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Mammalian cells contain thousands of metalloproteins and
evolved systems to correctly incorporate metal cofactors into their
designated sites. Among the transient metals in living cells, iron is
the most abundant element that present as an iron sulfur cluster,
mono- and dinuclear iron centers or heme for catalytic reactions.
Iron homeostasis is tightly regulated by intestinal iron absorption
in mammals owing to the lack of an iron excretive transport
system, apart from superficial epithelial cell detachment and
urinary outflow reabsorptive impairment. In mammals, the central
site for iron absorption is in the duodenum, where the divalent
metal transporter 1 is essential for iron uptake. The most notable
manifestation of mutated divalent metal transporter 1 presents as
iron deficiency anemia in humans. In contrast, the mutation of
ferroportin, which exports iron, causes iron overload by either
gain or loss of function. Furthermore, hepcidin secretion from the
liver suppresses iron efflux by internalizing and degrading
ferroportin; thus, the hepcidin/ferroportin axis is extensively
investigated for its potential as a therapeutic target to treat iron
overload. This review focuses on the divalent metal transporter
1-mediated intestinal iron uptake and hepcidin/ferroportin axis
that regulate systemic iron homeostasis.
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I n mammalian cells, >30% of proteins require a transition
metal cofactor that binds to the protein at the active site;

thus, a lack of micronutrients (including transition metals) causes
clinical symptoms.(1) Among the micronutrients, iron, zinc, and
vitamin A are essential in preschool-aged children, while iron,
zinc, and folate are required by women of reproductive age
due to a high prevalence of deficiency.(2) A worldwide survey
revealed the wide spectrum of the micronutrient deficiency or
overload, especially iron across different countries, warranting
periodical reassessments. In Japan, the recommended iron daily
intake is 10 mg for men aged >20 years and menopausal women
and 15 mg for menstruating women.(3) On an average, 3–5 g of
iron is stored in the adult body, while approximately 25 mg
iron/day is released from the reticuloendothelial system. Subse‐
quently, iron is incorporated into the erythron and 1–2 mg
iron/day is absorbed to equilibrate the lost iron by detached
epithelial cells in the digestive tract and skin, minor blood loss,
sweat, and urine.(4) However, the excretory mechanism of active
iron transport is lacked; thus, iron balance is tightly regulated
by intestinal absorption. These results indicate iron recycling is
considered a “semi-closed system”.
Iron catalyzes DNA synthesis, metabolic energy production,

organic compound biosynthesis, oxygen transport, and reactive
oxygen species (ROS) generation, making it an essential
transition metal in nearly all organisms.(5) In cells, >95% of iron
is protein-bound, either directly by protein residues or iron-
containing groups, such as heme or iron sulfur clusters. In

cytosolic and organellar components, various states and forms of
iron are present with millimolar concentrations of organophos‐
phates, carboxylates, amides, thiolates, and hydroxylates.(6) Iron
has two common oxidation states: ferrous (Fe2+) and ferric (Fe3+).
Furthermore, more high-valent iron-oxo species, such as ferryl
(Fe4+; Fe4+O2+) and ferrates (Fe5+; Fe5+O4

3−, Fe6+; Fe6+O4
2−), are

also present, and these oxidize compounds rapidly, becoming
the most stable ferric ions.(7–9) Ferryl intermediates are transient
versatile complexes involved in substrate catalysis via peroxi‐
dases, catalases, and the cytochrome P450 family(7) or molecule
deterioration via heme ferryl species or the Fenton reaction.(10,11)

Furthermore, iron overload triggers cellular injury, exacerbates
atherosclerosis, and dysregulates organ function, ultimately
causing fetal impairment or carcinogenesis in rodents and
humans. Therefore, appropriate iron management is essential to
avoid oxidative damage and iron-mediated lipid oxidation-
dependent cell death, namely, ferroptosis.(7,12–16)

In mammals, the intestine was identified as an entry site for
iron uptake in the 1930s.(17) Enterocytes have a relatively short
lifespan of <4 days in humans,(5) and once detached (sponta‐
neously or cytotoxically), all intracellular contents are lost into
the gut lumen; thus, orchestrated transcytosis from the apical side
to the bloodstream via enterocytes is critical for iron uptake.
Dietary iron is mostly present in the ferric state, which is reduced
to ferrous ions by duodenal cytochrome b reductase (Dcytb)(18)

or dietary reductants, such as ascorbate or microbe-produced
short-chain fatty acids,(5) and subsequently absorbed from the
duodenum by divalent metal transporter 1 (DMT1). Herein, the
mechanisms of intestinal iron absorption, which tightly regulates
iron homeostasis, are discussed to clarify the role of iron in
the body.

