimer’s disease,
due to end on 31 December 2021 (NCT03710642), and this may reveal evidence for the prevention of
CAA or brain haemorrhages.

The synergistic effects of the other receptors may have profound implications on the pathogenesis
of AD and CAA. For example, the vasoconstriction generated by agonists of the α1A-ARs is
enhanced by stimulation of the apelin receptor [26]. Genetic deficiency of the α2A-AR significantly
reduces Aβ generation, whereas stimulation of this receptor enhances it [27]. Recent studies also
demonstrate that Aβ oligomers bind to the α2A-AR, leading to glycogen synthase kinase 3β (GSK3β)
hyperphosphorylation of tau [28].

There are limitations to this study, as it is a simple neuropathological assessment of the pattern
of distribution of α1A-ARs in the vasculature of young, old non-demented and CAA cases, using a
small sample size. However, the present study paves the way for experimental targeting of adrenergic
receptors for the prevention and treatment of CAA, as we show they are still present in aged and CAA
vessels. Further experimental studies testing the effect of adrenergic antagonists on vascular SMCs
possibly used in combination with treatments that alter cholinergic innervation will act upon IPAD
pathways for the prevention and treatment of CAA and AD.

4. Materials and Methods

4.1. Brain Tissue Cohort

Sections of 10 µm thickness of post-mortem human occipital cortex were used in this study.
Human tissue from young post-mortem donors (≤60 years old) was supplied by the Medical Research
Council-funded Edinburgh Sudden Death Tissue Brain Bank (Ethics REC 16/ES/0084). Tissue from old
(≥65 years old) and CAA-affected post-mortem donors was supplied by the Newcastle Brain Tissue
Resource (Ethics REC 08/H0906/136 + 5). The demographics of the cases used are summarised in Table 2.
The cases from the MRC Sudden Death Brain and Tissue Bank (Edinburgh) had no neurological disease
during life and no significant neuropathological changes postmortem. CAA cases were diagnosed
post-mortem by JA, and Vonsattel scores are included in Table 2.
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Table 2. Demographics for the cases used.

Source Age Sex pm Delay/Hrs Category

Edinburgh 51 M 78 Young
Edinburgh 41 F 50 Young
Edinburgh 60 M 52 Young
Edinburgh 59 F 53 Young
Edinburgh 33 M 47 Young
Newcastle 73 M 25 Old non-demented
Newcastle 90 M 18 Old non-demented
Newcastle 95 F 66 Old non-demented
Newcastle 95 M 21 Old non-demented
Newcastle 89 F 98 Old non-demented
Newcastle 67 M 46 CAA
Newcastle 86 F 51 CAA
Newcastle 73 M 7 CAA
Newcastle 74 F 49 CAA
Newcastle 87 F 54 CAA

4.2. Cell Culture

Human brain vascular smooth muscle cells (HBVSMC) were obtained from Sciencell (sc-1100).
Cells were maintained in a humidified atmosphere of 5% CO2 and 95% air at 37 ◦C in a smooth muscle
basal medium (sc-1101b) supplemented with smooth muscle cell growth supplement (sc-1152), 100 U/mL
penicillin, 100 µg/mL streptomycin (sc-0503) and 2% foetal bovine serum (sc-0010). The medium
was refreshed every 2–3 days according to the manufacturer’s instructions. Cells were plated onto
poly-L-lysine coated coverslips in a 24-well plate at a seeding density of 0.05 × 106 cells per coverslip.

4.3. Immunohistochemistry on Human Tissue

Sections were deparaffinised and rehydrated through xylene and a graded series of alcohols.
Endogenous peroxidase activity was quenched with 3% hydrogen peroxide for 15 min. Sections were
washed three times with phosphate-buffered saline (PBS). Heat-induced antigen retrieval was then
performed by microwaving in citrate buffer (10 mM, pH 6) for 25 min. Sections were incubated in a
blocking solution containing 15% normal goat serum (Sigma, G9023) diluted in phosphate-buffered
saline with 0.1% triton X-100 (PBSt) for 1 h prior to overnight incubation at 4 ◦C with anti α1A-AR
primary antibody (rabbit polyclonal, 1:200, Protein Tech, 19777-1-AP) diluted in PBSt. After washing
with PBS, sections were incubated for 1 h with a biotinylated goat anti-rabbit secondary antibody
(Vector BA-1000). Sections were washed with PBS and incubated with Vectastain Avidin-biotin complex
(Vector PK-4000) for 1 h. Sections were rinsed with 0.1M sodium acetate buffer, then incubated with
glucose oxidase diaminobenzidine nickel solution for 7 min. Finally, sections were rinsed with 0.1M
sodium acetate buffer, followed by PBS before dehydration through graded alcohols and xylene
and mounted with DPX. Care was taken in the selection of primary antibody to ensure thorough
validation had been carried out to confirm specificity. Validation of Proteintech 19777-1-AP comprised
of (1) Western blot of 3 different whole-cell lysates to show a single band at expected molecular
weight; (2) peptide blocking, which eliminated the antibody reactivity and (3) short hairpin (sh)RNA
knockdown in transfected HeLa cells, which showed a marked reduction in α1A-AR. These validation
methods align with the published recommendations for assessment of specificity of antibodies [29].