DMT1

Hypochromic microcytic anemia is a common symptom of
iron deficiency in the body. Iron deficiency anemia (IDA),
caused by the loss of iron due to gastrointestinal or genital
bleeding or malnutrition, is treated with oral or intravenous iron
replenishment. In contrast, iron refractory iron deficiency anemia
(IRIDA) is rarely observed. Mammalian iron influx transporter
has been identified using two methods. In 1997, a divalent
cation transporter (DCT1) was identified by forced expression
of intestinal cDNA in Xenopus laevis.(19) In the same year, a
positional cloning approach identified the natural resistance-
associated macrophage protein 2 (Nramp2), which was originally
cloned by cross-hybridization to the Nramp1 gene,(20–22) as a
causative gene to develop autosomal recessive hypochromic
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microcytic anemia in mk mouse.(23) The following year, a point
mutation (G185R) in Nramp2 was identified as the causative
mutation for impaired duodenal iron uptake in Belgrade (b) rats,
which also developed inherited autosomal recessive hypochromic
microcytic anemia.(24) Surprisingly, G185R mutation in Nramp2
was commonly detected in mk mice.

In the 3' untranslated regions (UTR) of Nramp2 mRNA, two
isoforms, that contain an iron responsive element (IRE) or do not
contain the IRE (nonIRE), were identified.(19,20) The Dmt1-IRE
isoform is predominantly expressed in the duodenal mucosa,(25)

and the expression of duodenal iron regulatory protein 1 (Irp1),
Irp2, and Dmt1-IRE mRNA and protein axis was more activated
in anemic homozygous (b/b) rats than in phenotypically normal
heterozygous (+/b) rats, suggesting G185R mutated Dmt1-IRE
was induced to compensate iron uptake.(26) Furthermore, two
variants in 5' DMT1 mRNA were identified, which revealed four
DMT1 mRNA and protein isoforms to date (Fig. 1A).(27)

The mammalian DMT1 structure has 12 transmembrane (TM)
domains with two N-glycosylation sites in the extracellular
loop between TM 7 and 8 and intracytoplasmic N- and C-termini
(Fig. 1B).(19) Among the TM domains, TMs 1–5 and 6–10
comprise two pseudosymmetric inverted repeats that intertwine
in the tertiary structure, whereas TM12 is lacking in most
prokaryotes.(28) An iron-binding site is located at two hinges
between TM 1a and 1b, as well as 6a and 6b, which are also
occupied by Mn2+, Co2+, Ni2+, Cd2+, and Pb2+, whereas the hinge
between 6a and 6b contains a proton (H+)-binding site. Among
the amino acid methionine substitution with alanine at the iron-
binding site in TM6 suppresses Mn2+, Co2+, and Fe2+ transport,
while Mg2+ and Ca2+ transport is accelerated, indicative of metal
discrimination by the binding site.(29) Furthermore, DMT1, which
harbors the G185R mutation in TM4, induces selective Ca2+

permeability, suggesting a gain of function phenotype in mk and
b rodents.(30) As conformational changes are not detected in the
presence or absence of divalent metals, two mechanisms for
DMT1-mediated iron transport have been proposed. One model
describes iron transport via the movement of the inward-
outward-facing conformation.(28) Another model indicates a bulk
conformational change to an inwardly open state (Fig. 1C).(31)

However, the active transport mechanism of proton and metal
symporters, including whether or how the substrates are thermo‐
dynamically coupled and released, remains unclear.(32) Nramp
homologs are found throughout the tree of life, and the Nramp
family is subdivided into several distinct evolutionary cascades.
Two Nramp homologs have been identified in mice, rats, and
humans. Nramp1 and Nramp2 share 78% sequence similarity
with highly conserved primary sequence motifs and secondary
structures.(21,25) Polymorphisms in NRAMP1, also known as
SLC11A1 (solute carrier family 11 member 1), which is expressed
in phagocytic cells to aid damage to engulfed microbes, are
associated with different rates of bacterial infection, indicating
the difference between NRAMP1 and NRAMP2 that specializes
in innate immunity and metal acquisition.(32)

DMT1-Mediated Iron Absorption Molecular Mechanisms

Dietary iron starvation induces Dmt1-IRE at the brush border
membrane (BBM) of the duodenal villi.(25) After bolus iron
feeding, Dmt1-IRE rapidly migrates from the BBM to cyto‐
plasmic vesicles in the duodenum in heterozygous (+/b) and
homozygous (b/b) rats, indicating that the G185R mutation does
not alter endocytosis signaling.(26) However, Dcytb-deficient mice
exhibited no change in body iron stores and hematological
parameters, suggesting that non-enzymatic reactions are func‐
tional in reducing dietary ferric iron.(33) Furthermore, systemic
Dmt1 deletion caused IDA and ultimately death within 7 days,
the lifespan of which could be extended by a red blood cell
(RBC) transfusion.(34) The intestine-specific Dmt1 ablation induced

IDA and decreased iron storage. However, these iron deficiencies
were restored by an intraperitoneal iron injection.(35) In contrast,
Dmt1-IRE systemic overexpression elevated duodenal iron
absorption.(36)

In the intestine, apical BBM protein mislocation, which is
partially maintained by intracellular sorting and trafficking of
vesicular endocytosis, is associated with malnutrition, diarrheal
disorders, inflammatory bowel diseases, and cancer develop‐
ment,(37) indicating that the orchestrated endocytosis machinery is
indispensable for iron uptake. Polarized Caco-2 cells form a tight
monolayer and enterocyte-like morphology with brush border
enzymes or markers in a Transwell chamber. In these cells,
BBM- or basolateral membrane (BLM)- originated endocytic
vesicles are transported into specific subcellular compart‐
ments.(38,39) In this model, apo-transferin (TF) and ferri-TF
undergo different subcellular processes, suggesting different
endocytic cycles between apo- and ferri-TF.(40) Indeed, DMT1-
IRE containing BBM-derived vesicles significantly co-localized
with BLM-derived apo-TF following iron-ascorbate feeding
into the apical chamber for 20 min, whereas no co-localization
of BLM-derived ferri-TF was detected at 20 min, suggesting
that the recycling endosome signal separates iron-containing
vesicles.(41) Furthermore, iron supplementation into the apical
chamber decreased DMT1 in the apical membrane fraction and,
in turn, elevated DMT1 in the basolateral membrane fraction in
polarized Caco-2 cells, indicating BBM- and BLM-derived
vesicle fusion.(42) The interaction of the DMT1 N-terminal with
poly r(C) binding protein 2 (PCBP2) (which also binds to iron)(43)

and the C-terminal of DMT1-IRE with peripheral-type benzodi‐
azepine receptor-associated protein 7 (PAP7) (which regulates
cellular proliferation)(44) suggests that the DMT1-containing trav‐
eling vesicle supplies iron to the intracytoplasmic labile iron pool
(LIP) using guiding proteins. In the LIP, the iron concentration
was estimated to range between 1–7 μM, with the majority being
Fe2+ rather than Fe3+, and forming a complex (1:1) with the
cysteinyl residue of GSH. From this pool, a designated amount of
iron is delivered to ferritin for storage by PCBP1 or 2.(1,45) When
enterocytes sense iron requirements from the body, ferrous ions
are exported by ferroportin (FPN, also called SLC40A1)(46) and
are rapidly oxidized to ferric ions by hephastin (HEPH).(47) The
spontaneous oxidation of ferrous to ferric ions in BLM may not
be efficient as Heph was isolated from sex-linked anemia (sla)
mice, which developed intestinal iron malabsorption and IDA
at 6–7 weeks of age.(47) Indeed, systemic or intestine-specific
knockout (KO) of Heph mice suppressed intestinal iron absorp‐
tion, while Heph KO mice survived for up to 76–79 weeks and
IDA was resolved at 10–12 weeks, similar to in sla mice,
suggesting that Heph is important, but not essential, for optimal
iron absorption.(48) Interactions between Fpn and Heph were
transiently assembled by iron feeding, suggesting that a protein
complex is required to enable iron export in rat enterocytes.(49,50)