4.4. Immunofluorescence on Human Tissue

Vascular α1A-AR expression was assessed in all cases using immunofluorescence and confocal
microscopy. We first investigated α1A-AR expression with vessel type (capillaries, arteries or veins)
and then cell-specific expression using markers for endothelium and smooth muscle cells. Sections
were deparaffinised and rehydrated through xylene and a graded series of alcohols to PBS. Antigen
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retrieval was performed by microwaving in citrate buffer (10 mM, pH 6) for 25 min. After washing
with PBS, sections were incubated in pepsin (1 mg/mL dissolved in 0.2 M HCL) at 37 ◦C for 3 min.
Sections were washed three times with PBS and blocked with 15% normal goat serum diluted
with PBSt for 1 h. Sections were incubated overnight with anti-SMA (mouse monoclonal, 1:200,
Millipore), anti-α1A-AR (Rabbit polyclonal, 1:200, ProteinTech 19777-1-AP) and Dylight 647 tagged
endothelium marker; Lycopersicon Esculentum (Tomato) lectin (1:100, Vector DL1178) at 4 ◦C. After
washing with PBS, sections were incubated with biotinylated goat anti-rabbit (1:200, Vector) and goat
anti-mouse AlexaFluor 594 conjugated (1:200, ThemoFisher A11032) secondary antibodies for 1 h at
room temperature. Sections were washed again with PBS before incubation with streptavidin 488
(Vector) for 1 h at room temperature. Slides were washed with PBS and incubated with Sudan Black
(Sigma-Aldrich, 1% in 70% alcohol) for 3 min to quench autofluorescence. Sections were rinsed with
PBS and mounted with Mowiol (Sigma-Aldrich).

In order to ascertain whether α1A-AR were preserved in vessels exhibiting Aβ deposition in the
vessel wall (CAA), double immunostaining for α1A-AR and Aβ was performed on the cases with
CAA. Sections were deparaffinised and rehydrated through a graded series of alcohols. Sections
were washed three times with tris-buffered saline (TBS) and incubated in 98% formic acid for 1 min
at room temperature. Antigen retrieval was performed by microwaving in citrate buffer for 25 min.
After washing with TBS, sections were first incubated in pepsin (1 mg/mL dissolved in 0.2 M HCL) at
37 ◦C for 3 min and then in a blocking solution consisting of TBS with 0.1% Triton and 15% normal
goat serum (Sigma) for 1 h prior to incubation with primary antibodies. Sections were incubated
overnight with anti-amyloid beta (mouse monoclonal isotype IgG2b, 1:100, (Biolegend SIG-39220))
and anti-α1A (rabbit polyclonal, 1:200, (ProteinTech 19777-1-AP)) at 4 ◦C. After washing with TBS,
sections were incubated in secondary antibodies comprising Alexa fluor 647 goat anti-mouse IgG2b
(1:200, Invitrogen A-21242) and Alexa Fluor 555 goat anti-rabbit (1:200 Invitrogen A-21429) for 1 h at
room temperature. Slides were washed in TBS and incubated with Sudan Black (Sigma-Aldrich, 1% in
70% alcohol) for 3 min to quench autofluorescence before being washed in TBS and coverslipped with
Mowiol (Sigma-Aldrich).

4.5. Immunofluorescence on Cell Cultures

After 72 h in culture, cells were fixed with 4% paraformaldehyde for 10 min at room temperature,
rinsed thoroughly with PBS and then blocked with 15% normal goat serum diluted in PBSt for 1 h
before overnight incubation with anti-α1A-AR (Rabbit polyclonal, 1:200, ProteinTech 19777-1-AP)
primary antibody. Cells were further rinsed with PBS before incubation with goat anti-rabbit Alexa
Fluor 488 conjugated secondary antibody (Invitrogen, A-11034) for 1 h, followed by incubation in
2 µg/mL 4′,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher, D1306) for 10 min. Cells were rinsed
with PBS, and then coverslips were carefully removed from the 24-well plate and mounted onto slides
with Mowiol and CitiFluor.

4.6. Imaging

The DAB-stained occipital lobe sections were imaged with an Olympus dot slide microscope.
Using the tissue microarray function, ten adjacent non-overlapping images of 0.5 mm2 were obtained
from the grey matter and the underlying white matter of each case using the 10× objective. Blood
vessels that were observed in the grey matter, white matter and leptomeninges were imaged with the
20× objective. To prevent selection bias, the first five blood vessels observed in each region of interest
were imaged, regardless of size, shape or plane. Representative images from the immunofluorescence
staining were captured using a Leica TCS SP8 laser scanning confocal microscope.

4.7. Image Analysis and Statistics

The images obtained from the Olympus dot slide were used to quantify the expression of α1A-AR
in the human brain sections. The percentage area stained for each image was calculated using an
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automated macro created using the ImageJ software, and an average was calculated from the values
obtained from the ten images. To calculate the percentage area of staining in the vessel wall, ImageJ
software was used to draw around the vessel, and the area stained was divided by the total area to give
a percentage staining in the vessel wall. Where a transverse section of a blood vessel was captured,
the lumen area was subtracted from the total area before dividing by the area stained. An average was
obtained from the five vessels per region per case. Data were exported to SPSS software version 25 for
statistical analysis. A Pearson’s bivariate correlation analysis was carried out to assess the relationship
between adrenergic receptor staining and post mortem delay. A sensitivity test was also performed to
investigate potential outliers. Percentage area stained data were analysed using a one way ANOVA
with Bonferroni post hoc correction for multiple comparisons. Data are presented as mean ±95%
confidence intervals with differences considered significant if p < 0.05.
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