After export, ferric ions were loaded onto apo-TF and transported
to iron-deficient locations (Fig. 1D). When Tf was ablated in
mice, elevated systemic iron deposition with hypochromic micro‐
cytic anemia was observed,(51) which recapitulates congenital
atransferrinemia.(52)

In addition to nonheme iron, which is usually associated with
plants, heme, which is associated with animals, is also available
as a dietary iron source. Heme is transported by heme-responsive
gene 1 (HRG1, also known as SLC48A1) at the plasma
membrane and phagolysosomes to maintain heme home‐
ostasis.(53,54) However, the confirmation of heme importer remains
debatable argument.(4,55) Hemin also elicited DMT1-IRE internal‐
ization in polarized Caco-2 cells after 2 h, suggesting absorbed
hemin-initiated signal processing for DMT1 migration (Fig.
1D).(56) Notably, the extent to which heme is converted to
nonheme iron within enterocytes or transferred in intact form to
the plasma remains unknown.(57)
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Fig. 1. Divalent metal transporter 1 (DMT1) structure and DMT1-mediated iron transport mechanisms. (A) Four transcriptional variants, which
have unique amino acid in each N- or C-terminal, are spliced. (B) The mammalian DMT1 has 12 transmembrane (TM) domains, indicated by
number, and both of N- and C-termini are located in intracellular side. Two N-glycosylation sites are located in the extracellular loop between TM
7 and 8. The secondary structure of DMT1 comprises two pseudosymmetric inverted repeats, which are separated by intertwining domains to TMs
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indicates bulk conformational change to the inward-open state.(31) (D) Intestinal iron absorption. Dietary nonheme ferric ion is reduced by Dcytb to
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At the LIP, iron is shuttled into mitochondria for heme synthesis by MFN1/2 or to ferritin for intracytoplasmic iron homeostasis by PCBP1/2. From
basolateral membrane, ferrous ion is exported by FPN and subsequently oxidized to ferric ion by HEPH. The ferric ion is bound onto TF and deliv‐
ered to iron-deficient organs via the blood stream. In contrast, heme is absorbed and transported by HRG1. Heme is degraded by heme oxygenase
on the endoplasmic reticulum (ER) and released as ferrous ion. The internalization of DMT1 after heme feeding for 2 h suggests that DMT1 medi‐
ates orchestrated iron transport. Dcytb, duodenal cytochrome b reductase; DMT1, divalent metal transporter 1; FPN, ferroportin; HEPH hephastin,
HMOX; heme oxygenase; HRG1, heme responsive gene 1; MFN1/2, mitoferrin 1/2; PAP7, peripheral-type benzodiazepine receptor-associated
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The “mucosal block” hypothesis, which opposes transcytosis,
is established by diminished intestinal iron absorption from
orally administered iron to the body, likely due to exfoliative cell
death in enterocytes.(42,58,59) Dietary iron overload significantly
induced fetal gastrointestinal erosive hemorrhage in Dmt1-IRE
transgenic (Tg) mice.(36) In contrast, in intestine-specific Irp KO
mice, the mucosal block was withheld by a large excess of
ferritin, but not by epithelial detachment.(60) Whole body- and
intestine-specific Heph KO mice developed iron deposition in
enterocytes contrastingly, decreased iron storage in hepatocytes
was indicative of mucosal block.(48) Furthermore, double KO of
Heph and Ceruloplasmin, which oxidize ferrous ions to ferric
ions, developed hypochromic microcytic anemia with iron depo‐
sition in the enterocytes, liver, heart, and pancreas and died
within 20–30 weeks of age.(61) When Fpn, the sole nonheme iron
exporter identified in mammals to date, was deleted, embryonal
lethality was induced in mice. Conditional Fpn deletion leads to
iron deposition in enterocytes, which is indicative of the mucosal
block phenotype.(62) Notably, not all DMT1 in BBM undergoes
endocytosis with a bolus feeding of iron, suggesting a DMT1-
mediated non-endocytic iron influx.(58)

Mutated DMT1 Causes Hypochromic Microcytic Anemia

In humans, 10 published cases of SLC11A2 mutation have
been reported, presenting onset hypochromic microcytic anemia
at fetal stage (1 case), birth (6 cases), infancy (1 case), 3 months
(1 case), and 13 years of age (1 case), indicating that congenital
SLC11A2 mutation is extremely rare and has an early onset.(63) A
single patient, diagnosed with hypochromic microcytic anemia
during metrorrhagia treatment, carried compound heterozygosity
of G212V and N491S in SLC11A2 and homozygosity of H63D in
HFE, while no mutation was detected in SLC40A1 (ferroportin),
HJV (homojuvelin), HAMP (hepatic antimicrobial peptide;
also known as hepcidin), or TfR2 (transferrin receptor 2).(64) The
hyperferritinemia detection in this patient suggested an overlap
of hereditary hemochromatosis (HH), which is a disorder of the
iron store regulators and is caused by HFE, SLC40A1, HAMP,
HJV, or TfR2 mutations.(52,65) Notably, hepatic iron overload is not
necessarily observed in SLC11A2-mutated patients.(66) The pheno‐
type of the homozygous C282Y HFE mutation, which is respon‐
sible for >90% of HH cases in people of North European descent,
varies markedly from liver cirrhosis to subclinical HH. Previ‐
ously, three SLC11A2 polymorphisms, 1245T>C, IVS4+44C>A,
and IVS15Ex16-16C>G, were found not to be associated with
clinical symptoms in patients carrying the homozygous C282Y
HFE.(67) An intronic SLC11A2 polymorphism IVS4+44C>A
genotype, which has been associated with an increased risk of
type 2 diabetes mellitus,(68) Wilson’s disease, age-related macular
degeneration, and Parkinson’s disease(69) elevated the four-fold
risk of IDA, despite the degree of atrophy in patients with celiac
disease. These results suggest that patients with celiac disease,
who have impaired duodenal mucosal uptake due to reduced
absorptive surface as a result of chronic inflammation-induced
villous atrophy, may unmask the SLC11A2 IVS4+44C>A
polymorphism-caused IDA.(70) Conclusively, the residual func‐
tion of mutated SLC11A2 as an iron transporter and presence or
absence of other mutated iron-related genes may modulate hema‐
tological parameters and present clinical symptoms.
Furthermore, a genome-wide meta-analysis yielded novel vari‐

ants of DUOX2 (dual oxidase 2), F5 (factor V), and TMPRSS6
(transmembrane serine protease 6), which are associated with
IDA onset, in addition to SLC11A2.(71) DUOX2 variants increase
infection susceptibility by dysregulating innate immunity, whereas
F5 variants may cause blood loss by hypercoagulable state-
induced thrombosis. TMPRSS6 variants, primarily expressed in
the liver and identified as a causative gene for IRIDA due to
elevated hepcidin levels,(72) were also associated with IDA.

Hepcidin-Ferroportin Axis

Ferroportin is evolutionarily conserved and is found in plants
and humans, whereas hepcidin was first discovered in fish when
the hepcidin-binding site in ferroportin was simultaneously
detected, indicating that ferroportin and hepcidin co-evolved.(73)

During the unhygienic conditions of our evolutionary history,
humans were under constant threat from a range of potentially
fatal microbes. A host-defense mechanism, which confers extra‐
cellular pathogens by depriving iron, was recognized as “hypo‐
ferremia of infection” in the 1940s, because nearly all microor‐
ganisms are dependent on iron.(17) Hypoferremia of infection is
largely mediated by hepcidin, which was invented based on the
fact that hepcidin is highly expressed in the liver (hep-) and
possesses microbicidal activity (-cidin).(17) Because, hepcidin was
initially shown to be a member of the defensin antimicrobial
peptide family.(5) In Hamp-deficient mice, elevated iron was
deposited in liver, pancreas, and heart with high transferrin
saturation, and contrastingly, splenic iron deposition was
decreased.(74) Despite the common phenotype of iron overload,
the mRNA levels of Dmt1-IRE in the duodenum were elevated in
Hfe-null mice,(75) but not in Hamp-deficient mice.(74) In Hamp Tg
mice, severe IDA and neonatal death were observed, which are
indicative of negative regulators of intestinal iron absorption.(76)

Indeed, among the causative molecules of HH, TfR2 interacts
with HFE, which, in turn, interacts with bone morphogenetic
protein receptors and the HJV complex in the plasma membrane
of hepatocytes to regulate hepcidin secretion, indicating the
critical role for the hepcidin-ferroportin axis in intestinal hyper‐
absorption of dietary iron and iron overload with consequent
tissue injuries.(52,77)

Iron efflux suppression by hepcidin is triggered by binding to
ferroportin, whose topology firmly establishes that ferroportin is
composed of 12 TM domains and intracellular locations of both
the N- and C-termini (Fig. 2A), despite the initial controversial
results.(78) After binding to ferroportin, hepcidin induces ferro‐
portin occlusion, internalization, and degradation in many cell
types (Fig. 2B),(79) including enterocytes, macrophages, erythrons,
and hepatocytes, which are central regulators of iron home‐
ostasis. Furthermore, K8R-mutant ferroportin, which inhibits N-
terminal ubiquitination, and C326S-mutant ferroportin, which
inhibits efflux occlusion, suppress hepcidin-induced internaliza‐
tion and degradation.(80) Furthermore, the binding affinity of
hepcidin to ferroportin was elevated to a near 80-fold change in
the presence of iron, indicating that hepcidin selectively confers
iron-loaded ferroportin (Fig. 2B).(81)

Clinically detectable ferroportin (SLC40A1) mutations, which
are inherited in an autosomal dominant manner, are heteroge‐
neous and classified into two broad phenotypic categories with
some overlap. A group with a gain of function ferroportin mutant
is caused by partial or complete resistance to hepcidin-induced
occlusion or internalization. Here, hyperferritinemia with high
transferrin saturation and iron induced toxic damage to the liver,
heart, and endocrine organs are often observed at young ages
(Fig. 2C). Another group of loss of function ferroportin mutants
is characterized by hyperferritinemia without high transferrin
saturation or iron-induced tissue damage. Hyperferritinemia is
caused by macrophages or histiocytes that phagocytose senescent
RBCs to recycle heme and non-heme iron from heme-containing
proteins. These cells regulate ferroportin synthesis transcription‐
ally and translationally, rapidly requiring iron export after
erythropagocytosis and in response to infection.(57) They also
develop a defense system against iron-induced ROS; thus, symp‐
toms of organ damage are subclinical. Furthermore, systemic
hetero Fpn KO (Fpn+/−), which recapitulates the inherited form in
humans, demonstrated age-dependent erythropoiesis disruption
and splenic iron overload. At 3 months of age, Fpn+/− mice were
indistinguishable from their wild-type littermates, while at 6
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months, Fpn+/− mice developed low hemoglobin levels and
decreased erythrocyte volume without anemia or significant
splenic iron deposition. Fpn+/− mice exhibited significantly
decreased hemoglobin and elevated splenic iron deposition at
1 year of age.(62) In Dmt1-IRE Tg mice, elevated iron absorption
from the duodenum without significant hepatosplenic iron
deposition was observed at 3 months of age,(36) while Dmt1-IRE
Tg mice >71 weeks of age exhibited increased hepatosplenic iron

deposition.(82) Furthermore, nonheme iron and transferrin satura‐
tion in sera increased with aging in wild-type rats.(83) Taken
together, aged rodents may have changed iron sensors to increase
body iron storage, as also observed in humans.(16)

Inflammatory stimuli, such as lipopolysaccharides (LPSs),
elevate DMT1 and hepcidin expressions, whereas systemic iron
requirement by IDA, phlebotomy, and hypoxia suppresses
hepcidin expression.(84) Furthermore, conditional KO of murine
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Hamp elevated mRNA and protein levels of Fpn, Dmt1, and Tfr1
via hypoxia inducible factor 2α (Hif2α) activation in duodenal
mucosa, indicating that the liver controls intestinal iron uptake
via the hepcidin/ferroportin/Hif2α axis.(85) In contrast, dextran
sulfate sodium exposure to induce colitis did not elevate
duodenal iron uptake, indicating that deletion of hepcidin and/or
tissue iron deposition attenuated the physiological response to
intestinal inflammation in Hamp-deleted rats.(83) However, micro‐
biota and intestinal inflammation have been shown to regulate
hepcidin expression and systemic iron metabolism.(5) Further‐
more, another FPN mRNA transcript that lacks 5' IRE may
modulate the ferroportin protein levels to regulate iron efflux in
enterocytes and erythrons.(73) These results indicate that the
degree of inflammation and its response may modulate cytokine-
induced hepcidin secretion.

Hepcidin is suppressed by ineffective erythropoiesis, resulting
in hepatic iron overload due to increased intestinal iron absorp‐
tion. Urinary hepcidin levels in patients with DMT1 mutations
are normal or moderately low, although hepatic iron is not defi‐
cient.(66) Recently, a hepcidin suppressor, erythroferrone, was
identified which is induced by phlebotomy and/or erythropoietin
treatment of erythroblasts. Indeed, erythroferrone antagonists are
therapeutic targets that suppress intestinal iron absorption by
increasing hepcidin in patients with hemoglobinopathies without
regular transfusion and massive hepatosplenic iron overload.(77)

Taken together, dyserythropoiesis-induced erythroferrone may
contribute hepcidin suppression due to increased hepatic iron
storage in patients with DMT1 mutation.
DMT1 is indispensable for intestinal iron absorption and

recycling for tight iron homeostasis regulation. Recently, four
amino acids, Asp, Gln, Glu, and Gly, were found to facilitate iron
uptake in iron-deficient mice, indicating an improved oral iron
supplementation formula to treat IDA.(86) Furthermore, the FePO4
nanoparticle bioavailability is not toxic to iron deficient women
with anemia.(87) Indeed, oral intake of water-soluble iron alters
the gut microbiota in patients with inflammatory backgrounds,
such as obesity, inflammatory bowel disease, or colorectal cancer
that may cause declined absorption.(12) To improve dietary iron
supplementation, probiotics and prebiotics are explored to alter
iron bioavailability, as impaired gut health-induced dysbiosis
results in poor therapeutic effect.(5) Furthermore, microbiotal
metabolites, such as 1,3-diaminopropane and reuterin, suppressed
intestinal iron absorption via Hif2α suppression, but not Hif1α,
indicating metabolic crosstalk between microbiota and the host
enterocytes.(88)

Patients with β-thalassemia or sickle cell disease, who experi‐
ence hemolysis and transfusion-dependent anemia, experience
vasculotoxicity and atherosclerosis that may exacerbate ischemic
change and cardiovascular disease, ultimately causing fatal heart
failure.(13) Recently, a clinical trial on hepcidin-like peptide
(LJPC-401) revealed that LJPC-401 significantly reduced the
need for phlebotomy in patients with HH. Furthermore, another
clinical trial on hepcidin agonists (PTG-300) for polycythemia
vera effectively replaced phlebotomy for the hematocrit control.(89)

N-acetylgalactosamine-modified antisense oligonucleotide, which

targets TMPRSS6 mRNA (Sapablursen), has been analyzed in
clinical trials in patients with non-transfusion-dependent β-
thalassemia (NCT04059406) and is currently being assessed in
an ongoing clinical study in patients with polycythemia vera
(NCT05143957). Further studies on iron metabolism are required
to develop novel therapeutic approaches.
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